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Solitary surface acoustic waves
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Solitary acoustic pulses can propagate along the surface of a coated homogeneous and inhomogeneous
medium. It is shown how these nonlinear surface acoustic waves evolve out of initial pulselike conditions
generated by pulsed laser excitation and how they can be monitored by optical detection. The solitary pulse
shapes at the surface are computed on the basis of an evolution equation with nonlocal nonlinearity. They
depend on the anisotropy of the substrate. Various approaches for the derivation of the evolution equation from
nonlinear elasticity theory are critically compared. The behavior of the solitary pulses in collisions is investi-
gated and is found to strongly depend on the linear dispersion law. The nontrivial depth dependence of these
solitary pulses is also analyzed.
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[. INTRODUCTION when weak nonlinearity is matched by weak dispersion,
similar to the classical solitons propagating in shallow water.
Solitary waves are pulselike entities of nonlinear excita- |n the past, observations of strain solitary waves have
tions that propagate through a system without change of thelfeen made in elastic rods using laser excitafi®h In this
shap€[1]. The phenomenon of solitary waves is a ubiquitouscase the dispersion of the relevant linear modes is due to the
one that has been observed and thoroughly studied in marfinite diameter of the rod. Very recently bulk acoustic solitary
branches of science, such as fluid dynamics, optics, plasmaaves have been generated and obsefdédHere, it was
physics, etc[2]. In the field of acoustic wave propagation in the discreteness of the underlying crystalline structure of the
solids, comparatively few experimental studies have been renedium that gave rise to the dispersion of acoustic bulk
ported with the aim of observing solitary waves. This iswaves of sufficiently high frequencies. A third type of soli-
partly due to the difficulties encountered in exciting acoustictary acoustic waves that has been realized experimentally by
waves with sufficiently high intensity in a controlled way. Pulsed laser excitation are surface acoustic solitary pulses.
Another important obstacle is the fact that the elastic nonlinHere, the dispersion is generated by covering the homoge-
earity in a solid is very small. As a rule, the higher-order"€0US elastic medium with a thin film made out of a suitable
elastic moduli of a solid are usually of the same order ofMaterial to realize normal or anomalous dispersie)s.
magnitude as the second-order ones. Consequently, the ratjo Surface acoustic solitary pulses can be distinguished from
of nonlinear to linear terms in the governing equations for |.e o(;[her two types of a.‘COUSt'Tl sog;tar?]/ waves ('jr.‘ solids, rel-
the displacements in the solids is given by a typical strain of €0 Up to now experimentally, by their two-dimensiona

acoustic Mach number. which can normally not exceed Val_character. The spatial extension of a solitary pulse in a rod
f the order of 0 Oi ithout . fy i f th along its axis is much larger than the diameter of the rod. As
'?eerisalo € order of 0.UL, without causing fracture ot th€ Mmayqonq 55 diffraction effects can be neglected, the strain fields

o . _ . . associated with bulk acoustic solitons may be regarded as
The localization of solitary waves is achieved by an inter-

| f i . 4 di . Si h . arying only along the direction of propagation. In compari-
play of noniinearity and dispersion. Since the equations ok, 1 these one-dimensional solitary waves, Rayleigh wave
elasticity theory for a homogeneous elastic medium do nog

; lenath le. di . £ . ulses or, more generally, surface acoustic W&SAW)
contain a length scale, dispersion of linear acoustic Waveg,;ses have a nontrivial depth structure that extends into the

can occur only through length scales defined by the propgs astic medium on the same length scale as the width of the

gation geometry or due to coupling of the strains to Othe(riulse along the surface. In that respect, they are comparable

degrees_ of freedom. Here, we are not considering envelop 0 the lump soliton solution of the Kadomtsev-Petviashvili
type solitons but the type of solitary waves that are forme quation[7]. One goal of this paper is to analyze the depth

dependence of surface acoustic solitary waves. Nevertheless,
their associated strain distribution at the surface can be de-
*Present address: Infineon Technologies AG, Balanstr. 73tived from a one-dimensional scalar evolution equation,
D-81541 Munich, Germany. from which the depth dependence of the displacement field is
"Permanent address: B. Verkin Institute for Low Temperatureeliminated. However, this elimination leads to a nonlocal
Physics and Engineering, Ukrainean Academy of Sciences, 310164onlinearity[8—11]. In the following section a derivation of

Kharkov, Ukraine. this evolution equation is given, and it is shown explicitly
*Permanent address: General Physics Institute, 117942 Moscothat the approaches by Lardrid?], Parker[13—15 and the
Russia. Hamiltonian approach used by Zabolotskaya, Hamilton, and
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co-workers[16-19 lead to the same result. We then present=1,2,3, and weegard the displacement field as function of
stationary pulse-type solutions of this evolution equation forthese material coordinates. In order to reduce the number of
different dispersion laws. Section IV contains a descriptionindices in the following equations, we shall use the symbols
of the experimental techniques used to launch surface acous;y,z for x;,%,,Xs.

tic pulses with finite amplitudes and to analyze their shapes Applying Hamilton’s principle, the equation of motion

at the surface. Experimental results are presented for the for- P

mation of a solitary pulse and compared with results of nu- pl, = —
merical simulations. In Sec. V, a numerical study of colli- IXg
slons of SAWs pulses is pregented. It is found _that suchioy the displacement field follows, as well as the boundary
collisions are usually not elastic and that the collision sce-

. v d q he di ion | fi SAW conditions requiring that the Piola-Kirchhoff stress tensor
hario strongly depends on the dispersion law of linear ScomponentsT; have to be continuous at the interface and

In pgrtlcular, pulsg coII|S|or)s are found_to be almost_elastlc 'ffero at the free surface of the systei,s=JEy/dU,z) In
the linear dispersion term in the evolution equation is that o ‘

. . addition, we have to require the continuity of the displace-
the Korteweg—dg Vneg(dV) gqua_ltlon. Astrong dependence ment field at the interface, and for the description of waves
on the type of linear dispersion is also demonstrated for th

Bxcited at or near the surface, we have to impose the follow-
pulse evolution with initial conditions that are close to the y P

. . . ing conditions az— —oo: The displacement field has either to
shape of a sqhtary puls&ec. V). S_ect|on VIl IS devoted to vanish or the acoustic Poynting vector has to be directed into
the construction of the depth profile of a solitary pulse anﬂhe medium; i.e., itz component has to be negative. In the

stationary periodic nonlinear surface waves, from the Stra"i"ollowing we consider the propagation of plane waves along

distribution at the surface. Numerical results for the depth .\ yirection. and therefore let the displacement field be
profiles in different propagation geometries are given. Thqndependent o'f the coordinage

paper ends with a short conclusion. Among the various ways of introducing dispersion for
linear surface acoustic waves, we here consider theoretically
IIl. EVOLUTION EQUATION two possibilities:(i) a film on the surface having acoustic

A semi-infinite elastic medium is considered that fills the Properties different from those of the substrate @ndspa-
half-spacez< 0 in its undeformed state. It may be coveredtial variations of the mass density and/or elastic moduli of
by a film filling the spatial region & z<d. The elastic prop- the substrate . along the direction normal to the surface
erties of this system are characterized by second-order elasfigraded material o
moduli C and third-order elastic modulC In case(i), the thicknesd of the film is chosen to be

L By : : “Bur it much smaller than typical wavelengths=2m7/q of the

Moduli of higher order will not be taken into account in the _ n-lypi gins=cmiq
following derivations. For the Cartesian indices we use smalPAWS since the dispersion has to be sufficiently small. In
Greek characters. In order to keep the notation simple, wiiS regime, one may eliminate the displacement field in the
shall not introduce different sets of indices for the materialfilM in @an expansion in powers afd to obtain an effective
and spatial coordinate systems. For the following, it is conPoundary conditiori20,21, which has the form

Tos (2.4)

venient to define the coefficientsS,5 ,, /+=Cup v T AXO0t)=— i (x.0_t) =g X 0.
+8,,Cé v+ 0aCit ot 80Cop ve [19]. The mass density %01 d({ZFua( 08 = Gaptlp1a(% 0
and the elastic moduli of the system have to be regarded as = O Mp11(X,0-, U, 1 (%, 0_,1)}
beingz dependent. 273 (4)
The Lagrangian of the system is given by + 0GpPella(%, 00 + Gaglp 111X, 0 U}
+O(u?d?,uld,ud®). (2.5
L =f d*x(Ex~ Ep), (2.1)  Here, pg is the mass density of the film material. The coef-
ficientsg(alg, gf), andgg) depend on the second-order elastic
with the densities of the kinetic energy moduli of the film material, whilegf)7 depends on its
1 second-order and third-order elastic moduli. Explicit expres-
E,= =pu,u, (2.2  sions are given in Ref22]. The notation 0 indicates that
2 the corresponding quantity has to be taken on the substrate

side at the interface between substrate and film.
In case(ii), we decompose the mass density and elastic
moduli into an average value and a part varying with

p(2)=p+Ap(2), (2.6a

and potential energy

1
Ep=2Cap wblaglnr * 5Sup v gllaphu Mee (2.3
up to terms of third order in the displacement gradients o
Uq, 5= U,/ 9Xg. IN EQs.(2.2) and (2.3) and likewise in the Cup (2 =Cup 4wt AC,p (D). (2.6b
remainder of this paper, a summation convention is invoked _
that implies summation over repeated Cartesian indices. Orle equations that contain the average quantifigs ,, andp
(two) dot(s) on top of a symbol standstand for the first  only, we shall drop the overbars in order to simplify the
(second derivative with respect to time. In Eq2.1), the  notation. In equations where€,; ,, and p stand for
volume integral refers to the material coordinates «  zdependent quantities, theirdependence is indicated ex-
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plicitly to distinguish them from their average values. & d J L@
We note here that in the regime of small dispersi@i), aﬁp&_tz - gcaﬂ ﬁvo.)x Ug
does not contair(i) as a special case, since we have not "
imposed any restriction on the acoustic mismatch between 19 1 1
! . S : =——S5 ud y® +2pv uld+ L
the film and substrate materials. If this mismatch is large, the 29%g e wv yo Sy Zy, 6 @ a
necessary smallness of the dispersior(i)nis achieved by (2.10

letting the film thickness be small.

In the following, we shall briefly introduce three methods and boundary condition a=0:
of deriving an evolution equation for weakly nonlinear and 1
weakly dispersive Rayleigh waves. This equation contains a -Cus BVU%Z) =S sUP UM, (2.10)
scalar field that depends on the variablgsx—vgt and a vo2mmeny o U
stretcheg_ time poo?Anail(vR IS theh plTa?]e velr(])cnyhof lin- In the case of a thin film coating the substritase(i)], the
ear nondispersive SAWsAIso, we shall show that the evo- o)) iy the equation of motion vanishes, while
lution equations derived by these three different approaches
are identical. —d & &2 e (2.12

OupPF 2 ~ 9 PR e I :

A. Projection method In the case of-dependent density and/or elastic modaase

ii)], these terms have the form
This approach has been pioneered by Rel@s} and (]

Parker [13-13 for homogeneous substrates and has also _ 0 e
been applied to the derivation of nonlinear modulation equa- Lo= ApvRUﬂ i XMAC“# B 5% UB (213
tions for wave envelopeg4,25. The displacement field is
represented as an asymptotic expansion in powers of a small J
parameter & e <1 which is of the size of a typical strain: =| AC.3 By U | (2.149
Xy z=0
u=eu® + @+ 0(&) 2.7) In addition,u® has to decay to zero fa— —= or at least

satisfy Sommerfeld-type radiation conditions.

- . o _ _ The right-hand sides of Eq§2.10) and(2.11) depend on
In addition, the thickness of the film in ca@g or the devia-  the “fast” variablesx andt only through é=x-vgt. Since
tions of the density and elastic moduli from their averagesecular terms ix andt have to be avoided;® can depend
values in casgii) are scaled to be of first order i) and @ on x andt only throughé, too. To ensure that the linear
stretched time coordinate=et is introduced. The fieldiV inhomogeneous boundary value prob|em can be solved with-
must then be a solution of the linearized version of the equagut secular terms ix andt, a compatibility condition has to
tions of motion(2.4) and the corresponding boundary condi- pe satisfied. This condition is obtained by projecting Eq.

tions. It may be chosen to be a superposition of linear SAW$2.10) on a straight-crested surface wave solution
of the free substrate surface: _ ,
u(¢,2) = €% w(za); (2.19

“dq i.e., EQ.(2.10 is multiplied byu’, summed ovew=1,2,3
uP(x,zt) :f 2_equ w(zlg)A(g,7) +c.c., (2.8)  and integrated ovex from — to + and overz from — to
0 aa . . . . .
0. By performing twice an integration by parts and using Eq.
(2.1)) in the boundary terms, the second-order fiald is
where c.c. denotes the complex conjugatenormalized in  eliminated. Transforming from displacement amplitudes
an appropriate way, is the displacement field of a straightA(q, 7) to strain amplitude®(q, 7)=igA(q, 7), the following
crested linear Rayleigh wave with wave veotgr0). In non-  result is obtained, which is the desired evolution equation:
piezoelectric homogeneous media with a planar surface, it

g
may be represented as the sum of at most three exponentials;a—B(q) =g°A(9)B(q) + qu{f F(k/q)B(k)B(q - k)%
T 0 v

3 ” , , dk
w(Zq) = > b(r)e)z, 2.9 +2 f (@/K)F" (q/K)B(K)B" (k - q)z} (2.16)
r=1 q

for g>0. In Eqg.(2.16) and in most of the following equa-
In writing Eq. (2.9), we have adopted a normalization that tions involving B, the dependence onis not indicated ex-
leaves the generalized polarization vectormdependent of plicitly in order to simplify the notation. The quantity
the modulus ofy. The decay constants are independent of 0?A(g)=w(q)-vgg is the difference between the frequency
g], too. w(q) of linear surface waves in the system and Rayleigh

The fieldu@ is the solution of an inhomogeneous linear waves of a homogeneous substrate with dengitand

boundary value problem. It has to satisfy the equation okecond-order elastic modut,s ,, [i.e., the homogeneous
motion substrate without film in casg@) and withAp=0, AC,z ,,,
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=0 in case(ii)]. The derivation procedure provides explicit =~ TABLE I. CoefficientsM(r,r’,r") (real and imaginary pants
expressions foA(q) in terms of the acoustic properties of r.r’,r"=1,2, for thesubstrate $L11) and propagation direction
the film in case(i), the inhomogeneous parts of the mass[112]. Second-order and third-order elastic moduli taken from Ref.
density and elastic moduli in cagi), and the depth profile [30]. Normalization: w;=1. The corresponding decay constants
w of linear Rayleigh waves for a homogeneous substrate(r), r=1,2, area(1)=1.202-10.303, «(2)=0.213+40.079. Ray-
with no film. These expressions are partly given in Refsleigh wave velocityyg=4736 m/s.

[26,27). In case(i), A(q)=vguod, whered is the film thick-

ness and the constapt, depends on the ratio of the mass (.1".1") Re(M) Im(M)
densities of the film and substrate material and on the ratio
of the elastic moduli of film and substrate. The coefficigpt 2, 1 ) _gzgg _g:;é
can have either sign and may vanish for special choices dt b 2 : :
the linear acoustic mismatch between film and substratdl: 2. 2 -0.295 -0.070
This means that the linear dispersion can be normal ofl. 2,2 0.309 0.120
anomalous. For isotropic substrates and films, the following2, 1, 1 -0.441 0.041
simple formula is easily derived: 2,1,2 0.369 -0.155
& pe 2, 2,0 0.369 -0.155
to=0.9gPo| — = |, (217 (2,22 -0.390 0.025
Cs ps
where we have defined=\+2u—\2/(\+2u) in terms of
the Lamé constants and u. The indicesS and F stand for ) =i 0 .,
substrate and film, respectively. The coefficient F(a'fa) = N_OS“B wte | [Dg(@w,(Zg)]
2
5 3 C ’ ’ ’
Po=—2V1 - (vRlv)2—> (”—R> (2.189 X[D,(q")w,(Zq")][Da-q")
msDo\ vt 1
depends on material constants of the substrate, only. Here, Xw(Zq - Q')]mdz, (2.22
4 4 2 2
Do= 16{1<U_R> + ZTZ_,_(E) _2<U_T> ] (2.19  where
4\ vt VRUL  \UR UL 0 * !
. L a2 * = 42 b, (rbu(r’)

andv; andvr are the velocities of the longitudinal and trans-  No=4pvRd | W, (ZaQ)w,(Zq)dz= 4pvg 70 +alt)

verse bulk waves in the substrategy vanishes if pg/pg
=cg/cs In this case, we may approximateq)=vgu,qd.
The following expression is obtained for the coefficient

ME
— . (2.20
Ps Apt ZMJ

1pe PE
,LL]_: §_|:Pl+ P2_ + P3
Ps

Like Pg, the coefficients

_(ve 2[ _<v_R>2]&
P1—<UT> 2 or) | Dy’ (2.21a
I S [
2_2D0 Cay Ch Cag Ms ’
(2.21b
e
Pa= 2(01’) 2 vr/ |Do (2.210

depend on the material properties of the substrate only. D
pending on the Lamé constants of the film, can be posi-

tive or negative. It has been reported in Rg¥2] how the

asymptotic expansio(2.7) has to be modified in this case to

rr’
(2.23
and where we have defined the operay(q)=igd,;

+6,3010z. F has the following explicit analytic form:
3

FX)= X

el =1

M(r,r’,r")
a' () + Xa(r') + (1 =X)al(r")

(2.24

for argumentsXe[0,1]. It obviously has the property
F(X)=F(1-X). The coefficientaM(r,r’,r") are determined
by the formula

M(r,r',r") = ;l—;Saﬁ v ¢ [Ka(Db(NT K, (r"b,(r")]

X[K(r")br"]. (2.25

The vectord(r), r=1,2,3,were introduced in Eq2.9), and
the vectorsK(r) are defined byK,(r)=38,4i+ ,3a(r). Nu-

dnerical values for these coefficients are listed in Table I per-

taining to the(111) surface of silicon with propagation along

the[112] direction.
When calculating these coefficients, the normalization of

make sure that nonlinearity and linear dispersion appear dbe functionsw has been chosen such thvag(0[g)=1. This

the same order in the evolution equation.

implies that the Fourier transform of the functiBiq) is the

The dimensionless functidh depends on the ratios of the local slope of the surface:

second-order and third-order elastic moduli of the substrate
only. In the above derivations, it results as the overlap inte-

gral:

f —qB(q)e'qo“”Rt) +c.c. =Uu§(x,0,0).

2.26
om (2.26)
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Parker and Davidi31]. In the latter work piezoelectricity has
also been taken into account. The authors give graphical rep-
resentations of these functions for two different propagation
geometries in the substrate material LiNpO

Porubov and Samsond®2] have described a derivation
of an evolution equation for nonlinear SAWSs of sagittal po-
larization propagating in an isotropic substrate coated by an
isotropic film. A direct comparison of Eq2.16) with their
evolution equatiorfEqg. (4.25 in Ref. [32]] is complicated
by the fact that the latter one is not given in explicit form.
Their derivation is essentially very similar to the one given
in this subsection, also making use of a compatibility condi-
tion in its final step. Therefore their evolution equation
should agree with Eq2.16).

B. Introduction of a stretched depth coordinate

In the derivation of the evolution equati¢®.16) outlined
above, the higher-order fields™, n=2,3,...,contain secu-
lar terms in the depth coordinate It has been criticized by
Lardner[12] that these terms cause the expangid) to be
nonuniform. To avoid such secular terms, he introduced a
stretched depth coordinatg=ez. The amplitudes of each of
the (maximally thre¢ generalized plane waves that make up
a straight-crested linear surface wave are allowed to depend
on 7 in a different way. Hence, the first-order term in
Lardner’s asymptotic expansion of the displacement field,
U=V +&U?@+0(), is

Y(x,zt) = f —e'qu b(r)e®*"%,(q, 7,7) +c.c.

(2.27)

For »=0, UY has to satisfy the linearized traction-free
boundary conditions at the surface of the substrate. Conse-
quently,c,(q,0,7)=A(q, 7) is independent of.

In order to exclude secular terms mfrom the second-
order fieldU®, the following constraints have to be met:

second-order and third-order elastic moduli were taken from Ref.

A T 9
[2;3] [solid line in (a)], Ref. [29] [dashed line in(@)], Ref. [30] 2 (a7 ——2|g(r) cr(q 77 +iG(r)
[(b),(0)]. an
In Fig. 1, the functionF(X) is shown for three propaga- 9 dk
tion geometries; the first one corresponds to isotropic silica . Zk(q — ke (k7 e(a -k 77,

as substrate material, and the other two refer to two different
propagation directions and surfaces of silicon. The normal-
ization ofw is how such that/vl(0|q =1, and consequently,

the Fourier transform oB(q) is u (x 0,t)=- vRu(l)(x,O,t);

(2.28

with the coefficients

, it is proportional to the in- plane component of the par-

ticle velocity at the surface, a quantity frequently considered

in fluid dynamics.

g(r) = R 2(1D,(1),

e (2.29

Figure 1 shows that in the isotropic case and fd0&1)

with the propagation direction along a cubic axis, the func-
tion F is real with the latter normalizatiofimaginary for the 2n ( )
prior normalization. In contrast to these high-symmetry

G(r) =i5—=Sup uv 22 PN (NDANKNK,(NKLT),

(2.30

cases, the functiofr is complex in the case Qi11)(112

with the imaginary part being larger than the real part in the

latter normalization.

Note thatF(X) is proportional to the functiod *K(X),
0<X<1, which was introduced by Parkdd5] and by

N(r) =Bu(r{Cas g+ Caw gatKu(r)by(r).  (2.31)

These constraints determine thedependence aof,(q, 7, 7),
oncec,(q,0,7)=A(q, 7) is known.
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At second order ok, the equation of motion in the sub- tion of the linearized equation of motion and boundary con-
strate and the boundary conditionzat=0 have the form of dition in the form of a superposition of straight-crested
Egs. (2.10 and (2.11) with the foIIowing modifications: SAWS,

u®,u® have to be replaced by", i@, to the right-hand
S|de of Eqg. (2.10 one has to add{Cag pv Cow g3t
><((9/(917)u(1> and the right-hand side of the boundary condi-
tion Eq. (2 11) has to be supplemented by the term

Cus 33(0/877)~(1) All terms in Eq.(2.11) have to be taken at s inserted into the Lagrangiai2.1), which leads to an ef-

u(x,zt) = f W(z|q)e'qxa(q t), (2.35

z=7=0. fective Lagrangian for the amplitudesq):

Due to the additional terms, the linear inhomogeneous
boundary value problem foii®® at »=0 differs from the _
corresponding one fan®. However, the compatibility con- f f _‘P(Z)W (Z- W, (Za)a-g)a(a)
ditions of both boundary value problems, which constitute s
the evolution equation foA(q, 7), turn out to be identical. dql
This can be easily shown by projecting the equation of mo- _fx omD Cou p(D[D (- DW,(Z~ )]

tion for i® onu as defined in E¢(2.15 and integrating by
parts in the same fashion as done when deriving the evolu-  X[D,(qW4(Zg)]a(- g)a(q)
tion equation(2.16) in the previous subsection. As a result, * dq (* dk dpl
tEh% (rizgﬁtG-)hlznodbtsa::jnee:d with the following additional terms on _ f_ _f_ _f_ P Sup uv 2D AW (Z D]
-2q) (° . X[D, (KW, (ZK) ][Dp)W,(Z]p)]
N_{f Wa(z|q){ca3 Bv + CaV 33}q g
0 -0
. xX2mé(q+k+ p)a(gakalp) . (2.36

X 2, K, (r)bg(r)ete? [—cr(q 7, T)] dz

r=1 d 7=0 We emphasize thali(z|g) is the depth profile of a linear

3 SAW propagating in the substrate covered with a thin film

-~ W,(0|0)Cps 332 bﬁ(r)[ —c,(q, 7, T)] and/or havingz-dependent material properties. Furthermore
720 W(z-q)=W"(Zq) anda(-q,t)=a"(q,t). The second term on

(2.32) the right-hand side of Eq2.36) is now integrated by parts

taking advantage of the fact that
The expressioii2.32 vanishes, as can be shown by consid-

ering the identities Coz (DD, (QW,(Z0)] 4= 0. (2.37

0
0 :f zfa(z){(URq)Zb‘aﬁ+ D.(@C,, ﬂ,,D,,(q)}W;;(z|q)dz Performing now the variation of the action integral with re-
-0 spect to the real and imaginary parts of the complex ampli-

0 tudes a(g), g>0 or, equivalently, with respect ta(-q),
:f w.(Z9){(vra)?s, s+ Du(A)Cy, 5,0 (A)Z5(2)d2Z g>0, one obtains equations of motion for the amplitudes
~o a(q):

0
* _ * d
W00, o140 [ Wi 201C o= {p(z)wa<z|— W, (ZQ)a(0) - W,(2- )

+Cy, patD D42 - W,(0/0)C,3 g3f5(0), (2.33

where we have used the abbreviation

X DM(Q) Cap. ﬁv(z) D V(Q)VV,B(Z| q) a(Q)

1 * dk
3 * 55 w2 f 3 5. [Ds(= QW(2= D, (K W,(2K)]

f(2) = Eb(r)e““(r)z{—cr(q w)} . (239
J 0

r=1

X[Dea - kW, Za-klak)alg- k)} : (2.3

C. Hamiltonian approach Decomposing now the complex amplitudég,t) into a part

This alternative method of deriving the evolution equationthat varies slowly and one that varies rapidly in time,
for weakly nonlinear SAWs has been used extensively by
Zabolotskaya and co-workers to describe nonlinear Rayleigh, a(q,t) = A(g,t)exp(— ivgqt), (2.39
Stoneley, and Scholte wavg$6-18,33. It is summarized
here in a simplified form without introducing explicitly con- and neglecting the second time derivativeAfEq. (2.39
jugate momenta and the canonical equations. An exact sollpecomes
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9 _ 1 w2(q) 2 fw dgl 5
p tA(q) 2qu[ (a) - (vrd)*JA(Q) 2m qIB(q)I , (2.45

s f m Ga0AKAG-K, (240

“dgi) . 9 J .
_ _ _ f ——Z{B (@)—B(a)-B(g)—B (q)}. (2.46
wherew(q) is the frequency of the linear surface wave with 0 2mQq aT aT

wave numberg, propagating in the layered and/or inhomo-

geneous substrate, while

§ D. Other evolution equations

G(q,k) = ﬁ dz Sy wv (D[Dp(- PW,(Z- g)] When transforming Eq(2.16) from Fourier space into
D J- real space, the nonlinearity in the evolution equation will
><[D,,(k)VvM(z|k)][D§(q—k)va(z|q—k)] (2.42) reveal its strongly nonlocal character. This is in particular
due to the factog/k in the second nonlinear term of Eq.
and (2.16. In this respect, Eq2.16) differs from the KdV equa-
J tion and the Benjamin-Ono equation which have both been
N(q) :4UR|Q|J dz p(z)\Tv;(z|q)Vva(z|q). (2.42) [s;g_g;asted as governing equations for nonlinear SAWSs
Gusevet al.[39,40 have developed an evolution equation
Since the dispersion is smalkw?(q) - (vg0)? <(vgg)?, we  for nonlinear Rayleigh waves in homogeneous half-spaces
may replacew?(q) - (vga)? by 2vgq®A(q) in Eq. (2.40. In  which contains a nonlocal second-order nonlinearity ex-
addition, the integrals overin Egs.(2.41) and(2.42 may be  pressed in terms of Hilbert transforms. This equation has
extended from = to 0 and may be replaced bw. Also  been used to interpret recent SAW experiments. In a regime

S(z) andp(2) may be replaced by their average val@and far from shock formation, very satisfactory agreement has
in the latter two equations. In this way, the evolution equa_been found between experimental wave form evolution and

tion (2.16) is recovered with the same expressi@®? for tziordfetla:_' predlctl?r?s base;d %r.‘ﬁ th|s} evoéutlcin eguatlon
the function F. The equivalence of this Hamiltonian ap- [41-43. However, this equation differs from E€2.16). (For

proach and the one introduced in the first subsection hal discussion of the differences see also R&E|.) The ap-

already been stated by Reut$23] for the nondispersive p.roach.of Gusenet a!. has also been gxtended to mclu_de
case. dispersion of acoustic waves, and solitary wave solutions

o : _ have been discussed for special cq$3.
The factorization(2.39 may a[ready be done in the La In the derivations of the evolution equatig@.16) out-

grangian(2.36). Neglecting thereéA(q)A(-q) in comparison  jined above, we had in view the temporal evolution of an
to [vggA(Q)A(-g)| and introducing the approximations stated initial wave profile. The strain field at the surface is therefore
below Eq.(2.42, a Lagrangian for the evolution equation a function of the coordinaté=x—-vgt and the stretched time
(2.16) is obtained: 7. Equally, one may consider the spatial evoluti@amthe x
direction along the surfageof a temporal strain pulse, for
(7 dq 1 14 d example. This viewpoint pertains to the experiments de-
L= f_w ;sgdq){? [B(_ q)a—TB(q) N B(Q)(;_TB(_ Q)} scribed in Sec. IV. In this case, one obtains the same evolu-
tion equation (2.16), where 7 is now interpreted as a
~ 2A(Iq)B(- 9B(Q) |- “dq (* dk (* dp stretched spatial coordinate. More preciselyex/V,, where
q RUS 2m)_2m)_ 2w V, is thex component of the group velocity associated with
nondispersive linear Rayleigh waves propagating in xthe
XK(g,k,p)27s(q + K+ p)B(Q)B(K)B(p), (2.43  direction of the substrate’s surface. This is easily shown by

) ) using the projection method.
with the function

div 0
K(g,k,p) = 3N—qupSaB v ggf [Da(@w,(Za)]
0 - When assuming for the linear dispersion the power law
X[D,(kw,(ZK[Dp)WZp)1dz, (2.44  o?A(q)=w-oq", €=2, and inserting into Eq2.16) the an-

satz
which is symmetric with respect to permutations of its argu-

ments. For Gk<gq, the relation K(-q,k,q-k)
=4vgF(k/q)/(3q) holds. It is easy to verify that variation of
the action integral with the Lagrangig®.43 leads to Eg.
(2.16) [34]. Applying Noether’s theorem to translational in- for the dependence oB on 7 and q with x>0, s;
variance of the Lagrangian in space and time, the following=(€-2)/(¢-1), and s,=-1/(¢-1), the following integral
two conserved quantities are obtained: equation is obtained:

Ill. TRAVELING WAVE SOLUTIONS

B(q,7) = k1Q(k2q)e™ IR (3.1)
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n-1

(#1+£n“ Q= X F(MMQuQnem
m=1

N
+2 > (mF (Vm)QuQh

m=n+1

(3.5

20 27 35 42 where{,=Z,q5™*/ «. For given values of, andN, Eq. (3.5

is solved numerically with the help of a Newton-Raphson
minimization routine. With decreasirlg,| the periodic wave
form resulting from the solution of Eq3.5 becomes a pe-
riodic pulse train with well-separated pulses.

In Fig. 2, pulse shapes are compared for two propagation
geometries pertaining to the same substrate material—
namely, silicon. In the first case (801)(100), S, is an even
and S; is an odd function as in isotropic substrates. In the

second case @i11)[112], the pulse shapes are no longer

purely even or purely odd. In addition, the shapeSpénd

S; seem to be nearly reversed as compared to the first case:

S, is almost antisymmetric whil&; is almost symmetric.
FIG. 2. Solitary pulse shapes for the substral@(001) (a), This is a strong r_nanifestation Qf t.he supstrate's anisotropy.

Si(111[112] (b). Solid line: -S,. Dashed lineS; (rescaledt A .charactenstlc feature o$; |n. |sotrop|£§ubstrates gnd

for Si(001)(100 as well asS; for Si(111)(112) is the “Mexi-

can hat” shape. The appearance of the two negative minima

q
[+1+q2Z,]Q(q) :f F(Ki)QKQ(q - k)% next to the maximum is forced upon the pulse by the condi-
0 2m tion that the integral over the pulse has to vanish:

* . " dk i
+2f (@R (@IQKQ (k-0 . J S.(8)dé=0. (3.6

q —_

3.2 This is a direct consequence of the factgk in the second

nonlinear term on the left-hand side of the integral equation
(3.2). Since the functiorfr is bounded, this causes the behav-
ior Q(g) —0 asq— 0.
Once a stationary solutio8, is found for a given disper-
U(al)l(X.O,t) = kS, (K CV(EF kupr— &)). (3.3 §ion parqmetem_2<0 (normal dispersiop the .correspond-
’ ing solution for the same value gi,_,, but with reversed
For more general dispersion laws that are not power lawsSign (anomalous dispersignis also found:
one may still find solitary solutions with an ansatz of the 1 _ Uie-1
form (3.1), but the scaling property3.3) is no longer U (6,00 = = kS, (kM V(¢ £ ipr= &) (3.7)
present. The functio, represents the shape of the solitary The sign change of the solitary wave and of its velocity
solution. For an isotropic substrats, is even ands; is odd,  relative tovg has been confirmed in recent experimefiés
which is related to the fact thaf is purely real(purely |n all cases that we have investigated, the solitary pulses
imaginary for Q being the Fourier transform &, (Sy). In propagate faster than nondispersive Rayleigh waves in the

whereZ,=—u,_»/vg. From Eq.(3.2) we may deduce that if a
solitary solution exists for these dispersion laws, it will obey
the scaling

general,S, and S; are related to each other via case of normal dispersion and slower for anomalous disper-
sion.
Sy(é) = Clﬁ[sl](g) +C,5,(8€) +O(e). (3.9 Another interesting aspect is the transformation property

of the solitary pulse under inversion of the propagation di-
with the coefficientsc; and c, that are determined by the rgection. DeﬁningE:XJrvRt and choosing
linear acoustic properties of thdhomogeneoyssubstrate.
(H[S] i; the Hilbert. transform OS) These functioqs can be . uD(x,zt) = JJD %eiqgw(zm)g(q,ﬂ,(iq) +cc., (3.9
determined numerically as a limiting case of stationary peri- 0 2w
odic solutions with periodicityA=2m/q,. With B(q,7) _ . _ _
=278(q—Nnqp) kQuexp( Findgkvr?) in Eq. (2.16) and by lim- instead of Eq(2.8) in the asymptotic expansio®.7), we
iting the number of harmonics tbl, the integral equation obtain for the strain amplitudé3(q, 7) an evolution equation
(3.2) is converted into a set df nonlinear coupled algebraic that differs from Eq(2.16) only by the sign of its left-hand
equations: side. [Note that the right-hand side of E@.8) solves the

046604-8



SOLITARY SURFACE ACOUSTIC WAVES PHYSICAL REVIEW EO, 046604(2004)

1.0 ' ' sion, the evolution equation with this replacement is identical
to the approximate equatiqi6) with Eq. (15) [or Eq. (38)]
in Ref. [44]. Recently, this equation has also been found in

0.5 the context of magnetohydrodynamigts], and it has been
- derived for weakly guided nonlinear Scholte wayés§]. In
UF the context of SAWSs, the approximatidr(X)=const be-
0.0 comes exact in the special case of one-component surface
waves[47]. However, care has to be taken in the case of a
coated substrate, since a thin film may cause the one-
-0.5 . . component surface wave to become leaky. We emphasize
2.5 30 35 40 that when transforming Eg2.16) into real space, its nonlin-
qoé earity remains highly nonlocal even with this approximation.
This is due to the factog/k in the second nonlinear term.
FIG. 3. Solitary pulse shape for (®01)(001) determined with For the special situation of a dispersion term of the form
the complete functiof (solid line) and withF(X) approximated by ~ u,0° discussed in the previous sectim KdV-type disper-
F(1/2) (dashed ling sion), closed-form expressions are known for a two-

parameter family of solitary wave solutioriparameters«

linearized equation of motion and boundary conditions for 2"d &) and a three-parameter family of stationary periodic
homogeneous substrate in the absence of alfibonse- Solutions(parameter, &, and the periodicity\ =27/qy) of

quently, the ansatz the evolution equatioi2.16) with constant=(X)=F,. In the
- following, we assume this constant to be real without loss of
B(q, 7) = k%Q(x%20)etIvRT (3.9 generality.[If F(1/2) is comple, it can be made real by a

simple transformation of the phases of the complex ampli-
instead of Eq(3.1) leads again to Eq3.2) for the Fourier  tydesB(q).] The resulting analytic solution is found with the
transform of the pulse shap@(q). This leads us to the fol-  gimple ansatz Q(q)=yq exp-gB). A simplification is
lowing conclusion: If Eq(3.3) is a pulse solution propagat- achieved by a transition from strain amplitud@&) to the
ing in the positivex direction, then displacement amplitudes(q) with B(q)=|qg|A(q). The evo-

— — lution equation then takes the form
(.00 = kS (M V(g + kogr-£9))  (3.10 q

q
i_s the cqrres_ponding pulse solution p_ropagating in the.nega—iiA(q) = 10°A(Q) + vrFo J k(g —-K)A(k)A(g - k)%
tive x direction. This also follows directly from the time ¢7 0 2
reversal symmetry of the equations of elasticity theory. Ro- w
tating now the coordinate system around treis such that + 2f
the direction of thex axis is reversed, we obtain the follow-
ing transformation formulas for the pulse shape functions: _ ) (1) i
Sy(X) — Sy(X), S3(X) — —Ss(=x). In isotropic substrates, is If B'(q) is the Fourier transfgrm aﬂlyl(g,o,t) in the case pf
an even function an8; is an odd function. Consequently the @n 1Sotropic substrated(q) is proportlt_)nal to the Fourier
pulse shapes are unchanged when reversing the propagatiansform —of the surface elevation profileJ(¢,7)
direction. More generally this holds true whenever the func=Uy"(x,0,t). The ansatz A(q,7)=7y exp(—q[B+ixvgr))
tion F is purely real for the normalizatiow;=1 and purely solves Eq(3.1D), if
imaginary for the normalization;=1. If this is not the case,
as in the substrate geometry(Bi1)(112), the pulse shapes y=127Z4/Fg (3.12
may strongly change when reversing the propagation direcsq
tion. This is a remarkable effect of anisotropy, which was
verified experimentally for silicon. B%=3Z4/«. (3.13

The detailed behavior of the functidn in the nonlinear
terms of the evolution equation seems to have only a minof he corresponding surface elevation profile has Lorentzian
influence on the solitary pulse shapes, especially for fusefPrm
quartz as substrate material, whéiex) varies little with X
(by =20%). In the case of the 801) substrate with propa- U = % (3.14
gation along the(100) direction, the functionF(X) does (£-KvRn)“+ B
show considerable variation, as its valueXatO is only 10%
of F(1/2). But even here, the pulse profiles determined with
the full F and withF(X) replaced byF(1/2) differ very little
(Fig. 3. Therefore, we may expect that replaciX) in Eq. - — _
(2.16 by the constanF(1/2) will yield a reasonable ap- ~"%)Y €Xp(-N[B+idoxvrr]), where y=6Z30/Fo and
proximation for the pulse shapes as well as for the dynamic§sinh‘2,3=1+:</(23q§). The real-space version of this solu-
in many propagation geometries. In the absence of dispetion is

. dk
qk - g)AKA (k—q)z—}. (3.11
q '

The in-plane component of the particle velocity at the sur-
face,u(ll)(x,o,t), has the characteristic “Mexican hat” shape.

Stationary periodic solutions are found vidq, 7)=275(q
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V1 -b? deflection setup. As probe laser a frequency-doubled diode-

U=y 1-b ~ -1|, (3.19  pumped cw Nd:YAG laser with 100 mW power at 532 nm

C04qol¢ ~ kur7)] was employed. The output signal of the position-sensitive
whereb=sectg. Equationg3.14) and(3.15 are almost iden- detector is proportional to the slopg ;=dus/dx at the free
tical to the corresponding solutions of the Benjamin-OnoSurface. As in the previous sections,is the normal surface
equation[48]. However, the relation between width, height, displacement and the wave propagates alongctagis. The
and velocity differs. Nevertheless, E@.11) shares with the ~Surface slope is related to the normal component of the par-
Benjamin-Ono, KdV, and other evolution equations the propdicle velocity at the surfaceys ;=—Us/vg+O(€?). Note that
erty that its stationary periodic solution may be expressed ad€ longitudinal or in-plane componemny ; of the SAW pulse
a linear superposition of localized pulses having the samgould not be measured. _
shape and the same relation between height and width as the FOr a comparison between experiment and theory the two-

one-solitary-wave solution. This follows from the fact that Point-probe detection is crucial. This comparison is per-
formed with the help of numerical simulations on the basis

N 2y i 1 . of the evolution equatiori2.16). In our numerical scheme,
T —hcoda.s Ve o2 2 T eonst, the Fourier transform of the surface slope is discretized
1-bco e - + . o ; '
ot) == (0ot = 2n) Yo B(q, 1) =278(g—ngy)B,(7); i.e., the Fourier integral.26) is
(3.19 replaced by a Fourier series with an assumed periodicity
where costy,)=1/b. =27/ (qovr)- Its value is chosen sufficiently large such that it

does not influence the results. The Fourier series is truncated

Remarkably, the solita ave solutigB.14) exhibits al- . -
] y solitary wave solutie8.14 exhibits at n=N with N chosen sufficiently large to properly resolve

gebraic decay while the linear limit of the evolution equation : ; )
(3.11), having KdV-type dispersion, suggests exponential de;he pulse shape at the first observation point and features

cay. However, because of the nonlocality of the nonlinearityem?r?.mg in thet. com;rsle O.f tr;re] DUIS% evocliuttlon. In T'zﬁway'
in real space, the linear limit is not relevant for the tails of€volution equation(2.1§ is then reduced 1o a set ]
the solitary pulse. coupled complex nonlinear ordinary differential equations:

So far, we have not been able to find closed-form expres- 9 n-1
sions for the solitary pulses in the experimentally most rel-  i—B, =ng3A(ngy) B, + vrNdo > F(m/n)ByBrm
evant case of a dispersion termyg?A(q), and it does not Jr m=1
seem to be straightforward to generalize the above ansatz to N
construct analogous analytic solutions for other special dis- +2 >, (mF ('m)ByBrp [ » 4.9
persion laws of polynomial form. men+1

which have been integrated numerically.
The wave form detected at the first probe locatirr 0)

V. EXCITATION AND OBSERVATION OF SOLITARY is multiplied by a calibration factor and expanded into a

PULSES Fourier series
The excitation and detection of the solitary SAW pulses N
was performed with a contact-free all-optical technique. De- U34(0,01) = > eB,(0)e MR + c.c. (4.2)
tails concerning the physical background of this experimen- ' n=1

tal method can be found in RgR27]. The technique has also . . . .
been used efficiently in other contexts of acoqustic waves ir;rhe evolution of the Fourlt_ar ampht_ud&(r) fr_om the f_|rst
solids. A very recent example is an investigation of ultra-©© the second probe locatid=x,) is determined by inte-
sonic wave propagation in heterogeneous rock sanjglgs ~ 9rating Eq.(4.1) from 7=0 to 7=ex,, using a predictor-
The straight-crested surface pulses were excited with §Orréctor method with variable step size. Summing up the
Q-switched Nd:YAG laser, operated at 1.06#, by focus- Fourier series with the amplitud&;(ex,), the S|muI§ted_sur—
ing the 8-ns-long laser pulses, with 30—60 mJ pulse energy@Ce Slopeus 1(x;,0,t) at the second probe location is ob-
to a line of 7 mm length and about 3m width with a  tained and compared with the experimental pulse shape. Ex-
cylindrical lens. To excite sufficiently nonlinear SAW pulses Perimental and simulation results are shown in Fig. 4 for a
a highly absorbing thin layer of a carbon suspension wastrain pulse propagating on a silicon substfgtd1) surface
deposited in the source region, which completely absorbeth the[112] direction. The substrate was covered with a sili-
the laser radiation. The explosive evaporation of this layeton oxide film. The second probe location had a distance of
and the resulting recoil momentum exert a high pressure not5.5 mm from the first one. The pulse shapes at the first and
mal to the surface and launch a strongly nonlinear surfaceecond probe locations may be compared with the stationary
pulse[5,6]. With this technique Mach numbers in the rangesolitary wave solution shown in Fig(®. The lower inset of
of about 0.01 have been achieved, limited by the fracturd=ig. 4 shows that the solitary pulse has already largely
strength of the materigb0]. The excitation-detection setup formed at the first probe location. The asymmetry of the
had a bandwidth of about 500 MHz. solitary pulse with the maximum on the left is consistently
The evolution of the propagating SAW pulse profile wasfound in the experiment, in the simulation and in the station-
registered at two locations, separated by a few millimeters tary solution of the evolution equatidfrig. 2(b)]. The simu-
centimeters from the line source, using a probe-beamlation extends to distances far beyond the second probe lo-
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50 " 1 1

40

30

FIG. 5. Collision of solitary pulses: BO-type linear dispersibn,
approximated by a constaritn this and the following figures, the
units at the axes are arbitrary.

Propagation distance, mm

10 merical studies of pulse collisions, the following initial
conditions were chosen:

Bn(0) = ki QY + expling) Q1. (5.0)

Here, Q") and Q!" are solutions of Eq(3.5), with ¢=
—me-2G 1 (kiwr) and {=—wo0q  (kyvg), respectively.
FIG. 4. Evolution of a strain pulse, generated by laser excitation] €y correspond to pulse trains with well-separated highly
on a S{111) surface coated with a silicon oxide film. Propagation localized pulses. The phase angldés chosen such that the
direction:[112] The local surface slopes ; is shown. Gray scale: WO pulse trains do not overlap. . .
result of numerical simulation with experimental pulse at the first TWO types of linear dispersion laws were considered in
probe location as initial conditioniDark: negative. Bright: positive the numerical pulse collision simulationg:) g”A(q)q?,
values ofus;.) Lower inset: experimental pulse shape at the firstwhich is the usual situation for a thin film on a homogeneous
probe location. Upper inset: experimentsblid line) and simulated ~ substrate. The linear dispersion term in the evolution equa-
(dashed lingpulse shape at the second probe location. Position ofion is then the same as the one in the BO equatio.
the second probe indicated by a horizontal dashed line. q?A(q) =g, which corresponds to a special choice of the
acoustic mismatch between film and substrate, as pointed out

cation and reveals a stable propagation of the solitary puls# Sec. Il A. In this case, the linear dispersion term is iden-
without a visible change of its shape. In addition, radiation istical to that in the KdV equation.
found that is generated in the course of the formation of the A typical scenario for pulse collisions in the case of
solitary pulse and that propagates at a velocity smaller thaBO-type dispersion is shown in Fig. 5. In this simulation, the
the solitary pulse. Due to normal linear dispersion, the radiafunction F was approximated by a constant. When the two
tion is slower tharg while the solitary pulse propagates at a pulses approach each other, the faster of the two is acceler-
velocity larger tharvg and consequently arrives at the sec-ated and thereby further compressed. The collision is
ond probe earlier than the radiation. strongly inelastic. A similar behavior was found for the func-
To realize normal dispersion a film is needed which loadgdion F corresponding to $001)(100 [52]. In another ex-
the substrate. For example, a Ni®@0% Ni, 20% Cj film of ample pertaining to an isotropic substr@@], the accelera-
300 nm thickness on fused silica or a 110-nm-thick silicontion of the faster pulse was not very pronounced. In all three
oxide film on crystalline silicon generated a single solitarycases, the following features were observed: The two pulses
pulse at the remote probe location. On the other hand, do not really pass through each other. The compression of
stiffening film is needed to obtain an anomalous dispersion
effect. This case was realized by deposition of a 50-nm-thick
titanium-nitride film on fused silica. The normal and anoma-
lous dispersion was matched with the nonlinearity to gener-
ate solitary surface elastic pulsgg.

T T T T T T T T T T T T T
60 80 100 120 140 160 180 200

Retarded time, ns

V. PULSE COLLISIONS

The pulse dynamics has been investigated numerically in
the way described in the previous section imposing periodic
boundary conditions in th& domain. The system oN
coupled nonlinear ordinary differential equations corre-
sponding to Eq(4.1) was integrated using a variable-step-  FIG. 6. Collision of solitary pulses: KdV-type linear dispersion,
size Adams methocsee, for example, Ref51]). In our nu-  F approximated by a constant.
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FIG. 7. Collision of solitary pulses: KdV-type linear dispersion,

F corresponding to fused silica as substrate material. FIG. 9. Pulse evolution: KdV-type linear dispersidfsconst.

For the initial conditions see text.

the faster pulse continues after the collision, and the slower

pulse seems to be converted into radiation—i.e., into quasi-iu =ZBA-1D)—=U+(\- 1)|2|[iu]iu
linear waves. dr 4 9 & a& Joé

The situation is completely different in the case of KdV- 9 { N N 4
type linear dispersion as demonstrated in Fig. 6. Here, the +— H{U—U} + (2N - 1)UH{—U] --AU3p,
pulse collision is nearly elastic with only a small amount of J¢€ J§ J¢€ 9
radiation being generated. An almost elastic collision was (5.9

also observed in a simulation carried out with the funcfion R

corresponding to isotropic silica as substrate mategRaj.  with the parametek ranging from 0 to 1(H denotes again

7). With the comparatively large pulse widths chosen as inithe Hilbert transform).In the limiting case\=0, Eq.(5.3) is

tial conditions, radiation is no longer visible. From this find- the real-space version of E@.11) (after rescaling—i.e., the

ing one may conclude that the approximation of a constangvolution equation for the surface elevation profile associ-

function F is not essential for having almost elastic colli- ated with nonlinear Rayleigh waves for a special choice of

sions. Radiation can be enhanced by choosing narrow puls#e acoustic mismatch between substrate and film and for an

having initial velocities close to each other. approximation of the nonlinearity that is well justified for
The results of these numerical simulations suggest that thiglsed quartz as substrate material. In the liwwtl, Eq.(5.3)

evolution equation(2.16) with KdV-type dispersion is, in is the BQ equation—i.e., the third member of the Benjamin-

some sense, close to an integrable system. We now demofo hierarchy analyzed by Ca$b4]. It has multisoliton

strate that this is indeed the case. With the approximatiosolutions and hence elastic pulse collisions.

F=const and with\(q) = 10, Eq.(2.16) is readily converted It is easily shown that Eq(5.3) has the solitary wave

into Eq.(3.11) for the Fourier transform of the surface eleva- solution

tion profile. With —

- 3V12«

4i(é— KT+ &)?+ 3

U= (5.9

* .d
U= f A(q,r)e'qf—q, (5.2 _ _ _
0 2w with parametersc>0 and¢,, independent of the parameter

\. This is most conveniently done with the Fourier-space

Eq. (3.1)) is transformed into real space. It may be regarded’ers'o.n of Eq.(5.3). The_refore, the{approxmatae evolution
as a special case of a one-parameter family of evolutior‘?quat'on(?"ll) for UO”"T‘eaf SAWSs in a c_oated substrate
equations with special acoustic mismatch between film and substrate

may be continuously transformed into an equation that has

{ WM'/M
it

) MM "

L

Ui

&R
7

¢ s =
FIG. 8. Pulse evolution: BO-type linear dispersidficonst. FIG. 10. Pulse evolution: KdV-type linear dispersiéty const.
For the initial conditions see text. For the initial conditions see text.
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multisoliton solutions—namely, the Bquation. This con-
tinuous transformation preserves the solitary wave solution.
In this sense, Eq3.1)) is “in the neighborhood of an inte-
grable system,” which may explain the numerical findings.
However, we have to note that E¢.3) contains an addi-
tional third-order nonlinearity fom #0. On the way from
A=0to\=1, the sign of the linear dispersion term changes at
A=1/5. Forthis value ofA, one encounters the situation of a
solitary wave existing even in the absence of linear disper-
sion. But this is not unusual as the combination of second-

order and third-order nonlinearities in E.3) is not scale FIG. 11. Depth profile of solitary pulses. Substrate: fused silica,
invariant[55]. BO-type linear dispersion.

VI. DYNAMICS WITH INITIAL CONDITIONS CLOSE o _ _ _ _
TO A SOLITARY PULSE trivial depth profiles of solitary pulses and stationary peri-

, . ) i . odic waves. With the traveling wave ansatz
The strong difference in the dynamical behavior described

by Eq.(2.16 with BO-type dispersion on the one hand and ud(x,z,t) = 0D (x - vR(1 + et 2) (7.2
KdV-type dispersion on the other is also reflected in the evo-

lution of pulses that are initially close to a solitary solution. at each ordej in the asymptotic expansiof®.7), the depth
Figures 8-10 present the time evolution of pulses that correprofiles of solitary and periodic SAWs may be determined as
spond to solitary wave solutions enlarged by a fadtbat  expansions in powers of the parameteri.e., the typical
7=0: u%(x,O,O):MKSa(Kl’(‘f‘l)x). Figure 8 refers to strain. This has been discussed in some detail for the simpler
BO-type dispersion, and the magnification factor has beesystem of nonlinear waves guided at the interface between a
chosen close to IM=1.05. Nevertheless, the deviation of highly compressible fluid and a weakly compressible inho-
the initial condition from that of a solitary pulse has a strongmogeneous solid, where the second-order contribution to the
effect on the dynamics. The pulse is repeatedly acceleratedkpth profile of a solitary pulse has been determined numeri-
and decelerated and, respectively, compressed and deconzlly [46]. From Egs. (2.8), (2.9, and (3.1) and B(q)
pressed. This behavior is accompanied by the generation efigA(qg), we obtain the leading-order term as

radiation. Such a rolling picture in the- r plane is certainly

not expected_ in integrable systems, \_/vhere an infinite number U(p},)l (x,2,t) = Kéﬁ( KD = pr(1 + ex)t = X0, K D2)

of conservation laws strongly restricts the dynamics. The

situation in Fig. 9, referring to KdV-type dispersion, is much (7.2
more reminiscent of an integrable system. Here, the magni-
fication factorM has been chosen to be 2. From the initial 2"
condition, one large pulse and possibly several smaller S
pulses emerge and propagate with more or less constant < _| 9 alix+a(r)z]

speed. In addition, radiation is produced. However, when Sﬁ(x,z)—fo 277;1 bylr)e Qa+ec. (7.3
increasing the magnification factor to larger valges=5 in

Fig. 10, a behavior is observed, even in the case of KdV-whereQ(q) is a solution of the nonlinear homogeneous inte-
type dispersion, that is not expected to occur in integrableyral equation(3.2). Figures 11 and 12 show examples of

systems. From the initial conditions, two large solitary pulse - o :
emerge that initially propagate with different speed, then ats-depth profilesS, for fused silica as substrate and(Ei)

L (112. In both cases, BO-type dispersion was assumed. If we

tract each other and perform a collisigre., overtake each . . e
othen with little radiation shedFig. 10. When following approximate the functiof for the S'I'.Ca substratg by a con-
the two pulses further in time, one finds that the amount of_Stant and assume KdV—type dispersion, we obtain the follow-
radiation in the system increases and the two pulses do n#1d closed-form expression fc;:
seem to collide again.

In the simulations leading to the results exhibited in Figs.
8-10, the functionF in the evolution equatiori2.16) was

d

approximated by a constant. A systematic investigation of the ¢

pulse dynamics in this system with BO-type and KdV-type 2

dispersions remains yet to be done. Such an investigation Z

would have to examine in detail the influence of the finite T =
spatial domain and periodic boundary conditions as they may ;ZQ

especially affect the velocities of the pulses.

VIl. DEPTH PROFILE OF SOLITARY SOLUTIONS

The complicated depth structure of linear straight-crested FIG. 12. Depth profile of solitary pulses. Propagation geometry:
SAWSs, consisting of up to three partial waves, leads to nonSi(111(112), BO-type linear dispersion.
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. ¥ [a(L)z— B2 - X2 VIIl. CONCLUSIONS
Si¢2)= 1 -VaL)a(T)] | ¢+ [all)z- B3 In the sections above, we have aimed at giving a compre-
_ hensive presentation of the theory of surface acoustic solitary
N TRy [a(Mz-BI°~x waves and highlighting the agreement between calculations
Va(L)a(T)— 3 (7.4 ) - ;
X +[a(T)z- B]7} based on nonlinear elasticity theory and experimental results

on solitary pulse shapes. The measurements were performed
Here, a(L)=\1-(vr/vy)? a(T)=\1-(vr/v7)* andv (v1) by pulsed laser excitation of high-intensity acoustic pulses in
are the velocities of longitudingtransversgbulk waves in  layered systems. As a main result, the anisotropy of the sub-
the silica substrateg and y have been specified in Egs. strate was found to have a strong influence on the pulse
(3.12 and (3.13. The approximate analytic solutiofr.4)  shapes. It has been shown in numerical simulations that these
gives an algebraic decay in the direction along the surface asplitary pulses normally perform highly inelastic collisions
well as in the direction normal to it. A plot of E@7.4) looks  between each other. Only for a KdV-type linear dispersion
very similar to Fig. 11. law, which is realized by a special choice of linear acoustic
Higher-order terms of the displacement gradients are demismatch between the substrate and a coating film, are SAW
termined by solving successively inhomogeneous lineapulse collisions nearly elastic. An explanation for this finding
boundary value problems. At each order, a compatibility conis suggested which is based on the fact that in this special
dition has to be satisfied. The higher-order corrections deteicase, the evolution equation for nonlinear SAWSs can be re-
mined in this way contain secular terms in the depth coordifated to an equation of the Benjamin-Ono hierarchy.
natez. As mentioned already in Sec. Il B, these terms have An important feature of surface acoustic solitary waves is
been criticized by Lardne 2] since they cause the solutions their two-dimensional character. They have a nontrivial
to be nonuniform. Lardner also pointed out that solutionsdepth profile which may be constructed from their associated
uniformly valid up to depths of the order of (ef)), whereq  strain distribution at the surface. The latter can be determined
is a typical wave number, can be constructed by introducindrom a one-dimensional evolution equation with a strongly
a stretched depth coordinate and integrating the constraintsonlocal second-order nonlinearity. The derivation of the
(2.28. We show here how this construction works for sta-evolution equation, as well as the reconstruction of the depth
tionary periodic solutions. In this case, profile, was done with the help of asymptotic methods that
have an approximate character and are valid for weak non-
linearity and weak dispersion. Different variants of the
theory provided in the literature were compared, and it has
(7.9 peen shown explicitly that three of them lead to the same
evolution equation. With these asymptotic methods station-
In terms of the new amplitude@f:) the constraint(2.28  ary periodic solutions of the equations of nonlinear elasticity
takes the form were constructed that are uniformly valid up to depths of the
order of a typical wavelength divided by a typical strain.
Due to the absence of material dispersion in the acoustics
r ' r of solids, there are several physical systems where acoustic
(9_,7(:51)(’7) 2ng(r)C( )(’7) * nG(r)mE_1C )(”)C (7). waves are nondispersive. By modification of the propagation
geometry, dispersion can be introduced and tailored in a con-
(7.6 trolled way. One example is the system investigated here—
namely(generalizegl Rayleigh waves propagating along the
This has to be integrated with the initial conditiog§’(0) ~ planar surface of a homogeneous elastic half-space. Normal
=Q, andQ,, determined from Eq(3.5). The result is and anomalous dispersion of the SAWs was realized by de-
positing a thin isotropic film onto the substrate. Other types
of guided acoustic waves that are ideally nondispersive in-
clude Bleustein-Gulyaev waves, wedge acoustic waves,
Calm) = expl= an”)% Pyr (7.7 Stonely waves, etc. %onlinear effects ingthese nondispersive
. systems have partly been studied already, and evolution
equations with nonlocal nonlinearity have been derived
For the coefﬁmentspjn) the following recursion relation is [56-58,33. When dispersion is introduced into these sys-

C(0,7,7) = 2mK8(q ~ np)CyY (7)€ "7/ (incl) .

n-1

n-1

readily found: tems, solitary waves are expected to exist. The nonlinearity
in the corresponding evolution equations is partly of third

n-1m-1 order. Effective evolution equations with nonlocal nonlinear-
) = —GE > pm pj(nemig(j -¢-1n-m-1) (7.8 ity of third order have also been derived in the field of non-

m=1 =1 linear optics for pulse propagation in dispersion-managed fi-

bers[59,60, and solitary solutions for such equations have
for j>0 andp(”)—Qn Hereo(ilk)=1 for O<i<k and zero  been determined numericall§1]. An important difference is
otherwise. This recursion relation can easily be implementethe scale invariance of the nonlinearity of homogeneous elas-
in numerical calculations. For simplicity, we have not explic-tic media in the acoustics context, which poses a challenge
itly indicated the dependence orin Egs.(7.7) and(7.8). for future investigations.
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