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Plasma-assisted slow-wave oscillators(pasotrons) operate without external magnetic fields, which makes
these devices quite compact and lightweight. Beam focusing in pasotrons is provided by ions, which appear in
the device due to the impact ionization of a neutral gas by beam electrons. Typically, the ionization time is on
the order of the rise time of the beam current. This means that, during the rise of the current, beam focusing by
ions becomes stronger. Correspondingly, a beam of electrons, which was initially diverging radially due to the
self-electric field, starts to be focused by ions, and this focus moves towards the gun as the ion density
increases. This feature makes the self-excitation of electromagnetic(em) oscillations in pasotrons quite differ-
ent from practically all other microwave sources where em oscillations are excited by a stationary electron
beam. The process of self-excitation of em oscillations has been studied both theoretically and experimentally.
It is shown that in pasotrons, during the beam current rise the amount of current entering the interaction space
and the beam coupling to the em field vary. As a result, the self-excitation can proceed faster than in conven-
tional microwave sources with similar operating parameters such as the operating frequency, cavity quality-
factor and the beam current and voltage.
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I. INTRODUCTION

For many sources of coherent microwave radiation, the
self-excitation of oscillations and proper start-up scenarios
are very important. Typically, the conditions for self-
excitation of oscillations are quite different from the choice
of parameters, which yield the maximum efficiency, or
power, or gain, or bandwidth of the device. Therefore, to
match these two stages, viz., self-excitation and optimal op-
eration, a proper start-up scenario should be realized.(Prob-
lems of start-up scenarios in high-power gyrotrons operating
in high-order modes were recently discussed in Ref.[1])

Self-excitation of oscillations in cavities of various micro-
wave sources strongly depends on the relation between the
cavity fill/decay time,Q/v, (here Q is the cavity quality
factor andv is the oscillation frequency) and a typical rise
time, trise, of the beam voltage and current in the beginning
of operation. There are two limiting cases, viz., instant
turn-on and slow turn-on, which we will discuss below.
(Note that in regard to gyrotrons these cases were discussed
in Ref. [2].)

Instant turn-onimplies that the rise time of the electron
beam current,trise, is much smaller than a typical decay time
of the cavity:

trise ! Q/v. s1d

In this case, the beam current,Ib, reaches its nominal value,
Ib,nom, practically instantly.

In general, the equation describing the electromagnetic
(em) field excitation in the cavity can be derived from the
wave equation and written as

dA

dt
= vAfIF8 − 1/2Qg, s2d

whereA is the amplitude of the em field,F8 is the real part
of the gain function, which will be considered below in the
framework of the linear theory, i.e., without accounting for
the saturation effects. Also in Eq.(2) I is the normalized
beam current parameter proportional to the beam current.
(For our present consideration, its exact definition does not
matter, but later this parameter will be specified for pa-
sotrons.) As follows from Eq.(2), the starting value of this
parameter is equal to

Ist = 1/2F8Q. s3d

In the case of the instant turn-on the normalized beam cur-
rent parameter(as well as the beam current itself) instantly
reaches its nominal value,I = Inom. Thus the solution of Eq.
(2) can be written as

Astd = A0expH vt

2Q
S Inom

Ist
− 1DJ . s4d

So the growth rate of the em field amplitude in this case
depends on the excess of the nominal current over its thresh-
old value. This is a known case, which is simple but unreal-
istic. Typically, in microwave oscillators the opposite case
takes place.

Slow turn-onis the case when the rise time of the beam
current is much larger than the cavity decay time:

trise @ Q/v. s5d

For devices operating at frequencies from 1 GHz to 10 GHz
and employing cavities withQ-factors on the order of
102-103, the cavity decay time is in a nanosecond scale,
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which is much smaller than typical rise times of the beam
current in various pulsed microwave sources including the
pasotrons where the current rise time is in the microsecond
range. For instance, in pasotrons(the word “pasotron” is an
acronym for plasma-assisted slow-wave oscillator) studied at
Hughes Research Lab[3] and later at the University of
Maryland[4], the operating frequency is about 1.3 GHz, the
Q-factor is about several hundreds and the beam current rise
time is about 10–20 microseconds. So, just the case of the
slow turn-on is the case of the practical interest. In this case,
the normalized beam current parameter in Eq.(2) should be
treated as the function of time. Since the oscillations start to
rise at the instant of time,tst, when the beam current equals
to its starting value, we can expand the time dependence of
the beam current in the vicinity oftst in a Taylor series:

Istd = Iststd + UdI

dt
U

tst

st − tstd. s6d

With this representation, Eq.(2) can be rewritten as

dA

dt
=

v

2Q
AF 1

Ist
UdI

dt
U

tst

st − tstdG . s7d

The solution of Eq.(7) has the form

Astd = A0expH v

4Q

1

Ist
UdI

dt
U

tst

st − tstd2J, t . tst. s8d

So, the growth rate of em oscillations is determined by the
derivative dI /dtutst

. In most of the microwave sources, the
temporal dependence of the beam current during the current
rise can be approximated by the linear function

Ibstd =
t

trise
Inom. s9d

Hence, in this case, the derivativedI /dtutst
is simply Inom/ trise.

Correspondingly, Eq.(8) can be rewritten as

Astd = A0expH v

4Q

Inom

Ist

st − tstd2

trise
J, t . tst. s10d

In pasotrons, however, a typical time of the beam impact
ionization,tion, is on the order of the beam current rise time,
tion, trise [3]. Therefore the ion focusing of the beam varies
in time during the current rise. Correspondingly, during this
time interval, the amount of the beam current entering the
interaction space,Ib,int, is smaller than the total beam current
extracted from the gun and therefore the temporal depen-
dence of this portion of the beam current can be quite differ-
ent from the linear dependence given by Eq.(9). As follows
from Eq. (8), when

UdIb,int

dt
U

tst

. UdIb
dt
U

tst

, s10ad

em oscillations grow faster than in the case ofIb,int= Ib and
vice versa. So, one should expect that the growth rate of em
oscillations in pasotrons should depend on the processes of
beam impact ionization of an initially neutral gas and on the
beam focusing by created ions. Note that the temporal varia-

tion in the beam focusing not only changes the amount of
beam current entering the interaction region,Ib,int, but also
affects the starting current, which depends on the beam ge-
ometry, as will be discussed later.

In principle, the pasotrons are quite unique sources of
microwave radiation because the beam focusing and trans-
port is provided there by ions(in the absence of guiding
external magnetic fields) in the regime known as the Bennett
pinch [5]. However, some peculiarities of the beam pinching
in pasotrons, which is a nonstationary process during at least
the initial stage of ionization, can be explained[6,7] with the
use of the known theory of optics of stationary paraxial elec-
tron beams[8,9]. This theory predicts that an electron beam
with the negative generalized perveance,

K =
eIb
mc3

2

b3g3s1 − g2fd, s11d

has the focal plane located at the distance

zf = 0.8a0/ÎuKu/2 s12d

from the entrance. Here, in(11) b is the initial electron axial
velocity normalized to the speed of light,g is the electron
energy normalized to the rest energy, andf is the charge
neutralization factor, which is the ratio of the ion density to
the electron beam density. Also, in Eq.(12) a0 is the initial
radius of the beam envelope; Eq.(12) is derived for the case
when at the entrance all electrons propagate along the axis of
the device. As follows from the processes discussed above,
in pasotrons the generalized perveance given by Eq.(11) is
variable, in contrast to the known stationary theory of beam
optics[8,9], because in Eq.(11) not only the beam currentIb
but also the charge neutralization factor vary during the
beam current rise. This means that during this time interval,
first, the beam will start to be focused when the ion density
becomes high enough(corresponding condition of beam fo-
cusing, f .1/g2, is known as Budker criterion[10]), and
then the focal plane of the beam will move along thez-axis
until the beam current and ion density reach their stationary
values(see also[11]). Clearly, this motion of the focus and
corresponding changes in the beam focusing can be impor-
tant for pasotron self-excitation. This is because the temporal
variations in the beam radial profile change the beam cou-
pling to the slow space harmonic of the em wave, whose
phase velocity is synchronous with electrons and whose field
is localized near the slow-wave structure.

Our goal is to investigate this effect of beam focusing on
the self-excitation of pasotrons both theoretically and experi-
mentally. Our paper is organized as follows. Section II con-
tains formulation of the conditions of self-excitation in pa-
sotrons. In Sec. III an electron motion of a pinching electron
beam in the absence of RF oscillations is discussed.(This
motion is treated in the previous section as a zero-order ap-
proximation for electron coordinates and momenta.) Results
of the studies are given in Sec. IV and discussed in Sec. V.
Finally, Sec. VI contains the summary. Derivation of the con-
ditions of self-excitation of em oscillations in pasotrons is
given in the Appendix.
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II. CONDITIONS OF SELF-EXCITATION

In the Introduction, we used Eq.(2) for describing the
temporal evolution of the em field amplitude. To simplify our
introductory discussion, that equation was given in a simple
but general form without discussing all features of the non-
stationary process of self-excitation in detail. Below we will
treat this formalism in a more accurate manner. Since the
derivation of self-excitation conditions for microwave oscil-
lators from Maxwell equations is a standard procedure, we
do not reproduce it here. In the Appendix, however, we de-
scribe the transformation of the source term(gain function)
responsible for em field excitation for the case of pasotrons
and also discuss corresponding linearized equations for elec-
tron 3D motion. In this section, we only present this self-
consistent set of equations describing the pasotron self-
excitation in its final form.

This self-consistent set of equations consists of the bal-
ance equation, which determines the start current, and linear-
ized equations for electron motion, describing perturbations
in electron motion under the action of em oscillations of a
small amplitude. To carry out this linearization, let us repre-
sent the electron momentum,pW , which is normalized tomc,
the energy normalized to the rest energy,g, and the phase
with respect to the phase of the synchronous harmonic of the
backward wave,u=vt−kz,synchrz, as

pW = pW s0d + apW s1d, g = gs0d + ags1d,u = us0d + aus1d. s13d

Here a=euAsynchru /mcv is the normalized amplitude of the
synchronous harmonic acting upon electrons(we assumea
!1) and subscripts(0) and(1) describe the unperturbed elec-
tron motion and perturbations caused by the em field in this
motion, respectively. Since in pasotrons both the unperturbed
and perturbed motions are 3-dimensional, we should con-
sider not only axial but also radial motion of electrons.

The unperturbed electron phase in pasotrons is axially
dependent

dus0d

dz8
=

1

bzs0dsz8d
− h s14d

(herez8=vz/c is the normalized axial coordinate,bzs0d is the
unperturbed electron velocityvzs0d normalized to the speed of
light c andh=kz,synchrc/v is the normalized axial wave num-
ber) first, because the axial component of the electron veloc-
ity in a radially diverging/converging beam varies along
z-axis and, second, because the potential energy of such a
beam, whose space charge field is not completely compen-
sated by ions, is also variable. Therefore, Eq.(14) can be
rewritten as

dus0d

dz8
= D0 −

1

bz0

dbz

bz0
, s15d

whereD0=1/bz0−h is the detuning of synchronism between
the wave and electrons having an initial velocitybz0=vz0/c
at the entrance anddbz describes variation in the electron
axial velocity because of the reasons discussed above. This
deviation can be determined by the following equation:

dbz

bz0
= −

eUsrd
mc2g0

3bz0
2 −

1

2

brs0d
2

bz0
2 , s16d

where Usrd is the potential due to not fully compensated
beam space charge andbrs0d is the normalized radial electron
velocity in the zero-order approximation, which will be dis-
cussed later.

Let us consider a resonator formed by a rippled-wall cy-
lindrical waveguide with strong end reflections. As shown in
the Appendix, perturbations in components of electron mo-
mentum, electron energy and phase caused by the em field of
such a resonator can be determined by the following
equations:

dpzs1d

dz8
=

1

bzs0d
ReheiuskI0 − ibrs0dI1dj,

dprs1d

dz8
= − ReHeiuiI 1S h

bzs0d
− 1DJ ,

dgs1d

dz8
= ReHeiuSkI0 − ibrs0d

h

bzs0d
I1DJ ,

dus1d

dz8
= −

1

g0bzs0d
2 spzs1d − bzs0dgs1dd. s17d

Herek= uk',synchruc/v is the normalized absolute value of the
transverse wave number of the synchronous em field andI0
and I1 are modified zero-order and first-order Bessel func-
tions of the argumentkr, respectively.

The balance equation, which determines the start current,
can be written in accordance with Eq.(3) [see also Eq.
(A18)] as

ÎbF8 = 1. s18d

In Eq. (18) F8 is the real part of the gain function determined
in the framework of the linear theory[see Eq.(A19)] as

F =
i

Sb
E

S'

wsrdds'H 1

2p
E

0

2p FE
0

Zout

e−ius0dus1ddzGdu0J .

s19d

Here the functionwsrd describes the radial profile of the

beam current density at the entrance. Also,Îb in Eq. (18) is
the normalized beam current parameter equal to

Îb =
eIb
mc3

c3ua1u2

v3Ns

k2kI0
2l

pz0
3 2Qs. s20d

Here the coefficienta1 determines the amplitude of the syn-
chronous first space harmonic and angular brackets designate
averaging of the beam coupling coefficient over the interac-
tion cross section(see the Appendix for detail). The product

ÎbF8 whose value, in accordance with Eq.(18), determines
the start current we will call the excitation factor and denote
by G.
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Coming back to Eqs.(18) and(19) it is necessary to em-
phasize that, although these equations have a form standard
for the equations describing the self-excitation of em oscil-
lations in various microwave sources, their meaning for pa-
sotrons is quite specific. Indeed, in the case of pasotrons, the
beam dynamics depends on the time dependent ion focusing,
which, in turn, depends on the beam current. Therefore, pa-
rameters that were constant for conventional microwave
sources are time and beam current dependent in the pasotron
theory, i.e., they depend not only on the current rise time, but
also on the nominal current value.

So, in this section we have formulated equations describ-
ing the pasotron self-excitation conditions. However, so far
we did not describe the motion of electrons in an ion-focused
beam in the absence of em fields(zero-order approximation)
in detail. This will be done in the next section.

III. ELECTRON MOTION IN AN ION-FOCUSED, PHASE-
MIXED BEAM

Electron motion in an ion-focused beam in the absence of
em fields has been studied in[6,12], where the self-
consistent theory of these processes was developed with the
account for ion motion. Therefore, referring interested read-
ers to those references, we will outline below the most im-
portant results of this theory.

The potential created by a not fully compensated beam
space charge, which appeared above in Eq.(16), can be de-
termined as

Usr,td = 2Ib,nom
pstd − fstd

v0
E

r

Rw Isr8d
Ib,nom

dr8

r8
. s21d

Here the functionpstd= Ibstd / Ib,nom describes the beam cur-
rent pulse shape and the functionfstd=ev0Ni / Ib,nomøpstd
determines the charge compensation ratio; here the ion den-
sity per unit length is related to the electron beam density per
unit length for the nominal beam current.

The radial coordinate of electrons is determined by the
known equation[6,9], which can be given as

d2r

dz2 =
2Ib

IA

1

g2bz0
2 fpstd − g2fstdg

1

r

Isrd
Ib

+
«2

r3 , s22d

where IA=smc3/edgbz0 is Alfvén current and« is the beam
emittance determined elsewhere[9].

As shown in[7], the space charge compensation ratiofstd
obeys the following equation:

df

dt
= p − 2LÎp − fe−sp−fd/f. s23d

Heref=Tiv0/eIb,nom is the normalized ion temperature that,
in turn, obeys the equation

df

dt
=

p

f
f 1

4sp − fd − fg − LÎp − fsp − f − fde−sp−fd/f.

s24d

In Eqs.(23) and(24) the time variablet is normalized to the
ionization timetion=knglsv0, which is determined by the ion-

ization cross section of a given neutral gass and its mean
density averaged over the entire interaction volumekngl
=e0

Lngszddz/L. Of course, such characterization of the ioniza-
tion time is valid only for the cases when the ionization time
is much larger than the time of the ion transit through the
interaction region. Also, these equations contain the
parameter

L =
1

2paknglsv0
Î2eIb,nom

Mv0
, s25d

which is the ratio of the characteristic charge compensation
time to the half period of ion transverse oscillations. In ac-
cordance with the assumption about slow ionization made
above, this parameter should be large,L@1. [In Eq. (25) M
is the ion mass.]

So, Eqs.(21)–(25) form the set of equations that should
be used for characterizing the unperturbed electron motion
given above by Eqs.(15) and (16).

IV. RESULTS

The series of calculations has been carried out for typical
pasotron parameters. It was assumed that a beam leaving the
plasma gun region has a flat radial profile, and two cases of
initial beam radius,a0, had been considered: 4 cm, which
was the radius in the first set of experiments, and 2.25 cm,
which was the radius in an optimized pasotron configuration
that yielded about 50% efficient operation[4]. The parameter
L given by Eq. (25) was taken equal to 30, and it was
checked in several simulations that atL.10 the exact value
of L has very little effect on the results. The beam voltage
was 40 kV and calculations had been done for various values
of the beam current in the range from 38 to 115 A. We
assumed that the operating frequency is 1.3 GHz, the cavity
entrance is located at 30 cm away from the electron gun, and
the cavity length is equal to 40 cm. Also, the beam emittance
in Eq. (22), which can be expressed via the spread in electron
transverse velocities or in the orbital-to-axial velocity ratios,
a0=v'0/vz0, as«=a0Îka0

2l (see, e.g.,[9]), corresponded to
4°-5° angular velocity spread. All these numbers correspond
to typical experimental parameters of pasotrons[3,4,7]. In
our simulations we used modified Eqs.(15), (17), and(19).
These modifications took into account the temporal evolution
of electron motion in the zero-order approximation.

As an example of obtained results, the normalized excita-

tion factorG= ÎbF8 is shown in Fig. 1 as the function of the
initial detuning of synchronismD0 for several instants of
time normalized to the ionization timetion. As one can see,
while the peak values of this excitation factor at different
instants of time are quite different, optimal values of the
detuning of synchronism are almost the same.

Temporal evolution of this factor is shown for the optimal
detuning of synchronismD0=−3.0 in Fig. 2 for parameters
used in Fig. 1. Here solid line shows the excitation factor for
the realistic case, i.e., when the radial nonuniformity of the
em field and radial motion of electrons are taken into ac-
count; dashed line shows the same function for the case
when the radial component of the em electric field and the
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radial nonuniformity of the axial component of this field are
neglected. Finally, dotted line here shows the assumed time
evolution of the beam current, i.e., the functionpstd. As
follows from Fig. 2, for the parameters chosen, the radial
motion of electrons and the radial nonuniformity of the em
field play an important role. Our studies also showed that at
smaller initial beam radius and radius of a slow-wave struc-
ture the effect of the radial nonuniformity is not so strong.

Our formalism has been developed for the case when the
current rise time is on the order of the ionization time or
larger. Therefore, the self-excitation condition depends on
both, the absolute value of the beam current and the current
rise time. The excitation factorG, which determines this con-
dition, is shown in Fig. 3 as the function of the beam current

for several values of the rise time normalized to the ioniza-
tion time. While in conventional microwave oscillators the
excitation factorG= ÎbF8 is a linear function of the beam
current, since the functionF (19) is constant in the case of
stationary motion of electrons in strong focusing magnetic
fields, in pasotrons the productÎbF8 is not a linear function
of the beam current. It is close to this linear function when
the beam current rise time is much larger than the ionization
time (see the curve labeled “long pulse” in Fig. 3). However,
at short rise times, this dependence is not monotonic and is
sharper than in the case of a slow current rise. As was dis-
cussed in Introduction, this sharpness shortens the rise time
of em oscillations. Moreover, it may happen that just the
temporal increase of the excitation factor due to the evolu-
tion of the radial profile of a pinching beam will cause the
pasotron excitation that would be impossible in the case of
stationary electron motion. This statement is illustrated in
Fig. 3 by a dashed horizontal line, which corresponds to a
threshold of oscillations. As shown in Fig. 3, when the cur-
rent rise time is short enough(see curve fortr =2.5), the
self-excitation conditions can be fulfilled in such a pasotrons
at currents in a small range between 85 and 90 A, while the
device cannot be excited in the case of pulses with longer
rise times.

The reason for the appearance of the peak in the curves
shown in Fig. 3 for short rise times is obvious from the
snapshots shown in Fig. 4. Here the beam focusing and in-
jection into the interaction space shown by dashed lines are
shown for several instants of time. At a certain instant of
time [Fig. 4(b)], almost all electrons are injected into the
interaction space and propagate close to the wall, i.e., just in
the region where the beam coupling to the slow wave is
maximal. This explains the nonmonotonic behavior of some
curves shown in Fig. 3. The formation of the beam focus and
the axial motion of the focal plane towards the gun are illus-
trated by Figs. 4(c) and 4(d). Note that the beam injection in
the near-axis region shown in Fig. 4(d) can result in the
efficiency enhancement[13].

FIG. 1. Excitation factor as the function of the normalized de-
tuning of the Cherenkov synchronismD0 for several instants of time
during the beam current rise. The time shown in the figure is nor-
malized to the ionization time. Calculations were done forIb,nom

=100 A, a0=4 cm and the structure radius 4 cm.

FIG. 2. Time evolution of the normalized excitation factor in the
cases when the radial component of the em electric field and the
radial nonuniformity of the axial component of this field are taken
into account(solid curve 1) and when they are ignored(dashed
curve 2). Curve 3 shown by dotted lines depicts the shape of the
beam current including the rise and fall times.

FIG. 3. Evolution of the normalized excitation factor with the
increasing beam current in a pasotron with a 100 A nominal beam
current(shown by a thin vertical dashed line) for different ratios of
the beam current rise time to the ionization time.
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Our formalism has allowed us to analyze the relation be-
tween the beam current and the start current for different rise
times, which was observed experimentally. These experi-
ments were carried out under the same conditions as those
described in Ref.[7] where the electron beam dynamics in
pasotrons was studied and Ref.[4] where the generation of
0.5 MW peak power with the efficiency in the range from
40% to 50% was reported. Experimental data are summa-
rized in Table I where the start current is given for several
values of the beam current and corresponding values of the
rise time. As shown in Table I, the current rise time depends
on the nominal value of the beam current. This specific fea-
ture of the plasma gun is not in the focus of our study, how-
ever, interested readers can be referred to[3] where the op-
eration of this plasma gun and corresponding electrical
circuitry are discussed in detail.

Theoretical dependencies of the self-excitation conditions
on the beam current, which correspond to these experimental
data, are shown in Fig. 5 for several values of the nominal
beam current and normalized rise time. The dashed horizon-
tal line shows there the threshold, over which the self-
excitation starts. Since to determine the normalizing coeffi-
cient in Eq.(20) and the ionization time used in our theory
by experimental means is quite difficult, it was assumed that,
first, we can match our theoretical results with experimental
data for the case of the nominal beam current equal to 38 A
when the current rise time is very large(50 µ sec). As shown
in Table I, the start current in this case is equal to 31 A. Thus,

in accordance with Eq.(3), we determined the threshold as
the value of the excitation factor at 31 A. Then, for other
nominal currents, we determined the normalized rise times
corresponding to crossing of this threshold line by normal-
ized excitation factor curves. It was found that the relations
between these normalized times(0.159:0.25:0.417:1.0 for
the peak beam currents 115 A, 80 A, 57 A and 38 A, respec-
tively) are very close to the relations between real rise times
s0.168:0.24:0.44:1.0d given in Table I. Moreover, relation
between real and normalized rise times allowed estimating
the ionization time,tion<10 m sec, for this set of experi-
ments. This estimate coincides with one obtained earlier in
Ref. [11] where it was found that in a different pasotron
experiment the beam reaches its stationary state in 8–10
µ sec.

FIG. 4. Several snapshots illustrating the evo-
lution of the beam current transport during the
current rise. Corresponding points(a)–(d) are
shown in Fig. 3.

TABLE I. Experimental data.

Ib,nom sAd trise sm secd Ist sAd

38 50 31

57 22 36.5

80 12 45

115 8.4 70

FIG. 5. Evolution of the normalized excitation factor during the
current rise time for several values of the nominal beam current. A
thin dashed horizontal line shows the threshold for excitation of em
oscillations. Intersection of solid lines with this threshold deter-
mines the starting current.
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V. DISCUSSION

We have found that in pasotrons with the ionization time
on the order of the beam current rise time the self-excitation
of em oscillations has some specific features, which are un-
common for conventional microwave sources. To describe
the self-excitation of em oscillations under such variable
conditions, one should use the formalism developed in the
present paper and do not rely on the traditional formalism,
which was recently applied to pasotrons in Ref.[14]. Our
results predict that the onset of em oscillations in pasotrons
can take place in a shorter time scale than in conventional
microwave sources with similar operating parameters. The
fact that during the current rise time the excess of the exci-
tation factor over the threshold can be larger than that for a
stationary beam can lead to a possibility to drive an oscillator
to the region of hard self-excitation through the region of
soft self-excitation. This feature can be important for effi-
cient operation because in a number of cases the maximum
efficiency corresponds to the region of hard self-excitation
[15] (see also Ref.[1] for the analysis of similar effects in
gyrotrons). To verify whether this takes place in the experi-
mental pasotron configuration, it is necessary to develop a
large-signal theory of the pasotron operation and carry out
corresponding simulations. This will be a topic of our future
work.

VI. SUMMARY

It is shown that in pasotron microwave sources with the
ionization time on the order of the beam current rise time the
self-excitation of em oscillations has some features uncom-
mon for conventional microwave sources, viz., in the process
of pasotron excitation not only the beam current increases(as
in conventional sources), but also the starting current varies.
These specific features of pasotron self-excitation are due to
simultaneous temporal variation in the beam current, impact
ionization of a neutral gas and corresponding pinching of a
beam by created ions. It should be noted that transport of a
beam with a moveable focus through the interaction structure
can be organized in such a way that, first, a beam with a
focus located far from the entrance to the interaction space
can propagate close to a slow-wave circuit and, hence, have
a strong coupling to the slow-wave. This results in a small
start current. Then, in the process of further ionization the
focus moves closer to the plasma gun and, correspondingly, a
stronger focused beam reduces its coupling to the slow wave.
This, in turn, increases the value of the beam current, which
is optimal for efficient operation, and, hence, allows one to
realize highly efficient operation at high power levels. Agree-
ment between theoretical results and experimental data,
which was demonstrated in this paper, indicates that the de-
veloped theory adequately describes the most important fea-
tures of self-excitation of em oscillations in pasotrons.
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APPENDIX: DERIVATION OF THE SELF-EXCITATION
CONDITIONS FOR PASOTRONS

Let us consider an excitation of em oscillations in an ar-
bitrary cavity by an arbitrary electron beam and represent the
cavity em fields and the electron beam current density, re-
spectively, as

EW = RehAEW ssrWdeivtj, HW = RehAHW ssrWdeivtj, jW = Reh jWveivtj.

sA1d

Here A is the complex amplitude of the em field. Equation
for this amplitude can be derived from Maxwell equations in
a standard way, and it has a form similar to Eq.(2):

dA

dsvtd
= AFS−

1

2Q
− i

v − vs8

v
G . sA2d

In Eq. (A2) vs8 is the real part of the cold-cavity frequency
vs=vs8+ ivs8 /2Q that slightly differs from the oscillation fre-
quencyv. Also in Eq.(A2) S is the source term proportional
to the gain function whose real partF8 was used in Eq.(2).
This term is equal to

S= −
1

2vANs
E

V

jWvEW s
*dv. sA3d

HereNs=s1/4pdeVuEW su2dv is the norm of the mode of choice.
If we use the charge conservation law,jdt= j0dt0, where
j0srd= j0wsrd, i.e., the functionwsrd describes the radial dis-
tribution of the beam current density at the entrance to the
interaction space[this function is normalized to the beam
cross-section area,eSwsrdds'=Sb] then Eq. (A3) for this
source term can be rewritten as

S= −
Ib

CSb
E

S

wsrdHE
0

ZendF 1

p
E

0

2p vWEW s
*

vz
e−ivtdsvt0dGdzJds'.

sA4d

Here Ib is the absolute value of the beam current, while
above the electron current density was negative.

Now we should derive the equations for electron motion.
For the sake of simplicity, we will consider a rippled-wall
SWS with strong end reflections, in which oure-beam inter-
acts with a symmetric TM0p mode. This mode has only three
nonzero field components:

Esz= o
n=−`

`

ian
gn

k
J0sgnrde−ikznz + c . c.,

Esr = o
n=−`

`

an
kzn

k
J1sgnrde−ikznz + c . c.,
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Hsw = o
n=−`

`

anJ1sgnrde−ikznz + c . c. sA5d

Here an is the amplitude of the corresponding space har-
monic (assume thata0=1). As shown in[16], for our SWS
with shallow ripples this amplitude is proportional to the
height of ripplesl:

a1 = − i
l

2

J1sg0R0dsg0
2 + h02p/dd

uguI0suguR0d
, sA6d

also kzn=kz0+n2p /d is the axial wave number of this har-
monic (d is the period of our SWS), and the transverse wave
number is determined bygn

2=k2−kzn
2 . (Corresponding field

components and amplitudes of space harmonics in a helix
slow-wave structure can be found elsewhere[13].) For elec-
tron motion the only important is the synchronous first space
harmonic of this field. Corresponding field components are
equal to

Esz,n=1 = − a1kI0skr8de−ihz8 + c . c.,

Esr,n=1 = ia1hI1skr8de−ihz8 + c . c.,

Hsw,n=1 = ia1I1skr8de−ihz8 + c . c. sA7d

Here k andh are the absolute value of the transverse wave
number and the axial wave number normalized tok=v /c,
respectively, primes denote normalization of coordinates to
k=v /c.

Representing the perturbations caused by this field in
electron motion as

pW = pW s0d + apW s1d,g = gs0d + ags1d,

where a=eua1Au /mcv is the normalized amplitude of the
first space harmonic acting upon electrons, one can represent
the equations for perturbations in the normalized axial and
radial components of the electron momentum and the elec-
tron energy as

dpzs1d

dz
=

1

bzs0d
ReheiuskI0 − ibrs0dI1dj

dprs1d

dz
= − ReHeiuiI 1S h

bzs0d
− 1DJ ,

dgs1d

dz
= ReHeiuSkI0 − ibrs0d

h

bzs0d
I1DJ . sA8d

Here momentum components are normalized tomc,g is the
electron energy normalized tomc2, primes for coordinates
are omitted and subscript(0) denotes an unperturbed 2D mo-
tion of electrons. The phaseu=vt−kz,n=1z is determined by
the equation

du

dz8
=

1

bz
− h. sA9d

Here, so far, we did not distinguish the unperturbed motion
and perturbations in the electron axial velocity. Once we do
this and express perturbations in the electron velocity via the
perturbations in the electron axial momentum and electron
energy, we can write separately the equation for the unper-
turbed phase

dus0d

dz8
=

1

bzs0d
− h sA10d

and for the perturbations

dus1d

dz8
= −

1

g0bzs0d
2 spzs1d − bzs0dgs1dd. sA11d

The boundary condition for the unperturbed phase at the en-
trance isus0ds0d=u0. It is also convenient to shift this phase
by c, which is determined bya1A= ua1Aueic, i.e., to useus0d
=us0d+c. As a matter of fact, this was already used in Eq.
(A8).

Now we can come back to Eq.(A4) and rewrite it in new
notations. Taking into account the fact that we consider the
paraxial electron motion, let us neglect the transverse inter-
action. This reduces the integral in square brackets of
Eq. (A4) to

1

p
E

0

2p

Es,n=1
* e−ivtdsvt0d = − a1

*k
1

p
E

0

2p

I0skr8de−iudu0.

sA12d

Here, in principle, we still may have perturbations caused not
only by perturbations in the phase, but also perturbations in
the electron radial motion. However, taking into account our
assumption about paraxial motion and also our assumption
about small radial non-uniformity of the em field, we will
neglect the latter. Then, Eq.(A12) can be rewritten as

ia1
*akI0skrd

1

p
E

0

2p

e−ius0dus1ddu0. sA13d

Here we took into account that the zero-order term equals
zero after averaging.

Now we can come back to the original equation for the
field excitation and, introducing the normalized beam current
parameter

Îb =
eIb
mc3

c3ua1u2

v3Ns
2Qs, sA14d

rewrite it as

i
v − vs8

v/2Qs
+ 1 = ÎbF, sA15d

where the source term is now represented via the gain func-
tion given by
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F =
i

Sb
E

S'

wsrdds'H 1

2p
E

0

2p FE
0

Zout

e−ius0dkI0us1ddzGdu0J .

sA16d

One can easily check that in the case of a 1D motion this
source term results in the standard monotron function of the
transit angleQ=D0L whereD0=1/bz0−h. The unperturbed
phaseus0d here is determined by Eq.(A10), and the pertur-
bation in phase is determined by Eq.(A11), in which the
perturbations in the axial momentum and energy are given
by Eq. (A8).

When the radial nonuniformity of the em field is negligi-
bly small, we can absorbkI0 present in Eqs.(A8) and(A16)
in a new normalized beam current parameter, which will
again reduce the number of parameters characterizing the
device performance. This means the use of

dpzs1d

dz
=

1

bzs0d
Reheius0dj,

dgs1d

dz
= Reheius0dj sA17d

instead of Eq.(A8),

Īb =
eIb
mc3

c3ua1u2

v3Ns

k2kI0
2l

pz0
3 2Qs sA18d

instead of Eq.(A14) (herepz0=g0bz0 andkI0
2l corresponds to

a certain mean value of the zero-order modified Bessel func-
tion squared in the interaction space) and

F =
i

Sb
E

S'

wsrdds'H 1

2p
E

0

2p FE
0

Zout

e−ius0dus1ddzGdu0J
sA19d

instead of Eq.(A16).
So, all what is left here from our 2D motion and pinching

process is(a) the variable axial velocity in Eq.(A10) defin-
ing the unperturbed electron phase,(b) the radial profile of
the beam current density at the entrance given in Eq.(A19)
by the functionwsrd, and (c) the fact that the interaction
length for electrons moving not only axially but also radially
can be smaller than the resonator length. Possibly, we can
also eliminateg0 and bzs0d from some equations; however,
the perturbation in phase determined by Eq.(A11) contains
the difference between two perturbations; thus, here the
variation in the unperturbed electron phase along thez axis
can be important.
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