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Flux-matching theory of particle charging
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A new flux-matching theory is formulated and applied to the study of particle charging by ions. Assuming
that the ion-particle interaction includes the Coulomb + polarization forces the collisionless kinetic equation is
solved and the ion concentration profile in the free-molecule zanthe distances less than the ion mean free
path is found. This profile is then matched to that derived from the solution of the diffusion equation, which
describes the ion transport outside the free-molecule zone. Three matching parameters are introduced: the ion
flux, the matching distance, and the ion density at the matching distance; and three conditions are formulated
for fixing these parameters:(i) the constancy of the total ion flugij) the continuity of the ion concentration
profile, and(iii ) the continuity of the derivative of the ion concentration profile. The charging efficiencies are
expressed in terms of their free-molecule values, the ion diffusivity in the carrier gas, and the ion thermal
velocity. This approach is applied for calculating the efficiencies of particle charging in the transition regime
(the particle size is comparable to the ion mean free path and the Coulomb)leRgthcorrections due to
ion-carrier gas interaction to the particle-ion recombination rate are shown to remain finite even for very small
particles, whereas in the case of particle-ion repulsion the contribution of ion-molecular collisions to the rate of
particle charging is suppressed in the free-molecule regime.
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[. INTRODUCTION gas molecules have no time to lose enough part of their ki-
Charged aerosol particles have attracted the attention (ﬂ?tﬁ energy and to reach very deerp])' staf:[fes. Hence, O.Pf!y 6} part
scientists and technologists for already more than a century. kt ese states can tf)e occ?pled. This ebe(tj:t IS vek;?/ difficu Lto
Considerable efforts had been addressed to the study of thgk€ INto account, for at least a two-body problem In the
kinetics of charging processgs—§l. external field should be solved for describing the dynamics
The first simplest theories applied the continuous model@f o1 en(ﬁr%y Hasses. hing theori I adaoted f
(the particle radiug much exceeds the ion mean free pgth S0 called flux-matching theories are well adapted for
of the charging process based on the use of the diffusiofjiudying the behavior of aerosol particles in the transition
equation. Such models were not able to describe very smal gllrge._Altmough these fthltlaorles nzjofstly had no firm theoret-
; Ce : ical basis, they successfully served for systematizing numer-
T e g et e QU eXpements o e grouth of aeoso parclesand
. q oty ep - now these theories remain a rather effective and very practi-
ing with the free-molecule limit, i.e., to consider a collision-

. o o -~ cal tool for studying the kinetics of aerosol patrticles in the
less motion of ion in the electric field created by the particle .4nsition regimgsee Refs[1,18-20). On the other hand
Respective expressions for the charging efficiencies had begRase theories are always semiempirical, i.e., they contain a

derived and can be found in Ref2,13-13. But the free-  parameter that should be taken from somewhere else, not
molecule consideration does not save the situation even if\om the theory itself.

the limit of very small particles, for the ion-particle interac-  We introduce the reader to the ideology of the flux-
tion adds a new characteristic lengttwqQ€/kT (the Cou-  matching theories by considering the condensation of a non-
lomb length which is comparable or exceeds the ion meanvolatile vapor onto the surface of an aerosol particle. The
free path at ambient conditions. HereQ are the numbers of central idea of the flux-matching procedure is a hybridization
elementary charges on the ion and the particle respectiely, of the diffusion and the free-molecule approaches. The con-
is the electron chargd, is the temperature of the carrier gas, centration profile of a condensing vapor far away from the
andk is the Boltzmann constant. It turns out that the criterionparticle is described by the diffusion equation. This profile
of the validity of the free-molecule approximation lis- 1, coincides with the real one down to the distances of the order
rather tharl >a, as in neutral systems. of the vapor molecule mean free path. A limiting sphere is
Next, the ion bound states in the attractive potential wellthen introduced inside which the free-molecule kinetics gov-
created by the particle charge lead to some additional diffierns the vapor transport. The concentration profile in the
culties. The point is that these states have negative energié®e-molecule zone is considered to be flat. The equality of
and can be occupied by the incident ions only after theithe fluxes in the both zones and the continuity of the concen-
collisions with the carrier gas moleculésee Refs[16,17).  tration profile at the surface of the limiting sphere define the
The diffusion model assumes that all bound states are popdilux and the reactant concentration at the particle surface.
lated. In the free-molecule limit these states are alwaydhe third parameter, the radius of the limiting sphere, cannot
empty. Meanwhile, it is apparent that neither the first nor thebe found from such a consideration.
second limit gives a true description of reality. The ions oc- We apply a more sophisticated scheme. We also introduce
curring in the potential well due to collisions with the carrier a limiting sphere outside of which the density profile of con-
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densing vapor can be described by the diffusion equation. [l. FLUX-MATCHING EXACTLY
But inside the limiting sphere we solve the collisionless . . .
Boltzmann equation subject to a given boundary condition at The steady—sta@e ion flua) onto the particle of radiua
the particle surfacécomplete sticking in our cagand set an can always be written as

additional condition: the concentration at the surface of the Ja) = a(a)n,, 2)
limiting sphere coincides with that found from the solution

of the diffusion equation. Even in the absence of any potenke., the flux is proportional to the ion density, far away
tial created by the particle the vapor profile in the free-from the particle. The proportionality coefficient(a) is
molecule zone depends on the radial coordinate, because tkeown as the charging efficiency. The problem is to find
particle surface adsorbs all incoming molecules. We thusy(a).

gain the possibility to call for the continuity of the first de-  Nobody, however, prevents us from generalizing &).
rivatives of the profile on both sides of the limiting sphere.as follows:

This additional condition defines the radius of the limiting

sphere. J(@,R,ng) = a(a,R)ng, (3)

. In this paper we cons_ider the Processes of par_ticle Ch‘fjlrQI'\/here ng is the ion concentration at a distanBefrom the
ing by ions suspended in the carrier gas assuming that trE

: iicle int tion includes the Coulomb + polarizati article center. It is important to emphasize thatis (still)
lon-particié interaction inciudes the t.oulom polarizationy, , arbitrary value introduced as a boundary condition at the

HistanceR (also arbitrary to a kinetic equation which is
necessary to solve for defininga,R).
The flux defined by Eq(2) is thus

U(r)= + - - () J@) =J@a»,n,) and a(a)=a(ax»). (4)

The value ofa(a,R) does not depend ong because of the

The sign “+” in this equation corresponds to the Coulomblinearity of the problem.

repulsion. The last term on the right-hand si&S) of Eq. Let us assume for a moment that we know the exact ion
(1) is just the dipole term of the expansion of the imageconcentration profiléie(r) corresponding to the flud(a)
potential over the Legendre polynomisfl]; e is the dielec-  from infinity [see Eq.(2)]. Then, using Eq(3) we can ex-
tric permeability of the particle material. The image potentialpress(a) in terms ofngy,c;as follows:

has a singularity at the particle surface. Although the singular

potentials are not a principal problem for the theory proposed J(@) = J(@ R NexaclR) = (@ RINexaclR) - (5
below, we postpone their consideration for a future article. Now let us choos®R sufficiently large for the diffusion ap-

The remainder of this paper is divided as follows. We firstproximation to reproduce the exact ion concentration profile,
formulate the flux-matching theory of particle charging ex-

actly. This is just a formal step allowing one to express the NexaclR) = NV (R), (6)
ion flux toward a particle of radiua in terms of a general- o) ) ) . !
ized charging efficiency(a, R) depending on the radiwof with n(r) _belng the lsteady-sta?te ion concentration profile
a limiting sphere. At the distances exceedithe ion profile ~ corresponding to a given total ion fluk The steady state
is described by the diffusion equation. The requirement off€nsity of the ion flux(r) is the sum of two terms,

the continuity of the profile at=R gives an expression for dn(r) du(r)

the ion fluxJ(a). At this step we specify neither the radius of jr)==-D———-B——=n
the limiting sphere nor the form of the generalized efficiency. dr dr

The details of this exact formulation are given in the nextyhereD is the ion diffusivity, U(r) is a potential(here the
section. Section Il presents the approximations necessary f%n-particle interactiop andB is the ion mobility. According
moving ahead. They ae) the generalized efficienay(a,R) 5 the Einstein relatiokTB=D. On the other hand, the ion
is approximated by its free-molecule value found from theq,y density is expressed in terms of the total ion flux as

solution of the collisionless kinetic equationatr <R. (i)  follows: j(r)=-J/4r2, with J>0. Equation(7) can now be
At R<r < we describe the ion profile by the solution to the g\uritten as

steady-state diffusion equation corresponding to a given ion

flux J. (iii) The conditions of matching the profiles and their _au(r) ) T

first derivatives allow us to finR. The details of the solution € a[” (e = 47Dr2’

of the collisionless kinetic equations are given in Sec. V. In

Sec. V we calculate the ion concentration profiles and usevhere 3=1/kT. The solution to this equation is
them in Sec. VI for matching the first derivatives at the sur- . ’
fe_lce of the I|m|t_|ng sphere. Sec;tlon VI contams_the d!scus- () = e‘ﬁu(’)(nw 3 eﬁu(r,)dr ) ®)
sion of the main results of this paper. The efficiencies of AmD J, r
particle charging are shown to depend on the particle size,

the ion diffusivity in the carrier gas, the ion thermal velocity, On substituting Eq$6) and(8) into Eq. (5) gives the equa-
and the Coulomb length. tion J(@)=a(a,RANY(R) or

(r), ()

12

046413-2



FLUX-MATCHING THEORY OF PARTICLE CHARGING PHYSICAL REVIEW E70, 046413(2004

Ja) (~ ndr’ = m2/2 + _ = Tz
J@) = a(a,ReP'®| n, - (_)f U= (9) E=mv%/2+U(r), L=m|[vXr]=murVl-pu
47D J r 1
We can solve this equation with respect @) and find |n these variables the Boltzmann equation takes an especially
«a) simple form:
a(a,R)e IR .
a(a) = - . - (10) 9t .
1+MJ eBU(r’)d_r Uy (15
47D R r’2
where
Equation(10) is exact ifR>1. We, however, know neither i
a(a,R) norR. \/2( - ) - 2
= - E_ U r)— = — L r)— L 16

Il. FLUX-MATCHING APPROXIMATELY . - . . - .
is the radial ion velocitys=+1 is an auxiliary variable de-

There is not a chance to finda, R) exactly. We thus call fining the direction of ion motion along the radial coordinate
upon two approximations. (s=-1 corresponds to the direction toward the parjicéand
We approximatex(a,R) by its free-molecule expression,

L2(r) = 2mrE - U(r)]. (17)
a,R) = a,R). 11 .
(@R = am(@R) (D The functionsf, andf_; are coupled by a boundary con-
We defineR from the condition dition on the particle surfacgsee Eq.23)]. Next, the ions
A (1) = A& () o (12) passing by the particle change the directions of their veloci-

ties at the turning pointv,=0). This fact, however, adds no
where ng,(r) is the ion concentration profile found in the complications, because in the steady-state conditions the
free-molecule regime fom<r <R. The distancdR separates numbers of ions flying toward and outward the origin of
the zones of the free-molecule and the continuous regimesgoordinates are always equal for the trajectories not crossing
the particle surface.

The ion flux toward the particle is expressed in term$ of

IV. FREE-MOLECULE ZONE as follows:

In this section we reformulate the collisionless Boltzmann
equation in the form maximally convenient for considering J= _f & f (v -dS)f(r,v) (18)
the ion transport in spherically symmetric systems, find its o

steady-state solution, and then derive the expression for the ) ) ) ]
ion density profile. The integrals on the right-hand sid@HS) of this equation

are taken over alb and the surface of a sphere of radius
The sign “=” in the definition of the flux makekpositive. In
spherical coordinates E¢L8) is rewritten as

The steady-state distribution of ions over coordinates and

A. Basic equations

e Lo . . oo 1

velocities inside the free-molecule zone is described by the _ 2 3

collisionless Boltzmann equation, J=- 81 JO v7dv _lf(r'v"“)'“ dus. (19)
via—f _LoUat =0. (13)  The rule for replacing the variable§,v,u)—(r,E,L)

d%  MJIX v readily follows from definition(14) of the variable€ andL,

Here f(r,v) is the ion distribution over coordinates and ve- dE di2

locities, m is the ion massU is the potential of an external 27vdy du — T —_ (20)

. : ; M= 0P N2 2

field. Because we are going to consider the free-molecule s vLo(r)-L

regime, the collision term is omitted. The convention on the o ) ) ) )
summation over repeating indexes is adopted. The boundarb€ restrictions on the mtt_ar_valszof |n2tegrat2|on20EeandL
conditions to Eq«(13) will be discussed in the end of this are defined by the conditiond,*<L(r),L%,L5(r)=0. In

section. what follows we do not specify the limits of integrations
In what follows we consider only spherical particles. Theexcept for the cases, where they play a decisive role.
potentialU is then a function of =|r|, and the ion distribu- The expressions for the ion density profilér) and the

tion depends only on three variables, the ion radial coordiion flux Jin r,E,L variables look as follows:

nater, absolute ion velocity =|v|, and w=cosé, with 5

being the qngle between .the directionsradndv. . n(r)=122 JdEf ’ dL frEL (2D
In spherically symmetric systems another set of variables mr g VLZ(r) = L2

is more convenient. Namely, instead b, u we introduce

r,E,L, with and
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J=—4mijZSJdEde2fs(r,E,L). (22)

The ion flux is independent af

We conclude this section by formulating the boundary
condition to Eq.(15). We assume that no ions escape from

the particle surface,
fi(a,E,L) =0,

and the particle number concentrationr &R is fixed,

(23)

T dL?
ﬁg JdEJ mfs(R,E,L)—n(R). (24)

In addition we assume that the distribution functiorr aR
contains the factoe ™ PlE-URI (Maxwell’s distribution over
the ion velocity.

Because the total flud is independent of, Eq. (22) can
be rewritten in terms of_, alone,

J(a)=4mij f dE f dL?f_y(a,E,L). (25)

B. Free-molecule ion distribution

PHYSICAL REVIEW E 70, 046413(2004)

a

DISTANCE FROM CENTER I

FIG. 1. The dependence &f(r) on the distance from the
particle center. Two curves corresponding to the negative energies
E; <E, <0 are schematically shown. At the enetgy(curve ) all
bound ions occupy the states wilth< Li(R), i.e., all these ions can
reach the particle surface. Curve 2 displays the situation when not
all bound ions reach the particle surface. The ions in the states with
L2> Lg(a) pass by the particle and return to the diffusion zone.

It is easy to see that the distribution in this form contains
no outgoing ions at=a, for the factorH(LZ—Lg) in the first

Before constructing the general solution to the kineticterm does not permit the trajectories crossing the poira.
equation describing the motion of ions in the free-moleculeHence,f,(a)=0, in accordance with the boundary condition
regime we find the interval of angular momenta correspondgq. (23). The factord(E-U(R)) reflects the fact that no ions
ing to the ion trajectories intersecting the particle surface. wijth the energy lowetJ(R) can appear in the free-molecule

Here we consider only the nonsingular potentials forzone(such ions could appear only due to collisions with the

which the functionL?(r) monotonously grows at>a. It is
clear that at positivé& the ion trajectories with

L2 < LZ=2ma&E-U(a)] (26)

intersect the particle surface. At negati#ethe situation
changes, if MR[-|E|+|U(R)|[]<2m&-|E|+|U(a)|] then
the trajectories with.?2< 2mR[—|E|+|U(R)|] will cross the
particle surface(see Fig. 1 Otherwise the restriction
L2< 2ma[—|E|+|U(a)] works. Hence,
L2=min(L%a),LAR)) (27)

for the attractive nonsingular potentials. The notation

carrier gas moleculgsThe last term in the square brackets
on the RHS of Eq(29) can be rewritten as

OL2- LD + 8,102 - LY = 5,1+ O(L2- LD 6,1
(30

The s=-1 component of the distribution is seen to be inde-
pendent ofl, which means that all ions with><L?(r) can
move toward the particle centébut not all can reach the
particle surface The outgoing componerf does not con-
tain the contribution from the trajectories crossing the par-
ticle surface.

stands for the angular momentum separating the trajectories

crossing the particle surface from those passing by. It is easy

to find thath,: L2(R) in the interval of negative energies,

RIUR)| - au(a)l

JUR)| < |E| <Ep= R—_a2

(28)

Now we can solve the kinetic equation Ed44). The so-
lution to this equation is

f{(r,E,L) = Cre PEVRIg(E - U(R) 6(LD) O(LA(r) - L?)
X[6(L2 = LZ) + 8 16(L5 - L], (29)

whered(x) is the Heaviside step function arm¥, is Kronek-
er's delta. The multiplierCy will be found later from the
condition Eq.(24). The last multiplier is introduced to satisfy
the boundary conditions E@23).

V. ION DENSITY PROFILE

In this section we find the expressions for the ion concen-
tration profile. Our starting point is Eq21). Substituting
there Eqs.(29) and (30) and integrating ovet.? give the
coordinate dependence of the profile,

_ 27CrefU®

n(r) oc f e PE(L(N[1 +6(-LY)]

+[VL2(r) - L] 6(LE) YdE. (31)
The termﬁ(—Lﬁ) gives a nonzero contribution only in repul-
sive potentials at the energies within the interval
U(a) >E>U(r). The constanCg entering this equation can

be readily found from the boundary conditi¢24),
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mB\%? 2 a’
Cr= n(R)e‘BU(R)<—B) — (32 e (40)
27m) Gy(R) +GA(R) 4ADR? - \/1
where the function&§y(r) and Ga(r) are
2 (* [ The solution to this equation is readily found,
Go(r) =—= f dx e”Vx - pU(N[1 +6(U(a) - B)],
N x 2D
R= \/< ) + a2, (41
(33 vt
The combination B /vy is of the order of the ion mean free
Ga(r) = Zr dx e—x\/ - BU(r) - [x - ,8U(a)]— pathl. The condensation efficiency can be found from Egs.
N (10) and(41). The result is
(34 2ma?
o ala) = —F—=— (42)
The lower integration limitsX andY depend on the type of avt \?
ion-particle interaction and will be specified separately for I+4/1+ D
each concrete potential.
Now the profile satisfying the boundary condition Eq. .
(24) can be restored, B. Repulsion
At U(r)>0
) S0+ CAT) . " 2
Go(R) +GA(R)’ L¥(r)=2mrP[E-U(], Li=L%@a),
The expressions for the flux follows from E@5): X=BU(r), Y=pU(a). (43)
J@a,Rng) = AijCReBU(FDf e PEL2 dE. (36)  Hence,n(r) is given by Eq.(35) with
m X
2 (~ —
Gy(r) = 267U — — dx eX\x-BU(r) (44
VI. MATCHING DISTANCES J puca)
The general expression E@5) for the ion profile is used and
in this section for performing the program outlined in the 5
Introdgctlon. We match the proflle_s_ and their dgrlvgnves on G, = __f dx & \/ - BU(r) - [x- ,BU(a)]—
both sides of the surface of the limiting sphere, find its radius BUa)
(the matching distangeand then use Eq.10) for deriving (45)

the expressions for charging efficiencies.

Now let us find the equation for the matching distance.
Replacingn(R) by n?(R) in Eq. (35) casts the condition Eq.
In the simplest cas®(r) =0 (condensation of neutral mol- (12) into the form

A. Free condensation

ecules on neutral particlgs

L2r)=2mrPE, L3=L%a), X=Y=0,
r2
Go(r) = l, GA(I’) = 1 - ; (37)
We have

212

1+yl1-adr
nr)=nR)———. 38
" ()l+\fl—a2/R2 39

One sees that even in the absence of external fields the den-

sity of condensing molecules dependsron

Now let us find the matching distance and the condensa-

tion efficiency. The profile in the diffusion zorieee Eq(8)]
is

n(-])(r) =N, -

. 39
44 Dr (39

The free-molecule profile is given by E@8). The condition
Eq. (12) then gives

dinn®| _d [Go(r)+GA<r>} 46

dr |gr dr [ Gy(R) +Ga(R

On differentiating the profile in the diffusion zorjsee Eg.
(8)] yields

dinn® «(a,R)
=-BUR)’ & 47
ar |y PURY"+ 47DR?’ @7
In deriving Eq.(47) we used the inversion of Eg10),
a)efI®
a(a,R) = o(a) — (49)
- a(a) [~ eV dr
AarDJg r'?
Equation(36) allows us to find
2maly e PI@
aim(a,R) = " (49)

Go(R) +Ga(R)

The following two formulas help much in finding the deriva-

tives on the RHS of Eq46),
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— AU (NGy(r) - =& PIABU (s (50)
\NTT

Go(r)

and

2 -BU(@) oy 1 [

a 2 e BU'(r)Vé

G/ r :e_ﬁu(r)—zr +?—
AT r3 (r) Jar 1 -a2r2

BU'(r)
T 1o —a2/rZGA(r)' (51)
Here 6=8(U(a)-U(r)) and
Z(r) = i_f xe‘;dx. (52)
VrJo VX+6

These formulas together with Eqgl6)—(49) give the equa-
tion for R,

Xe X dx
WX(1-a%/R?) + 8+ \J%

Ru 2 *
' = ——BRU'(R) f
0

N

2D

2 (7 xe X dx
Vo \x(1-a%R%) + 6
C. Attraction
In the case of nonsingular attractive potentials we have

X==pUMn, Y=pEy, LAr)=2mr(E+|U(M)),
L2=L%a)0(E + Ep) + LAR)6(- E- Ey). (54)
The energyE, here is defined by Eq28).
Equation(31) now gives
_ Go(r) + Ga(r)
n(r) =n(R) AR+ (R’ (55)
with
Go(r) = i—f dx e>Vx+ BlU(r)|, (56)
N7 J-plUR)]

2 (” B a’
GA(r)=?f dxex\/X+BIU(r)l—[X+EIU(a)I]—,
V) -pg, r

(57)
and
2
Go(R) =fURI G, (R) = B0 /1 - %. (58)

Equations(27) and (31) explain why the ion states with the
energies lower thaik, do not contribute tds,. Indeed, the
last term on the RHS of Eq31) contains the contribution
from all the trajectories passing by the particle. B& E,
and thusL <L(R) all ion trajectories cross the particle sur-
face(see Fig. 1

Equations(36) and (58) now give

PHYSICAL REVIEW E 70, 046413(2004)

2a,
a,R) = . 59
a’fm( ) 1 + e_’BAV/l _ aZ/RZ ( )
Here
47 (*
aya,R =— f e PEL2 dE = ma’vr e‘ﬁA{ 1+4|U(a)|
m Jsumr)

R?
+ BEy + ¥(eﬁA -1-4) (60)
andA=|U(R)-Ey|.
The derivation of the equation fdR follows along the
same line as for repulsive potentials. The expression for
GA(R) is simpler, forE, is independent oR,

efFo
a2
o=

GA(R) =

2
x {ﬁIU(R)I’ + 5L+ 2plU(@)| - pESl}|. (61)

The equation for determininB then takes the form

as(a,R) e A
2aDR \/
1

2
% SlAURI'R+ 1+ 26U ~E). (62

a2

R

VII. RESULTS AND DISCUSSION

Once the matching distance is known as a function of the
particle size, it is easy to find the charging efficiencies
for any potential. We therefore begin with the analysis of the
dependencies dR=R(a) and then present the results on the
dependence of the charging efficiencies on particle sizes for
the potentials given by Eq1l).

A. Matching distances

We return first to Eq(41) describing the dependence of
the matching distance on the particle size iqr)=0. It has
the structure

R(a) = VRj(a) + a2, (63
with
2
Ro(a) = —D. (64)
g

The value ofRy(a) is independent of, so at very small
particle size the matching distance is of the order of the
molecular mean free path, as has been expected. At large
particle sizea>1 the differenceR(a)—axl.

When the ion-particle interaction is turned on, the analy-
sis becomes more complex. Equati@b8) and (62) should
be solved. This can be done only numerically, but first we
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analyze the behavior of the functiétia) at smalla<l,I.. In
our analysis we assume thdfa) —«~ asa—0.

Let us begin with the attractive potentidisg. (62)]. As is
seen from Eq(60) at small particle sizey,~ ma’v8|U(a)
[the leading term ifJ(a) is retained. The term of the same
order of magnitude on the RHS of EQq(62) is
28|U(a)|(a®/R?). Equation(62) then gives

n
1

_4b

Cay

R(@) (65
Again, in the limit of smalla the matching distance is of the
order of the ion mean free pats and independent of the par-
ticle size. Moreover, it is independent of the ion-particle po-
tential.

In the limit of large particlesa>| the LHS of Eq.(62)
becomes large. This can happen due to the growth of the
expression under the square root on the RHS of this equation
whenR approaches ta. Our numerical analysis showed that
the solution to Eq(62) can be well approximated by the

iy
1

MATCHING DISTANCE (in units of /)

formula of the type of Eq(63), with . -
2D 1 +28/U(a)| 05 10 15 20 25 3.0
@ == 0@ (66) PARTICLE SIZE (in units of /
o vy 1+BU()

FIG. 2. The dependence of matching distafk{e) on the par-
ticle radiusa. The scale of both axes is 2D /v, the ion mean free

small a the Jl_eadlngm on the_ RHS of _E(53) for R is path. Curve 1 shows the functid®(a) for the potential-free con-

small as 1’05“_1/\"BU(3)' Equation(53) gives at smalla densation. Curves 2 and 2re the matching distances for the at-

and the potential Eq1) (q=Q=1), tractive potential[Eq. (1)] at different Coulomb’s lengthst.=I
(solid line) andl,=3 (dot line). Curves 3 and 3display the same

14
R~ 77—1/4(2D/UT)1/2|g/4a1/4[Z(E—?] ) (67)  for the repulsive potential.
e+

Let us now analyze the repulsive potentials. In the limit of

The dependence of the matching distaR{@) on the deviation of two curves does not exceed 10%.
particle size is shown in Fig. 2 for the potentials given by Eq.  For charged particles the general result 84) should be
(1) with e=4, andq=Q=1. used. The approximations Eqgll) and (12) allow us to

In contrast to zero or attractive potentials, where theexpressa(a) in terms of the charging efficiency,(a,R)
matching distance has the order of the ion mean free patfund in the free-molecule limit and the matching distaRce
and does not depend on the particle size, the ion-particle ap(a,R)EEUR

m il

repulsion leads to the matching distances decreasing with a(a) = R , (68)
diminishing the particle size. From the first sight this fact is 1 4 am(@RE”? oo dr’
very unpleasant, for the diffusion approximation cannot work 47D R r'?

at the distances much smaller than the ion mean free path. _
On the other hand, the dependencdi(d) is very weak, and Where the values o#n(a,R) are given by Eq(50) for re-

even fora=1 nmR is comparable with the ion mean free pulsive potentials and by Eq59) for attractive potentials.
path. The numerical calculations were performed for the potential

given by Eq.(1) with q=Q=1 andl.=I or|.=3l.
B. Charging efficiencies The results are presented in Figs. 4 and 5 in terms of the
correction factors(a), the ratios of the charging efficiencies
found from Eq.(68) to their values in the free-molecule re-
gime,

In the case of free condensatitthe ion-particle interac-
tion is turned off the result is especially simple

27Tazv-|— a(a)

a(a) = . (423 =
(] = &
2D

where a5 (a) = agm(a, R=).
We compared this result with the most successful semiempir- Let us analyze the expression for charging efficiency
ical Fuchs-Sutugin’s formul@l8] which describes satisfac- [Eq. (68)] in the free-molecule limia<<l. First, we notice
torily a rich collection of the experimental data on the vaporthat ata<! the denominator in Eq:68) can be always re-
condensation onto the surfaces of aerosol particles in a widglaced by unity. Then for the recombination rate EQ9)
interval of their sizes. The result is presented in Fig. 3. Theand(65) give
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Equation (42)
----------------------- Fuchs - Sutugin's curve
0.0 T T T T T T T T T T T
0.0 T T T T d T T T T 0.5 1.0 1.5 2.0 25 3.0

1 2 3 4 5

PARTICLE RADI in units of
PARTICLE RADIUS a (in units of ) © US a (in units of )

. _ ! FIG. 4. The correction factof(a) = a(a)/ am() for ion-particle

_FIG. 3. The. correction factog(a)—aga)/afm(a) for .the effi- recombinatiorfattractive potential, Eq1)] as a function of particle
ciency of potential-free vapor condensation as a function of part'deradlus(m units of 1 =2D/v-). Solid and dot curves displa(a) for
radius(in units of|=2D/vr). Solid curve displays the dependence I.=1 andl;=3, respectively. It is seen that even at small particle
given by Eq.(42). It is seen that this curve reproduces well the sizes these curves deviate from unity, i.e., the free-molecule ap-
semiempirical dependence found in REfg] (dot curve. proximation is noticeably corrected by ion-carrier gas interaction
lcocl.

a(a) = mav{[1 + B|U(a)| + B|U(4D/vy)[]efV@Prr
(70)

In order to obtain the widely cited free-molecule linai{a)
=ma’v{{1+BU(a)] the term BU(4D/v;) should be small
compared to 1. The inequaliyU(4D/vy) <1 does not hold
for the Coulomb potential at ambient conditions. Indeed,
=Be?~6x10° cm=I. For the attractive potential given by
Eq. (1) one finds

I qe-1 I
~ 2 1+ _C<1+__) + C_T:| qQ|Cv-|—/4D.
a(a) = ma UT|: qQ Oet 2 qQ e

(71)

Figure 4 clearly demonstrates the role of the Coulomb
distance in the case of the Coulomb attraction. It is seen that
even at small particle sizes<| the free-molecule expres-
sion for the ion-particle recombination does not work. On the
other hand, no modifications related to the Coulomb interac-
tion appear in the case of repulsive potential. The free-

CORRECTION FACTOR &(w)

. 0.2 T T T T T T
molecule formula works for small particléa<I.) and only 05 1o s 20 o5 20

when the particle size becomes comparable to the Coulomb PARTICLE RADIUS a (in units of /)
distance the corrections become perceptible.

In the case of repulsion nothing interesting comes up. FIG. 5. Same as in Fig. 4, but for repulsive potential, Eg. In
Equation (68) reproduces the well-known free-molecule contrast to attraction, in this case the free-molecule limit works
limit, even when the particle size is comparable to the ion mean free path.
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a(a) = WaZUTe—BU(EU_ (72) matching procedure we have determined all functions enter-
] ] ] ing the resulting expressiaid0). In contrast to existing flux-
Indeed, at smala we find that the integrals in Eqe44) and  matching theories our version does not contain any free
(45 are small compared to 1. Then, as follows from EQ.parameterusually the radius of the limiting sphereNext,
(49), we do not operate with such not well defined values like the
(@) ~ ﬂ_aZUTe—,BU(a)eBU(R)_ (73) ion mean frgg path._Our final result .E@S).exp.rgsseg the
charging efficiency in terms of the ion diffusivitl), ion
On substituting this expression into E@8) one comes to  thermal velocityv, and the Coulomb distandg All these
Eq. (72). values are unambiguously defined.
At large a, Eq.(68) always reproduces the diffusion limit, ~ We have shown that in the case of the particle-ion recom-
bination the corrections due to the interaction of ion with the

agi(a) = — 4mD (74) carrier gas are_essential irrespective of _the particlg size. The
f 26890 g free-molecgle limit works only for very diluted carrier gases
a when the ion mean free path much exceeds the Coulomb
length.
In the case of repulsive Coulomb forces the situation is
VIIl. CONCLUSION opposite, the contribution of ion-molecular collisions to the

rate of particle charging is suppressed by the strong Coulomb
We have proposed a new flux-matching theory of particlerepulsion. Only at sufficiently large particle sizes the kinetic
charging. Starting with the exact formulation of the flux- corrections become noticeable.
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