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In this work the analytical model explaining the main reason of transmission losses in the known two-phase
lattice of Smith, Schultz, and Shelby representing a uniaxial variant of left-handed medium(LHM ) at micro-
waves is presented. The role of electromagnetic interaction between split-ring resonators(SRRs) and straight
wires leading to the dramatic increase of ohmic losses in SRRs within the band when the meta-material
becomes a LHM is clarified. This paper explains why in this structure, rather high transmission losses are
observed in the experimental data, whereas these losses in a separate lattice of SRRs and in a lattice of wires
are negligible at these frequencies.
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I. INTRODUCTION

In his seminal work[1] Veselago summarized an exten-
sive study of electromagnetic properties of media with real
and negative parameters called left-handed materials(LHM ).
Since 2000 this topic has become a subject of an abundant
discussion initiated by Pendry[2]. In 2001, the negative re-
fraction (a feature of LHM that allows one to distinguish
these media from conventional ones) was demonstrated in
the microwave range by the group of Smith[3]. Since 2001
this result has been reproduced several times(see[4] and[5])
and is now considered reliable. The material designed in[3]
is essentially a two-phase composite, where the two phases
are respectively responsible for electric and magnetic polar-
ization effects. The negative real part of effective permittiv-
ity eeff was created by an array of parallel conducting wires
(whose direction determines the optical axisx of the com-
posite medium), which is known to behave similarly to a
free-electron plasma at enough low frequencies. The nega-
tive value of the real part of permeabilitymeff was provided
by double split-ring resonators(SRRs), see also[6]. This
negative permeability arises due to the resonance of the mag-
netic polarizability of SRRs within a very narrow subband
which belongs to their resonant band. This subband lies in
the wide frequency range where Reseeffd,0 (more exactly
the real part of axx component of the permittivity tensor is
negative). The meta-material becomes a LHM within this
subband for waves polarized alongx and propagating or-
thogonally to this axis. These electromagnetic waves suffer
the magnetic and dielectric losses. There has been literature
written about these losses since the work by Garcia and
Nieto-Vesperinas[7]. In this work the structure tested in[3]
is treated as opaque and an exotic explanation of negative
refraction is presented. Comparing the results obtained by
the group of Garcia([7,8], etc.) or the results obtained by the

group of Efros(e.g., in [9]) with the data of the group of
Soukoulis(e.g., in [10]) one can see that different simula-
tions of the same lattice give very different results for the
transmission losses per unit thickness(from practical ab-
sence to huge values). Experimental data rarely fit with these
simulations and give moderate values for transmittance in
the LHM regime. The disagreement of the data from[10]
with the experiment is referred to in this work as the influ-
ence of the dielectric board, but it is only a guess. In[11] the
moderate transmission losses were obtained for a LHM in
which the wires are located in free space and SRRs are po-
sitioned on very thin dielectric sheets. It has not been clearly
stated which losses dominate in this meta-material: ohmic
losses or dielectric losses. However, it is clear from[11] that
the losses of LHM are rather significant in the microwave
range and should be studied once more. Note that few alter-
native versions of a LHM at microwaves were suggested in
the literature, e.g.,[12] and [13]. In [12] the self-consistent
analytical theory of the quasi-isotropic lattice of metal bi-
anisotropicsVd particles has been presented, and the nega-
tive parameters predicted within the band 8.2–8.4 GHz.
However, the losses were neglected in this work. In[13] the
experimental testing of a LHM made from SRRs combined
with capacitively loaded strips(instead of long wires) has
been done. The aim of this work(as well as[12]) was to
obtain an isotropic variant of LHM and to match this me-
dium to free space. The losses in this structure are very high
(the mini-passband corresponding to negative material pa-
rameters is almost invisible within the band of the resonant
absorbtion of SRRs), and the band in which both material
parameters extracted from measured data have negative real
parts is rather narrow. A 50 MHz passband has been detected
at 9.5 GHz and another one was located around 11 GHz
(however, at these frequencies the lattice period becomes
longer thanl /4 and the local constitutive parameters are not
physically sound). In [14] the transmittance through the layer
of a racemic medium from resonant chiral particles is calcu-
lated. This medium also exhibits the negative real part of*Email address: brunosauviac@univ-st-etienne.fr
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constitutive parameters within the resonant band. However,
the result for resonant transmission losses obtained in[14]
was pessimistic.

Therefore in the present paper we return to the structure
suggested by the group of Smith. We use a self-consistent
analytical model for its material parameters taking into ac-
count ohmic and dielectric losses. The ohmic losses are cal-
culated using the Landau model which takes into account the
frequency dependence of the resistance per unit length of a
metal ring unlike simulations in[10] and [11] where the
ohmic losses were modeled through the frequency indepen-
dent complex permittivity. The similar structure in its loss-
less variant has been already studied in[17] where the ana-
lytical model was presented for its material parameters. The
difference of the structure suggested in[17] with that from
[3] was another geometry of a SRR. We considered in[17]
the SRRs suggested by Marques instead of SRRs of Pendry
(coplanar SRRs suggested in[6]). The resonator of Marques
is not bianisotropic, whereas the lattice of Smith, Schultz,
and Shelby is in fact a weakly bianisotropic medium within
the resonant band of SRRs(see[18]). In the present paper we
compare the results obtained for both types of SRRs. The
bianisotropy of Pendry’s SRRs is neglected in our model.

The aim of[17] was to find the band-gap structure of the
lossless meta-material. In the present paper we consider the
SRRs of Pendry assuming that these are prepared from a
copper wire with a round cross section. In[3] the SRRs were
prepared from a thin metal strip. However, this is not a prin-
cipal difference in what concerns the scattering properties of
a SRR as was clearly shown in[19] and[20]. Our choice of
the usual wire instead of a strip wire is explained by the
absence of an analytical model of losses for curved strip
wires. We consider at the first step the lattice of parallel
SRRs and at the second step we study the meta-material
from [3]. Comparing the result for the effective permeability
of two meta-materials, SRRs with wires and SRRs only, we
can see the role of the electromagnetic interaction in the
two-phase material.

II. CALCULATIONS OF MAGNETIC LOSSES
IN A LATTICE OF SRRS

In the model of the dense lattice of SRRs presented in[6],
the calculation of ohmic losses did not take into account the
curvature of wires. In this section we calculate these losses,
using the Landau formula for a wire ring[15]. To find the
permeability, we apply the rigorous model of the dipole lat-
tice developed in[16] for electric dipoles and in[21] for
nonreciprocal magnetic dipoles. The result we obtain in this
section confirms the result from[6]: the resonant absorption
in this lattice is rather small in the frequency band where
Resmeffd,0.

The reliable analytical model of a single SRR is needed to
calculate a magnetic polarizability which enters into the dis-
persion equation of a lattice of magnetic dipoles derived in
[21]. The magnetic polarizbility is defined as a relation of its
magnetic momentm to the local magnetic field(polarized
along they axis, i.e., orthogonally to the SRR plane)

amm=
m

Hloc .

We consider SRRs consisting of two wires with a round
cross section. The model of such SRRs was developed and
validated by numerical simulations in our works[19,20] for
the lossless case. The conductivity resistance of the ring can
be calculated using the formula[16]

Rc = ReS 2pr

s8pr0
2D . s1d

Here r0 is the radius of the wire cross section ands8 is the
effective complex conductivity which is expressed through
the metal conductivitys as follows:

s8 =
2sJ1skr0d
kr0J0skr0d

, k =
s1 − jd

d
,

whered=1/Îsvm0 is the skin depth. In this work we use the
time dependence exps jvtd commonly adopted in the theory
of microwave composites. The model of a loss-less SRR
from [20] is rather accurate but sophisticated. It takes into
account the nonuniformity of the current induced in both
rings and allows one to calculate not only the magnetic po-
larizability of a single SRR but also electric and magneto-
electric polarizabilties. These additional polarizabilities are
related with the nonuniformity of the induced current around
the rings of SRR. Let us neglect this nonuniformity assuming
the electric and magnetoelectric resonances of a scatterer
hold at different frequencies than the magnetic resonance.
This assumption can be checked in the theory[20]. Then, the
long formula(12) from [20] for magnetic polarizbility of a
single SRR simplifies to a classical two-time derivative Lor-
entz relation[formula (19) from [20]]:

amm= −
v2m0

2S2

L + Msv2 − v0
2d + jvG

. s2d

Here S=psr1
2+r2

2d /2 is the averaged area of SRR, wherer1

and r2 are radii of the outer and inner rings(which are as-
sumed to be close to one another), L=sL1+L2d /2 is the av-
eraged proper inductance of rings andM is their mutual in-
ductance.

Let us first consider the lossless case. Then the factorG in
Eq. (2) determines radiation losses in the random medium of
SRRs[19] and is proportional to the radiation resistance of
the SRR,G=hsk2Sd2/6psL+Md=Rrad/ sL+Md. Hereh is the
wave impedance andk=vÎe0emm0 is the wave number of the
host medium. Consequently,G,v4 [see formulas(17) and
(20) from [20]]. This result allows our model of SRR to
satisfy the basic condition for any magnetic dipole(for elec-
tric dipoles this condition was introduced by Sipe and
Kranendonk in[22]):

ImH 1

amm
J =

k3

6pm0
. s3d

Notice that the condition(3) (which is obvious for both clas-
sical and quantum scatterers and fits with the well-known
Landau correction to the Lorentz theory of dispersion) was
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violated in the approximate model introduced in[6].
Let us now study the cubic lattice of parallel lossless

SRRs with periodd. To find meff of the lattice we use the
relationmeff=În, wheren is the refraction index related with
the propagation factorb of the basic propagating moden
=b /k=b /vÎe0m0em. Factor b (within the basic Brillouin
zone) can be found from the known dispersion equation for
modes propagating along thex or z axes in a lattice of mag-
netic dipoles[21]. Equation(21) from [21] for a simple cubic
lattice of parallel magnetic dipoles can be written in our no-
tations as

v

2hd2

sin kd

coskd− cosbd
= ReS 1

amm
D −

v

4hd2

3ScoskR

kR
− sin kRD , s4d

whereh=Îm0/e0em andR<d/1.438. The same equation can
be obtained from[15] using the duality principle. This equa-
tion was obtained using the method of the local field. It gives
the band-gap structure of the lattice with realb in passbands
and negative imaginaryb in stop bands. Within the resonant
band of a scatterer whenuammu@2hd2/v the well-known
complex mode(inherent to metallic photonic crystals) ap-
pears andb=p /d+ j Im b. One can see from Eq.(4) that the
radiation resistance of the scatterer does not influence the
final parameters of a lattice. This results from the electro-
magnetic interaction in regular structures. The imaginary part
of the interaction constant of arbitrary regular lattice exactly
compensates the contribution of the radiation resistance into

inverse polarizability of scatterers[15]. In Eq. (4) the term
Ims1/ammd has disappeared since it was exactly compensated
by the imaginary part of the lattice interaction factor[21].

Now, let us consider the case when the total conductive
resistance of the SRRRc

t =Rc1+Rc2 is nonzero. In this case
the relation(3) naturally generalizes to

ImH 1

amm
J =

Rrad+ Rc
t

vm0
2S2 =

k3

6pm0
+

Rc
t

vm0
2S2 . s5d

The term withk3 is totally compensated in the dispersion
equation of a magnetodipole lattice by the interaction con-
stant of the lattice, but the second term in the right-hand side
of Eq. (5) remains and modifies Eq.(4). In this lossy case we
should substitute into Eq.(4) the value 1/amm8 instead of
Res1/ammd. Hereamm8 is given by Eq.(2) with the substitu-
tion G=Rc

t / sL+Md=sRc1+Rc2d / sL+Md. ResistancesRc1,c2

are given by Eq.(1) for both rings.
Our numerical example corresponds to the following pa-

rameters: relative permittivity of the host matrixem=1.5
− j0.002, r1=1.5 mm, r2=1.2 mm, and wire radiusr0
=50 mcm(it is still 80 times as large asd at 6 GHz). Copper
conductivitys=5.83107 V−1 m−1. The period of a lattice of
SRRs was taken equal,d=8 mm. The dispersion plot(see
Fig. 1, top), shows the normalized propagation factorbd/p
versus frequency and contains two results. The first one
(straight dashed line) corresponds to the polarization of the
electric field alongy and of the magnetic field in the plane
sx−zd. Then the SRRs are not excited. The second one cor-

FIG. 1. Top: Dispersion plot of a cubic lattice of SRRs of cop-
per. Bottom: Effective permeability of a lattice.

FIG. 2. Top: Structure under study. SRRs which are parallel to
the planesy−zd are not taken into account since these are not ex-
cited by the mode propagating alongz. Bottom: Dispersion plot of
the structure. The straight line corresponds to the noninteracting
mode with polarizationH =Hx0, E=Ey0.
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responds to another polarization of the mode, when the SRRs
are excited. There is practically the lossless complex mode
within the lower half of the resonant frequency band of
SRRs and the usual stop band within its upper half. The
difference with the lossless case exists but is not visible in
the plot. In fact, the losses makebd/p complex at all fre-
quencies, however, this correction is maximally of the order
10−4.

Therefore the result formeff presented in Fig. 1, bottom, is
optimistic. Within the band 6.35–6.56 GHz we obtained
Resmeffd,−0.1 whereasuImsmeffdu,3310−4. Though we
have considered SRRs from wires with a round cross section,
we have chosen a very small value forr0. We expect that our
results correspond to a strip wire with a width of a few tenths
of mm. However, we will see below that this result cannot be
expanded to the lattice of SRRs and wires. Though the qua-
sistatic interaction between SRRs and wires is absent in the
lattice [3], the wave interaction exists. It was clearly demon-
strated in [17] that this interaction(in the lossless case)
strongly influences the real part of the material parameters.
In the next section we will find its influence to their imagi-
nary parts.

III. LATTICE OF WIRES AND SRRS

In this section we study the effective material parameters
of the two-phase lattice of SRRs and wires. It is almost the
same structure as in[17] but the metal of SRRs is not perfect
(e.g., copper) and the background dielectric has small losses.
We assume that the wires and SRRs are located in a uniform
host medium(see Fig. 2, top). The analytical model does not
allow one to calculate the true losses in the meta-material
described in[3]. In our model the dielectric sheets on which
the SRRs are located are replaced by a uniform host medium
with relative permittivity«m. Since we neglect the influence
of dielectric interfaces the comparison of our results with
experimental data can be only qualitative. Our goal is to
understand the impact of the electromagnetic interaction in
the lattice on these losses. In fact, in[17] the structure uses
the modified SRRs of Marques, whose electric polarizability
is very small at the resonance ofamm, and magnetoelectric
polarizability is zero. In the present paper we consider the
SRRs of Pendry, the ones used in[3]. However, it does not
change the theory since we neglect the electric and magne-
toelectric polarizabilities of SRRs. These are not negligible
for quantitative calculations but are not important enough for
our purposes. The only condition is critical: the resonant
bands of the magnetic and electric polarizabilities should not
overlap. This condition is respected in our studies. All we
need in the theory is to add the termRc

t to the radiation
resistance of a SRR denoted asRr in formula (10) of [17].
Then, following the theory[17] we come to the dispersion
equation of the structure presented in Fig. 2(top):

cos2 bdsgp− 1d − cosbdf2gp coskd+ sg − pdsin kdg

− sin2 kds1 + gpd + gp+ sg − pd sin kd coskd+ 1 = 0.

s6d

This equation refers to a wave propagating alongz (the wave

vector has the only Cartesian component denoted asb) with
electric polarization alongx. In Eq. (6) the following nota-
tions are used:

g =
2d2h

v
S 1

amm8
D − q, p =

kd

p
log

d

2prw
,

q =
1

2
ScoskR

kR
− sin kRD .

Hererw is the radius of straight wires. Relation(6) results of
theory [17] with the only substitution Res1/ammd→1/amm8 .
Longitudinal components of the effective permittivityexx and
myy are determined(respectively) by formulas(35) and (36)
of [17].

In our numerical example, the lattice of SRRs is the same
as in the preceding section and it is assumed thatrw=r0. The
result for permeability dramatically differs from the previous
result; this is due to the electromagnetic interaction of SRRs
and wires. This interaction is described by the parameterB in
Eqs. (27) and (28) of [17]. If one formally putsB=0, the
problem splits in two independent dispersion equations, one
for the medium of SRRs and one for the wire medium. Then
meff keeps the same values as in Fig. 1.

In Fig. 2 (bottom), we have shown the dispersion plot of
the structure. This plot corresponds to the same permittivity
of the host mediumem=1.5−j0.002 as in the previous sec-
tion. Comparing this plot with a similar plot for lossless
structure(Fig. 5 of [17]) one finds that the complex mode(in
Fig. 5 it corresponds to the lower half of the resonant band of
SRRs) disappears. Instead, the forward wave with strong at-
tenuation appears in this resonant subband. This forward
wave corresponds to Resmeffd.0 and Reseeffd,0, and the
propagation is possible due to the complexity of constitutive
parameters. The attenuation factor is larger than the propa-
gation one in this band. The upper half of the resonant band
of SRRs contains the backward wave as well as in Fig. 5 of
[17]. The ohmic losses broaden the frequency band of this
backward wave, however, these also produce the visible
imaginary part of the propagation factor in this band. This
imaginary part is not so high as in the lower half of the
resonant band and is related with ohmic losses in SRRs. It is
practically not affected by the imaginary part ofem (until the
thresholdem=1.5−j0.1, when the influence of the dielectric
losses in the matrix becomes visible in the dispersion plots).
In this subband Imsbd decreases if one increases the wire
radiusr0 and increases if one decreasess.

In Fig. 3 we present the frequency behavior ofeeff and
meff for the structure under study. Hereeeff means thexx

component of tensorē̄, and similarlymeff;myy=mzz. On top
the wide-band frequency dependence is shown for real parts
of eeff (thin line) andmeff (thick line). One can see that both
parameters are resonant. This is the result of the electromag-
netic interaction between wires and SRRs(which also leads
to the small shift of the resonant frequency formeff compared
to that of a single lattice of SRRs). Though the resonance of
permittivity is weak, it remains negative within the resonant
band of SRRs. This resonance confirms once more that the
very simplistic approach, in which the constitutive param-
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eters of the meta-material are obtained with the trivial super-
imposition ofm of SRRs ande of wires, is not applicable in
most of cases[17]. On the bottom of Fig. 3, both real and
imaginary parts of these parameters are presented within the
resonant band of SRRs. The band of the backward wave(the
upper subband of the resonant band of SRRs) is the one in
which the meta-material becomes the LHM. Unlike in the
precedent section, in this subband the absolute value of
Imsmeffd is quite high. We obtained uImsmeffdu
<s0.1–0.2duResmeffdu within the frequency band of the back-
ward wave(i.e., of the negative material parameters). This
result qualitatively explains the moderate transmission losses
obtained numerically in[11] and experimentally in[5].

Note that introducing the finite conductivity for straight
wires practically does not change the result. The ohmic
losses in straight wires do not pose a difficult problem since
the negative permittivity of wire lattice is not resonant. But
the permeability of the lattice of SRRs is resonant and it
makes possible the strong influence of wires to SRRs. This is
the reason for high magnetic losses in the backward-wave
regime.

Additionally we have made calculations for the case when
SRRs of Pendry are substituted by SRRs of Marques(paral-
lel broken rings). An analytical model of the SRR has been
presented in[17]. The structure under study is shown in Fig.
4 (top). The following sizes of SRRs were chosen: the outer
diameter of rings 3.8 mm, radius of the wirerw=50 or
200 mm, and the distance between the centers of parallel
rings h=0.84 or 0.72 mm. This study was done in order to
check the frequency behavior of the lattice effective permit-
tivity and to understand the influence of the ring cross sec-

tion to the transmission losses. The parameters of SRRs were
picked up so that to obtain the resonant frequency close to
6 GHz as above.

The results for the caserw=50 mm, h=0.84 mm are
qualitatively the same as in Fig. 3. We can conclude that the
design of SRRs is not very important for the imaginary part
of permeability which determines the transmission losses.
The resonant behavior of both types of SRRs is similar(two-
time derivative Lorentz dispersion), This why the electro-
magnetic interaction of SRRs with straight wires leading to
the resonance of the effective permittivity and to the increase
of transmission losses is the same for both designs. However,
the results forrw=0.2 mmsh=0.72 mmd shown in Fig. 4 are
different. Though we obtain the same level of magnetic
losses[Imsmd is rather significant] the imaginary part of the
normalized refraction index turns out much smaller than for
the case of thin rings. Really, let the refraction index be
defined as n=Î«effmeff=−n8− jn9, where «eff=−«r − j«i,
meff=−mr − jmi, andn8, n9, «r, «i, mr, andmi are all positive
values. This definition of the refraction index corresponds to
the correct choice of the sign before the square root in the
LHM region. Then we easily obtain

n9 = S«imi − «rmr + Îs«r
2 + «i

2dsmr
2 + mi

2d
2

D1/2

.

Since«i is negligible in the case of thick rings(see Fig. 4)
we can simplify this formula and obtain

n9 <Î«rsumu − mrd
2

.

Outside the resonance band«r is not affected by SRRs(thick
and thin ones). However, within the resonance band

FIG. 3. Top: Real parts ofeeff,meff in the wide frequency range.
Bottom: Resonant frequency band. Real and imaginary parts ofeeff

andmeff vs frequency.

FIG. 4. Top: Structure under study. SRRs which are parallel to
the planesy−zd are not shown since these are not excited. Bottom:
Resonant frequency band for the case of thick ringssrw=0.2 mmd.
Real and imaginary parts ofeeff andmeff vs frequency.
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5.5–6.2 GHz we reduce not only«i but also«r, increasing
the wire radius(compare Figs. 3 and 4). As a result, the
refraction index becomes almost realsn9 /n8,10−3d in the
case of thick ringssrw=0.2 mmd. In spite of the electromag-
netic interaction of wires and SRRs the small ohmic losses in
magnetic scatterers dramatically reduce the transmission
losses per unit length of the lattice[23]. This result qualita-
tively corresponds to the very small transmission losses ob-
served in[24] for the case of rather thick rings.

Notice that we have studied additionally another arrange-
ment of SRRs excited by thez-propagating wave(rings are
parallel to the planex-z). In this arrangement the layers of
SRRs are shifted byd/2 alongz with respect to the layers of
wires. Then the electromagnetic interaction between the
wires and SRRs becomes once more significant and the
transmission losses become higher than in the case illustrated
by Fig. 2. Also the resonant behavior of the effective perme-
ability becomes different and the resonance bands of«eff and
meff become overlapping.

IV. CONCLUSION

In this paper we considered the problem of the influence
of ohmic losses in the metal and dielectric losses in the host
matrix to the magnetic and dielectric losses in the two-phase

composite medium formed by a quadratic lattice of infinitely
long parallel wires and a cubic lattice of SRRs symmetrically
located between the wires. Periods of both lattices are equal
to one another. It has been shown that the electromagnetic
interaction between wires and SRRs together with ohmic
losses in SRRs give rather significant magnetic losses. These
losses are absent from the single lattice of SRRs. This way
we suggest an explanation of the rather significant transmis-
sion losses in the structure from[3] which is considered as a
uniaxial variant of left-handed material. We do not deny the
significance of the losses in the dielectric board, which sup-
port the SRRs prepared from copper strips. However, the
contribution of ohmic losses is also rather important. We
have shown that the wave interaction of electric and mag-
netic components of the meta-material is the physical mecha-
nism of the ohmic losses influence to the transmittance of
LHM. Small ohmic losses in SRRs lead to rather high trans-
mission losses due to this interaction. It is impossible to
avoid it. The transmittance can be improved reducing the
ohmic resistance of SRRs. Increasing the cross section the
wire from which the SRR is prepared one can theoretically
obtain the excellent transmission properties of the meta-
material over the whole resonant band in spite of the elec-
tromagnetic interaction in the meta-material.
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