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Usually the motion of an electron under the influence of electromagnetic fields is influenced to a small extent
by radiation damping. With the advent of high power high irradiance lasers it has become possible to generate
focused laser irradiances where electrons interacting with the laser become highly relativistic over very short
time and spatial scales. By focusing petawatt class lasers to very small spot sizes the amount of radiation
emitted by electrons can become very large. Resultingly, the damping of the electron motion by the emission
of this radiation can become large. In order to study this problem a code is written to solve a set of equations
describing the evolution of a strong electromagnetic wave interacting with a single electron. Usually the
equation of motion of an electron including radiation damping under the influence of electromagnetic fields is
derived from the Lorentz-Dirac equation treating the damping as a perturbation. We use this equation to
integrate forward in time and use the Lorentz-Dirac equation to integrate backward in time. We show that for
very short wavelength electromagnetic radiation deep in the quantum regime at high irradiances differences
between the perturbation equation and Lorentz-Dirac can be seen. However, for electron motion in the classical
regime the differences are negligible. For electron motion in the classical regime the first order damping
equation is found to be very adequate.
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[. INTRODUCTION emits radiation. This radiation causes the electron to lose its
energy. Under most circumstances the amount of radiation
mitted is very small and represents a small perturbation to
the electron motion. However, this is an important problem.
gadiation damping limits the maximum energy which elec-

Under such extreme conditions the effect of radiation dampUcmS c?n be ?conorgncalg( s.tored In a s1t_cr)]rage grg dufe to
ing on the electron motion in the intense wave can becom&N€rdy losses from the radiation emit{&d. The problem o

large [2]. In addition, by using counter-propagating |aserradiation damping was one of the causes for the development

pulses irradiances reaching the Schwinger limi€?A/cn? of quantum theory. In the classical model of an atom an
could be achieved with current lasei3]. Taking into ac- electron circulating around the nucleus would lose energy so

count coherent radiation effects the damping could be strong1at it.would e"eT“!Ja”y spiralin to the center. Nonrelgtivistic
even for relatively low irradiance laser pulses interactingt)qu""t'OnS dgzsf,cnblng Ithe ﬁffe(éts ;f radlatlo_:_nhdan:pl_ng have
with clusters[4]. Under most conditions here on the Earth een around for nearly a hundred yef8s/]. The relativis-

radiation damping is usually a small perturbation. Even With_tica")ll covariant f(:_rm 3f the gcéuagc_)n Of_ motion of a radiat-
current high energy storage rings the strength of the dampin{/d €lectron was first derived by Dird8]:

With the advent of petawatt level high power short pulse
lasers it may become possible via strong focusing to exten
the irradiance to levels close to220N/cn? [1]. At such an
irradiance electrons can theoretically reach high energie

is small [5]. So radiation damping has been verified only di e . 262

under conditions where it is small. By using high irradiance g m—czF'kUk+ ng’ 1)
lasers we can examine the dynamics of electrons under

strong damping conditions. In this paper we examine the 5 )

effects of radiation damping on a single electron under the g= {d_u _ uiukﬂ‘:| 2)
influence of a strong electromagnetic wave. The equations of ds ds® |’

motion describing the damping are solved numerically. Withwhereui is the four velocitvd is the dampind term. angi
the advent of ultra-high irradiance lasers it has become pos Y9 ping '

sible to probe the boundaries of classical electrodynamics s the electromagnetic field tensor.
P y " This equation is sufficient to describe the damping of a

Il. RADIATION DAMPING relativistic electron interacting with an electromagnetic field.

Radiation d . diati . h However, from a mathematical as well as numerical point of
adiation damping or radiation réaction 0CCUrs Wnen an,q; ynere are difficulties. Since there are second order de-

electron is accelerated. When the electron is accelerated, fvatives in the velocity, three initial conditions are necessary

to solve the equations of motion. If the equations are inte-

grated forward in time, there is an exponential blowup in the

*Electronic  address: koga@apr.jaeri.go.jp; URL: http:// energy of the electron even if there is no electromagnetic
wwwapr.apr.jaeri.go.jp/aprc/e/indexhtml field present. This problem deals with some of the underlying
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inconsistencies of electromagnetic thed8}. In order to !
avoid this problem the equations are integrated backwards in sl " '
time [10] and the acceleration is required to vanish at infinity °\,r
[11]. However, for numerical simulation purposes this is dif- 061 i
ficult as we need to know the final conditions in order to do AL !
this. Another option is to re-express the damping term in 4T !
terms of the field$9]. This can be done through a perturba- 0zl 7
tion expansion of the equation of motion. If we assume that ',/'
the damping terng' in Eq. (1) is a small perturbation, then to 0 P — N
zeroth order the acceleration can be describe9hy e ot | (W‘/‘;mz) 10 10
(dd) e i _ .
— | =—F%u,, (3) FIG. 1. The ratio between the damping forzg, and Lorentz
ds/o mc force f_ versus irradiance for different scalings of the electron
where we have used the subscript O to specify the zerotf"€"9Y:
order term. The equation with damping is then included by ' '
using this equation in the damping teghin Eq. (2): (du‘) ~ (du‘) . 2¢% ©
dul dui 262 i ds 2 ds 1 3mczgl'
(ds)l_<ds>0+3mczg°’ (4) 2. i 2
(5B
i d?u' o P ' ds*/4 ds’
%= {(@)O_ uu (@)0 ' (5 Re-expressing this second order equation in terms of just the
fields we get
where the subscript 1 refers to the first order term. The _
damping force is now expressed in terms of electromagnetic (d_U') _ € i ﬁ i (ﬁ)z i
: - - - = Fu + Ot g, (11
fields only. The resulting equation can now be integrated ds/, mc 3amé 3mé

f d in time. Writing everything in terms of fields for the - . .
orwara in time. Writing everything | I whereg is from Eq.(6) andd] is a large expression con-

ing f
damping force we gefd] taining second order corrections. From E#jl) we can see
i e oF% | e \? e that the second order terms are smaller than the first order
9= 2 o VUt e FrFqu terms by a factor ofr, wherer, is the classical electron
X radiuse?/ mc.
e Ky eml We can estimate the regime where radiation damping be-
- (Frnt) (F™uput | (6) e
mc comes large compared to the Lorentz fofcdy estimating
. . . the strength of the largest damping term, the third term, of
Explicitly the equation of motion becomes frp in EQ. (8) [2,9]:
dyB e 2€? Zezwzyz 2
——=—(E+ BXB)+—=0 7 _ €%V %
dt mc( pXB) 3ma % ™ fro 32 (12)
and the explicit expression for the spatial part of the damping
force is[9] fL = mecwpay, (13

e (o e \2 wherewy is the laser frequencyy is the relativistic factor of
Jo= _(?Y(E +v-V >(E +BXB)+ <_cz> c[(B-B)E the electron, anda, is the normalized laser amplitude
m m eBy/mcwy wherekE is the peak laser amplitude. The ratio is

e 2
E+BXB)XB]-|— E + B X B)? f 21w,
+(E+B X B)XB] (mcz) Y’cBl(E + B X B) %3~§ecoyza0. 14
L
—(B.E)2
BB ® Assuming an initially stationary electron’s energy increases

The Lorentz-Dirac equation is the equation of motion foras a§/2 and counter-propagates with respect to the laser
a point particle. This first order equation, the so calledpulse, the radiation damping force can be significant at laser
Landau-Lifshitz equation, has been both proposed as the eiradiances above 8 10?* W/cn? for a laser of wavelength
act equation of motion for a point particl#2] and the equa- 0.88 um. Figure 1 shows a plot of the ratigp/f, verses
tion of motion for an electron with structuf&3]. This equa- irradiance assuming the initially stationary electron energy
tion avoids the preacceleration problem of the Lorentz-Diracscales as3/2 anda,. The different scalings in the electron
equation, however, suffers from a very small departure fronenergy is due to the fact that in laser-plasma interactions the

the correct rate of radiatiofi4]. energy can scale differently from the ideal plane wave result
Higher order terms can be obtained by continuing the preef a(z)/z. We can see from the figure that at irradiances above
vious procedure. We can go to second order to obtain roughly 12 W/cn? the damping can become significant
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even for thea, scaling. This has been shown by particle-in- 0:3 ' '
cell simulations incorporating the largest term in the radia-
tion reaction force in Eq(6) where damping was found to
become significant above »510°2 W/cn¥? [2]. Different
scalings can occur ifigp/ f| due to mostly co-propagation of
the electrons, collective plasma effects, radiation effects, and 2l
quantum effect$4].

It can be seen in Eq14) that the damping can become
large wheny>1, a;>1, and the laser wavelength i
~O(re). In these regimes the assumption that the damping is
a perturbation may be limited. Since the damping can be-
come significant, we examine whether higher order terms in
the expansion are necessary in the description of the damp-
IngI.n order to investigate the regimes where higher order FIC: 2. Trace of the electron motion in tixez plane where the
effects might play a role, we additionally use the Lorentz-e.l'ECtrOIn IS propagating to the left a.nd the laser is propagating to the
Dirac equations of motion, EqeL) and(2). We first integrate right. _The solid line is for damping and the dotted line is no

N . ) - - damping.

forward in time using the first order damping equation, Egs.
(7) and (8). After the electron has passed through the laser
pulse we use the final position, velocity, and acceleration as E(x,1t) = ZEgh(¢)sin(¢), (19
the initial conditions for the Lorentz-Dirac equation and in-
tegrate backwards in time. Rewriting E@$) and(2) we get

, ‘ B(x,t) = = YEgh(¢)sin(¢), (20
ddd [ 2¢? \Hdd e ‘ukdug
42 \am@/ \ds @F U] *U s gs (15 Wwhere¢=wy(t-x/c), w, is the laser frequency,
Large differences between the initial conditions of the elec- b \2
tron and the final condition of the backwards integrated elec- h(¢) = exp{— ( ) ] , (21
tron will indicate that higher order effects are needed. woAT

Since higher order terms are smaller than the first order ) ] ]
terms by a factor of,, significant effects may occur when @ndA7 is the pulse width. A Gaussian pulse was chosen to
the wavelength of the radiation is shag~ O(r). assure that the acceleration far enough away from the laser

However, when the wavelength of the radiation become®U!S€ approaches zero. This is the asymptotic condition
short we must take care about quantum kinematic effectavhere the acceleration is required to vanish after a long time
These effects become important when the wavelength of th/Nich ensures a unique solution to the Lorentz-Dirac equa-
radiation becomes comparable to the Compton wavelengtﬂon [11]', ) . L
of the electron in it's rest framag~ e whereAe=h/mg. Equation(7) with Egs.(8) and(15) are integrated in time

Using Doppler shift formulas this condition can be rewritten USiNg an adaptive Runge-Kutta integration sch¢t.
as Figure 2 shows the interaction of a laser pulse of irradi-

ance 5< 1072 W/cn? with a wavelength of\g=1 um and
Ao = Acy(1-Bcosd), (16)  pulse width ofA7=20 fs counter propagating with an elec-

where 6 is the angle between the radiation propagation di_tron of energy 150 MeV. These are parameters similar to
i gie bel propag those in previous one dimensional simulati¢gs The laser
rection and the direction of the electron. For counter-

propagating lasers and electrons this becomes pulse is propagating from the left to the right and the elec-
tron, which starts ak/\y andz/\y equals zero, is propagat-

Ao = Aoyl + B) = 2y\c, (17) ing from the right to the left. The figure shows the trace of
] ] the electron’s trajectory with dampingolid line) and with-
and for co-propagating lasers and electrons this becomes oyt gampingdotted ling. It can be seen that the oscillations
)\ of the electron in the direction of the laser electric field are
No=Acy(1-8) = =< (18 larger than that without damping. This is due to the fact that
2y the electron is losing energy as it propagates due to radiation
For high energy electrorig/> 1) only long wavelengths are damping. The amount of energy lost can be seen in Fig. 3. In
suitable in the classical description for counter-propagationthe figurey is plotted versus/A,. We can see that in the

In contrast, for co-propagation the restriction is eased and wease of damping more than 80% of the electron’s energy is
can go to short wavelengths. lost in the form of radiation. However, when we compare the

difference between the first order damping and Lorentz-
Dirac backward integrations the differences between the par-
ticle motion are insignificant. This can be attributed to the
We calculated the interaction of a single electron with afact that the Doppler shifted wavelength of the laser is large
Gaussian laser pulse of the form compared to the classical electron radius. The higher order

IIl. RESULTS
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FIG. 5. The trace of the electron motion in tke, plane where
FIG. 3. The trace of the electron motion in tkey plane where  the electron is initially stationary and the laser is propagating in the
the electron is propagating to the left and the laser is propagating t@ direction before they interact. The solid line is for first order
the right. The solid line is for damping and the dotted line is nogamping and the dotted line is for the Lorentz-Dirac equation. The
damping. laser irradiance is 5.8 10?2 W/cn? with A\g=10"22cm and laser
pulse duration ofA7=2X 107??s.

corrections to the radiation reaction force are smaller than

g;ﬁsﬂrSt order terms by a factor of the classical electron ra'equals zero. Figure 5 shows thep, motion of the electron

At very short wavelengths differences between the first" here the solid an_d dotted I|_nes refe_r (o the first o_rder damp-
ng and Lorentz-Dirac equation solutions, respectively. It can

order and Lorentz-Dirac equations of motion were found, bu ;
only for A\g<<\¢ Which is far into the quantum regime where € seen that the electron motion spans only a very small
these classical equations are of questionable validity. Fofaction of the laser wavelength. _
No>\¢ NO significant differences between the first order and__ !t can be seen thatin the case of the Lorentz-Dirac equa-
Lorentz-Dirac equations were found. tion that the electron which was initially stationary in the
Figure 4 shows the-z motion of an initially stationary ~Ccase of the first order damping equation has an initial mo-
electron interacting with a laser of irradiance 5.5 mentum in the % direction. When we examine the simula-
X 10?2 W/cn?, pulse durationA7=2x 10"??seconds, and tion results, we see that the electron which is pushed using
wavelength\y=10"12 cm wherea,=2x 10°°. Integrated par- the first order damping equation of motion is accelerated
ticle motions for the first order damping and Lorentz-Diracmore strongly by the laser pulse. From a physical point of
equations of motion are indicated by the solid and dottedriew this seems to indicate that the cross section in this case
lines, respectively. The laser pulse is propagating from thés larger than in the Lorentz-Dirac equation. This would sup-
left to the right and the electron starts @t\g and z/A;  port the view that the first order damping equation of motion
gives the electron structure beyond that of a point particle.
Since these parameters are deep within the quantum regime,
both equations of motion are of questionable applicability.
However, from a theoretical point of view it does shed light
on the different characteristics of the equations of motion.

5x10°

ﬂlo 0
IV. CONCLUSIONS

We have performed numerical calculations in the case of
large damping in the motion of an electron in a very strong
510 L L laser pulse. By using both the first order damping equation
2107 x0T 0 ax10T 2x10” and the Lorentz-Dirac equation of motion we have shown

Xk that higher order damping effects do not play a role in the
classical regimé\,>\c). However, deep into the quantum

FIG. 4. Trace of the electron motion in tixez plane where the f€gime(Ao=re<<Ac) higher order damping effects become
electron is initially stationary and the laser is propagating inxhe apparent. Since this occurs in the quantum regime, the valid-
direction before they interact. The solid line is for first order damp-ity of the damping equations are questionable. For electron
ing and the dotted line is for the Lorentz-Dirac equation. The laseimotion in the classical regime the first order damping equa-
iradiance is 5.5 1072 W/cn? with Ay=10"'2cm and laser pulse tion is found to be very adequate.
duration ofA7=2X10??s. Although the electron has been measured in accelerator
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