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Transport properties of partially ionized and unmagnetized plasmas

Thierry E. Magit and Gérard Degréz
von Karman Institute for Fluid Dynamics, Department of Aeronautics and Aerospace, 72 Chaussée de Waterloo,
B-1640 Rhode-Saint-Genése, Belgium
(Received 7 July 2003; revised manuscript received 2 February 2004; published 28 October 2004

This work is a comprehensive and theoretical study of transport phenomena in partially ionized and unmag-
netized plasmas by means of kinetic theory. The pros and cons of different models encountered in the literature
are presented. A dimensional analysis of the Boltzmann equation deals with the disparity of mass between
electrons and heavy particles and yields the epochal relaxation concept. First, electrons and heavy particles
exhibit distinct kinetic time scales and may have different translational temperatures. The hydrodynamic
velocity is assumed to be identical for both types of species. Second, at the hydrodynamic time scale the energy
exchanged between electrons and heavy particles tends to equalize both temperatures. Global and species
macroscopic fluid conservation equations are given. New constrained integral equations are derived from a
modified Chapman-Enskog perturbative method. Adequate bracket integrals are introduced to treat thermal
nonequilibrium. A symmetric mathematical formalism is preferred for physical and numerical standpoints. A
Laguerre-Sonine polynomial expansion allows for systems of transport to be derived. Momentum, mass, and
energy fluxes are associated to shear viscosity, diffusion coefficients, thermal diffusion coefficients, and ther-
mal conductivities. A Goldstein expansion of the perturbation function provides explicit expressions of the
thermal diffusion ratios and measurable thermal conductivities. Thermal diffusion terms already found in the
Russian literature ensure the exact mass conservation. A generalized Stefan-Maxwell equation is derived
following the method of Kolesnikov and Tirskiy. The bracket integral reduction in terms of transport collision
integrals is presented in Appendix for the thermal nonequilibrium case. A simple Eucken correction is proposed
to deal with the internal degrees of freedom of atoms and polyatomic molecules, neglecting inelastic collisions.
The authors believe that the final expressions are readily usable for practical applications in fluid dynamics.
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[. INTRODUCTION of the light components is smaller than that of the heavy
. ) o _ components. Hence, collisions among light particles are ne-
In a uniform mixture of gases at equilibrium, the veloci- glected with respect to collisions among heavy particles and
ties of the different SDECieS follow a Maxwellian distribution. between unlike particles. This assumption ceases to be valid
Boltzmann has derived an integrodifferential equation to dewhen the number density of the light species increases.
scribe the evolution of the species velocity distribution func-Delcroix and Berg§7] distinguish an intermediate category of
tions in space and time and justified Maxwell's statement inplasmas characterized by all collisional contributions. Even-
his H Theorem for dilute gasefl,2]. The solution of the tually, at higher ionization degree, collective effects of the
Boltzmann equation for dilute gases neglecting the internatharges have to be incorporated in the plasma description. To
energy contribution is known since the works of Chapmarthat end, various kinetic equations are found in the literature
and Enskod3]. It allows for the transport fluxes to be com- [8]. The present work deals with partially ionized plasmas
puted. This result of kinetic theory is described in the bookand makes use of a collision operator of Boltzmann with a
of Chapman and Cowlinfft]. Hirschfelder, Curtiss, and Bird Screening of the Coulomb potential. Furthermore, this re-
[5] and later Ferziger and Kap8] have collected the latest S€arch is restricted to unmagnetized plasmas. The flow
developments in that field of research and greatly contribute@ound a space vehicle entering a planetary atmosphere at
to spread kinetic theory in the scientific community. ypersonic speed represents one possible example of unmag-
On the other hand, the description of mixtures compose@etl'zeg p;%serga- anifi de in the kineti
of species of disparate masses is not well established. Parza sr::rtipﬁon of z'asr't?;”y'ﬁiﬂ}gﬁ%ﬁ;ﬁ;‘g:‘sﬁg i?\tg]r;cgor:nggf:
Ezllgr:gntg?gisI?zggz};o'm\zozfsc: ?:lgéz?t&%r;scﬁgigénglgicnu; ween electrons was incorporated to Lorentz’s description.
) Warious results emanate from the Stanford group. Devoto

mixture composed of light and heavy species dates from thgy 1 pag simplified the expressions given by Hirschfeleter
beginning of kinetic theory and is due to Lorentz. This modelal' [5] for the transport properties, accounting for the small

applies to weakly ionized plasmas when the number density, < of electrons in ionized mixtures. Kruger and Mitchner

[11], Kruger et al. [12], and Daybelgeg13] have applied
similar simplifications to ionized gases in thermal nonequi-
*Email address: magin@vki.ac.be; URL: http://www.vki.ac.be/ librium in the presence of a magnetic field. Chmieleski and
"Email address: degrez@vki.ac.be. Also at Université Libre deFerziger[14] have presented an elegant formalism to derive
Bruxelles, Service de Mécanique des fluides, 50 Avenue F.Dthe transport properties of ionized gases assuming that heavy
Roosevelt, B-1050 Bruxelles, Belgium. particles have an infinite mass in collisions with electron
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partners; they also investigated the magnetic field influenceations. In addition, the remaining problems mentioned
[15]. All the models mentioned above assume no transfer ofbove in the derivation of these expressions are eliminated.
energy in the electron-heavy collisions. This assumption i©ur results are consistent with respect to diffusion. The ep-
necessary to decouple the thermal bath of heavy particleschal relaxation introduced in RgR2] gives a sound inter-
from that of electrons, and thus, define an intermediate statgretation to a modified Chapman-Enskog perturbative
of the system where the electron temperature can be differeffethod. A symmetric formalism for the transport systems
from that of hea\_/y particles. This state corresponds to 'Fh%nd coefficients, analogous to that of Ferziger and Kéler
zero order solution of the Chapman-Enskog perturbatives preferred for physical considerations to the approach of
method. Nevertheless, if the energy decoupling hypothesis igjrschfelderet al. [5]. Moreover, the formalism retained is
conserved deriving a perturbative solution, thermal diﬁusm”advantageous from a numerical, standpoint and allows for the
is not correctly treated and diffusion velocities do not rigor'transport algorithms developed by Em and Giovandi2d]

ously respect mass conservation. The first model for twofrg be employed in applications. It is regrettable that the non-

temperature plasmas in the presence of magnetic field, sel mmetric formalism introduced in RefB] is still used to-

consistent with respect to diffusion phenomenon and base C ) i
upon kinetic theory, was published in the 1970s by Kolesni- ay .desplt.e its disadvantagésee for '”S‘a’?"e Re[.26]),_
kov [16]. Some transfer of energy is considered in the per_albelt Curtiss had eventually abandoned this approach in fa-

turbation function for the electron-heavy collisions. How- VO of symmetric transport coefficien{80]. A generalized
ever, some steps and approximations in the deve|opme,§tefan—Maxwgll equation in any order of approximation is
remain debatable. The final results of this work have beeerived following a method proposed by Kolesnikov and Tir-
subsequently published in Engli§ti7,18. Concerning the skiy [31]. If possible, flna! expressions of the transport fluxes
mathematical aspect of partially ionized plasmas, Petit an@e¢ compared to the various models and commented.
Darrozes[19] have stressed that the Chapman-Enskog per-
turbative method must be revisited. A dimensional analysigl. BOLTZMANN EQUATION AND CONSERVATION
of the Boltzmann equation shows that electrons and heavy EQUATIONS
particles have different relaxation times. In the 1990s,
Ramshaw[20], Ramshaw and Chan@1] have deduced a
pragmatic model for diffusion from a less cumbersome hy- The plasma is assumed to fulfill the following assump-
drodynamic theory. At the same time, Degond and Lucquintions:
Desreux[22—23 have followed the dimensional analysis of =~ A>1. The plasma parametér is defined as the ratio of
Petit and Darrozes to introduce an epochal relaxation treathe Debye length to the mean impact parameter for 90° scat-
ment. Electrons and heavy particles exhibit distinct kinetictering. This nondimensional number is also proportional to
time scales and may have different translational temperahe number of electrons in a sphere of radius equal to the
tures. At the hydrodynamic time scale, the energy exchange@ebye length. If the plasma parameter is sufficiently large,
between electrons and heavy particles tends to equalize bog@iarged particle interactions can be treated as binary colli-
temperatures. Moreover, a suitable Knudsen number isions with Debye-Huckel screening of the Coulomb potential
proved to be proportional to the square root of the electrousing a collision operator of Boltzmarjid].
heavy-particle mass ratio. Rat al. [26] have recently pro- K,<1. The Knudsen numbef, being small, the plasma
posed an alternate derivation of the transport properties in & collision dominated.
two-temperature plasma. Unfortunately, the Chapman- e=\Vme/m,<1. Our gas mixture is composed bf spe-
Enskog method employed rests on an incorrect scaling of theies referred to the set of indiceS={1,... N}=H U{e},
Boltzmann equation, in contrast with the dimensional analywhere heavy particles are distinguished from electrons. The
sis used in Refs[19,22,23. Nevertheless, at thermal equi- electron mass reads,. A characteristic mass for heavy par-
librium, their results are consistent with those obtained inticles is given bym,.
Ref. [5]. Finally, the moment method of Grad to obtain a |T—T,|<T.~T, Due to the small electron heavy-
solution of the Boltzmann equation is an alternative to theparticle mass ratio, small departures from thermal equilib-
Chapman-Enskog method. The expressions of the transpaiitim are envisaged. The electron and heavy-particle tempera-
fluxes of multicomponent plasmas derived by the higher aptures, respectively, reafl, and T;.
proximations of the moment method turn out to be equiva- B.<K,. The Hall parameter of electroi is assumed to
lent to the results given by the Chapman-Enskog method, dse smaller than the Knudsen number. Thus, the magnetic
demonstrated by Zhdand27]. field influence on transport properties remains negligible, the
In the present work, various ideas, some of which notplasma is unmagnetized. The approach followed here can be
widespread, are combined together to obtain a new kinetigeneralized to derive transport properties sensitive to a mag-
treatment of the transport fluxes for two-temperature plasnetic field.
mas. According to Ramshaw and Chang, theories generaliz- \p<L°. The Debye lengthp being smaller than a refer-
ing the Chapman-Enskog solution procedure to the casence lengthL? in the flow, quasineutrality of the plasma is
where electrons and heavy particles have different tempergrescribed.
tures are “so intricate that is by no means trivial even to No chemical reactionsErn and Giovangigli[29] have
identify and extract the final resultgsee Ref.[28]). The  shown that chemical reactions do not influence the transport
authors aim to provide here final expressions of the transpogroperties if the characteristic time for chemistry is larger
fluxes readily usable by readers interested in practical applithan that for collisions implied in transport phenomena.

A. General remarks
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No internal energyThe internal energy is not taken into collision. The species number density=[f;dc; and mass
account in the present derivation. The influence of the interdensity p;=n;m;, allow for the mixture number densitp
nal degrees of freedom on transport phenomena is addressed,; . sn;, mass density=2; _ sp;, and hydrodynamic veloc-
in various specialized publications cited in general Refsity
[6,27,29,32 Indeed, a rigorous treatment including the in-
ternal energy leads to transport collision integrals difficult to
estimate with accuracy in high-temperature applications.
Capitelli et al. [33] have recently assessed the role of elec-
tronically excited states on the viscosity for a hydrogento be defined. Hence, the peculiar diffusion velocity reads
plasma in the temperature range 10 000—25 000 K by com-
puting the adequate resonant charge and excitation transfer Ci=c-v. (5)
cross sections. In this contribution, a simple correction due t
Eucken[4—6] has been retained instead.

Classical description Quantum mechanical effects on

pv = ZS mJCJ deCj , (4)
e

(%'he streaming operatqR) is written in terms of the vari-
ablesr, C;, andt

transport phenomena in a gas are caused by the wave nature 9 E dv

of molecules(diffraction) and their statisticgsymmetry. Di(f)=—Ffi+(v+C) - VFf+ (—' - —) Ve f
Diffraction effects become important when the de Broglie It m dt '
wavelength is about as large as the dimension of molecules, - (VCi f,®C): Vv, (6)

whereas symmetry effects depend on the gas density and

appear when the de Broglie wavelength is of the order ofyhered/dt=d/dt+v-V is the material derivative.

magnitude of the average distance between the gas mol- Collisional invariants expressed into axes moving with
ecules. In this work, transport properties are derived fronthe gas are introduced

classical mechanics. Nevertheless, Hirschfelderal. [5]

have shown that diffraction and some symmetry effects are Vi=m()ics, j €S, (7a)

correctly described by classical expressions of the transport

properties provided that the transport collision integrals are YN = (mC)is ve{l,2,3 (7h)
mnwed 1 &9 ’

computed from quantum mechanics.

Concerning notation of spatial quantitidght-face type Lo
stands for scalarfold-facetype for vectors, andans serif Pha = (szi )i S (70
type for tensors. Indices j,k,| allow for the species in the
mixture to be distinguished. Indicgsq,r correspond to the
Laguerre-Sonine polynomial order. When indices are omitted

A scalar product is defined

for quantities associated to either the species or polynomial {ED) =, &0 ¢dc;, (8)
order, those quantities are implicitly considered to be vectors jes
or tensors. ) ) )
where §© ¢; is the maximum contracted product in space
B. Boltzmann equation between the tensog and ;. Employing Liouville’s law for
The velocity distribution functiorf; for the speciese s  elastic collisions, it is shown that the average rate of change
is solution of the Boltzmann equation for the entire gas of the molecular property™,m
e{1,... N+4} vanishes
Di(f) =3J;. (1)
The streaming operator is defined by 1((\1”“,3)) = 4i > | M+ v p - \I’Jm')
n Niics
d Fi
Di(f) = Efi +¢ -V fi+ m Vi, (2 X (f/f] - fif;)go dQ dcdc; =0, 9)

wherec; andm, are the velocity and mass of particle. The by conservation of mass, momentum, and energy in elastic
only external force considered acting on the particle is arcollisions. The following scalar products are also introduced
electric force Fi=q;(E+c;xB), with the electric fieldE, for later convenience

magnetic fieldB, and species chargg. The scattering col-

lision operator is given by U&= > § 0 ¢dc;, (103
‘]i:E‘]ij(fi!fj)l (38) jEH
jeS
<(§,§>>e=f £e O Ledce. (10b)
J”(f“fj) :f (flrf], - f| fJ)gO' dQ dC], (3b)

The BoltzmanrH Theorem(see Refs[4—6]) induces that
whereg is the relative velocityg the differential cross sec- the equilibrium solution of Eq(l) is a Maxwellian distribu-
tion, andQ a solid angle. The primes denote values aftertion function
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3/2 2
my m;C ) 1
f-M=n'< ' ) ex (— '), ies, 11 v-=—fc-f-dc-. 17
i | ZﬂTkBT p ZkBT € ( ) i ni (R (| ( )
where the gas equilibrium temperaturds defined propor- Remark, the diffusion velocities are not linearly independent
tional to the average of the particle kinetic energy and a mass conservation constraint is obtained employing
Egs.(4) and(5):
§nkBT—§‘, Imctde (12)
2 o) 2 _Espjvj:o. (18)
je

Symbolkg stands for Boltzmann’s constant. There exist situ-
ations where one species may attain a temperature different
from that of the other species. For instance the temperature 9
of electrons can be higher than that of heavy particles in —p+ V - (pv)=0. (19
inductively coupled plasma wind tunnels at low pressures. In It

these facilities, the energy is brought into the plasma by elec- (jiii) Momentum

tromagnetic coupling between mainly the electrons and a
coil driven by a radio frequency current. Electrons exchange
some energy with heavy particles through collisions. This
energy exchange is not efficient because of the large differ- (20)
ence of mass between both partners. This exchange becomes

weaker when pressure decreases as described in Sec. Il Bith the stress tensor

Consequently, electrons may remain hotter than heavy par-

(i) Global continuity

d
E(pv)+V (pveVv)+V -P-ngE’'-j XB=0

ticles. Therefore, the heavy-particle translational temperature _ _ f

. L . P=2>P; P = Yo! - f.dc 21
(for all i € H,T,=Ty) is distinguished from the electron tem- E‘S p and P mCi @ C; fidc;, (2D
peratureT,

3 L mixture chargeg=2;_s X;q; (X; is the mole fractiop species

S — | Zme2fde conduction current;=n,q;V;, and mixture conduction current

Zn'kBTh j mCitide, i<, (133 j==;csij. The electric field in the hydrodynamic velocity
frame read€’=E+v X B.

3 1, (iv) Species energy
EnekBTe: f EmeCefedce. (13b) ; q
—(pe)+ V -(pev)+ V -(q)—ji-E' +pV;-—V
This is not in contradiction with théd Theorem. After a gt e Pis q) i PV Gt
relaxation time, both temperatures tend to equalize if no ex- +P:VV=AE, ieS 22)

ternal forces are applied to the system.
with the species energg{e,:gnikBTi:f%mCizfidci. The spe-

C. Conservation equations cies heat flux reads

Multiplication of the Boltzmann equatio(l) by the col- 1
lisional invariants given in Eq(7) and integration over ve- i R i
locity yields species conservation equations

and the energy exchange term is given by
f \I’irnDi(fi)dCi = f \P{n\]i(fi)dci,

1
AE; = f EmiCinidci. (24)
Summing up over the species and using the property of the
collisional invariantgsee Eq(9)], global conservation equa- —(pe)+ V -(pev)+ V -(q)—j-E'+P:Vv=0,
tions read at

(PmMDy=0, me{l,...N+4}. (15) (25

with the mixture energype=X;_spje; and heat fluxesq
=0h*0e On=2jc Q;- Two-temperature plasmas are de-
scribed by the global conservation equati¢h8), (20), and
(25), supplied with the species continuity equatigté) for
J ) all species and the electron energy equafios., Eq.(22)
PTG V-(pv)+V -(pV))=0, ieS (16  with indexi=e]. The quasineutrality hypothesis eliminates
the termngE’ in Eq. (20). Equations for the electromagnetic
with the species diffusion velocity field are not presented in this work.

A detailed derivation can be found in the book of Mitchner
and Kruger[34].
(i) Species continuity
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. CHAPMAN-ENSKOG PERTURBATIVE METHOD 1{~ cm = o= o~ e o~
. . . =) Ce- Ve +QE - V¢ fe+_C|e[(8MhV+Ce)
A. Dimensional analysis & e Kn

A dimensional analysis was proposed by Petit and ~ o~ o~ D~ o= o~ o~
Darrozes[19] to adequately scale the Boltzmann equation. X B] 'Vaefe} + Mh[&_—ffe““v Vo= (Ve fe
This idea was further exploited by Degond and Lucquin-
Desreux[22,23 in their epochal relaxation concept. A small
parameter is introduced to deal with mass disparity between
the mixture species. It is defined as the square root of the
electron heavy-particle mass ratio=\m,/m,. Reference Where Mp=v%/V} is the Mach number associated to heavy
quantities are now presented. Electrons and heavy particlegpecies. Degond and Lucquin-Desre[82,23 distinguish
exhibit distinct thermal speeds employed as reference peciiree different time scales and demonstrate an epochal relax-

o @ o~ ~ 1~
® Ce):VV:| - S(Mh)zﬁ -V'{;efe= S—KnJe, (29b)

liar diffusion velocities ation. The fastest time scalg rules the evolution of the
electrons, the intermediate time scalecorresponds to the
Vo= /kB_TO (264 heavy species and the slowest time st/ ¢ governs the
€ m, relaxation of temperatures. In consequence of the choice of
tY, the Knudsen number scales g=¢/M,. The classical
kT Chapman-Enskog perturbative method postulates only two
Vﬂ= —= evg, (26b) time scales: the microscopic or kinetic scale and the macro-
Mh scopic or hydrodynamic scale. Furthermore, in this classical

whereT? is a common reference temperature. Two collisionapproach, the parameterdoes not appear in the left-hand

time scales coexist side of Eq.(29b).
The magnetic field is assumed to be sufficiently low such
t= 1 (273 that B.<<K,,. It has no influence on the transport phenomena,
¢ noa‘)vg’ the plasma is considered to be unmagnetized. Due to the
choice of scale for the electric field, the magnetic Reynolds
1 t, numberR,,=B%°/EC is related to the Hall numbers
th= 0 0\/0:_, (27b)
n“o h € Bh
. . Rn=Be="". (30
wheren® and ¢° are, respectively, a reference density and €

differential cross section. The mean free path is identical for . the condition8,<K,=¢/Mj, is automatically satisfied

i — 0 _0)— — ' e n
both types C?f SpeC|leI5°_—1/.(n g )—tevg—thVﬁ. A reference if the magnetic Reynolds number verifiBs,<e. The distri-
hydrodynamic velocity is given by°. The length scale reads ption functions are expanded as usual upon the Knudsen
L°=t%?; the time scal¢® employed as reference time will be ,\mber. or equivalently the parameter
explicited later. The Knudsen number is given Ky=1°/L°. '
A reference electric fieldE° is assumed to verifyg®E°L° fi=f(1+eg), ied. (31
=kaT", such that any change in the charactecrli;tic length re'i:ollowing Chmieleski and Ferzigdgii4,15, in the limit as
quires a simultaneous change of the force saglegeing a L b :
reference species charge. This assumption ensures that tffe Pecomes infinite, the zero order distribution function of
space gradient and velocity gradient terms of the streaminf€aVy SPecies is assumed to satisfy the limit

operator are of the same order of magnit(i28]. Ha_II num- lim in: noC), ieH, (32)
bers are introduced for electrons and heavy particles m—o0

_q°B° where &(x) is the Dirac distribution. For the interactions be-

Be= me te, (283 tween electrons and heavy particles, we propose to write the
distribution function of heavy species as
0RO .
=05 —ep., (28D fi=ndC)(L+ed), ieH. (33

My
v_vhereB? is a reference magnetic field. The Boltzmann equa- B. Zero order solution
tion (1) is written in nondimensional form as

Injecting the expressions given in E¢81) and(33) into
the Eq.(29) and equating the coefficients of like powerseof
the zero order distribution system reads in dimensional form

G -Vi+ I §2F+ &%[(th +C;) X B]- V&,
m ' Kn M, I

e (O + 3 nS(C).f21=0, i
M| TR 47§ - (2T E)iF 2 32 ) + Idns(C), 71=0, TeH, (34

jeH

- (Mhy% Feh=23, ien, (29a) 2 JeffendC)l+dedfefd=0. (34D

Kn jeH
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A H Theoremat the kinetic time scale of electrons or heavy between two populations. A two-temperature intermediate
particlesis derived in absence of external forces and for astate was defined with the electron and heavy-particle veloci-

spatially uniform gas in thermal nonequilibrium. The Boltz- ties distributed according to Maxwellian functions, respec-

mann equation reads in this special case as tively, at the electron and heavy-particle temperatiysee

Eq. (38)]. In spite of thermal disparity, there is no net energy
if_ = 3 (f,f) + do(fifo), ieH (359  exchanged between the electron and heavy-particle popula-

gt o T ' tions if the mass of heavy particles is assumed to be infinite

in collisions with electrons. Thus, electrons are preferentially

thermalized through electron-electron collisions. However,
—fe= E Jej(fe ) + Jed fe o) (35b) the net energy exchanged in electron-electron interactions is
It jen zero. Even though the energy transfer between electrons and

Defining a functionH=-3; _s[f; In f,dc;, employing the heavy particle; is not efficient, it plays an importa.nt. role and
Boltzmann equationi35) and Liouville's law for elastic col- tends to equalize both temperatures after a sufficient relax-

lisions, the derivative oH with respect to time is given by ation time, previously defined aS. The energy exchange
term must then be computed assuming a finite-heavy-particle
dH

1 o L mass. Consequently, the two-temperature intermediate state
ot ZiEH [In(f{f)) —In(fifJ(Ffj — fif )go- dQ dci dej  gisappears if not artificially sustained and the system tends to
e an equilibrium state at one single temperature.
1 e Ve Following similar arguments, an intermediate state can be
* EE [I”(fefj) B '”(fefj)](fefj defined with distinct hydrodynamic velocities for electrons
Jert and heavy particles. However, Mor$85] has shown that

1 = - .= momentum is exchanged more efficiently than energy for
— fefj)go dQ dc, dc; + 1 f [In(fefe) = In(fefe) I(fefe hard sphere and Coulomb interactions between electrons and
o heavy particles. The relaxation time to equalize the hydrody-
- ffo)go dQ dc, dc, namic velocities of both populations is of the order &3f

>0 36) c_ompared to the relaxation time to equaliz_e their trans_la-
- tional temperatures. A Coulomb force law with exponential
where the bar is used to distinguish collision partner indicesPebye-Htickel shielding is well suited to model electron-ion
Examining the sign of the expressi¢r-y)(In x-Iny), the  interactions. Electron-neutral interactions are better de-
H function cannot decrease in time. When the zero ordepcribed by quantum mechanics than classical hard sphere in-
solution of the Boltzmann equation is reached, the couplingeraction potentialg36]. It is nevertheless assumed that Mor-

term between heavy particles and electrons vanishes se’s argument remains qualitatively valid and electrons are
considered to share the same hydrodynamic velocity as

heavy particles. Deslog7] has derived a general expres-
sion for the energy exchanged between two Maxwellian
gases with different temperatures and the same hydro-
(37) dynamic velocity

It was assumed in Eq37) that momentum and kinetic en-

1
52 na(CHIINEY) = In(fH](FY - 1) go dQ de, dc; = 0.
jeH

ergy of heavy particles are unaltered in collisions with elec- AES = 16nckg(Th - To> n; n—]eﬂ(elj'l). (39
trons. Kinetic energy of electrons does not change either, jer M
only their momentum is modified due to a change of rajeC-r o momentum cross-sectiofs? are defined in Appendix

®. The energy exchange term goes to zero when the mass of
heavy particles tends to infinity in E¢B9). Furthermore, this
term is proportional to the number density to the square and
thus rapidly drops with pressure.

organized movement of electroiisee Ref.[7]). Thanks to
this approximation, the zero order solution of the E24) is

a set of Maxwellian distribution functions at different tem-
peratures

0 m %2 mC?\ C. First-order solution
fi=n, exp| - , ie™, (3839 - : N .
27kgTh 2kg Ty, Injecting the expressions given in Eq81) and(33) into
the EQ.(29) and equating the coefficients of like powerseof
312 2 he perturbation function defined in E(B1) is solution of
Me mC, the p
fo= e( ZkaTe> exp (‘ 2kBTZ) : (38D the equations

The transport fluxes vanish and the zero order conservation > [J;(f0;, 1) + 3 (£, £+ Je[m8(C)) 5, 2]
equations reduce to the Euler equations. jeH
In plasmas at equilibrium, the electron and heavy-particle + Jie[M 8(C1), 2]
velocities follow Maxwellian distributions at the same tem-
perature[see Eq(11)]. Particles exchange some momentum _9d O+ (v+C)- VFO+ (ﬂ Q)
t I I

E —_
m dt

and energy during encounters, but there is no net exchange at
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Ve f - (Ve @ C):Vy, ieH, (409 [F,Gle=(G,1(F)))e. (479
Their explicit expressions are found in Appendix A. The total
E {Je[f2e,n; A(C ]+ I F2,1,8(C)) i1 + Jed 2P, T2) bracket integral[,] is symmetric[F,G]=[G,F], positive
jeH semidefinitg F,F]=0, and its kernel is spanned by the col-
+‘]ee(fg,fg¢e) lisional invariants. Consequently, the homogeneous solution
of Eq. (42) is spanned by the collisional invariants. The gen-
=C,- V2+ (&E _ ﬂ) Ve 2. (40b) eral first-order solution takes the form
@ ) 1 1 1
The lower order termdv/dt-V f2 is kept in Eq.(40b) for i = _HAih' VinTh- HAF VinTe- HBi: Vv
later convenience. A linearized scattering collision operator
T 1 _
is introduced _ HE DI -d, + ¢, (49)
nn: . jeS
(@) =2 l(¢), ies. (41) , , ,
jes N where ¢ is a solution of the associated homogeneous equa-

tion I;(y)=0. Seeing that there exists some energy exchanged
in the collisions between electrons and heavy particles in the
first order expansion, new terms will appear in the final ex-
pressions of the diffusion velocities ensuring the exact mass
conservationsee Eq.(18)]. Moreover, both the heavy par-
ticle and electron temperature gradients are present in the

The partial linearized collision operatotg are defined in
Appendix A. Making use of the conservation equati¢bs),
(20), and(22) with the zero order distribution functiorisee
Eqg. (38)], the following constrained integral equations ap-
pear after lengthy calculations

N 5 expression of the perturbatiafy, whatever the species type.
n2l(¢) = - f2 L OCdi+ (Ciz— §>Ci -VInT, The coefficients ofs must take the form
i
e Al'=AT(C)C;, (49
+2(1_5|e) Ci®Ci—§| Vv, 1eS8,
wherel is the identity tensor. The contribution of the energy |2
exchange term is not taken into account providing that Bi=Bi(C)|Ci®Ci- §| , (490
[T~ T,/ <T°. Constraints
w9y =0, me{l,...N+4}, (43) DI =DI(C)C;, (490)

assure uniqueness of the solution of ER). A thermal non-

and are solution of the integral equations
equilibrium parameter is defined a®;=T,/T;,. Driving g q

forces read o 1o
v c l;(D%) = Hfi (Gk— YOG, keSS, (503
Pi yip !
di=— -2 Vinp+(yig-xq)—, (44
kT nikgT, TP (vig qul)kBTh (44)
1 5
wherey; is the mass fraction. The driving forces are not Ii(Ah):Hf?(l_‘sie)<ci2_§>ciu (50b)
linearly independent. The relation
di=0 45 1 5
gs ' (49 1i(A9) = Ef?aie<6? - E)Ci, (500

is exactly satisfied thanks to the lower order term kept in the

right-hand side of Eq(40b). The partial pressure reags 2 Cc?

=nikgT;. The pressure of the mixture is defined Iy 1i(B) = =f2(1 —5.9)<Ci ®Ci- §'|) (500
=2 s ;- Nondimensional velocities are given by n

C:( m )1’20 s with the constraints
o\ 2T, T .
Bracket integral operators are introduced as E‘Smj f fiCiAjde =0, (518
[F.G]=(G,I(F))) =[F,Gly+[F,Gle. (479
[F,Gly= (G, (F))n, (47b) Esmj J fiCPATde; =0, (51b)
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>m f f’C?Difdc; = 0. (510
jeS

Similar integral equations are found in the Russian literature,

however without a sound and rigorous justificatieee Ref.
[16]). The vectorD are not linearly independent and a sym-
metric formalism([4,6] is chosen,

> yiDk=0, (52
keS

to derive symmetrlc expressmns in agreement with Onsag‘ J

er’s reciprocity relations. Symbak, in Eq. (48) correspond-
ing to the collisional invariants does not contribute to the
diffusion velocities, heat fluxes, and stress tensor and i
omitted in our analysis.

D. Transport fluxes and coefficients

An additional bracket integral operator is introduced to
deal with thermal nonequilibrium

[F,G]° =((G,1°(F))) =[F,Gl + @i[F,G]e, (53)

with 12=1;/0; (i € S). This operator is symmetrifF,G]®
=[G,F]®. Some useful bracket integrals to derive the expres
sions of the transport fluxes are now presented

1
[Dk,d]® = n_k f fEdk dek - _Esm] f?dj : CJdCJ,
JE

(548

[AMa]=[AMa], =~ E ( 2)aj - C;dc;,

JEH
(54b)

[Ae,a]:[Ae,a]e:%Jf2<cg—2>ae-cedce, (540

2

]EH
(54d)

Giving the transport fluxes definitiorisee Eqs(17), (22),

and (23)], perturbation functior{see EQ.(48)], constraints
[see Eq.51)], and bracket integralgsee Eq.(54)], the ex-
pressions of the transport fluxes are calculated.

1. Diffusion velocity
1
Vi=— f CifPidc;
n;
=->D;d;-D}VInT,-DEVin T, i€,
jeS
(55

with the multicomponent diffusion coefficients and multi-
component thermal diffusion coefficients

PHYSICAL REVIEW E70, 046412(2004

1
D;; = —[D',D'1°, 56
)= 5,1D'"D'] (563
Db = [/, A" (56b)
Ti 3n ’ ’
D%, = —[D/,A°J° (560)
LY )
€ S. Djj is symmetric andD;; > 0. FurthermoreD;;, D?i,
andD$; are not linearly independent:
is E y;D;i =0, (573
jeS
2 y;D} =0, (57b)
jeS
2 y;D$;=0. (570
jeS
Thermal diffusion ratios are introduced
- > Dyky; = DY, (583
jeS
> D 7= Dfi, (58b)
jeS
> K+ —kh =0, (580
jeH
> K+ —k$e— 0. (58d)
jeH

Hence the diffusion velocities are alternately expressed by
the relations

Vi==2 Dj(d;+K,VIn T,+k$,VIn T). (59
jeS

As found by Kolesniko\{16], thermal diffusion through the
electron temperature gradient influences the heavy-particle
diffusion velocities. The mass conservation constraint given
in Eq. (18) is exactly satisfied with the expression of the
diffusion velocity presented in E@59). This result is funda-
mental from a numerical standpoint because it ensures the
compatibility of the Stefan-Maxwell equation system pre-
sented in Sec. lll F.

2. Shear stress

P=2> | mCje Cif(1+¢)dc
jeS

=pl— 7[Vv+(Vv)T]+ %nV -vl, (603
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e
Pe= J MeCe ® Cefd(1 + p)dco = kTl (60D) Nen= “kBESkTPTp (650
with the shear viscosity Thz
Ne=N.—nNg— 2, k&DS.. (650)
7= 16Ke T B.Bls. (62) S P

Due to the scaling of the Boltzmann equation, electrons d&eeing the transport flux expressions, the first order conser-
not contribute the viscous shear stress, as mentioned by Deation equations are identified as the Navier-Stokes equa-

gond and Lucquin-Desreu23]. tions. It will be shown further that the cross contributions
due to temperature gradierjsee Eqs(65b) and(650)] van-
3. Heat flux ish as well in the case of measurable quantities in the hy-
pothesis of weak thermal nonequilibrium.
an= > m,CC;f ¢;dc;
jeH E. Laguerre-Sonine polynomial expansion
The integral equation®0) are solved by a spectral Galer-
—E P,h V=M,V Ty-nkgT, >, Did;, (628  kin method. The coefficients of the perturbation function de-

jes fined in Eq. (49) are expanded in a truncated series of
Laguerre-Sonine polynomials

Oe= f ~meC2Cfo¢edc,

A= szT sor 2 anosfche,  (e6a
, ipeP
= peheVe—Ng V Te—nksTi2, DRdj, (62D
jeS
(
with the partial thermal conductivities Ai=- 2T, 2 a’y(é) Ss? (crey), (66b)
ipeP
k
M= STANAT, (63 &
Bi=> b y&)S (cz)<c 8C- ) (660)
peP
k
Ne=STASA, (63b)
Dk = d(9sfcHe, k 66
and the species translational enthalgigshy;=2kgT,/m;. No ! 2kgT, zp #(8) 5 (ce, €S, (669

cross contributions due to temperature gradients are found, ) )
i.e., the heavy-particle heat flux does not depend on the eleé< S, and whereP={0, ... £-1} is the set of polynomial
tron temperature gradient and vice versa. This is due to th#@dices. Substituting EQ(GGG) into the integral equation
exact cancellation of the bracket integrdls", A", and (50a, Eg. (663 into the integral equatiort50b), and Eq.
[A® A%],. The heat flux expressions derived by Kolesnikov(66b) into the integral equatioi500), multiplying by the
[16] include some cross contributions of temperature gradNeCtor% (C)C;, and integrating oveg;, the transport sys-
ents probably generated by polluting small order termgems for mass and heat transfer are readily obtained
present in the approximations. In terms of measurable quan-

Kk 0q 4k
tities, the heat fluxes read EHquAde + E Aigdg
je S
Gn= 2> piV; + nke T KV =N V T =N V T, 8 _
o ics °F =ﬁ(5ik_yi)5p0, ieH, (673
(643 °
T
k h
Ge= peheVe + NkaThS KEV = Aoy V T = Ao V T, ]EHAeJ ,o+Equd (5ek Yo7 0.
jeS €
(64b) (67b)

with the thermal conductivities o 4 n
EEqua]q'l‘EAqaeq po n5p1, |€H,

M=\~ nkBE k?lDT], (659 jeHgeP 5kg
Jes (670
=- kB—E K7D, (65b) > ARa+ 2 AR, =0, (67d)
E]ES jeH
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> DA%+ D ANAS 6,0=0, ie™, (679
jeHqeP qeP

4 n
2 Aot X AbREg= o o (67
jeH qeP B

ke S,peP. Likewise, substituting Eq(660) into the inte-
gral equation(50d), multiplying by the tensorS(S‘,’)z(Ciz)(Ci

®Ci—Ci2I/3) and integrating oveg;, the transport system for

momentum transfer is given by

2 .
S S HIb, = k——'apo, ieH, (68a)
jeHqeP CRL
S HEbeq=0, (680

geP

p e P. The bracket integral reduction is found in Appendix
A. Transport collision integrals are introduced in Appendix
B. Transport matricedf* andHf%, i,j € S,p,q e P are pre-

sented in terms of the transport collision integrals in Appen-

dix C. The transport matrices are symmetric
A= AP, (699

Hﬁ-q: HaP (69b)

i
and satisfy the relations

T
> AP+ T—:Ag?: 0, ieS. (70)

i
jeH

In order to keep a symmetric form in thermal nonequilib-
rium, temperatures do not explicitly appear in the momentum
transport system given in E¢68) contrary to the expression

derived by Ferziger and Kap§6]. Substituting Eqs(66a),

(66b), and (66d) into Eq. (51), a new set of constraints is

obtained
2 yiao=0, (718
jeS
> Yjao=0, (71b)
jeS
2ydi,=0, ies. (710
jeS

Substituting Eq(66) into Egs.(56), (61), and(63), transport
coefficients for mass and heat transfer read in the approx

mation orderé:

1 .
D;(§ = %df,@ ijes, (723
h 1. :
e 1 e
D(é) =~ %ai,o, ieS, (720

PHYSICAL REVIEW E70, 046412(2004

5k ;
N©=7 S e, (729
je
5Kkg ne
Ne(§)= =70 . (720

Thermal diffusion coefficients are alternately given by

5 N
D9 =- -2 —dj,, (733
Ti an/5yn
S5neTe
DFi(&) =- Eﬁe-r_:dlel (73b)
The shear viscosity coefficient reads
ksT n
7@ =213 by (74)
jeH n

The system for the heavy-particle shear viscosity given in
Eq. (689 does not depend on electrons.

F. Goldstein expansion

Expressions of thermal diffusion ratigsee Eq(58)] and
thermal conductivitiedsee Eq.(65)] are elegantly derived
expanding the perturbation function in Laguerre-Sonine
polynomials as proposed by Goldst¢38]

1
aizd)i'i'aBi:VV—lﬂi

m.
= S P, ies, (79
2kgTi  pop 2
with the vectors
1 1 1 -
wip: Eaih,pv In T, + EaﬁpV In Te— EE d{ypdj . (76
jeS

Only the contribution to the heat transfer and diffusion phe-
nomena has been retained in the perturbation function given
in Eq. (75). The vectorsd: are linearly independent. Their
projections onto the driving force constraint hyperpl@see

Eq. (49)] along the mass fraction vector are the driving
forcesd;=d; —y;=y.s d,. Generalizing Kolesnikov and Tir-
skiy’s argument[31] to thermal nonequilibrium, iVIn Ty,

Vin T, andd; are treated as a set of basis vectors, then the
projections ofwf in this basis satisfy Eq67). The vectors

P are solutions of the system

> 2 Affofl+ 2 Aifolsy
jeHqeP qeP

4 n 8 .

= %E —diapo, I € H, (773)

Vin Th5p1 - 25nkB
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2 A20w0+ 2 quwq h 4 ni .
_ i @i ee®e AP = —6y, ieH, 83
jeH qeP EHqul i %a~ 5n an p1 € (83a
-2 gy 8 Thyse (77b
" Bnkg n 250k T, > ABdel =0, (83b)
eP
with the constraints derived from E¢71) A
S ye’=0. (79) > X A% =0, icH, (830)
jeS jeHqePy
The first moments of the distribution function lead to a 4o
physical interpretation of the vectots® and w?. Employing > Agga:q = 5nkB negpl, (830

Eq. (75) and the properties of the Laguerre-Sonine polyno- qePy
mials, one obtains

0 N o E 2 ALBiq=- 20, ike™H, (83e
= | fi¢Cide = Ewi ) (799 jeHqeP;
nkgT; > X ARBeq=0, ieH, (83f)
M f szog{),C dc; 2 In? I(‘”io_ w|1) (79b) jeHqeP;
|
— 0
Hence the diffusion velocities and the heat fluxes are related 2 Aggﬂekq =-2A%, ke, (839

P.
to the vectorsw? and e’ qePy

p € P;. The heat flux can be obtained injecting E&2) into

[Vile= 1|\/| |1 = lw?, ieS, (803 Eqgs.(80b) and(80¢). The thermal conductivities and thermal
n 2 diffusion ratios are identified as
(anle= 3 D= 2GT, S nwf-wl), (80D = 63 il (843
jeH 2 jeH Jenr
5 Me(§) =0, (84b)
[Gele= %M 3= ZkBTene(wg - wy). (800)
Ner(é) =0, (8409

Kolesnikov [18] has derived the expressions of the thermal
diffusion ratios, thermal conductivities, and generalized Ne(§) = %aneagll, (840
Stefan-Maxwell equation. The same approach is followed
here with the formalism of Ferziger and Kaper and a more

numerically adequate presentation where systems are pre- ——‘E Bu v 1eH, (84¢
ferred to determinants. Using E@O03), the system given in Ajenn
Eq. (77) can be written for any approximation ordér 1
K& =0, (841)
pq 0= 1
EHEmA wf = kB Y Y in Thd, ) 5T.n, |
Ti(g) _ZT_FBel n 1ed. (849)
22 AP[Vjle ieH, (819
jeH It turns out that the cross contributions due to temperature

gradients given in Eqg84b) and(84¢) vanish as well when

heat fluxes are written in terms of measurable quantities.

Furthermore, both systems for heavy partidee Eq(833)]

and electronsee EQ.(83d)] thermal conductivities are de-
(81b) coupled. Different orders of approximation can be employed
peP,={1, ... &-1}. After inversion of the nonsingular sys- in the Laguerre-Sonine expansion for each contribution. Re-

tem given in Eq(81), the vectorswP read garding the systems given in Eq83¢) and(83g), the same
: argument can be applied to the thermal diffusion ratios. The

> APdwi= —kB— ©VIn Tedpy = 22 ARV 1,
qePy jesS

o= aih,pv In Ty + aie,pV In Te expressions of,, and A\, agree with the results of Devoto
) [10]. Thermal diffusion ratios correspond to the expressions
+§S'B‘ivp[vi]§’ leS, pePr 82 gerived by Kolesniko\{18].

The first order Stefan-Maxwell equation for the diffusion
The coefficients in Eq(82) are solutions of the transport velocities is readily obtained writing Eq77) for ¢£&=1 and
systems using Eq.(809
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XX T, X|Xe< Tery, ): _ 16 x%T . r |
]EEH IJ [V ]1 [V ]1) h D [Ve]l h[VJl d|- 25nkB 'Dle Th(ple(g) qulAqSBeerBEIq i e H,
i (90b)
= H, (853)
16 x_ ) = 2 Ad 900
E _l<_[V -1V ]1> = T—d . (85b) 25nks Dee‘Pee(f = iz, eeBeer,Beeq C
jer Dej\ Th ¢ T ©

. ) ) is symmetric and verifies the relations
with the mass conservation given in E@8)

S ylvi=o0. (86) > o+ XX9<

jeS jeHDIj

T,

Th> ¢e(§=0, ie™H, (913

Binary diffusion coefficientsD;; are defined in Appendix B. )
The Stefan-Maxwell equation for any higher approximation X
: A > 2 (&) + % e £) =0, (91b)

order is derived from Eq.77) written for p=0 and¢>1 55Dy, Dee
4 . .
> A; 0[V ilet E > A qujq— -—d;, ieH, Let us write ¢;;(1)=0 to encompass the first order Stefan-
jes 2jcsqep, 25nkg Maxwell equation85) in Eqg. (88). Remark, once again, it is

(873 possible to use different orders of Laguerre-Sonine approxi-
mation to evaluate the first contribution in E§0a on the
1 4 one hand, and the second contribution in the same equation
2 AQV e+ > > A%wi=- ——d (87b)  together with Eqs(90b) and(90¢) on the other hand.

jes qeP; 25nkg Te
The second term in the left-hand side of E§7) can be G. Simplifications of the Stefan-Maxwell equation
';_ranlsformled bB(/j means of E@B2). After some algebra, the To emphasize the electric field driving forces, the Stefan-
inal result reads Maxwell equation(88) is changed accordingly
> —i[1+qo @MV le=Vilo + = TeX e[1+qo (&)
EETR U TD, > 51[1 g (OIV L~ V1) + 221 + (]
jeH h ie

j#i
j#i

x([ve] Ly ) T
R X([Ve]g‘ .ITe[Vi]g> +kE=d/, ieH, (923
h

=d,+KL(OVInT,+ k.en(g)% VinT, ieH,
e e T ,
(889 JEH_l[l + (Pe](g)]( h[vj]g_ [Ve]§> + KeThE = ?ed
(92b)

> ﬁ[1 + ‘Pej(f)](l_:[vj]g - [Ve]g)

jen Dej The driving forces are modified to incorporate thermal diffu-

sion and exclude the electric field

= Thpg,+ k(9 Vin Tl (88b)
Te R
. . . d=—"-="—Vinp+ki(VInT,
with the mass conservation obtained from EZg), nksTy, nkgTh
Y ylvj=0. (89) SO VInT,, (933
jes Te
The correction functiorp;;(£) defined foré>1 by the equa-
tions 1
ki = —— (%G — Yi0). (93b)
16 %X S S aw keTh
(&= A3 3
25nkB D (p” ¢ qrePklen i The modified driving forces and electric field factors are not
. o linearly independent
+ E Ageﬁei,rﬂej,qf L] eH,
e >d =0, (949
(903) jeS
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Sk =0. (94h) (96). Thus, the system given in EGLOQ) is supplied with the
jes ! equation; 4y, —YeX0;/ (Xe9e) [ V{]1¢=0. Quasineutrality of

L . . the plasma provides the simplified equation
The electric field remains unknown and can be determined

from thg ambipolar assumption stating that there is no net > yi[Vl¢=0. (102
conduction current jeM
> x;q;[V1=0. (95)  From Eq.(95), the electron diffusion velocity read/.],
jes =-2jcn Q[ Vjle/ (xe0e). Equation(100) generalizes Ram-

shaw and Chang’s diffusion modg20] to any higher order
of approximation for the Laguerre-Sonine polynomials, in-
cluding the thermal diffusion effect.

Combining both maspsee Eq(89)] and ambipolafsee Eq.
(95)] constraints, a new constraint appears

K[ Vi]s=0. 96
jze:s J[ ,]g (%6 H. Internal energy and chemistry
To close the system given in E@2), Eq.(96) is preferred to Internal energy of atoms and polyatomic molecules has

Eq. (95) for symmetry reason. If charge neutrality is verified been entirely neglected in this derivation. In elastic colli-

in the plasma, Eq95) and (96) are equivalent. The mass sions, the internal degrees 'of freedqm of mo_lecules do not
conservation constraint given in E(89) complements the change and the macroscopic result is a passive transport of
set of equations. internal energy. In |n_elast|c collisions, the internal degrees of
Existing models from the literaturl8,29 are shown to freedom vary. D_|ffu5|on an_d hez_it tr_ansfer phenomena are af-
be approximations of the present complete description. Astécted. As mentioned earlier, kinetic theory has been gener-
suming that for alli € , there exist§ e H,j #1i, such that &lizéd to incorporate both contributior§,27,29,32 A rig-
X/ Die<X/D;j, an approximate form of the Stefan-Maxwell OroUs treatment of internal energy is not the object of the
equation(92g is found for heavy particles present research and inelastic collisions were therefore not
T accounted for. However, simple Eucken corrections are now
XiXj i 1y XiXe A e considered in order to provide some pragmatic treatment of
J-EEH D;; [+ ONLV e~ Vil + Die[l * qD'e(g)]Th[Ve]f the internal degrees of freedom. These expressions are useful
i+ in situations where it is difficult to estimate with high accu-
) racy the contribution of inelastic collisions. Only the thermal
+kE=di, ieH. (97) equilibrium case is addressed in this section. Thermal non-
gquilibrium requires additional energy conservation equa-
tions with specific relaxation models. The heat flux expres-
sions given in Eq(64) are modified

Equation for electrons is obtained consistently to ensur
compatibility of the system

XeXi T _Th,
- EHEJH + e[ Vele KeTeE = Tede- (98) qn = Jgﬂp]hjvj + nkBTESk%Vj O\ F AR+ A FAD VT,
The mass and ambipolar constraints E@®) and (96) are (102a
still applicable. Equationg97) and (98) correspond to
Kolesnikov’'s model[18].

Assuming further that for all € H, there exist§ e H,]
#i, such thatxVe/Die<<x;V;/Dj; or such thatx.Ve/Die

<xV;/Dj;, the Stefan-Maxwell equation for heavy particles Species enthalpies used in the heat flux expresgsres Eq.

Je=peeVe+ Nk T KV =NV T.  (102b
jeS

(929 simplifies (102)] are now given by
2 )Z(I)_Xl[l +@i(OIVle- Vil + KE=d/, ieH. hi=hri+hg+hg, ieH,, (1033
jeH ij
j#i hi:hTi+hRi+hVi+hEi+hFiy | e Hp’ (103b)

(99)
he=hre+ hee, (1039

Summing up Eq(99) over heavy species and using Ee4), o
the electric field is given bE=d./ k.. Equation(99) is re- where’H, andH, stand for the sets of indices of atoms and

written polyatomic molecules. Expressiohg;, hy;, and hg; corre-
spond, respectively, to the rotational, vibrational, and elec-
> ﬁ[l + @i (OIV 1= [Vil) =di - ﬁdé, ieH. _trqnic species enthalpies. The chemi.cal reaction contribution
ien Dij Ke is included by means of the formation enthalpy. Rota-
j#i tional, vibrational, and electronic thermal conductiviti®g,

(100 A\vs and_)\_E, are derived on a rigorous basis consider_ing all
the collisions to be elastic in the transport systems given by
To get a closed form, the electron diffusion velocity is elimi- Ern and Giovangigli[29]. After some trivial algebra, one
nated between the constraints presented in E8@. and  obtains
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xCR transport fluxes and coefficients in thermal nonequilibrium.
=N o, (104a Thanks to the symmetric formalism retained, the numeri-
'EHpEJ HXI/D cal methods introduced by Ern and Giovangi@®] can be
employed. In another publicatiof89], the validity of the
xCY models developed is verified in physicochemical applications
W=EnY o ——, (104b  and the numerical advantages of the symmetric formalism is
TeR EJ H X/ Djj demonstrated. An extension of our theory to strong thermal
nonequilibrium would allow for a comparison to the results
XCE of Ratet al. [26].
Ae=nY, — (1040
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where CR, CY, and CF are the rotational, vibrational, and
electronic species specific heats per particle. Remark, ev
though less frequent, inelastic collisions play a role in the
establishment of local equilibriurtsee Ref][6]).

IV. CONCLUSIONS

In this contribution, the modeling of transport phenomena APPENDIX A: BRACKET INTEGRALS

was addressed for partially ionized and unmagnetized plas-
mas in thermal nonequilibrium. Different models found in . . . - . )
the literature were reviewed. Most of the expressions derived The linearized scattering collision operator is defined by
from kinetic theory are inconsistent with respect to mass
conservation. Moreover, it is difficult to extract the final re- () =2 —1|.,(¢)
sults for real applications. Kolesnikdid6] has established a jes N
self-consistent model from a nonsymmetric kinetic approachhe partial linearized scattering collision operators read
Petit and Darroze$19] and Degond and Lucquin-Desreux
[22,23 have derived the correct scaling of the Boltzmann
equation from a dimensional analysis. Ramshaw and Changl(d’)
[20,2] have proposed a pragmatic diffusion model from hy-
drodynamic theory. Raat al. [26] have envisaged the possi-
bility of a strong thermal nonequilibrium in two-temperature
plasmas. Their scaling of the Boltzmann equation is in con-
trast with Refs.[19,22,23 and a nonsymmetric formalism
has been used in the derivation. 1
We have presented a kinetic approach to compute thqae(¢)_——{Jie[nig(ci)(ﬁi,fg]+3ie[ni5(ci),fg¢e]}
transport properties. Following Petit and Darro4és)], a NiNe
dimensional analysis of the Boltzmann equation deals with
the disparity of mass between electrons and heavy particles.
This analysis yields the epochal relaxation concept worked
out by Degond and Lucquin-Desre{@2,23. We assumed a
translational temperature of electrons distinct from that of
heavy particles and a common hydrodynamic velocity. The
plasma was described by macroscopic fluid conservation
equations. The expressions of the transport fluxes and coef-
ficients were derived from kinetic theory together with a
high-order Stefan-Maxwell equation. These expressions re-
main valid in thermal equilibrium situations. The mathemati-
cal treatment includes a modified first-order Chapman-
Enskog perturbative method and Laguerre-Sonine
polynomial and Goldstein expansions. New bracket integrals
were introduced to deal with thermal nonequilibrium. We
retrieved the expressions of viscosity and thermal conduc-
tivities found by Devotd10] and the thermal diffusion terms _ T 07 0 T i~
computed by Kolesnikoy16]. Our results for diffusion gen- - n? f Fef e(de de e~ Pe)godidde,
eralize the models presented by Kolesnikov and Ramshaw (A2d)
and Chang. Thus, kinetic theory can be employed to provide
general, rigorous, and readily applicable expressions of theshere the bar is used to distinguish collision partner indices.

1. Linearized collision operator

ieS. (A1)

[‘]I](f ¢|v ?)+Jlj(fl’ J¢])]

_1 li li -
:n.n.ff?f?(¢i+¢i_¢i - ¢/)godQdc;, i} e H,
il

(A2a)

- ni f SC)f e+ i = B~ ¢)godQdc., i e H,

(A2b)
o) ==~ {0l 0 AIC)] + 3l S AC) ]

1
= f SC)f Ape+ i — Po— &)

XgodQdc;, ieH, (A2¢)

|ee(¢)—-—[Jee(fe of &) +Jedf o f abe)]
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2. Bracket integral definition

"no_ 1 0 ’
The total bracket integral operator is defined by [F.Glie= n f fed(Ci)(Fe~ Fe) © GigodQdcidce,

e

[F.G]=(G,I(F))) (A3) (A8b)
and can be expressed under the form 1
1 [F,.Gl,i=— f f 95(Cj)(Fe - FL) © GegodQdgdce,
[F.Gl=—S2> | f%%F+F-F -F)O(G+G-G Ne
4n-. % J J ! J i i i
ijeH (A8c)

1
- G/)godQdcdc + — > n: | S(C)fAF.+F; L
| I R [F.Clei= -

f f 98(C)(F; - F/) © G,godQdcdce.
~FL~F)) O (Ge+ G, - G, - G)godQdc,dc; )

(A8d)

1 - J— R J—

T an? J fef d(Fe+Fe=F=F) © (Ge*+ Ge= G, 3. Bracket integral reduction

oy — Reduction of the bracket integrals in terms of collision
~ Ge)god€adeedce. (A4) integrals generalizes Ferziger angd Kaper’s treatment for un-
From Eq_(A4), we deduce that the bracket integra| operatoﬂike particles to weak thermal nonequilibrium. Results for
is symmetric [F,G]=[G,F], positive semidefinite[F,F] heavy-heavy or electron-electron interactions are directly ap-
=0 and its kernel is spanned by the collisional invariantsPlicable providing that the adequate translational temperature
given in Eq.(7). The total bracket integral is decomposed iniS selected. The major steps in the derivation for electron-
terms of both the electron and heavy-particle contributions heavy interactions are outlined. The reader is referred to the

original work for further detail§6]. For instance, the partial

[F.Gln= (G, 1 (F))n, (A58 pracket[SPicAC,S9(cACT, is given by
= 1
k=G s im L [ erspiche. - sy
[F.G]=[F,G]y+[F,Gle. (A5¢)

P(CH)CigodQdcidc,, e H. (A9)

The bracket integrals are expressed in terms of partial

bracket integrals
_ nin' ’ " nen‘ ’
[FIG]h - E 2 ([FIG]IJ + [F,G]”) + E 2 ([FaG]]e
ijer N jen N

+[F,Glio), (ABa)

NeN; n2
[F.Gle= 2 —SH([F.Gl,;+[F.GlZ) + 5 ([F.Gle.
jeH n n
+[F,Gl%o, (A6b)

defined by the following expressions:

To simplify the calculation, the Dirac distribution is replaced
by fiolni and the infinite mass hypothesis of spediés as-
sumed at the end of the derivation. Notice the misprint in Eq.
(A9) in Ref. [6], where the arguments of the bracket are
inverted. To perform such an integration, a new set of vari-
ables is preferred to the nondimensional velocities. The cen-
ter of mass and relative velocities are introduced for
electron-heavy collisions

(Mg + m)G = meCe + MG, (A10a)

g=C —Ce. (A10b)

(i) Heavy-heavy and electron-electron partial bracket in-The center of mass relative to the moving gas stream is given

tegrals,(i,j) e H X HU{(e,e)}
1

[F.G]; = Fnj J f 2 )(Fi - F) © GigodQdcdg;,
(A7a)

E.GI = — | 1% °F - F)) © GgodQdagd

[F, ]ij_ninj it (F=F) igo C;dc;,
(A7b)

(i) Electron-heavy partial bracket integraiss H

1
[F'G]i,e: n_ f f 25(C|)(F| - Fil) @ GigO'deCidCe,

e

(A8a)

by Go=G-v. In elastic collisions, the center of mass veloc-
ity and the module of the relative velocity are identical after
collision for physical considerationsG=G’ and g=g’).
Hence, it is verified thaty-g’=g® cos x, where y is the
deflection angle. Following Devot§40], nondimensional
center of mass and relative velocities are introduced for the
thermal nonequilibrium case:

N E m)
Go= 2kB(Te+Th Go. (Alla)
~ 1 mgm <me m)
7“Nagm+mpe\T, T1,)9 (AP

Nondimensional velocities defined in E@6) are expressed
in terms of the vector quantities given in Eé@\11),
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dr/r?

[ meTh | mTh
Com\| =G0 \| ——/———2, (A12 =7—
¢ N mgT,+ miTego MeTe+ MT}; (Al29) x=m=2b

Jr 1 mm; ’
m 1_b2/ 2 _ /(_ 1 2)
\/ re—o(r) i+mj9

2m

/ mT, [ mgT,
C=\—"5—Gy+\—2—,. (A1l2b
I MeTh + myT, Yo MeTe+ miThy ( )

e

The determinant of the Jacobian of the transformation readiding particles, andry, the distance of
Cross sections are given in terms of the

(B1)

whereb is the impact parameter,the distance between col-

closest approach.
deflection angle

d(Goy) | 1 \/(meTh"'miTe)(meTe"'miTh) e
2(CoC) | me+m TeTh Qj=2m f (1 - cody)b db, (B2)
0
(A13) o : o . .
Collision integrals and binary diffusion coefficients in ther-
and mal nonequilibrium are now introduced as follows:

(i) Heavy-heavy interactions,j e H
Co+CP=Go+/°+2Go - 9(Te—Tp)

keT,m +m [
Qi(jl,s) — /BRI T f exp (—/,(/2);//25+3Qi(j|)q;’/’
0

><\/ MMy . (A14) 27 mm,
(MeTh+mMTe) + (MeTe+MT) s+3/2 [
Hammrm) =l
Providing that 2\ \ 2kg Ty m; + m, 0 P 2kgTh
mm;
ma><<E,E> < ﬂ, (A15) X—'J—92>925+3Qi(;)d9- (B3a)
Th Te/ me Iy + m
the previous expressions simplify as o 3 m+m kgTh (B3b)
1 1en mmy Y
7=/ e g, (Al16a) h =Imm: /(M +m) 2kaT, V2
’ 2kBTe W ere,/”_{mlm] [(m|+m]) B h]} g.
(i) Heavy-electron interactions, & H
’/_ T /_ k T * +
Ce~ Ve T_hgr Vii g, (Al6b) 0= \ Zi_meef 0o P A
e
1 ( Me >S+3/2fw ( Me 2) 25+3 (1)
— = expi - 9°)97°Qjedg,
Ci~ VuiGo+ v’ue\/l—?« (A160) 2vm\2ksTe/ Jo 2kgTe -
" (B4a)
Co+Cl=Go+ (A16d) 3 kgTe
Die= —16nmeQ(l'l) , (B4b)
ie
3(Gopr) _ 12
——| =1, (Al6e)  where,=[my/(2kgTe) [V g.
9(Ce,Ci) (iii) Electron-electron interactions
where u.=m./m; and u;=1. The explicit calculation of the keTe [ .,
partial bracket integrals such as given in E49) presents Qg,:) = _wm: f exp (—;/2)!/25 3Qg3ed,f/
no difficulties and is not detailed here. The approximation 0
made in Eq(AL6) is justified under conditions of weak ther- 1 me \2(” Me
mal nonequilibrium. As pointed out by Devo{d0], under = 7 kT f exp| - AT g 923+3Qgédg,
extreme nonequipartition of energy, as might be obtained in a vmaTe e 0 Ble
strong electric field, this method of solving the Boltzmann (B5a)
equation is certainly not valid.
3 kgTe
APPENDIX B: COLLISION INTEGRALS AND BINARY Dee= gnm QLY (BSH)

DIFFUSION COEFFICIENTS
where,=[mg/ (4kgTe)]Y%.

In classical mechanics, the deflection angle is related to The collision integrals and binary diffusion coefficients

the interaction potentiap(r) by the relation are symmetric in the species.
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APPENDIX C. TRANSPORT SYSTEMS mm
A= X 3(  (6m7+ 5
The transport matricea?® andHf?% i,j € S,p,q e P, are 75K TmeH (m; +m)
defined by the expressmns j#i

oo 8 e - 5mP O + MO + 2miiji(jz'2)>
AI] = 75k2 E Xlxk[$ (€ )c1%/2 c )c]ik

keS
L84 oMiea (3
+xixj[s<,;;>2(02)c,% (CZ)CJJ,}, (C1) 79T, 2
and 00_ 00 _ 32 mm;
M= T (m +m)?
pa— _—_ 2 _ 2 q) (2 3
HE { gsx,xk[i, ACP(C ® €~ CI3),SPCH(C X(Sﬂﬁ;,n o 2))’ i#j,  (C3g

® C - CAR)Jj + xx[SHHCH(C ® € - C2I3),

9 ec- CZI/S)]Jf’i}. (C2 HoO = 32 S xx m, 2<5m|9 1w, 3mJQ(2 2)
15(BJ eH (mi + mj)
j#i
Note the misprint in the indices of the partial brackd in 3 .3
Ref. [6]. This misprint compensates the error indicated be- +—— 2222 (C3h)
fore in Eq.(A9). 15kg

(i) Heavy-particle subsystem,j e H

; ) i) Heavy-particle-electron subsystemns H
The transport matrices are detailed up to order 2ff@nd (i) yp ystems

The transport matrices are detailed up to order 3\f@nd

order 1 forH. order 1 forH.
64 mm
00_ A00_ _ (| (1,2 ; ; 64me T
A=A 75&T, | m +m, & £ A%O:Ag?:—nk—g.l..r—:xixeﬂi%’l), (C49
B'e
(C3a
6 T 5
64 mm; A =Ad 4216 i ixe<_9(l oo 2)>
A= > XX Qll) 7KgTe Th 2
TSKgThjcr M+ my (C4b)
j#i
64 (T.\2
" 788t (?) xxameie !, (C3D Ad=Ai=0, (C40
B'e
o Ag=AL=0, (C4d)
mem,
Ajf=Aj=- 75T} X J(m+m)2
: A2 A20— _ 64m. Te ey 359 1,9 _ 9(1,2)+ 29(1,3)
SoWh_ o) e e T 52T, T, g8 e )
x|S0 -0?), i# ], (C30 h
(C4e
2
AlL= AO= _1_(5’9(;,1) _Q(_1,2)> AP=AZ=0, (C4f)
! 753 ThJGH mem\2 )
o 34 AB=AZ=A2=AZ=0, (C49
AZ=A2=0, (C4ah)
Al g 64 mfm’ (55 iy s o
ij ji 75ET} X J(m,+m]) 4 00 _ 1400 i
HP=HY=0. (C4i)
(13 _ 5022 | i
+ Q4 2077, i #], (C3e (iii) Electron subsystem
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The transport matrices are detailed up to order 3\f@nd 12 (175 105
AZl (1 ) _ Q(l 2
order 1 forH. ee 75k§Te§H 8
A= 1 D 19 1 6 1
(C5¢
W@M%WW%%W
A2 B o (1225 11 _ 245,42, 133,09
Aee= 75k§Te,eH e g g ©
ALl (1 ) _gnt2 (1,3
Aee= 75k2T S ( ey~ 00 + (hej ) 7 1 64m, 7
BlejeH Q4 _9(1,5)) < Q(Z 2 _ Q(2,3)
ej ej so2 Xe ee
6am, 2 4 756aT, 8
= — X3 ijez, (C50 1
75T, 2 R éngg‘)), (cs)
A02 Aég — E ( Q(l 1 _ 7Qel 2 + = Q(l 3))
J b
75kBTeJeH 2 Hggz 32 Xexgﬂ,(ez 29, =22 32 239(2 2)_ (C59)
(C5d) 15K g7l 15kg
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