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A new flux-matching theory is formulated and applied to the study of particle charging by ions. Assuming
that the ion-particle interaction includes the Coulomb + polarization forces the collisionless kinetic equation is
solved and the ion concentration profile in the free-molecule zone(at the distances less than the ion mean free
path) is found. This profile is then matched to that derived from the solution of the diffusion equation, which
describes the ion transport outside the free-molecule zone. Three matching parameters are introduced: the ion
flux, the matching distance, and the ion density at the matching distance; and three conditions are formulated
for fixing these parameters:(i) the constancy of the total ion flux,(ii ) the continuity of the ion concentration
profile, and(iii ) the continuity of the derivative of the ion concentration profile. The charging efficiencies are
expressed in terms of their free-molecule values, the ion diffusivity in the carrier gas, and the ion thermal
velocity. This approach is applied for calculating the efficiencies of particle charging in the transition regime
(the particle size is comparable to the ion mean free path and the Coulomb length). The corrections due to
ion-carrier gas interaction to the particle-ion recombination rate are shown to remain finite even for very small
particles, whereas in the case of particle-ion repulsion the contribution of ion-molecular collisions to the rate of
particle charging is suppressed in the free-molecule regime.
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I. INTRODUCTION

Charged aerosol particles have attracted the attention of
scientists and technologists for already more than a century.
Considerable efforts had been addressed to the study of the
kinetics of charging processes[1–8].

The first simplest theories applied the continuous models
(the particle radiusa much exceeds the ion mean free pathl)
of the charging process based on the use of the diffusion
equation. Such models were not able to describe very small
particles with sizes less than the ion mean free path[9–12]. It
was quite natural therefore to try to attack the problem start-
ing with the free-molecule limit, i.e., to consider a collision-
less motion of ion in the electric field created by the particle.
Respective expressions for the charging efficiencies had been
derived and can be found in Refs.[2,13–15]. But the free-
molecule consideration does not save the situation even in
the limit of very small particles, for the ion-particle interac-
tion adds a new characteristic length,lc=qQe2/kT (the Cou-
lomb length) which is comparable or exceeds the ion mean
free path at ambient conditions. Hereq,Q are the numbers of
elementary charges on the ion and the particle respectively,e
is the electron charge,T is the temperature of the carrier gas,
andk is the Boltzmann constant. It turns out that the criterion
of the validity of the free-molecule approximation isl @ lc,
rather thanl @a, as in neutral systems.

Next, the ion bound states in the attractive potential well
created by the particle charge lead to some additional diffi-
culties. The point is that these states have negative energies
and can be occupied by the incident ions only after their
collisions with the carrier gas molecules(see Refs.[16,17]).
The diffusion model assumes that all bound states are popu-
lated. In the free-molecule limit these states are always
empty. Meanwhile, it is apparent that neither the first nor the
second limit gives a true description of reality. The ions oc-
curring in the potential well due to collisions with the carrier

gas molecules have no time to lose enough part of their ki-
netic energy and to reach very deep states. Hence, only a part
of these states can be occupied. This effect is very difficult to
take into account, for at least a two-body problem in the
external field should be solved for describing the dynamics
of ion energy losses.

So called flux-matching theories are well adapted for
studying the behavior of aerosol particles in the transition
regime. Although these theories mostly had no firm theoret-
ical basis, they successfully served for systematizing numer-
ous experiments on the growth of aerosol particles and until
now these theories remain a rather effective and very practi-
cal tool for studying the kinetics of aerosol particles in the
transition regime(see Refs.[1,18–20]). On the other hand,
these theories are always semiempirical, i.e., they contain a
parameter that should be taken from somewhere else, not
from the theory itself.

We introduce the reader to the ideology of the flux-
matching theories by considering the condensation of a non-
volatile vapor onto the surface of an aerosol particle. The
central idea of the flux-matching procedure is a hybridization
of the diffusion and the free-molecule approaches. The con-
centration profile of a condensing vapor far away from the
particle is described by the diffusion equation. This profile
coincides with the real one down to the distances of the order
of the vapor molecule mean free path. A limiting sphere is
then introduced inside which the free-molecule kinetics gov-
erns the vapor transport. The concentration profile in the
free-molecule zone is considered to be flat. The equality of
the fluxes in the both zones and the continuity of the concen-
tration profile at the surface of the limiting sphere define the
flux and the reactant concentration at the particle surface.
The third parameter, the radius of the limiting sphere, cannot
be found from such a consideration.

We apply a more sophisticated scheme. We also introduce
a limiting sphere outside of which the density profile of con-
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densing vapor can be described by the diffusion equation.
But inside the limiting sphere we solve the collisionless
Boltzmann equation subject to a given boundary condition at
the particle surface(complete sticking in our case) and set an
additional condition: the concentration at the surface of the
limiting sphere coincides with that found from the solution
of the diffusion equation. Even in the absence of any poten-
tial created by the particle the vapor profile in the free-
molecule zone depends on the radial coordinate, because the
particle surface adsorbs all incoming molecules. We thus
gain the possibility to call for the continuity of the first de-
rivatives of the profile on both sides of the limiting sphere.
This additional condition defines the radius of the limiting
sphere.

In this paper we consider the processes of particle charg-
ing by ions suspended in the carrier gas assuming that the
ion-particle interaction includes the Coulomb + polarization
forces. The latter comes from the particle dipole moment
induced by the approaching ion,

Usrd = ±
qQe2

r
−

1

2

e − 1

e + 2

q2e2a3

r4 . s1d

The sign “+” in this equation corresponds to the Coulomb
repulsion. The last term on the right-hand side(RHS) of Eq.
(1) is just the dipole term of the expansion of the image
potential over the Legendre polynomials[21]; e is the dielec-
tric permeability of the particle material. The image potential
has a singularity at the particle surface. Although the singular
potentials are not a principal problem for the theory proposed
below, we postpone their consideration for a future article.

The remainder of this paper is divided as follows. We first
formulate the flux-matching theory of particle charging ex-
actly. This is just a formal step allowing one to express the
ion flux toward a particle of radiusa in terms of a general-
ized charging efficiencyasa,Rd depending on the radiusR of
a limiting sphere. At the distances exceedingR the ion profile
is described by the diffusion equation. The requirement of
the continuity of the profile atr =R gives an expression for
the ion fluxJsad. At this step we specify neither the radius of
the limiting sphere nor the form of the generalized efficiency.
The details of this exact formulation are given in the next
section. Section III presents the approximations necessary for
moving ahead. They are(i) the generalized efficiencyasa,Rd
is approximated by its free-molecule value found from the
solution of the collisionless kinetic equation ata, r ,R. (ii )
At R, r ,` we describe the ion profile by the solution to the
steady-state diffusion equation corresponding to a given ion
flux J. (iii ) The conditions of matching the profiles and their
first derivatives allow us to findR. The details of the solution
of the collisionless kinetic equations are given in Sec. IV. In
Sec. V we calculate the ion concentration profiles and use
them in Sec. VI for matching the first derivatives at the sur-
face of the limiting sphere. Section VII contains the discus-
sion of the main results of this paper. The efficiencies of
particle charging are shown to depend on the particle size,
the ion diffusivity in the carrier gas, the ion thermal velocity,
and the Coulomb length.

II. FLUX-MATCHING EXACTLY

The steady-state ion fluxJsad onto the particle of radiusa
can always be written as

Jsad = asadn`, s2d

i.e., the flux is proportional to the ion densityn` far away
from the particle. The proportionality coefficientasad is
known as the charging efficiency. The problem is to find
asad.

Nobody, however, prevents us from generalizing Eq.(2)
as follows:

Jsa,R,nRd = asa,RdnR, s3d

wherenR is the ion concentration at a distanceR from the
particle center. It is important to emphasize thatnR is (still)
an arbitrary value introduced as a boundary condition at the
distanceR (also arbitrary) to a kinetic equation which is
necessary to solve for definingasa,Rd.

The flux defined by Eq.(2) is thus

Jsad = Jsa,`,n`d and asad = asa,`d. s4d

The value ofasa,Rd does not depend onnR because of the
linearity of the problem.

Let us assume for a moment that we know the exact ion
concentration profilenexactsrd corresponding to the fluxJsad
from infinity [see Eq.(2)]. Then, using Eq.(3) we can ex-
pressJsad in terms ofnexact as follows:

Jsad = J„a,R,nexactsRd… = asa,RdnexactsRd. s5d

Now let us chooseR sufficiently large for the diffusion ap-
proximation to reproduce the exact ion concentration profile,

nexactsRd = n„Jsad…sRd, s6d

with nsJdsrd being the steady-state ion concentration profile
corresponding to a given total ion fluxJ. The steady state
density of the ion fluxjsrd is the sum of two terms,

jsrd = − D
dnsJdsrd

dr
− B

dUsrd
dr

nsJdsrd, s7d

whereD is the ion diffusivity,Usrd is a potential(here the
ion-particle interaction), andB is the ion mobility. According
to the Einstein relationkTB=D. On the other hand, the ion
flux density is expressed in terms of the total ion flux as
follows: jsrd=−J/4pr2, with J.0. Equation(7) can now be
rewritten as

e−bUsrd d

dr
fnsJdsrdebUsrdg =

J

4pDr2 ,

whereb=1/kT. The solution to this equation is

nsJdsrd = e−bUsrdSn` −
J

4pD
E

r

`

ebUsr8ddr8

r82D . s8d

On substituting Eqs(6) and (8) into Eq. (5) gives the equa-
tion Jsad=asa,RdnsJdsRd or
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Jsad = asa,Rde−bUsRdSn` −
Jsad
4pD

E
R

`

ebUsr8ddr8

r82D . s9d

We can solve this equation with respect toJsad and find
asad,

asad =
asa,Rde−bUsRd

1 +
asa,Rde−bUsRd

4pD
E

R

`

ebUsr8ddr8

r82

. s10d

Equation(10) is exact if R@ l. We, however, know neither
asa,Rd nor R.

III. FLUX-MATCHING APPROXIMATELY

There is not a chance to findasa,Rd exactly. We thus call
upon two approximations.

We approximateasa,Rd by its free-molecule expression,

asa,Rd < afmsa,Rd. s11d

We defineR from the condition

drnfmsrdr=R = drn
„Jsad…srdr=R, s12d

where nfmsrd is the ion concentration profile found in the
free-molecule regime fora, r ,R. The distanceR separates
the zones of the free-molecule and the continuous regimes.

IV. FREE-MOLECULE ZONE

In this section we reformulate the collisionless Boltzmann
equation in the form maximally convenient for considering
the ion transport in spherically symmetric systems, find its
steady-state solution, and then derive the expression for the
ion density profile.

A. Basic equations

The steady-state distribution of ions over coordinates and
velocities inside the free-molecule zone is described by the
collisionless Boltzmann equation,

vi
] f

] xi
−

1

m

] U

] xi

] f

] vi
= 0. s13d

Here fsr ,vd is the ion distribution over coordinates and ve-
locities, m is the ion mass,U is the potential of an external
field. Because we are going to consider the free-molecule
regime, the collision term is omitted. The convention on the
summation over repeating indexes is adopted. The boundary
conditions to Eq.(13) will be discussed in the end of this
section.

In what follows we consider only spherical particles. The
potentialU is then a function ofr = ur u, and the ion distribu-
tion depends only on three variables, the ion radial coordi-
nate r, absolute ion velocityv= uvu, and m=cosu, with u
being the angle between the directions ofr andv.

In spherically symmetric systems another set of variables
is more convenient. Namely, instead ofr ,v ,m we introduce
r ,E,L, with

E = mv2/2 + Usrd, L = mufv 3 r gu = mvrÎ1 − m2.

s14d

In these variables the Boltzmann equation takes an especially
simple form:

vr
] fs

] r
= 0, s15d

where

vr =Î 2

m
SE − Usrd −

L2

2mr2
D =

1

mr
ÎL2srd − L2 s16d

is the radial ion velocity,s= ±1 is an auxiliary variable de-
fining the direction of ion motion along the radial coordinate
(s=−1 corresponds to the direction toward the particle), and

L2srd = 2mr2fE − Usrdg. s17d

The functionsf1 and f−1 are coupled by a boundary con-
dition on the particle surface.[see Eq.(23)]. Next, the ions
passing by the particle change the directions of their veloci-
ties at the turning pointsvr =0d. This fact, however, adds no
complications, because in the steady-state conditions the
numbers of ions flying toward and outward the origin of
coordinates are always equal for the trajectories not crossing
the particle surface.

The ion flux toward the particle is expressed in terms off
as follows:

J = −E d3vE sv ·dSdfsr ,vd. s18d

The integrals on the right-hand side(RHS) of this equation
are taken over allv and the surface of a sphere of radiusr.
The sign “−” in the definition of the flux makesJ positive. In
spherical coordinates Eq.(18) is rewritten as

J = − 8p2r2E
0

`

v3 dvE
−1

1

fsr,v,mdm dm. s19d

The rule for replacing the variablessr ,v ,md→ sr ,E,Ld
readily follows from definition(14) of the variablesE andL,

2pv2dv dm → p

m2r
o

s

dE dL2

ÎL2srd − L2
. s20d

The restrictions on the intervals of integration overE andL2

are defined by the conditions,L2øL2srd ,L2,L2srdù0. In
what follows we do not specify the limits of integrations
except for the cases, where they play a decisive role.

The expressions for the ion density profilensrd and the
ion flux J in r ,E,L variables look as follows:

nsrd =
p

m2r
o

s
E dEE dL2

ÎL2srd − L2
fssr,E,Ld s21d

and
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J = −
4p2

m3 o
s

sE dEE dL2 fssr,E,Ld. s22d

The ion flux is independent ofr.
We conclude this section by formulating the boundary

condition to Eq.(15). We assume that no ions escape from
the particle surface,

f1sa,E,Ld = 0, s23d

and the particle number concentration atr =R is fixed,

p

m2R
o

s
E dEE dL2

ÎL2sRd − L2
fssR,E,Ld = nsRd. s24d

In addition we assume that the distribution function atr =R
contains the factore−bfE−UsRdg (Maxwell’s distribution over
the ion velocity).

Because the total fluxJ is independent ofr, Eq. (22) can
be rewritten in terms off−1 alone,

Jsad =
4p2

m3 E dEE dL2 f−1sa,E,Ld. s25d

B. Free-molecule ion distribution

Before constructing the general solution to the kinetic
equation describing the motion of ions in the free-molecule
regime we find the interval of angular momenta correspond-
ing to the ion trajectories intersecting the particle surface.

Here we consider only the nonsingular potentials for
which the functionL2srd monotonously grows atr .a. It is
clear that at positiveE the ion trajectories with

L2 , La
2 = 2ma2fE − Usadg s26d

intersect the particle surface. At negativeE the situation
changes, if 2mR2f−uEu+ uUsRdug,2ma2f−uEu+ uUsadug then
the trajectories withL2,2mR2f−uEu+ uUsRdug will cross the
particle surface (see Fig. 1). Otherwise the restriction
L2,2ma2f−uEu+ uUsadg works. Hence,

La
2 = min„L2sad,L2sRd… s27d

for the attractive nonsingular potentials. The notationLa
stands for the angular momentum separating the trajectories
crossing the particle surface from those passing by. It is easy
to find thatLa

2=L2sRd in the interval of negative energies,

uUsRdu , uEu , E0 =
R2uUsRdu − a2uUsadu

R2 − a2 . s28d

Now we can solve the kinetic equation Eq.(14). The so-
lution to this equation is

fssr,E,Ld = CRe−b„E−UsRd…u„E − UsRd…usL2du„L2srd − L2
…

3fusL2 − La
2d + ds,−1usLa

2 − L2dg, s29d

whereusxd is the Heaviside step function anddi,k is Kronek-
er’s delta. The multiplierCR will be found later from the
condition Eq.(24). The last multiplier is introduced to satisfy
the boundary conditions Eq.(23).

It is easy to see that the distribution in this form contains
no outgoing ions atr =a, for the factorusL2−La

2d in the first
term does not permit the trajectories crossing the pointr =a.
Hence,f1sad=0, in accordance with the boundary condition
Eq. (23). The factoru(E−UsRd) reflects the fact that no ions
with the energy lowerUsRd can appear in the free-molecule
zone(such ions could appear only due to collisions with the
carrier gas molecules). The last term in the square brackets
on the RHS of Eq.(29) can be rewritten as

usL2 − La
2d + ds,−1usLa

2 − L2d = ds,−1 + usL2 − La
2dds,1.

s30d

The s=−1 component of the distribution is seen to be inde-
pendent ofLa which means that all ions withL2,L2srd can
move toward the particle center(but not all can reach the
particle surface). The outgoing componentf1 does not con-
tain the contribution from the trajectories crossing the par-
ticle surface.

V. ION DENSITY PROFILE

In this section we find the expressions for the ion concen-
tration profile. Our starting point is Eq.(21). Substituting
there Eqs.(29) and (30) and integrating overL2 give the
coordinate dependence of the profile,

nsrd =
2pCRebUsRd

m2r
E e−bEhLsrdf1 + us− La

2dg

+ fÎL2srd − La
2gusLa

2djdE. s31d

The termus−La
2d gives a nonzero contribution only in repul-

sive potentials at the energies within the interval
Usad.E.Usrd. The constantCR entering this equation can
be readily found from the boundary condition(24),

FIG. 1. The dependence ofL2srd on the distancer from the
particle center. Two curves corresponding to the negative energies
E1,E2,0 are schematically shown. At the energyE1 (curve 1) all
bound ions occupy the states withL2,L1

2sRd, i.e., all these ions can
reach the particle surface. Curve 2 displays the situation when not
all bound ions reach the particle surface. The ions in the states with
L2.L2

2sad pass by the particle and return to the diffusion zone.
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CR = nsRde−bUsRdSmb

2p
D3/2 2

G0sRd + GAsRd
, s32d

where the functionsG0srd andGAsrd are

G0srd =
2

Îp
E

X

`

dx e−xÎx − bUsrdf1 + u„Usad − E…g,

s33d

GAsrd =
2

Îp
E

Y

`

dx e−xÎx − bUsrd − fx − bUsadg
a2

r2 .

s34d

The lower integration limitsX andY depend on the type of
ion-particle interaction and will be specified separately for
each concrete potential.

Now the profile satisfying the boundary condition Eq.
(24) can be restored,

nsrd = nsRd
G0srd + GAsrd
G0sRd + GAsRd

. s35d

The expressions for the flux follows from Eq.(25):

Jsa,R,nRd =
4p2

m3 CRebUsRdE
X

`

e−bELa
2 dE. s36d

VI. MATCHING DISTANCES

The general expression Eq.(35) for the ion profile is used
in this section for performing the program outlined in the
Introduction. We match the profiles and their derivatives on
both sides of the surface of the limiting sphere, find its radius
(the matching distance) and then use Eq.(10) for deriving
the expressions for charging efficiencies.

A. Free condensation

In the simplest caseUsrd=0 (condensation of neutral mol-
ecules on neutral particles),

L2srd = 2mr2E, La
2 = L2sad, X = Y = 0,

G0srd = 1, GAsrd =Î1 −
r2

a2 . s37d

We have

nsrd = nsRd
1 +Î1 − a2/r2

1 +Î1 − a2/R2
. s38d

One sees that even in the absence of external fields the den-
sity of condensing molecules depends onr.

Now let us find the matching distance and the condensa-
tion efficiency. The profile in the diffusion zone[see Eq.(8)]
is

nsJdsrd = n` −
J

4p Dr
. s39d

The free-molecule profile is given by Eq.(38). The condition
Eq. (12) then gives

a2vT

4DR2 =
a2

2R3Î1 −
a2

R2

. s40d

The solution to this equation is readily found,

R=ÎS2D

vT
D2

+ a2. s41d

The combination 2D /vT is of the order of the ion mean free
path l. The condensation efficiency can be found from Eqs.
(10) and (41). The result is

asad =
2pa2vT

1 +Î1 +SavT

2D
D2

. s42d

B. Repulsion

At Usrd.0

L2srd = 2mr2fE − Usrdg, La
2 = L2sad,

X = bUsrd, Y = bUsad. s43d

Hence,nsrd is given by Eq.(35) with

G0srd = 2e−bUsrd −
2

Îp
E

bUsad

`

dx e−xÎx − bUsrd s44d

and

GAsrd =
2

Îp
E

bUsad

`

dx e−xÎx − bUsrd − fx − bUsadg
a2

r2 .

s45d

Now let us find the equation for the matching distance.
ReplacingnsRd by nsJdsRd in Eq. (35) casts the condition Eq.
(12) into the form

Ud ln nsJd

dr
U

R
=

d

dr
UF G0srd + GAsrd

G0sRd + GAsRdGUR

. s46d

On differentiating the profile in the diffusion zone[see Eq.
(8)] yields

Ud ln nsJd

dr
U

R
= − bUsRd8 +

asa,Rd
4pDR2 . s47d

In deriving Eq.(47) we used the inversion of Eq.(10),

asa,Rd =
asadebUsRd

1 −
asad
4pD

E
R

` ebUsr8ddr8

r82

. s48d

Equation(36) allows us to find

afmsa,Rd =
2pa2vTe−bUsad

G0sRd + GAsRd
. s49d

The following two formulas help much in finding the deriva-
tives on the RHS of Eq.(46),
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G08srd = − bU8srdG0srd −
2

Îp
e−bUsadbU8srdÎd s50d

and

GA8srd = e−bUsrda
2

r3 Zsrd +
2

Îp

e−bUsadbU8srdÎd

1 − a2/r2

−
bU8srd

1 − a2/r2GAsrd. s51d

Hered=b(Usad−Usrd) and

Zsrd =
2

Îp
E

0

` xe−x dx
Îx + d

. s52d

These formulas together with Eqs.(46)–(49) give the equa-
tion for R,

RvT

2D
=

2
Îp

bRuU8sRduE
0

` xe−x dx
Îxs1 − a2/R2d + d + Îd

+
2

Îp
E

0

` xe−x dx
Îxs1 − a2/R2d + d

. s53d

C. Attraction

In the case of nonsingular attractive potentials we have

X = − buUsrdu, Y = bE0, L2srd = 2mr2„E + uUsrdu…,

La
2 = L2sadusE + E0d + L2sRdus− E − E0d. s54d

The energyE0 here is defined by Eq.(28).
Equation(31) now gives

nsrd = nsRd
G0srd + GAsrd

ebuUsRdu + GAsRd
, s55d

with

G0srd =
2

Îp
E

−buUsRdu

`

dx e−xÎx + buUsrdu, s56d

GAsrd =
2

Îp
E

−bE0

`

dx e−xÎx + buUsrdu − fx + buUsadug
a2

r2 ,

s57d

and

G0sRd = ebuUsRdu, GAsRd = ebE0Î1 −
a2

R2 . s58d

Equations(27) and (31) explain why the ion states with the
energies lower thanE0 do not contribute toGA. Indeed, the
last term on the RHS of Eq.(31) contains the contribution
from all the trajectories passing by the particle. AtE,E0
and thusL,LsRd all ion trajectories cross the particle sur-
face (see Fig. 1).

Equations(36) and (58) now give

afmsa,Rd =
2ao

1 + e−bDÎ1 − a2/R2
. s59d

Here

aosa,Rd =
4p2

m3 E
bUsRd

`

e−bELa
2 dE= pa2vT e−bDF1 + buUsadu

+ bE0 +
R2

a2 sebD − 1 −bDdG s60d

andD= uUsRd−E0u.
The derivation of the equation forR follows along the

same line as for repulsive potentials. The expression for
GA8sRd is simpler, forE0 is independent ofR,

GA8sRd =
ebE0

Î1 −
a2

R2

3 FbuUsRdu8 +
a2

R3h1 + 2fbuUsadu − bE0gjG . s61d

The equation for determiningR then takes the form

aosa,Rd
2pDR

=
e−bD

Î1 −
a2

R2

3
a2

R2fbuUsRdu8R+ 1 + 2b„uUsadu − E0…g. s62d

VII. RESULTS AND DISCUSSION

Once the matching distance is known as a function of the
particle size, it is easy to find the charging efficiencies
for any potential. We therefore begin with the analysis of the
dependencies ofR=Rsad and then present the results on the
dependence of the charging efficiencies on particle sizes for
the potentials given by Eq.(1).

A. Matching distances

We return first to Eq.(41) describing the dependence of
the matching distance on the particle size forUsrd=0. It has
the structure

Rsad = ÎR0
2sad + a2, s63d

with

R0sad =
2D

vT
. s64d

The value ofR0sad is independent ofa, so at very small
particle size the matching distance is of the order of the
molecular mean free path, as has been expected. At large
particle sizea@ l the differenceRsad−a~ l.

When the ion-particle interaction is turned on, the analy-
sis becomes more complex. Equations(53) and (62) should
be solved. This can be done only numerically, but first we
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analyze the behavior of the functionRsad at smalla! l , lc. In
our analysis we assume thatUsad→` asa→0.

Let us begin with the attractive potentials[Eq. (62)]. As is
seen from Eq.(60) at small particle sizea0<pa2vTbuUsadu
[the leading term inUsad is retained]. The term of the same
order of magnitude on the RHS of Eq.(62) is
2buUsadusa2/R2d. Equation(62) then gives

Rsad <
4D

vT
. s65d

Again, in the limit of smalla the matching distance is of the
order of the ion mean free pats and independent of the par-
ticle size. Moreover, it is independent of the ion-particle po-
tential.

In the limit of large particlesa@ l the LHS of Eq.(62)
becomes large. This can happen due to the growth of the
expression under the square root on the RHS of this equation
whenR approaches toa. Our numerical analysis showed that
the solution to Eq.(62) can be well approximated by the
formula of the type of Eq.(63), with

R0sad =
2D

vT

1 + 2buUsadu
1 + buUsadu

. s66d

Let us now analyze the repulsive potentials. In the limit of
small a the leading term on the RHS of Eq.(53) for R is
small as 1/Îd~1/ÎbUsad. Equation(53) gives at smalla
and the potential Eq.(1) sq=Q=1d,

R< p−1/4s2D/vTd1/2lc
1/4a1/4F2se + 2d

e + 5
G1/4

. s67d

The dependence of the matching distanceRsad on the
particle size is shown in Fig. 2 for the potentials given by Eq.
(1) with e=4, andq=Q=1.

In contrast to zero or attractive potentials, where the
matching distance has the order of the ion mean free path
and does not depend on the particle size, the ion-particle
repulsion leads to the matching distances decreasing with
diminishing the particle size. From the first sight this fact is
very unpleasant, for the diffusion approximation cannot work
at the distances much smaller than the ion mean free path.
On the other hand, the dependence ofRsad is very weak, and
even for a=1 nmR is comparable with the ion mean free
path.

B. Charging efficiencies

In the case of free condensation(the ion-particle interac-
tion is turned off) the result is especially simple

asad =
2pa2vT

1 +Î1 +SavT

2D
D2

. s42ad

We compared this result with the most successful semiempir-
ical Fuchs-Sutugin’s formula[18] which describes satisfac-
torily a rich collection of the experimental data on the vapor
condensation onto the surfaces of aerosol particles in a wide
interval of their sizes. The result is presented in Fig. 3. The

deviation of two curves does not exceed 10%.
For charged particles the general result Eq.(10) should be

used. The approximations Eqs.(11) and (12) allow us to
expressasad in terms of the charging efficiencyafmsa,Rd
found in the free-molecule limit and the matching distanceR,

asad =
afmsa,Rde−bUsRd

1 +
afmsa,Rde−bUsRd

4pD
E

R

`

ebUsr8ddr8

r82

, s68d

where the values ofafmsa,Rd are given by Eq.(50) for re-
pulsive potentials and by Eq.(59) for attractive potentials.
The numerical calculations were performed for the potential
given by Eq.(1) with q=Q=1 andlc= l or lc=3l.

The results are presented in Figs. 4 and 5 in terms of the
correction factorsjsad, the ratios of the charging efficiencies
found from Eq.(68) to their values in the free-molecule re-
gime,

jsad =
asad

afmsad
, s69d

whereafmsad=afmsa,R=`d.
Let us analyze the expression for charging efficiency

[Eq. (68)] in the free-molecule limita! l. First, we notice
that ata! l the denominator in Eq.(68) can be always re-
placed by unity. Then for the recombination rate Eqs.(59)
and (65) give

FIG. 2. The dependence of matching distanceRsad on the par-
ticle radiusa. The scale of both axes isl =2D /vT, the ion mean free
path. Curve 1 shows the functionRsad for the potential-free con-
densation. Curves 2 and 28 are the matching distances for the at-
tractive potential[Eq. (1)] at different Coulomb’s lengths:lc= l
(solid line) and lc=3 (dot line). Curves 3 and 38 display the same
for the repulsive potential.
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asad < pa2vTf1 + buUsadu + buUs4D/vTdugebuUs4D/vTdu.

s70d

In order to obtain the widely cited free-molecule limitasad
=pa2vTf1+bUsadg the term bUs4D /vTd should be small
compared to 1. The inequalitybUs4D /vTd!1 does not hold
for the Coulomb potential at ambient conditions. Indeed,lc
=be2<6310−6 cm< l. For the attractive potential given by
Eq. (1) one finds

asad < pa2vTF1 + qQ
lc
a
S1 +

q

2Q

e − 1

e + 2
D + qQ

lcvT

4D
GeqQlcvT/4D.

s71d

Figure 4 clearly demonstrates the role of the Coulomb
distance in the case of the Coulomb attraction. It is seen that
even at small particle sizesa! l the free-molecule expres-
sion for the ion-particle recombination does not work. On the
other hand, no modifications related to the Coulomb interac-
tion appear in the case of repulsive potential. The free-
molecule formula works for small particlessa! lcd and only
when the particle size becomes comparable to the Coulomb
distance the corrections become perceptible.

In the case of repulsion nothing interesting comes up.
Equation (68) reproduces the well-known free-molecule
limit,

FIG. 3. The correction factorjsad=asad /afmsad for the effi-
ciency of potential-free vapor condensation as a function of particle
radius(in units of l =2D /vT). Solid curve displays the dependence
given by Eq.(42). It is seen that this curve reproduces well the
semiempirical dependence found in Ref.[18] (dot curve).

FIG. 4. The correction factorjsad=asad /afmsad for ion-particle
recombination[attractive potential, Eq.(1)] as a function of particle
radius(in units of l =2D /vT). Solid and dot curves displayRsad for
lc=1 and lc=3, respectively. It is seen that even at small particle
sizes these curves deviate from unity, i.e., the free-molecule ap-
proximation is noticeably corrected by ion-carrier gas interaction
lc~ l.

FIG. 5. Same as in Fig. 4, but for repulsive potential, Eq.(1). In
contrast to attraction, in this case the free-molecule limit works
even when the particle size is comparable to the ion mean free path.
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asad < pa2vTe−bUsad. s72d

Indeed, at smalla we find that the integrals in Eqs.(44) and
(45) are small compared to 1. Then, as follows from Eq.
(49),

afmsad < pa2vTe−bUsadebUsRd. s73d

On substituting this expression into Eq.(68) one comes to
Eq. (72).

At largea, Eq. (68) always reproduces the diffusion limit,

adiffsad =
4pD

E
a

`

r−2ebUsrd dr

. s74d

VIII. CONCLUSION

We have proposed a new flux-matching theory of particle
charging. Starting with the exact formulation of the flux-

matching procedure we have determined all functions enter-
ing the resulting expression(10). In contrast to existing flux-
matching theories our version does not contain any free
parameter(usually the radius of the limiting sphere). Next,
we do not operate with such not well defined values like the
ion mean free path. Our final result Eq.(68) expresses the
charging efficiency in terms of the ion diffusivityD, ion
thermal velocityvT, and the Coulomb distancelc. All these
values are unambiguously defined.

We have shown that in the case of the particle-ion recom-
bination the corrections due to the interaction of ion with the
carrier gas are essential irrespective of the particle size. The
free-molecule limit works only for very diluted carrier gases
when the ion mean free path much exceeds the Coulomb
length.

In the case of repulsive Coulomb forces the situation is
opposite, the contribution of ion-molecular collisions to the
rate of particle charging is suppressed by the strong Coulomb
repulsion. Only at sufficiently large particle sizes the kinetic
corrections become noticeable.
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