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Role of wave interaction of wires and split-ring resonators for the losses in a left-handed
composite
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In this work the analytical model explaining the main reason of transmission losses in the known two-phase
lattice of Smith, Schultz, and Shelby representing a uniaxial variant of left-handed médiivh) at micro-
waves is presented. The role of electromagnetic interaction between split-ring resgB&Bis and straight
wires leading to the dramatic increase of ohmic losses in SRRs within the band when the meta-material
becomes a LHM is clarified. This paper explains why in this structure, rather high transmission losses are
observed in the experimental data, whereas these losses in a separate lattice of SRRs and in a lattice of wires
are negligible at these frequencies.
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I. INTRODUCTION group of Efros(e.g., in[9]) with the data of the group of
In his seminal work{1] Veselago summarized an exten- Soukoulis(e.g., in[10]) one can see that different simula-
. ] Selag . S ions of the same lattice give very different results for the
sive study_ of electromagnetic properties of med|a_1 with rea ransmission losses per unit thicknegeom practical ab-
gr_]d negg(t)lg)/ehparamgtehrs c?)lled Ieft-handbgd ma';e(ﬂ&lk/lb). d sence to huge valup€Experimental data rarely fit with these
ince 2000 this topic has become a subject of an abundagfy, jations and give moderate values for transmittance in
dISCL.JSSIon initiated by Pendi]. In 2001, the negative re- o) v regime. The disagreement of the data frphg]
fLaCt'On (ad.fea]lcture of LHM.thatI allows o(r;e to d|st|ngdU|§h with the experiment is referred to in this work as the influ-
these_me la from corkl)ver;]tlona ome?ass emg_nstratzeooin ence of the dielectric board, but it is only a guess[1j the
the microwave range by the group o ”_"'[31- Ince moderate transmission losses were obtained for a LHM in
this r_esult has bgen reprod_uced st tiges{4] a_nd[5])_ which the wires are located in free space and SRRs are po-
?‘”d IS noyvllcon3|dereg reliable. Thg mat(re]nal dﬁ3|gne[c3]|rr]1 sitioned on very thin dielectric sheets. It has not been clearly
Is essentia v a two-p ase composne,'w ere the tWC.) PNaS&tated which losses dominate in this meta-material: ohmic
_are_respectlvely responsﬂ;le for electric and m_agnenc Po_larl'osses or dielectric losses. However, it is clear friddy that
ization effects. The negative real part of effective permittiv-i " \1sses of LHM are rather significant in the microwave

Ity € was crt_aated by an array of pa_rallel qonducting Wiresrange and should be studied once more. Note that few alter-
(whpse d|rd¢ct|on i@tﬁrm|nkes the ODEC? axmf thle Icom— native versions of a LHM at microwaves were suggested in
Fosnel me IUmI which 1S nowg lto fe ave sim atl}r’] 0 a the literature, e.9.f12] and[13]. In [12] the self-consistent
ree-electron plasma at enough low frequencies. The negay, 5y tical theory of the quasi-isotropic lattice of metal bi-

tive value of the real part of permeabilify.+ was provided anisotropi ;
L ) pic()) particles has been presented, and the nega-
by double split-ring resonatoSRRY, see als[6]. This tive parameters predicted within the band 8.2-8.4 GHz.

negative permeability arises due to the resonance of the magi'owever, the losses were neglected in this work[11g] the

netic polarizability of SRRs within a very narrow subb_anq experimental testing of a LHM made from SRRs combined

With capacitively loaded stripginstead of long wireshas

the wide frequency range where (2g) <0 (more exactly been done. The aim of this worlas well as[12]) was to

the real part of ax component of the permittivity tensor is  ,i-i an isotropic variant of LHM and to match this me-

negativg. The meta-material becomes a LHM within this g, ¢4 free space. The losses in this structure are very high
subband for waves polarized alorxgand propagating or- g

h I hi is Th | - & the mini-passband corresponding to negative material pa-
thogonally to this axis. These electromagnetic waves Sultefy aters is almost invisible within the band of the resonant

th‘? magn;tlc arr:d d|ellectr|c Io;ses. 'rl;here hssbbegn Ilyeratu sorbtion of SRRs and the band in which both material
\ll\lvrltter{/a out t e7se| oshsfes S|r|1(c?1t € work by 3rc(|3a aNfarameters extracted from measured data have negative real
Nieto-Vesperinag/]. In this work the structure tested [8]  parts is rather narrow. A 50 MHz passband has been detected
is treated as opaque and an exotic explanation of negati & 9.5 GHz and another one was located around 11 GHz

refraction is presgnted. Comparing the results_ obtained b?ﬁowever, at these frequencies the lattice period becomes
the group of Garcia[7,8], etc) or the results obtained by the 0401 thar /4 and the local constitutive parameters are not

physically soungl In [14] the transmittance through the layer
of a racemic medium from resonant chiral particles is calcu-
*Email address: brunosauviac@univ-st-etienne.fr lated. This medium also exhibits the negative real part of
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constitutive parameters within the resonant band. However, m
the result for resonant transmission losses obtained.4hn mm= Hloc
was pessimistic.

Therefore in the present paper we return to the structur®Ve consider SRRs consisting of two wires with a round
suggested by the group of Smith. We use a self-consistersross section. The model of such SRRs was developed and
analytical model for its material parameters taking into ac-validated by numerical simulations in our workk9,2Q for
count ohmic and dielectric losses. The ohmic losses are cathe lossless case. The conductivity resistance of the ring can
culated using the Landau model which takes into account thbe calculated using the formufa6]
frequency dependence of the resistance per unit length of a oot

R.= Re( )

metal ring unlike simulations if10] and [11] where the
ohmic losses were modeled through the frequency indepen-
dent complex permittivity. The similar structure in its loss-
less variant has been already studiedlii] where the ana-
lytical model was presented for its material parameters. Th
difference of the structure suggested[i¥] with that from
[3] was another geometry of a SRR. We considerefilifj
the SRRs suggested by Marques instead of SRRs of Pendry o
(coplanar SRRs suggested[#]). The resonator of Marques
is not bianisotropic, whereas the lattice of Smith, Schultzwhered=1/Vowuy is the skin depth. In this work we use the
and Shelby is in fact a weakly bianisotropic medium withintime dependence efjwt) commonly adopted in the theory
the resonant band of SRRe€[18]). In the present paper we of microwave composites. The model of a loss-less SRR
compare the results obtained for both types of SRRs. Th&om [20] is rather accurate but sophisticated. It takes into
bianisotropy of Pendry’s SRRs is neglected in our model. account the nonuniformity of the current induced in both
The aim of[17] was to find the band-gap structure of the rings and allows one to calculate not only the magnetic po-
lossless meta-material. In the present paper we consider tharizability of a single SRR but also electric and magneto-
SRRs of Pendry assuming that these are prepared from edectric polarizabilties. These additional polarizabilities are
copper wire with a round cross section.[B] the SRRs were related with the nonuniformity of the induced current around
prepared from a thin metal strip. However, this is not a prin-the rings of SRR. Let us neglect this nonuniformity assuming
cipal difference in what concerns the scattering properties othe electric and magnetoelectric resonances of a scatterer
a SRR as was clearly shown [ih9] and[20]. Our choice of hold at different frequencies than the magnetic resonance.
the usual wire instead of a strip wire is explained by theThis assumption can be checked in the thg@@j. Then, the
absence of an analytical model of losses for curved stripong formula(12) from [20] for magnetic polarizbility of a
wires. We consider at the first step the lattice of parallelsingle SRR simplifies to a classical two-time derivative Lor-
SRRs and at the second step we study the meta-materiahtz relationformula (19) from [20]]:
from [3]. Comparing the result for the effective permeability 2 2cp
of two meta-materials, SRRs with wires and SRRs only, we A= - W ppS
can see the role of the electromagnetic interaction in the T L+ M(w?- @) + el
two-phase material.

1)

’ 2
o'y

Herer, is the radius of the wire cross section amdis the
effective complex conductivity which is expressed through
e metal conductivityr as follows:

_ 20'\]1(Kr0) _ (1 _])
p y K_
KroJo(Kro) o

!

2)

Here S=#(r3+r3)/2 is the averaged area of SRR, whege
andr, are radii of the outer and inner ringahich are as-
sumed to be close to one anothdr=(L,+L,)/2 is the av-
eraged proper inductance of rings awdis their mutual in-
ductance.

Let us first consider the lossless case. Then the fdctor
EqQ. (2) determines radiation losses in the random medium of
eSRRs[lQ] and is proportional to the radiation resistance of
The SRRI'=7(k29)2/6m(L+M) =R/ (L+M). Here 7 is the
wave impedance ard= w\ eyenug is the wave number of the
host medium. Consequentll/,~ * [see formulag17) and
420 from [20]]. This result allows our model of SRR to

nonreciprocal magnetic dipoles. The result we obtain in thi tisfy the basi dition f tic di |
section confirms the result frofi]: the resonant absorption s 'SfY € basic condition for any magnetic ipdier elec-
tric dipoles this condition was introduced by Sipe and

ge(tgesﬁ)litt(fe is rather small in the frequency band whereKranendonk in22)):
The reliable analytical model of a single SRR is needed to 1 K3

calculate a magnetic polarizability which enters into the dis- Im{—}

persion equation of a lattice of magnetic dipoles derived in Bmm

[21]. The magnetic polarizbility is defined as a relation of its Notice that the conditioii3) (which is obvious for both clas-

magnetic momenin to the local magnetic fieldpolarized sical and quantum scatterers and fits with the well-known

along they axis, i.e., orthogonally to the SRR plgne Landau correction to the Lorentz theory of disperioms

Il. CALCULATIONS OF MAGNETIC LOSSES
IN A LATTICE OF SRRS

In the model of the dense lattice of SRRs presentd@é]in
the calculation of ohmic losses did not take into account th
curvature of wires. In this section we calculate these losse
using the Landau formula for a wire ring5]. To find the
permeability, we apply the rigorous model of the dipole lat-
tice developed in16] for electric dipoles and irj21] for

= _ 3
S ©)
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FIG. 2. Top: Structure under study. SRRs which are parallel to
FIG. 1. Top: Dispersion plot of a cubic lattice of SRRs of cop- the plane(y-z) are not taken into account since these are not ex-

per. Bottom: Effective permeability of a lattice. cited by the mode propagating alomgBottom: Dispersion plot of
the structure. The straight line corresponds to the noninteracting
violated in the approximate model introduced[8. mode with polarizatiorH =Hx,, E=Eyo.

Let us now study the cubic lattice of parallel lossless
SRRs with periodd. To find ue; of the lattice we use the inverse polarizability of scatterefd5]. In Eq. (4) the term
relation ues=1N, Wheren is the refraction index related with Im(1/an) has disappeared since it was exactly compensated
the propagation factog of the basic propagating mode by the imaginary part of the lattice interaction facfad].
=B/k=Bl w\eyuoern. Factor g (within the basic Brillouin Now, let us consider the case when the total conductive
zon@ can be found from the known dispersion equation forresistance of the SRRL=R.,+R, is nonzero. In this case
modes propagating along tlxeor z axes in a lattice of mag- the relation(3) naturally generalizes to

netic dipoleg21]. Equation(21) from [21] for a simple cubic 1 R+ R I3 R
lattice of parallel magnetic dipoles can be written in our no- Imy — = radz = +—. (5)
tations as 8mm wpeS  6mpo wppS
w sin kd 1 w The term withk® is totally compensated in the dispersion
5 = e(—) - > equation of a magnetodipole lattice by the interaction con-
2nd* coskd - cosd anm/  41d stant of the lattice, but the second term in the right-hand side
coskR . of Eq.(5) remains and modifies E¢4). In this lossy case we
( = sin kR>, (4)  should substitute into Eq4) the value 14/, instead of

Re(1l/any. Herea/ . is given by Eq.(2) with the substitu-
wheren=1uo/ €x€, andR~d/1.438. The same equation can tion I'=R\/(L+M)=(Ry+R)/(L+M). ResistancesR ,
be obtained fronj15] using the duality principle. This equa- are given by Eq(1) for both rings.
tion was obtained using the method of the local field. It gives Our numerical example corresponds to the following pa-
the band-gap structure of the lattice with rgain passbands rameters: relative permittivity of the host matrig,=1.5
and negative imaginang in stop bands. Within the resonant —j0.002, r;=1.5 mm, r,=1.2 mm, and wire radiusrg
band of a scatterer wheja,,|>27d?/» the well-known =50 mcm(it is still 80 times as large a8at 6 GH2. Copper
complex mode(inherent to metallic photonic crystalep-  conductivityo=5.8x 10" O~ m™%. The period of a lattice of
pears angB=m/d+j Im B. One can see from E¢4) thatthe SRRs was taken equal=8 mm. The dispersion platsee
radiation resistance of the scatterer does not influence thieig. 1, top, shows the normalized propagation factut/ =
final parameters of a lattice. This results from the electroversus frequency and contains two results. The first one
magnetic interaction in regular structures. The imaginary pargstraight dashed linecorresponds to the polarization of the
of the interaction constant of arbitrary regular lattice exactlyelectric field alongy and of the magnetic field in the plane
compensates the contribution of the radiation resistance intx-z). Then the SRRs are not excited. The second one cor-
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responds to another polarization of the mode, when the SRReector has the only Cartesian component denotef) agith
are excited. There is practically the lossless complex modelectric polarization along. In Eq. (6) the following nota-
within the lower half of the resonant frequency band oftions are used:

SRRs and the usual stop band within its upper half. The

2
difference with the lossless case exists but is not visible in g= 2d ”(i) -q, p= k_d|og ,
the plot. In fact, the losses mal@gd/ = complex at all fre- o \agn, 2y,
quencies, however, this correction is maximally of the order
104, 1(/coskR
Therefore the result fou; presented in Fig. 1, bottom, is a=5\"rg ~" kR].

optimistic. Within the band 6.35-6.56 GHz we obtained
Re(uerr) <—0.1 whereas|Im(uer)| <3X 10 Though we Herer,, is the radius of straight wires. Relatig8) results of
have considered SRRs from wires with a round cross sectiofifeory [17] with the only substitution R&/ayy) — 1/an,
we have chosen a very small value fgrWe expect that our Longitudinal components of the effective permittivity and
results correspond to a strip wire with a width of a few tenthsi,y are determinedrespectively by formulas(35) and(36)
of mm. However, we will see below that this result cannot beof [17].
expanded to the lattice of SRRs and wires. Though the qua- In our numerical example, the lattice of SRRs is the same
sistatic interaction between SRRs and wires is absent in th@s in the preceding section and it is assumedrfat,. The
lattice [3], the wave interaction exists. It was clearly demon-result for permeability dramatically differs from the previous
strated in[17] that this interaction(in the lossless cage result; this is due to the electromagnetic interaction of SRRs
strongly influences the real part of the material parametergnd wires. This interaction is described by the paranigier
In the next section we will find its influence to their imagi- Egs. (27) and (28) of [17]. If one formally putsB=0, the
nary parts. problem splits in two independent dispersion equations, one
for the medium of SRRs and one for the wire medium. Then
Meit Keeps the same values as in Fig. 1.
In Fig. 2 (bottom), we have shown the dispersion plot of
In this section we study the effective material parameterdhe structure. This plot corresponds to the same permittivity
of the two-phase lattice of SRRs and wires. It is almost the?f the host mediume,=1.5-j0.002 as in the previous sec-
same structure as [17] but the metal of SRRs is not perfect tion. Comparing this plot with a similar plot for lossless
(e.g., copperand the background dielectric has small lossesStructure(Fig. 5 of [17]) one finds that the complex modie
We assume that the wires and SRRs are located in a uniforfig- 5 it corresponds to the lower half of the resonant band of
host mediursee Fig. 2, top The analytical model does not SRR disappears. Instead, the forward wave with strong at-
allow one to calculate the true losses in the meta-materidenuation appears in this resonant subband. This forward
described if3]. In our model the dielectric sheets on which Wave corresponds to Rees) >0 and Ree.y) <0, and the
the SRRs are located are replaced by a uniform host mediuifopagation is possible due to the complexity of constitutive
with relative permittivitye,, Since we neglect the influence Parameters. The attenuation factor is larger than the propa-
of dielectric interfaces the comparison of our results withgation one in this band. The upper half of the resonant band
experimental data can be only qualitative. Our goal is toof SRRs contains the backward wave as well as in Fig. 5 of
understand the impact of the electromagnetic interaction ih17]. The ohmic losses broaden the frequency band of this
the lattice on these losses. In fact,[i7] the structure uses backward wave, however, these also produce the visible
the modified SRRs of Marques, whose electric polarizabilityimaginary part of the propagation factor in this band. This
is very small at the resonance af,, and magnetoelectric imaginary part is not so high as in the lower half of the
p0|arizabi|ity is zero. In the present paper we consider théesonant band and is related with ohmic losses in SRRs. It is
SRRs of Pendry, the ones used[8). However, it does not Practically not affected by the imaginary partef (until the
change the theory since we neglect the electric and magnéiresholde,=1.5-j0.1, when the influence of the dielectric
toelectric polarizabilities of SRRs. These are not negligibldosses in the matrix becomes visible in the dispersion plots
for quantitative calculations but are not important enough fodn this subband If3) decreases if one increases the wire
our purposes. The only condition is critical: the resonantadiusrq and increases if one decreases
bands of the magnetic and electric polarizabilities should not In Fig. 3 we present the frequency behavioregf and
overlap. This condition is respected in our studies. All wetert for the structure under study. Hekgy means thexx
need in the theory is to add the terR} to the radiation component of tensog, and similarly seq= ptyy= > ON top
resistance of a SRR denoted Rsin formula (10) of [17].  the wide-band frequency dependence is shown for real parts
Then, following the theonf17] we come to the dispersion of e (thin line) and u (thick line). One can see that both
equation of the structure presented in Figt@p): parameters are resonant. This is the result of the electromag-
: netic interaction between wires and SR@sich also leads
cos' Bd(gp- 1) - cos pd[2gp coskd + (g~ p)sin kd] to the small shift of the resonant frequency fag compared
- sir? kd(1 +gp) +gp+ (g - p) sinkd coskd+1=0. to that of a single lattice of SRRRsThough the resonance of
(6) permittivity is weak, it remains negative within the resonant
band of SRRs. This resonance confirms once more that the
This equation refers to a wave propagating alafithe wave very simplistic approach, in which the constitutive param-

Ill. LATTICE OF WIRES AND SRRS
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Bottom: Resonant frequency band. Real and imaginary pargof o
and uen Vs frequency. tion to the transmission losses. The parameters of SRRs were

picked up so that to obtain the resonant frequency close to
eters of the meta-material are obtained with the trivial superé GHz as above.
imposition of » of SRRs andk of wires, is not applicable in The results for the case,=50um, h=0.84 mm are
most of case$17]. On the bottom of Fig. 3, both real and qualitatively the same as in Fig. 3. We can conclude that the
imaginary parts of these parameters are presented within thgesign of SRRs is not very important for the imaginary part
resonant band of SRRs. The band of the backward Witnee  of permeability which determines the transmission losses.
upper subband of the resonant band of SRRshe one in  The resonant behavior of both types of SRRs is singti&o-
which the meta-material becomes the LHM. Unlike in thetime derivative Lorentz dispersignThis why the electro-
precedent section, in this subband the absolute value ghagnetic interaction of SRRs with straight wires leading to
Im(ue) is quite  high. We obtained [Im(uer)|  the resonance of the effective permittivity and to the increase
~(0.1-0.2|Re(ueg)| Within the frequency band of the back- of transmission losses is the same for both designs. However,
ward wave(i.e., of the negative material paramejershis  the results for,,=0.2 mm(h=0.72 mn) shown in Fig. 4 are
result qualitatively explains the moderate transmission lossedifferent. Though we obtain the same level of magnetic
obtained numerically iffi11] and experimentally if5]. losses[Im(w) is rather significarjitthe imaginary part of the
Note that introducing the finite conductivity for straight normalized refraction index turns out much smaller than for
wires practically does not change the result. The ohmighe case of thin rings. Really, let the refraction index be
losses in straight wires do not pose a difficult problem sincejefined as n= Veefttter=—N"—jN", where e.s=-¢,—je;,
the negative permittivity of wire lattice is not resonant. But Meit=—Mr— i, @andn’, 0", g, &, u,, andy; are all positive
the permeability of the lattice of SRRs is resonant and itvalues. This definition of the refraction index corresponds to
makes possible the strong influence of wires to SRRs. This ithe correct choice of the sign before the square root in the
the reason for high magnetic losses in the backward-waveHM region. Then we easily obtain
regime. _ T T\ 12
Additionally we have made calculations for the case when N = (Wi — ey V(&7 + &) (ur + i )>
SRRs of Pendry are substituted by SRRs of Marqpesal- 2 '
lel broken ring$. An analytical model of the SRR has been
presented inl17]. The structure under study is shown in Fig.
4 (top). The following sizes of SRRs were chosen: the oute
diameter of rings 3.8 mm, radius of the wirg,=50 or , ler (|| = pr)
200 um, and the distance between the centers of parallel n = T,
rings h=0.84 or 0.72 mm. This study was done in order to
check the frequency behavior of the lattice effective permit-Outside the resonance basdis not affected by SRR&hick
tivity and to understand the influence of the ring cross secand thin ones However, within the resonance band

Sinceg; is negligible in the case of thick ringsee Fig. 4
e can simplify this formula and obtain
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5.5-6.2 GHz we reduce not onby but alsoe,, increasing composite medium formed by a quadratic lattice of infinitely
the wire radius(compare Figs. 3 and)4As a result, the long parallel wires and a cubic lattice of SRRs symmetrically
refraction index becomes almost re@al’/n’ <107®) in the  |ocated between the wires. Periods of both lattices are equal
case of thick ringsr,,=0.2 mm). In spite of the electromag- to one another. It has been shown that the electromagnetic
netic interaction of wires and SRRs the small ohmic losses imteraction between wires and SRRs together with ohmic
magnetic scatterers dramatically reduce the transmissioldsses in SRRs give rather significant magnetic losses. These
losses per unit length of the latti¢23]. This result qualita- |osses are absent from the single lattice of SRRs. This way
tively corresponds to the very small transmission losses obye suggest an explanation of the rather significant transmis-
served in[24] for the case of rather thick rings. sion losses in the structure frof8] which is considered as a
Notice that we have studied additionally another arrangeypjaxial variant of left-handed material. We do not deny the
ment of SRRs excited by thepropagating waverings are  gjgnificance of the losses in the dielectric board, which sup-

parallel to the plane-z). In this arrangement the layers of ;
. . port the SRRs prepared from copper strips. However, the
SRRs are shifted b/2 alongz with respect to the layers of contribution of ohmic losses is also rather important. We

wires. Then the electromagnetic interaction between th‘laﬁave shown that the wave interaction of electric and mag-
wires and SRRs becomes once more significant and the

transmission losses become higher than in the case illustratéd tic component; of the mgta-materlal Is the phy3|c.al mecha-
by Fig. 2. Also the resonant behavior of the effective perme—msm of the ohmic losses influence to the transmittance of

ability becomes different and the resonance bands.pand LHM. Small ohmic losses in SRRs lead to rather high trans-

e become overlapping. mission losses due _to this mteractl(_)n. It is |mposs_|ble to
avoid it. The transmittance can be improved reducing the
IV. CONCLUSION ohmic resistance of SRRs. Increasing the cross section the

wire from which the SRR is prepared one can theoretically

In this paper we considered the problem of the influenceobtain the excellent transmission properties of the meta-

of ohmic losses in the metal and dielectric losses in the hognhaterial over the whole resonant band in spite of the elec-
matrix to the magnetic and dielectric losses in the two-phas&romagnetic interaction in the meta-material.
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