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This work is a comprehensive and theoretical study of transport phenomena in partially ionized and unmag-
netized plasmas by means of kinetic theory. The pros and cons of different models encountered in the literature
are presented. A dimensional analysis of the Boltzmann equation deals with the disparity of mass between
electrons and heavy particles and yields the epochal relaxation concept. First, electrons and heavy particles
exhibit distinct kinetic time scales and may have different translational temperatures. The hydrodynamic
velocity is assumed to be identical for both types of species. Second, at the hydrodynamic time scale the energy
exchanged between electrons and heavy particles tends to equalize both temperatures. Global and species
macroscopic fluid conservation equations are given. New constrained integral equations are derived from a
modified Chapman-Enskog perturbative method. Adequate bracket integrals are introduced to treat thermal
nonequilibrium. A symmetric mathematical formalism is preferred for physical and numerical standpoints. A
Laguerre-Sonine polynomial expansion allows for systems of transport to be derived. Momentum, mass, and
energy fluxes are associated to shear viscosity, diffusion coefficients, thermal diffusion coefficients, and ther-
mal conductivities. A Goldstein expansion of the perturbation function provides explicit expressions of the
thermal diffusion ratios and measurable thermal conductivities. Thermal diffusion terms already found in the
Russian literature ensure the exact mass conservation. A generalized Stefan-Maxwell equation is derived
following the method of Kolesnikov and Tirskiy. The bracket integral reduction in terms of transport collision
integrals is presented in Appendix for the thermal nonequilibrium case. A simple Eucken correction is proposed
to deal with the internal degrees of freedom of atoms and polyatomic molecules, neglecting inelastic collisions.
The authors believe that the final expressions are readily usable for practical applications in fluid dynamics.
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I. INTRODUCTION

In a uniform mixture of gases at equilibrium, the veloci-
ties of the different species follow a Maxwellian distribution.
Boltzmann has derived an integrodifferential equation to de-
scribe the evolution of the species velocity distribution func-
tions in space and time and justified Maxwell’s statement in
his H Theorem for dilute gases[1,2]. The solution of the
Boltzmann equation for dilute gases neglecting the internal
energy contribution is known since the works of Chapman
and Enskog[3]. It allows for the transport fluxes to be com-
puted. This result of kinetic theory is described in the book
of Chapman and Cowling[4]. Hirschfelder, Curtiss, and Bird
[5] and later Ferziger and Kaper[6] have collected the latest
developments in that field of research and greatly contributed
to spread kinetic theory in the scientific community.

On the other hand, the description of mixtures composed
of species of disparate masses is not well established. Par-
tially ionized plasmas, composed of electrons and molecules,
belong to this category. The first model describing a binary
mixture composed of light and heavy species dates from the
beginning of kinetic theory and is due to Lorentz. This model
applies to weakly ionized plasmas when the number density

of the light components is smaller than that of the heavy
components. Hence, collisions among light particles are ne-
glected with respect to collisions among heavy particles and
between unlike particles. This assumption ceases to be valid
when the number density of the light species increases.
Delcroix and Bers[7] distinguish an intermediate category of
plasmas characterized by all collisional contributions. Even-
tually, at higher ionization degree, collective effects of the
charges have to be incorporated in the plasma description. To
that end, various kinetic equations are found in the literature
[8]. The present work deals with partially ionized plasmas
and makes use of a collision operator of Boltzmann with a
screening of the Coulomb potential. Furthermore, this re-
search is restricted to unmagnetized plasmas. The flow
around a space vehicle entering a planetary atmosphere at
hypersonic speed represents one possible example of unmag-
netized plasma.

In the 1960s, significant progress was made in the kinetic
description of partially ionized plasmas. The interaction be-
tween electrons was incorporated to Lorentz’s description.
Various results emanate from the Stanford group. Devoto
[9,10] has simplified the expressions given by Hirschfelderet
al. [5] for the transport properties, accounting for the small
mass of electrons in ionized mixtures. Kruger and Mitchner
[11], Kruger et al. [12], and Daybelge[13] have applied
similar simplifications to ionized gases in thermal nonequi-
librium in the presence of a magnetic field. Chmieleski and
Ferziger[14] have presented an elegant formalism to derive
the transport properties of ionized gases assuming that heavy
particles have an infinite mass in collisions with electron
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partners; they also investigated the magnetic field influence
[15]. All the models mentioned above assume no transfer of
energy in the electron-heavy collisions. This assumption is
necessary to decouple the thermal bath of heavy particles
from that of electrons, and thus, define an intermediate state
of the system where the electron temperature can be different
from that of heavy particles. This state corresponds to the
zero order solution of the Chapman-Enskog perturbative
method. Nevertheless, if the energy decoupling hypothesis is
conserved deriving a perturbative solution, thermal diffusion
is not correctly treated and diffusion velocities do not rigor-
ously respect mass conservation. The first model for two-
temperature plasmas in the presence of magnetic field, self-
consistent with respect to diffusion phenomenon and based
upon kinetic theory, was published in the 1970s by Kolesni-
kov [16]. Some transfer of energy is considered in the per-
turbation function for the electron-heavy collisions. How-
ever, some steps and approximations in the development
remain debatable. The final results of this work have been
subsequently published in English[17,18]. Concerning the
mathematical aspect of partially ionized plasmas, Petit and
Darrozes[19] have stressed that the Chapman-Enskog per-
turbative method must be revisited. A dimensional analysis
of the Boltzmann equation shows that electrons and heavy
particles have different relaxation times. In the 1990s,
Ramshaw[20], Ramshaw and Chang[21] have deduced a
pragmatic model for diffusion from a less cumbersome hy-
drodynamic theory. At the same time, Degond and Lucquin-
Desreux[22–25] have followed the dimensional analysis of
Petit and Darrozes to introduce an epochal relaxation treat-
ment. Electrons and heavy particles exhibit distinct kinetic
time scales and may have different translational tempera-
tures. At the hydrodynamic time scale, the energy exchanged
between electrons and heavy particles tends to equalize both
temperatures. Moreover, a suitable Knudsen number is
proved to be proportional to the square root of the electron
heavy-particle mass ratio. Ratet al. [26] have recently pro-
posed an alternate derivation of the transport properties in a
two-temperature plasma. Unfortunately, the Chapman-
Enskog method employed rests on an incorrect scaling of the
Boltzmann equation, in contrast with the dimensional analy-
sis used in Refs.[19,22,23]. Nevertheless, at thermal equi-
librium, their results are consistent with those obtained in
Ref. [5]. Finally, the moment method of Grad to obtain a
solution of the Boltzmann equation is an alternative to the
Chapman-Enskog method. The expressions of the transport
fluxes of multicomponent plasmas derived by the higher ap-
proximations of the moment method turn out to be equiva-
lent to the results given by the Chapman-Enskog method, as
demonstrated by Zhdanov[27].

In the present work, various ideas, some of which not
widespread, are combined together to obtain a new kinetic
treatment of the transport fluxes for two-temperature plas-
mas. According to Ramshaw and Chang, theories generaliz-
ing the Chapman-Enskog solution procedure to the case
where electrons and heavy particles have different tempera-
tures are “so intricate that is by no means trivial even to
identify and extract the final results”(see Ref.[28]). The
authors aim to provide here final expressions of the transport
fluxes readily usable by readers interested in practical appli-

cations. In addition, the remaining problems mentioned
above in the derivation of these expressions are eliminated.
Our results are consistent with respect to diffusion. The ep-
ochal relaxation introduced in Ref.[22] gives a sound inter-
pretation to a modified Chapman-Enskog perturbative
method. A symmetric formalism for the transport systems
and coefficients, analogous to that of Ferziger and Kaper[6],
is preferred for physical considerations to the approach of
Hirschfelderet al. [5]. Moreover, the formalism retained is
advantageous from a numerical standpoint and allows for the
transport algorithms developed by Ern and Giovangigli[29]
to be employed in applications. It is regrettable that the non-
symmetric formalism introduced in Ref.[5] is still used to-
day despite its disadvantages(see for instance Ref.[26]),
albeit Curtiss had eventually abandoned this approach in fa-
vor of symmetric transport coefficients[30]. A generalized
Stefan-Maxwell equation in any order of approximation is
derived following a method proposed by Kolesnikov and Tir-
skiy [31]. If possible, final expressions of the transport fluxes
are compared to the various models and commented.

II. BOLTZMANN EQUATION AND CONSERVATION
EQUATIONS

A. General remarks

The plasma is assumed to fulfill the following assump-
tions:

L@1. The plasma parameterL is defined as the ratio of
the Debye length to the mean impact parameter for 90° scat-
tering. This nondimensional number is also proportional to
the number of electrons in a sphere of radius equal to the
Debye length. If the plasma parameter is sufficiently large,
charged particle interactions can be treated as binary colli-
sions with Debye-Hückel screening of the Coulomb potential
using a collision operator of Boltzmann[7].

Kn!1. The Knudsen numberKn being small, the plasma
is collision dominated.

«=Îme/mh!1. Our gas mixture is composed ofN spe-
cies referred to the set of indicesS=h1, . . . ,Nj=Hø hej,
where heavy particles are distinguished from electrons. The
electron mass readsme. A characteristic mass for heavy par-
ticles is given bymh.

uTe−Thu!Te,Th. Due to the small electron heavy-
particle mass ratio, small departures from thermal equilib-
rium are envisaged. The electron and heavy-particle tempera-
tures, respectively, readTe andTh.

be!Kn. The Hall parameter of electronsbe is assumed to
be smaller than the Knudsen number. Thus, the magnetic
field influence on transport properties remains negligible, the
plasma is unmagnetized. The approach followed here can be
generalized to derive transport properties sensitive to a mag-
netic field.

lD!L0. The Debye lengthlD being smaller than a refer-
ence lengthL0 in the flow, quasineutrality of the plasma is
prescribed.

No chemical reactions. Ern and Giovangigli[29] have
shown that chemical reactions do not influence the transport
properties if the characteristic time for chemistry is larger
than that for collisions implied in transport phenomena.
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No internal energy. The internal energy is not taken into
account in the present derivation. The influence of the inter-
nal degrees of freedom on transport phenomena is addressed
in various specialized publications cited in general Refs.
[6,27,29,32]. Indeed, a rigorous treatment including the in-
ternal energy leads to transport collision integrals difficult to
estimate with accuracy in high-temperature applications.
Capitelli et al. [33] have recently assessed the role of elec-
tronically excited states on the viscosity for a hydrogen
plasma in the temperature range 10 000–25 000 K by com-
puting the adequate resonant charge and excitation transfer
cross sections. In this contribution, a simple correction due to
Eucken[4–6] has been retained instead.

Classical description. Quantum mechanical effects on
transport phenomena in a gas are caused by the wave nature
of molecules(diffraction) and their statistics(symmetry).
Diffraction effects become important when the de Broglie
wavelength is about as large as the dimension of molecules,
whereas symmetry effects depend on the gas density and
appear when the de Broglie wavelength is of the order of
magnitude of the average distance between the gas mol-
ecules. In this work, transport properties are derived from
classical mechanics. Nevertheless, Hirschfelderet al. [5]
have shown that diffraction and some symmetry effects are
correctly described by classical expressions of the transport
properties provided that the transport collision integrals are
computed from quantum mechanics.

Concerning notation of spatial quantities,light-face type
stands for scalars,bold-face type for vectors, andsans serif
type for tensors. Indicesi , j ,k, l allow for the species in the
mixture to be distinguished. Indicesp,q,r correspond to the
Laguerre-Sonine polynomial order. When indices are omitted
for quantities associated to either the species or polynomial
order, those quantities are implicitly considered to be vectors
or tensors.

B. Boltzmann equation

The velocity distribution functionf i for the speciesi PS
is solution of the Boltzmann equation

Disf id = Ji . s1d

The streaming operator is defined by

Disf id =
]

] t
f i + ci · = f i +

Fi

mi
· =ci

f i , s2d

whereci and mi are the velocity and mass of particle. The
only external force considered acting on the particle is an
electric force Fi =qisE+ci 3Bd, with the electric fieldE,
magnetic fieldB, and species chargeqi. The scattering col-
lision operator is given by

Ji = o
jPS

Jijsf i, f jd, s3ad

Jijsf i, f jd =E sf i8f j8 − f i f jdgs dV dcj , s3bd

whereg is the relative velocity,s the differential cross sec-
tion, andV a solid angle. The primes denote values after

collision. The species number densityni =ef idci and mass
density ri =nimi allow for the mixture number densityn
=o jPSnj, mass densityr=o jPSr j, and hydrodynamic veloc-
ity

rv = o
jPS
E mjcj f jdcj , s4d

to be defined. Hence, the peculiar diffusion velocity reads

Ci = ci − v. s5d

The streaming operator(2) is written in terms of the vari-
ablesr , Ci, andt

Disf id =
]

] t
f i + sv + Cid · = f i + S Fi

mi
−

dv

dt
D · =Ci

f i

− s=Ci
f i ^ Cid: = v, s6d

whered/dt=] /]t+v ·= is the material derivative.
Collisional invariants expressed into axes moving with

the gas are introduced

C j = mjsdi jdiPS, j P S, s7ad

CN+n = smiCnidiPS, n P h1,2,3j, s7bd

CN+4 = s 1
2miCi

2diPS. s7cd

A scalar product is defined

kkj,zll = o
jPS
E j j ( z jdcj , s8d

where j j (z j is the maximum contracted product in space
between the tensorsj j andz j. Employing Liouville’s law for
elastic collisions, it is shown that the average rate of change
for the entire gas of the molecular propertyCm,m
P h1, . . . ,N+4j vanishes

1

n
kkCm,Jll =

1

4n o
i,jPS

E sCi
m + C j

m − Ci
m8 − C j

m8d

3sf i8f j8 − f i f jdgs dV dcidcj = 0, s9d

by conservation of mass, momentum, and energy in elastic
collisions. The following scalar products are also introduced
for later convenience

kkj,zllh = o
jPH

E j j ( z jdcj , s10ad

kkj,zlle =E je ( zedce. s10bd

The BoltzmannH Theorem(see Refs.[4–6]) induces that
the equilibrium solution of Eq.(1) is a Maxwellian distribu-
tion function

TRANSPORT PROPERTIES OF PARTIALLY IONIZED… PHYSICAL REVIEW E 70, 046412(2004)

046412-3



f i
M = niS mi

2pkBT
D3/2

expS−
miCi

2

2kBT
D, i P S, s11d

where the gas equilibrium temperatureT is defined propor-
tional to the average of the particle kinetic energy

3

2
nkBT = o

jPS
E 1

2
mjCj

2f jdcj . s12d

SymbolkB stands for Boltzmann’s constant. There exist situ-
ations where one species may attain a temperature different
from that of the other species. For instance the temperature
of electrons can be higher than that of heavy particles in
inductively coupled plasma wind tunnels at low pressures. In
these facilities, the energy is brought into the plasma by elec-
tromagnetic coupling between mainly the electrons and a
coil driven by a radio frequency current. Electrons exchange
some energy with heavy particles through collisions. This
energy exchange is not efficient because of the large differ-
ence of mass between both partners. This exchange becomes
weaker when pressure decreases as described in Sec. III B.
Consequently, electrons may remain hotter than heavy par-
ticles. Therefore, the heavy-particle translational temperature
(for all i PH ,Ti =Th) is distinguished from the electron tem-
peratureTe

3

2
nikBTh =E 1

2
miCi

2f idci, i P H, s13ad

3

2
nekBTe =E 1

2
meCe

2fedce. s13bd

This is not in contradiction with theH Theorem. After a
relaxation time, both temperatures tend to equalize if no ex-
ternal forces are applied to the system.

C. Conservation equations

Multiplication of the Boltzmann equation(1) by the col-
lisional invariants given in Eq.(7) and integration over ve-
locity yields species conservation equations

E Ci
mDisf iddci =E Ci

mJisf iddci ,

mP h1, . . . ,N + 4j, i P S. s14d

Summing up over the species and using the property of the
collisional invariants[see Eq.(9)], global conservation equa-
tions read

kkCm,Dll = 0, mP h1, . . . ,N + 4j. s15d

A detailed derivation can be found in the book of Mitchner
and Kruger[34].

(i) Species continuity

]

] t
ri + = · srivd + = · sriV id = 0, i P S s16d

with the species diffusion velocity

V i =
1

ni
E Ci f idci . s17d

Remark, the diffusion velocities are not linearly independent
and a mass conservation constraint is obtained employing
Eqs.s4d and s5d:

o
jPS

r jV j = 0. s18d

(ii ) Global continuity

]

] t
r + = · srvd = 0. s19d

(iii ) Momentum

]

] t
srvd + = · srv ^ vd + = ·P − nqE8 − j 3 B = 0

s20d

with the stress tensor

P = o
jPS

P j, and Pi =E miCi ^ Ci f idci , s21d

mixture chargeq=o jPS xjqj sxi is the mole fractiond, species
conduction currentj i =niqiV i, and mixture conduction current
j =o jPS j j. The electric field in the hydrodynamic velocity
frame readsE8=E+v3B.

(iv) Species energy

]

] t
srieid + = · srieivd + = · sqid − j i ·E8 + riV i ·

d

dt
v

+ Pi: = v = DEi, i P S s22d

with the species energyriei =
3
2nikBTi =e 1

2miCi
2f idci. The spe-

cies heat flux reads

qi =E 1

2
miCi

2Ci f idci , s23d

and the energy exchange term is given by

DEi =E 1

2
miCi

2Jidci . s24d

(v) Global energy

]

] t
sred + = · srevd + = · sqd − j ·E8 + P: = v = 0,

s25d

with the mixture energyre=o jPSr jej and heat fluxesq
=qh+qe, qh=o jPH q j. Two-temperature plasmas are de-
scribed by the global conservation equationss19d, s20d, and
s25d, supplied with the species continuity equationss16d for
all species and the electron energy equationfi.e., Eq. s22d
with index i =eg. The quasineutrality hypothesis eliminates
the termnqE8 in Eq. s20d. Equations for the electromagnetic
field are not presented in this work.
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III. CHAPMAN-ENSKOG PERTURBATIVE METHOD

A. Dimensional analysis

A dimensional analysis was proposed by Petit and
Darrozes[19] to adequately scale the Boltzmann equation.
This idea was further exploited by Degond and Lucquin-
Desreux[22,23] in their epochal relaxation concept. A small
parameter is introduced to deal with mass disparity between
the mixture species. It is defined as the square root of the
electron heavy-particle mass ratio«=Îme/mh. Reference
quantities are now presented. Electrons and heavy particles
exhibit distinct thermal speeds employed as reference pecu-
liar diffusion velocities

Ve
0 =ÎkBT0

me
, s26ad

Vh
0 =ÎkBT0

mh
= «Ve

0, s26bd

whereT0 is a common reference temperature. Two collision
time scales coexist

te =
1

n0s0Ve
0 , s27ad

th =
1

n0s0Vh
0 =

te
«

, s27bd

where n0 and s0 are, respectively, a reference density and
differential cross section. The mean free path is identical for
both types of speciesl0=1/sn0s0d= teVe

0= thVh
0. A reference

hydrodynamic velocity is given byv0. The length scale reads
L0= t0v0; the time scalet0 employed as reference time will be
explicited later. The Knudsen number is given byKn= l0/L0.
A reference electric fieldE0 is assumed to verifyq0E0L0

=kBT0, such that any change in the characteristic length re-
quires a simultaneous change of the force scale,q0 being a
reference species charge. This assumption ensures that the
space gradient and velocity gradient terms of the streaming
operator are of the same order of magnitude[23]. Hall num-
bers are introduced for electrons and heavy particles

be =
q0B0

me
te, s28ad

bh =
q0B0

mh
th = «be, s28bd

whereB0 is a reference magnetic field. The Boltzmann equa-
tion (1) is written in nondimensional form as

C̃i · =̃ f̃ i +
q̃i

m̃i

Ẽ · =̃ C̃i
f̃ i +

bh

Kn

q̃i

m̃i

fsMhṽ + C̃id 3 B̃g · =̃ C̃i
f̃ i

+ MhF ]

] t̃
f̃ i + ṽ · =̃ f̃ i − s=̃ C̃i

f̃ i ^ C̃id:=̃ ṽG
− sMhd2dṽ

dt̃
· =̃ C̃i

f̃ i =
1

Kn
J̃i, i P H, s29ad

1

«
HC̃e · =̃ f̃ e + q̃eẼ · =̃ C̃e

f̃e +
be

Kn
q̃efs«Mhṽ + C̃ed

3 B̃g · =̃ C̃e
f̃eJ + MhF ]

] t̃
f̃ e + ṽ · =̃ f̃ e − s=̃ C̃e

f̃e

^ C̃ed:=̃ ṽG − «sMhd2dṽ

dt̃
· =̃ C̃e

f̃e =
1

«Kn
J̃e, s29bd

where Mh=v0/Vh
0 is the Mach number associated to heavy

species. Degond and Lucquin-Desreux[22,23] distinguish
three different time scales and demonstrate an epochal relax-
ation. The fastest time scalete rules the evolution of the
electrons, the intermediate time scaleth corresponds to the
heavy species and the slowest time scalet0= th/« governs the
relaxation of temperatures. In consequence of the choice of
t0, the Knudsen number scales asKn=« /Mh. The classical
Chapman-Enskog perturbative method postulates only two
time scales: the microscopic or kinetic scale and the macro-
scopic or hydrodynamic scale. Furthermore, in this classical
approach, the parameter« does not appear in the left-hand
side of Eq.(29b).

The magnetic field is assumed to be sufficiently low such
thatbe!Kn. It has no influence on the transport phenomena,
the plasma is considered to be unmagnetized. Due to the
choice of scale for the electric field, the magnetic Reynolds
numberRm=B0v0/E0 is related to the Hall numbers

Rm = be =
bh

«
. s30d

Then, the conditionbe!Kn=« /Mh is automatically satisfied
if the magnetic Reynolds number verifiesRm!«. The distri-
bution functions are expanded as usual upon the Knudsen
number, or equivalently the parameter«:

f i . f i
0s1 + «fid, i P S. s31d

Following Chmieleski and Ferziger[14,15], in the limit as
mh becomes infinite, the zero order distribution function of
heavy species is assumed to satisfy the limit

lim
mi→`

f i
0 = nidsCid, i P H, s32d

wheredsxd is the Dirac distribution. For the interactions be-
tween electrons and heavy particles, we propose to write the
distribution function of heavy species as

f i . nidsCids1 + «fid, i P H. s33d

B. Zero order solution

Injecting the expressions given in Eqs.(31) and(33) into
the Eq.(29) and equating the coefficients of like powers of«,
the zero order distribution system reads in dimensional form

o
jPH

Jijsf i
0, f j

0d + JiefnidsCid, fe
0g = 0, i P H, s34d

o
jPH

Jejffe
0,njdsC jdg + Jeesfe

0, fe
0d = 0. s34bd
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A H Theoremat the kinetic time scale of electrons or heavy
particles is derived in absence of external forces and for a
spatially uniform gas in thermal nonequilibrium. The Boltz-
mann equation reads in this special case as

]

] t
f i = o

jPH
Jijsf i, f jd + Jiesf i, fed, i P H, s35ad

]

] t
fe = o

jPH
Jejsfe, f jd + Jeesfe, fed. s35bd

Defining a functionH=−o jPSe f j ln f jdcj, employing the
Boltzmann equation(35) and Liouville’s law for elastic col-
lisions, the derivative ofH with respect to time is given by

dH

dt
=

1

4 o
i,jPH

E flnsf i8f j8d − lnsf i f jdgsf i8f j8 − f i f jdgs dV dci dcj

+
1

2o
jPH

E flnsfe8f j8d − lnsfef jdgsfe8f j8

− fef jdgs dV dce dcj +
1

4
E flnsfe8 f̄ e8d − lnsfef̄edgsfe8 f̄ e8

− fef̄edgs dV dce dc̄e

ù 0, s36d

where the bar is used to distinguish collision partner indices.
Examining the sign of the expressionsx−ydsln x−ln yd, the
H function cannot decrease in time. When the zero order
solution of the Boltzmann equation is reached, the coupling
term between heavy particles and electrons vanishes

1

2o
jPH

E njdsC jdflnsfe
08d − lnsfe

0dgsfe
08 − fe

0dgs dV dce dcj = 0.

s37d

It was assumed in Eq.(37) that momentum and kinetic en-
ergy of heavy particles are unaltered in collisions with elec-
trons. Kinetic energy of electrons does not change either,
only their momentum is modified due to a change of trajec-
tory. Heavy particles act as random diffusers opposed to any
organized movement of electrons(see Ref.[7]). Thanks to
this approximation, the zero order solution of the Eq.(34) is
a set of Maxwellian distribution functions at different tem-
peratures

f i
0 = niS mi

2pkBTh
D3/2

expS−
miCi

2

2kBTh
D, i P H, s38ad

fe
0 = neS me

2pkBTe
D3/2

expS−
meCe

2

2kBTe
D . s38bd

The transport fluxes vanish and the zero order conservation
equations reduce to the Euler equations.

In plasmas at equilibrium, the electron and heavy-particle
velocities follow Maxwellian distributions at the same tem-
perature[see Eq.(11)]. Particles exchange some momentum
and energy during encounters, but there is no net exchange

between two populations. A two-temperature intermediate
state was defined with the electron and heavy-particle veloci-
ties distributed according to Maxwellian functions, respec-
tively, at the electron and heavy-particle temperatures[see
Eq. (38)]. In spite of thermal disparity, there is no net energy
exchanged between the electron and heavy-particle popula-
tions if the mass of heavy particles is assumed to be infinite
in collisions with electrons. Thus, electrons are preferentially
thermalized through electron-electron collisions. However,
the net energy exchanged in electron-electron interactions is
zero. Even though the energy transfer between electrons and
heavy particles is not efficient, it plays an important role and
tends to equalize both temperatures after a sufficient relax-
ation time, previously defined ast0. The energy exchange
term must then be computed assuming a finite-heavy-particle
mass. Consequently, the two-temperature intermediate state
disappears if not artificially sustained and the system tends to
an equilibrium state at one single temperature.

Following similar arguments, an intermediate state can be
defined with distinct hydrodynamic velocities for electrons
and heavy particles. However, Morse[35] has shown that
momentum is exchanged more efficiently than energy for
hard sphere and Coulomb interactions between electrons and
heavy particles. The relaxation time to equalize the hydrody-
namic velocities of both populations is of the order of«2

compared to the relaxation time to equalize their transla-
tional temperatures. A Coulomb force law with exponential
Debye-Hückel shielding is well suited to model electron-ion
interactions. Electron-neutral interactions are better de-
scribed by quantum mechanics than classical hard sphere in-
teraction potentials[36]. It is nevertheless assumed that Mor-
se’s argument remains qualitatively valid and electrons are
considered to share the same hydrodynamic velocity as
heavy particles. Desloge[37] has derived a general expres-
sion for the energy exchanged between two Maxwellian
gases with different temperatures and the same hydro-
dynamic velocity

DEe
0 = 16nekBsTh − Tedo

jPH
nj

me

mj
Vej

s1,1d. s39d

The momentum cross-sectionsVej
s1,1d are defined in Appendix

B. The energy exchange term goes to zero when the mass of
heavy particles tends to infinity in Eq.(39). Furthermore, this
term is proportional to the number density to the square and
thus rapidly drops with pressure.

C. First-order solution

Injecting the expressions given in Eqs.(31) and(33) into
the Eq.(29) and equating the coefficients of like powers of«,
the perturbation function defined in Eq.(31) is solution of
the equations

o
jPH

fJijsf i
0fi, f j

0d + Jijsf i
0, f j

0f jdg + JiefnidsCidfi, fe
0g

+ JiefnidsCid, fe
0feg

=
]

] t
f i
0 + sv + Cid · = f i

0 + S qi

mi
E −

dv

dt
D
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· =Ci
f i
0 − s=Ci

f i
0

^ Cid: = v, i P H, s40ad

o
jPH

hJejffe
0fe,njdsC jdg + Jejffe

0,njdsC jdf jgj + Jeesfe
0fe, fe

0d

+ Jeesfe
0, fe

0fed

= Ce · = fe
0 + S qe

me
E −

dv

dt
D · =Ce

fe
0. s40bd

The lower order termdv /dt·=Ce
fe
0 is kept in Eq.(40b) for

later convenience. A linearized scattering collision operator
is introduced

I isfd = o
jPS

ninj

n2 I ijsfd, i P S. s41d

The partial linearized collision operatorsI ij are defined in
Appendix A. Making use of the conservation equations(16),
(20), and(22) with the zero order distribution functions[see
Eq. (38)], the following constrained integral equations ap-
pear after lengthy calculations

n2I isfd = − f i
0F n

ni
QiCi ·di + SCi

2 −
5

2
DCi · = ln Ti

+ 2s1 − diedSCi ^ Ci −
Ci

2

3
ID: = vG, i P S,

s42d

whereI is the identity tensor. The contribution of the energy
exchange term is not taken into account providing that
uTe−Thu!T0. Constraints

kkCm, f0fll = 0, mP h1, . . . ,N + 4j, s43d

assure uniqueness of the solution of Eq.(42). A thermal non-
equilibrium parameter is defined asQi =Th/Ti. Driving
forces read

di =
=pi

nkBTh
−

yip

nkBTh
= ln p + syiq − xiqid

E

kBTh
, s44d

where yi is the mass fraction. The driving forces are not
linearly independent. The relation

o
jPS

d j = 0 s45d

is exactly satisfied thanks to the lower order term kept in the
right-hand side of Eq.(40b). The partial pressure readspi
=nikBTi. The pressure of the mixture is defined byp
=o jPS pj. Nondimensional velocities are given by

Ci = S mi

2kBTi
D1/2

Ci . s46d

Bracket integral operators are introduced as

fF,Gg = kkG,IsFdll = fF,Ggh + fF,Gge, s47ad

fF,Ggh = kkG,IsFdllh, s47bd

fF,Gge = kkG,IsFdlle. s47cd

Their explicit expressions are found in Appendix A. The total
bracket integralf,g is symmetric fF ,Gg=fG,Fg, positive
semidefinitefF ,Fgù0, and its kernel is spanned by the col-
lisional invariants. Consequently, the homogeneous solution
of Eq. (42) is spanned by the collisional invariants. The gen-
eral first-order solution takes the form

fi = −
1

n
A i

h · = ln Th −
1

n
A i

e · = ln Te −
1

n
Bi: = v

−
1

no
jPS

Di
j ·d j + ci , s48d

whereci is a solution of the associated homogeneous equa-
tion I iscd=0. Seeing that there exists some energy exchanged
in the collisions between electrons and heavy particles in the
first order expansion, new terms will appear in the final ex-
pressions of the diffusion velocities ensuring the exact mass
conservation[see Eq.(18)]. Moreover, both the heavy par-
ticle and electron temperature gradients are present in the
expression of the perturbationfi, whatever the species type.
The coefficients offi must take the form

A i
h = Ai

hsCidCi , s49ad

A i
e = Ai

esCidCi , s49bd

B i = BisCidSCi ^ Ci −
Ci

2

3
ID , s49cd

Di
j = Di

jsCidCi , s49dd

and are solution of the integral equations

I isDkd =
1

ni
f i
0sdik − yidQiCi, k P S, s50ad

I isAhd =
1

n
fi
0s1 − diedSCi

2 −
5

2
DCi , s50bd

I isAed =
1

n
fi
0dieSCi

2 −
5

2
DCi , s50cd

I isBd =
2

n
fi
0s1 − diedSCi ^ Ci −

Ci
2

3
ID , s50dd

with the constraints

o
jPS

mj E f j
0Cj

2Aj
hdcj = 0, s51ad

o
jPS

mj E f j
0Cj

2Aj
edcj = 0, s51bd
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o
jPS

mj E f j
0Cj

2Dj
kdcj = 0. s51cd

Similar integral equations are found in the Russian literature,
however without a sound and rigorous justification(see Ref.
[16]). The vectorsDk are not linearly independent and a sym-
metric formalism[4,6] is chosen,

o
kPS

ykD
k = 0, s52d

to derive symmetric expressions in agreement with Onsag-
er’s reciprocity relations. Symbolci in Eq. (48) correspond-
ing to the collisional invariants does not contribute to the
diffusion velocities, heat fluxes, and stress tensor and is
omitted in our analysis.

D. Transport fluxes and coefficients

An additional bracket integral operator is introduced to
deal with thermal nonequilibrium

fF,GgQ = kkG,IQsFdll = fF,Ggh +
1

Qe
fF,Gge, s53d

with I i
Q= I i /Qi si PSd. This operator is symmetricfF ,GgQ

=fG,FgQ. Some useful bracket integrals to derive the expres-
sions of the transport fluxes are now presented

fDk,dgQ =
1

nk
E fk

0dk ·Ckdck −
1

r
o
jPS

mj E f j
0d j ·C jdcj ,

s54ad

fAh,ag = fAh,agh =
1

no
jPH

E f j
0SC j

2 −
5

2
Daj ·C jdcj ,

s54bd

fAe,ag = fAe,age =
1

n
E fe

0SCe
2 −

5

2
Dae ·Cedce, s54cd

fB,bg = fB,bgh =
2

no
jPH

E f j
0SC j ^ C j −

C j
2

3
ID:b j dcj .

s54dd

Giving the transport fluxes definitions[see Eqs.(17), (21),
and (23)], perturbation function[see Eq.(48)], constraints
[see Eq.(51)], and bracket integrals[see Eq.(54)], the ex-
pressions of the transport fluxes are calculated.

1. Diffusion velocity

V i =
1

ni
E Ci f i

0fidci

= − o
jPS

Dijd j − DTi
h = ln Th − DTi

e = ln Te, i P S,

s55d

with the multicomponent diffusion coefficients and multi-
component thermal diffusion coefficients

Dij =
1

3n
fDi,D jgQ, s56ad

DTi
h =

1

3n
fDi,AhgQ, s56bd

DTi
e =

1

3n
fDi,AegQ, s56cd

i , j PS. Dij is symmetric andDii .0. FurthermoreDij , DTi
h ,

andDTi
e are not linearly independent:

o
jPS

yjDji = 0, s57ad

o
jPS

yjDTj
h = 0, s57bd

o
jPS

yjDTj
e = 0. s57cd

Thermal diffusion ratios are introduced

o
jPS

DijkTj
h = DTi

h , s58ad

o
jPS

DijkTj
e = DTi

e , s58bd

o
jPH

kTj
h +

Te

Th
kTe

h = 0, s58cd

o
jPH

kTj
e +

Te

Th
kTe

e = 0. s58dd

Hence the diffusion velocities are alternately expressed by
the relations

V i = − o
jPS

Dijsd j + kTj
h = ln Th + kTj

e = ln Ted. s59d

As found by Kolesnikov[16], thermal diffusion through the
electron temperature gradient influences the heavy-particle
diffusion velocities. The mass conservation constraint given
in Eq. (18) is exactly satisfied with the expression of the
diffusion velocity presented in Eq.(59). This result is funda-
mental from a numerical standpoint because it ensures the
compatibility of the Stefan-Maxwell equation system pre-
sented in Sec. III F.

2. Shear stress

P = o
jPS
E mjC j ^ C j f j

0s1 + f jddcj

=pI − hf=v + s=vdTg +
2

3
h = ·vI, s60ad
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Pe =E meCe ^ Cefe
0s1 + feddce = nekBTeI s60bd

with the shear viscosity

h = 1
10kBThfB,Bgh. s61d

Due to the scaling of the Boltzmann equation, electrons do
not contribute the viscous shear stress, as mentioned by De-
gond and Lucquin-Desreux[23].

3. Heat flux

qh = o
jPH

E 1

2
mjCj

2C j f j
0f jdcj

=o
jPH

r jhjV j − lh8 = Th − nkBTho
jPS

DTj
h d j , s62ad

qe =E 1

2
meCe

2Cefe
0fedce

= reheVe − le8 = Te − nkBTho
jPS

DTj
e d j , s62bd

with the partial thermal conductivities

lh8 =
kB

3
fAh,Ahgh, s63ad

le8 =
kB

3
fAe,Aege, s63bd

and the species translational enthalpieshi =hTi=
5
2kBTi /mi. No

cross contributions due to temperature gradients are found,
i.e., the heavy-particle heat flux does not depend on the elec-
tron temperature gradient and vice versa. This is due to the
exact cancellation of the bracket integralsfAh,Ahge and
fAe,Aegh. The heat flux expressions derived by Kolesnikov
[16] include some cross contributions of temperature gradi-
ents probably generated by polluting small order terms
present in the approximations. In terms of measurable quan-
tities, the heat fluxes read

qh = o
jPH

r jhjV j + nkBTho
jPS

kTj
h V j − lh = Th − lhe= Te,

s64ad

qe = reheVe + nkBTho
jPS

kTj
e V j − leh= Th − le = Te,

s64bd

with the thermal conductivities

lh = lh8 − nkBo
jPS

kTj
h DTj

h , s65ad

lhe= − nkB
Th

Te
o
jPS

kTj
h DTj

e , s65bd

leh= − nkBo
jPS

kTj
e DTj

h , s65cd

le = le8 − nB
Th

Te
o
jPS

kTj
e DTj

e . s65dd

Seeing the transport flux expressions, the first order conser-
vation equations are identified as the Navier-Stokes equa-
tions. It will be shown further that the cross contributions
due to temperature gradients[see Eqs.(65b) and(65c)] van-
ish as well in the case of measurable quantities in the hy-
pothesis of weak thermal nonequilibrium.

E. Laguerre-Sonine polynomial expansion

The integral equations(50) are solved by a spectral Galer-
kin method. The coefficients of the perturbation function de-
fined in Eq. (49) are expanded in a truncated series of
Laguerre-Sonine polynomials

A i
h = −Î mi

2kBTi
o
pPP

ai,p
h sjdS3

2

spdsCi
2dCi , s66ad

A i
e = −Î mi

2kBTi
o
pPP

ai,p
e sjdS3

2

spdsCi
2Cid, s66bd

Bi = o
pPP

bi,psjdS5
2

spdsCi
2dSCi ^ Ci −

Ci
2

3
ID , s66cd

Di
k =Î mi

2kBTi
o
pPP

di,p
k sjdS3

2

spdsCi
2dCi, k P S, s66dd

i PS, and whereP=h0, . . . ,j−1j is the set of polynomial
indices. Substituting Eq.(66d) into the integral equation
(50a), Eq. (66a) into the integral equation(50b), and Eq.
(66b) into the integral equation(50c), multiplying by the
vector S3/2

spdsCi
2dCi, and integrating overci, the transport sys-

tems for mass and heat transfer are readily obtained

o
jPH

o
qPP

Li j
pqdj ,q

k + o
qPP

Lie
0qde,q

k dp0

=
8

25kB
sdik − yiddp0, i P H, s67ad

o
jPH

Lej
p0dj ,0

k + o
qPP

Lee
pqde,q

k =
8

25kB
sdek− yed

Th

Te
dp0,

s67bd

o
jPH

o
qPP

Li j
pqaj ,q

h + o
qPP

Lie
0qae,q

h dp0 =
4

5kB

ni

n
dp1, i P H,

s67cd

o
jPH

Lej
p0aj ,0

h + o
qPP

Lee
pqae,q

h = 0, s67dd
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o
jPH

o
qPP

Li j
pqaj ,q

e + o
qPP

Lie
0qae,q

e dp0 = 0, i P H, s67ed

o
jPH

Lej
p0aj ,0

e + o
qPP

Lee
pqae,q

e =
4

5kB

ne

n
dp1, s67fd

kPS ,pPP. Likewise, substituting Eq.(66c) into the inte-
gral equation(50d), multiplying by the tensorS5/2

spdsCi
2dsCi

^Ci −Ci
2I /3d and integrating overci, the transport system for

momentum transfer is given by

o
jPH

o
qPP

Hij
pqbj ,q =

2

kB

ni

n
dp0, i P H, s68ad

o
qPP

Hee
pqbe,q = 0, s68bd

pPP. The bracket integral reduction is found in Appendix
A. Transport collision integrals are introduced in Appendix
B. Transport matricesLi j

pq andHij
pq, i , j PS ,p,qPP are pre-

sented in terms of the transport collision integrals in Appen-
dix C. The transport matrices are symmetric

Li j
pq = L ji

qp, s69ad

Hij
pq = Hji

qp, s69bd

and satisfy the relations

o
jPH

L ji
0p +

Te

Th
Lei

0p = 0, i P S. s70d

In order to keep a symmetric form in thermal nonequilib-
rium, temperatures do not explicitly appear in the momentum
transport system given in Eq.(68) contrary to the expression
derived by Ferziger and Kaper[6]. Substituting Eqs.(66a),
(66b), and (66d) into Eq. (51), a new set of constraints is
obtained

o
jPS

yjaj ,0
h = 0, s71ad

o
jPS

yjaj ,0
e = 0, s71bd

o
jPS

yjdj ,0
i = 0, i P S. s71cd

Substituting Eq.(66) into Eqs.(56), (61), and(63), transport
coefficients for mass and heat transfer read in the approxi-
mation orderj:

Dijsjd =
1

2n
di,0

j , i, j P S, s72ad

DTi
h sjd = −

1

2n
ai,0

h , i P S, s72bd

DTi
e sjd = −

1

2n
ai,0

e , i P S, s72cd

lh8sjd =
5kB

4 o
jPH

nj

n
aj ,1

h , s72dd

le8sjd =
5kB

4

ne

n
ae,1

e . s72ed

Thermal diffusion coefficients are alternately given by

DTi
h sjd = −

5

4no
jPH

nj

n
dj ,1

i , s73ad

DTi
e sjd = −

5

4n

ne

n

Te

Th
de,1

i . s73bd

The shear viscosity coefficient reads

hsjd =
kBTh

2 o
jPH

nj

n
bj ,0. s74d

The system for the heavy-particle shear viscosity given in
Eq. (68a) does not depend on electrons.

F. Goldstein expansion

Expressions of thermal diffusion ratios[see Eq.(58)] and
thermal conductivities[see Eq.(65)] are elegantly derived
expanding the perturbation function in Laguerre-Sonine
polynomials as proposed by Goldstein[38]

ui = fi +
1

n
Bi: = v − ci

=Î mi

2kBTi
Ci · o

pPP
vi

pS3
2

spdsCi
2d, i P S, s75d

with the vectors

vi
p =

1

n
ai,p

h = ln Th +
1

n
ai,p

e = ln Te −
1

no
jPS

di,p
j d j

* . s76d

Only the contribution to the heat transfer and diffusion phe-
nomena has been retained in the perturbation function given
in Eq. (75). The vectorsdi

* are linearly independent. Their
projections onto the driving force constraint hyperplane[see
Eq. (45)] along the mass fraction vector are the driving
forcesdi =di

* −yiokPS dk
* . Generalizing Kolesnikov and Tir-

skiy’s argument[31] to thermal nonequilibrium, if=ln Th,
=ln Te anddi

* are treated as a set of basis vectors, then the
projections ofvi

p in this basis satisfy Eq.(67). The vectors
vi

p are solutions of the system

o
jPH

o
qPP

Li j
pqv j

q + o
qPP

Lie
0qve

qdp0

=
4

5nkB

ni

n
= ln Thdp1 −

8

25nkB
didp0, i P H, s77ad
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o
jPH

Lej
p0v j

0 + o
qPP

Lee
pqve

q

=
4

5nkB

ne

n
= ln Tedp1 −

8

25nkB

Th

Te
dedp0, s77bd

with the constraints derived from Eq.(71)

o
jPS

yjv j
0 = 0. s78d

The first moments of the distribution function lead to a
physical interpretation of the vectorsvi

0 andvi
1. Employing

Eq. (75) and the properties of the Laguerre-Sonine polyno-
mials, one obtains

M i
1 =E f i

0fiCidci =
ni

2
vi

0, s79ad

M i
3 =E Ci

2f i
0fiCidci =

5

2

nikBTi

mi
svi

0 − vi
1d. s79bd

Hence the diffusion velocities and the heat fluxes are related
to the vectorsvi

0 andvi
1

fV igj =
1

ni
M i

1 =
1

2
vi

0, i P S, s80ad

fqhgj = o
jPH

mj

2
M j

3 =
5

4
kBTho

jPH
njsv j

0 − v j
1d, s80bd

fqegj =
me

2
M e

3 =
5

4
kBTenesve

0 − ve
1d. s80cd

Kolesnikov [18] has derived the expressions of the thermal
diffusion ratios, thermal conductivities, and generalized
Stefan-Maxwell equation. The same approach is followed
here with the formalism of Ferziger and Kaper and a more
numerically adequate presentation where systems are pre-
ferred to determinants. Using Eq.(80a), the system given in
Eq. (77) can be written for any approximation orderj.1

o
jPH

o
qPP1

Li j
pqv j

q =
4

5nkB

ni

n
= ln Thdp1

− 2o
jPH

Li j
p0fV jgj, i P H, s81ad

o
qPP1

Lee
pqve

q =
4

5nkB

ne

n
= ln Tedp1 − 2o

jPS
Lej

p0fV jgj,

s81bd

pPP1=h1, . . . ,j−1j. After inversion of the nonsingular sys-
tem given in Eq.(81), the vectorsvi

p read

vi
p = ai,p

h = ln Th + ai,p
e = ln Te

+ o
jPS

bi j ,pfV jgj, i P S, p P P1. s82d

The coefficients in Eq.(82) are solutions of the transport
systems

o
jPH

o
qPP1

Li j
pqa j ,q

h =
4

5nkB

ni

n
dp1, i P H, s83ad

o
qPP1

Lee
pqae,q

h = 0, s83bd

o
jPH

o
qPP1

Li j
pqa j ,q

e = 0, i P H, s83cd

o
qPP1

Lee
pqae,q

e =
4

5nkB

ne

n
dp1, s83dd

o
jPH

o
qPP1

Li j
pqb jk,q = − 2Lik

p0, i,k P H, s83ed

o
jPH

o
qPP1

Li j
pqb je,q = 0, i P H, s83fd

o
qPP1

Lee
pqbek,q = − 2Lek

p0, k P S, s83gd

pPP1. The heat flux can be obtained injecting Eq.(82) into
Eqs.(80b) and(80c). The thermal conductivities and thermal
diffusion ratios are identified as

lhsjd =
5

4
kBo

jPH
nja j ,1

h , s84ad

lhesjd = 0, s84bd

lehsjd = 0, s84cd

lesjd = 5
4kBneae,1

e , s84dd

kTi
h sjd = −

5

4o
jPH

nj

n
b ji ,1, i P H, s84ed

kTe
h sjd = 0, s84fd

kTi
e sjd = −

5

4

Te

Th

ne

n
bei,1, i P S. s84gd

It turns out that the cross contributions due to temperature
gradients given in Eqs.(84b) and(84c) vanish as well when
heat fluxes are written in terms of measurable quantities.
Furthermore, both systems for heavy particle[see Eq.(83a)]
and electron[see Eq.(83d)] thermal conductivities are de-
coupled. Different orders of approximation can be employed
in the Laguerre-Sonine expansion for each contribution. Re-
garding the systems given in Eqs.(83e) and(83g), the same
argument can be applied to the thermal diffusion ratios. The
expressions oflh and le agree with the results of Devoto
[10]. Thermal diffusion ratios correspond to the expressions
derived by Kolesnikov[18].

The first order Stefan-Maxwell equation for the diffusion
velocities is readily obtained writing Eq.(77) for j=1 and
using Eq.(80a)
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o
jPH
jÞi

xixj

Di j
sfV jg1 − fV ig1d +

Te

Th

xixe

Die
SfVeg1 −

Te

Th
fV ig1D = di,

i P H, s85ad

o
jPH

xexj

Dej
STe

Th
fV jg1 − fVeg1D =

Th

Te
de. s85bd

with the mass conservation given in Eq.(78)

o
jPS

yjfV jg1 = 0. s86d

Binary diffusion coefficientsDi j are defined in Appendix B.
The Stefan-Maxwell equation for any higher approximation
order is derived from Eq.(77) written for p=0 andj.1

o
jPS

Li j
00fV jgj +

1

2o
jPS

o
qPP1

Li j
0qv j

q = −
4

25nkB
di, i P H,

s87ad

o
jPS

Lej
00fV jgj +

1

2 o
qPP1

Lee
0qve

q = −
4

25nkB

Th

Te
de. s87bd

The second term in the left-hand side of Eq.(87) can be
transformed by means of Eq.(82). After some algebra, the
final result reads

o
jPH
jÞi

xixj

Di j
f1 + wi jsjdgsfV jgj − fV igjd +

Te

Th

xixe

Die
f1 + wiesjdg

3SfVegj −
Te

Th
fV igjD

= di + kTi
h sjd = ln Th + kTi

e sjd
Th

Te
= ln Te, i P H,

s88ad

o
jPH

xexj

Dej

f1 + wejsjdgSTe

Th
fV jgj − fVegjD

=
Th

Te
fde + kTe

e sjd = ln Teg. s88bd

with the mass conservation obtained from Eq.(78),

o
jPS

yjfV jgj = 0. s89d

The correction functionwi jsjd defined forj.1 by the equa-
tions

16

25nkB

xixj

Di j
wi jsjd = o

q,rPP1

o
k,lPH

Lkl
qrbli ,rbkj,q

+ o
q,rPP1

Lee
qrbei,rbej,q, i, j P H,

s90ad

16

25nkB

xixe

Die

Te

Th
wiesjd = o

q,rPP1

Lee
qrbee,rbei,q, i P H,

s90bd

16

25nkB

xe
2

Dee
weesjd = o

q,rPP1

Lee
qrbee,rbee,q s90cd

is symmetric and verifies the relations

o
jPH

xixj

Di j

wi jsjd +
xixe

Die
STe

Th
D2

wiesjd = 0, i P H, s91ad

o
jPH

xexj

Dej

wejsjd +
xe

2

Dee
weesjd = 0. s91bd

Let us writewi js1d;0 to encompass the first order Stefan-
Maxwell equation(85) in Eq. (88). Remark, once again, it is
possible to use different orders of Laguerre-Sonine approxi-
mation to evaluate the first contribution in Eq.(90a) on the
one hand, and the second contribution in the same equation
together with Eqs.(90b) and (90c) on the other hand.

G. Simplifications of the Stefan-Maxwell equation

To emphasize the electric field driving forces, the Stefan-
Maxwell equation(88) is changed accordingly

o
jPH
jÞi

xixj

Di j
f1 + wi jsjdgsfV jgj − fV igjd +

Te

Th

xixe

Die
f1 + wiesjdg

3SfVegj −
Te

Th
fV igjD + kiE = di8, i P H, s92ad

o
jPH

xexj

Dej

f1 + wejsjdgSTe

Th
fV jgj − fVegjD + ke

Th

Te
E =

Th

Te
de8.

s92bd

The driving forces are modified to incorporate thermal diffu-
sion and exclude the electric field

di8 =
=pi

nkBTh
−

yip

nkBTh
= ln p + kTi

h sjd = ln Th

+ kTi
e sjd

Ti

Te
= ln Te, s93ad

ki =
1

kBTh
sxiqi − yiqd. s93bd

The modified driving forces and electric field factors are not
linearly independent

o
jPS

d j8 = 0, s94ad
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o
jPS

k j = 0. s94bd

The electric field remains unknown and can be determined
from the ambipolar assumption stating that there is no net
conduction current

o
jPS

xjqjfV jgj = 0. s95d

Combining both mass[see Eq.(89)] and ambipolar[see Eq.
(95)] constraints, a new constraint appears

o
jPS

k jfV jgj = 0. s96d

To close the system given in Eq.(92), Eq.(96) is preferred to
Eq. (95) for symmetry reason. If charge neutrality is verified
in the plasma, Eqs.(95) and (96) are equivalent. The mass
conservation constraint given in Eq.(89) complements the
set of equations.

Existing models from the literature[18,28] are shown to
be approximations of the present complete description. As-
suming that for alli PH, there existsj PH , j Þ i, such that
xe/Die!xj /Di j , an approximate form of the Stefan-Maxwell
equation(92a) is found for heavy particles

o
jPH
jÞi

xixj

Di j
f1 + wi jsjdgsfV jgj − fV igjd +

xixe

Die
f1 + wiesjdg

Te

Th
fVegj

+ kiE = di8, i P H. s97d

Equation for electrons is obtained consistently to ensure
compatibility of the system

− o
jPH

xexj

Dej

f1 + wejsjdgfVegj + ke
Th

Te
E =

Th

Te
de8. s98d

The mass and ambipolar constraints Eqs.(89) and (96) are
still applicable. Equations(97) and (98) correspond to
Kolesnikov’s model[18].

Assuming further that for alli PH, there existsj PH , j
Þ i, such thatxeVe/Die!xjVj /Di j or such thatxeVe/Die
!xjVi /Di j , the Stefan-Maxwell equation for heavy particles
(92a) simplifies

o
jPH
jÞi

xixj

Di j
f1 + wi jsjdgsfV jgj − fV igjd + kiE = di8, i P H.

s99d

Summing up Eq.(99) over heavy species and using Eq.(94),
the electric field is given byE=de8 /ke. Equation(99) is re-
written

o
jPH
jÞi

xixj

Di j
f1 + wi jsjdgsfV jgj − fV igjd = di8 −

ki

ke
de8, i P H.

s100d

To get a closed form, the electron diffusion velocity is elimi-
nated between the constraints presented in Eqs.(89) and

(96). Thus, the system given in Eq.(100) is supplied with the
equationo jPHfyj −yexjqj / sxeqedgfV jgj=0. Quasineutrality of
the plasma provides the simplified equation

o
jPH

yjfV jgj = 0. s101d

From Eq. (95), the electron diffusion velocity readsfVegj

=−o jPH xjqjfV jgj / sxeqed. Equation(100) generalizes Ram-
shaw and Chang’s diffusion model[20] to any higher order
of approximation for the Laguerre-Sonine polynomials, in-
cluding the thermal diffusion effect.

H. Internal energy and chemistry

Internal energy of atoms and polyatomic molecules has
been entirely neglected in this derivation. In elastic colli-
sions, the internal degrees of freedom of molecules do not
change and the macroscopic result is a passive transport of
internal energy. In inelastic collisions, the internal degrees of
freedom vary. Diffusion and heat transfer phenomena are af-
fected. As mentioned earlier, kinetic theory has been gener-
alized to incorporate both contributions[6,27,29,32]. A rig-
orous treatment of internal energy is not the object of the
present research and inelastic collisions were therefore not
accounted for. However, simple Eucken corrections are now
considered in order to provide some pragmatic treatment of
the internal degrees of freedom. These expressions are useful
in situations where it is difficult to estimate with high accu-
racy the contribution of inelastic collisions. Only the thermal
equilibrium case is addressed in this section. Thermal non-
equilibrium requires additional energy conservation equa-
tions with specific relaxation models. The heat flux expres-
sions given in Eq.(64) are modified

qh = o
jPH

r jhjV j + nkBTo
jPS

kTj
h V j − slh + lR + lV + lEd = T,

s102ad

qe = reheVe + nkBTo
jPS

kTj
e V j − le = T. s102bd

Species enthalpies used in the heat flux expressions[see Eq.
(102)] are now given by

hi = hTi + hEi + hFi, i P Ha, s103ad

hi = hTi + hRi + hVi + hEi + hFi, i P Hp, s103bd

he = hTe+ hFe, s103cd

whereHa andHp stand for the sets of indices of atoms and
polyatomic molecules. ExpressionshRi, hVi, and hEi corre-
spond, respectively, to the rotational, vibrational, and elec-
tronic species enthalpies. The chemical reaction contribution
is included by means of the formation enthalpyhFi. Rota-
tional, vibrational, and electronic thermal conductivities,lR,
lV, and lE, are derived on a rigorous basis considering all
the collisions to be elastic in the transport systems given by
Ern and Giovangigli[29]. After some trivial algebra, one
obtains
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lR = n o
iPHp

xiCi
R

o jPH xj/Di j

, s104ad

lV = n o
iPHp

xiCi
V

o jPH xj/Di j

, s104bd

lE = no
iPH

xiCi
E

o jPH xj/Di j

, s104cd

where Ci
R, Ci

V, and Ci
E are the rotational, vibrational, and

electronic species specific heats per particle. Remark, even
though less frequent, inelastic collisions play a role in the
establishment of local equilibrium(see Ref.[6]).

IV. CONCLUSIONS

In this contribution, the modeling of transport phenomena
was addressed for partially ionized and unmagnetized plas-
mas in thermal nonequilibrium. Different models found in
the literature were reviewed. Most of the expressions derived
from kinetic theory are inconsistent with respect to mass
conservation. Moreover, it is difficult to extract the final re-
sults for real applications. Kolesnikov[16] has established a
self-consistent model from a nonsymmetric kinetic approach.
Petit and Darrozes[19] and Degond and Lucquin-Desreux
[22,23] have derived the correct scaling of the Boltzmann
equation from a dimensional analysis. Ramshaw and Chang
[20,21] have proposed a pragmatic diffusion model from hy-
drodynamic theory. Ratet al. [26] have envisaged the possi-
bility of a strong thermal nonequilibrium in two-temperature
plasmas. Their scaling of the Boltzmann equation is in con-
trast with Refs.[19,22,23] and a nonsymmetric formalism
has been used in the derivation.

We have presented a kinetic approach to compute the
transport properties. Following Petit and Darrozes[19], a
dimensional analysis of the Boltzmann equation deals with
the disparity of mass between electrons and heavy particles.
This analysis yields the epochal relaxation concept worked
out by Degond and Lucquin-Desreux[22,23]. We assumed a
translational temperature of electrons distinct from that of
heavy particles and a common hydrodynamic velocity. The
plasma was described by macroscopic fluid conservation
equations. The expressions of the transport fluxes and coef-
ficients were derived from kinetic theory together with a
high-order Stefan-Maxwell equation. These expressions re-
main valid in thermal equilibrium situations. The mathemati-
cal treatment includes a modified first-order Chapman-
Enskog perturbative method and Laguerre-Sonine
polynomial and Goldstein expansions. New bracket integrals
were introduced to deal with thermal nonequilibrium. We
retrieved the expressions of viscosity and thermal conduc-
tivities found by Devoto[10] and the thermal diffusion terms
computed by Kolesnikov[16]. Our results for diffusion gen-
eralize the models presented by Kolesnikov and Ramshaw
and Chang. Thus, kinetic theory can be employed to provide
general, rigorous, and readily applicable expressions of the

transport fluxes and coefficients in thermal nonequilibrium.
Thanks to the symmetric formalism retained, the numeri-

cal methods introduced by Ern and Giovangigli[29] can be
employed. In another publication[39], the validity of the
models developed is verified in physicochemical applications
and the numerical advantages of the symmetric formalism is
demonstrated. An extension of our theory to strong thermal
nonequilibrium would allow for a comparison to the results
of Rat et al. [26].
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APPENDIX A: BRACKET INTEGRALS

1. Linearized collision operator

The linearized scattering collision operator is defined by

I isfd = o
jPS

ninj

n2 I ijsfd, i P S. sA1d

The partial linearized scattering collision operators read

I ijsfd = −
1

ninj
fJijsf i

0fi, f j
0d + Jijsf i

0, f j
0f jdg

=
1

ninj
E f i

0f j
0sfi + f j − fi8 − f j8dgsdVdcj, i, j P H,

sA2ad

I iesfd = −
1

nine
hJiefnidsCidfi, f e

0g + JiefnidsCid, f e
0fegj

=
1

ne
E dsCidf e

0sfe + fi − fe8 − fi8dgsdVdce, i P H,

sA2bd

Ieisfd = −
1

nine
hJeiff e

0fe,nidsCidg + Jeiff e
0,nidsCidfigj

=
1

ne
E dsCidf e

0sfe + fi − fe8 − fi8d

3gsdVdci, i P H, sA2cd

Ieesfd = −
1

ne
2fJeesf e

0fe, f e
0d + Jeesf e

0, f e
0fedg

=
1

ne
2 E f e

0f̄ e
0sfe + f̄e − fe8 − f̄e8dgsdVdc̄e,

sA2dd

where the bar is used to distinguish collision partner indices.
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2. Bracket integral definition

The total bracket integral operator is defined by

fF,Gg = kkG,IsFdll sA3d

and can be expressed under the form

fF,Gg =
1

4n2 o
i,jPH

E f i
0f j

0sFi + Fj − Fi8 − Fj8d ( sGi + Gj − Gi8

− Gj8dgsdVdcidcj +
1

2n2o
jPH

nj E dsC jdf e
0sFe + Fj

− Fe8 − Fj8d ( sGe + Gj − Ge8 − Gj8dgsdVdcedcj

+
1

4n2 E f e
0f̄ e

0sFe + F̄e − Fe8 − F̄e8d ( sGe + Ḡe − Ge8

− Ḡe8dgsdVdcedc̄e. sA4d

From Eq.(A4), we deduce that the bracket integral operator
is symmetric fF ,Gg=fG,Fg, positive semidefinitefF ,Fg
ù0 and its kernel is spanned by the collisional invariants
given in Eq.(7). The total bracket integral is decomposed in
terms of both the electron and heavy-particle contributions

fF,Ggh = kkG,IsFdllh, sA5ad

fF,Gge = kkG,IsFdlle, sA5bd

fF,Gg = fF,Ggh + fF,Gge. sA5cd

The bracket integrals are expressed in terms of partial
bracket integrals

fF,Ggh = o
i,jPH

ninj

n2 sfF,Ggi j8 + fF,Ggi j9 d + o
jPH

nenj

n2 sfF,Gg je8

+ fF,Gg je9 d, sA6ad

fF,Gge = o
jPH

nenj

n2 sfF,Ggej8 + fF,Ggej9 d +
ne

2

n2sfF,Ggee8

+ fF,Ggee9 d, sA6bd

defined by the following expressions:
(i) Heavy-heavy and electron-electron partial bracket in-

tegrals,si , jdPH3Hø hse,edj

fF,Ggi j8 =
1

ninj
E f i

0f j
0sFi − Fi8d ( GigsdVdcidcj ,

sA7ad

fF,Ggi j9 =
1

ninj
E f i

0f j
0sFj − Fj8d ( GigsdVdcidcj ,

sA7bd

(ii ) Electron-heavy partial bracket integrals,i PH

fF,Ggie8 =
1

ne
E f e

0dsCidsFi − Fi8d ( GigsdVdcidce,

sA8ad

fF,Ggie9 =
1

ne
E f e

0dsCidsFe − Fe8d ( GigsdVdcidce,

sA8bd

fF,Ggei8 =
1

ne
E f e

0dsCidsFe − Fe8d ( GegsdVdcidce,

sA8cd

fF,Ggei9 =
1

ne
E f e

0dsCidsFi − Fi8d ( GegsdVdcidce.

sA8dd

3. Bracket integral reduction

Reduction of the bracket integrals in terms of collision
integrals generalizes Ferziger and Kaper’s treatment for un-
like particles to weak thermal nonequilibrium. Results for
heavy-heavy or electron-electron interactions are directly ap-
plicable providing that the adequate translational temperature
is selected. The major steps in the derivation for electron-
heavy interactions are outlined. The reader is referred to the
original work for further details[6]. For instance, the partial
bracketfS3/2

spdsC2dC ,S3/2
sqd sC2dCgie9 is given by

lim
mi→`

1

nine
E f i

0fe
0fS3/2

spdsCe
2dCe − S3/2

sqd sCe8
2dCe8g

·S3/2
spdsCi

2dCigsdVdcidce, i P H. sA9d

To simplify the calculation, the Dirac distribution is replaced
by f i

0/ni and the infinite mass hypothesis of speciesi is as-
sumed at the end of the derivation. Notice the misprint in Eq.
(A9) in Ref. [6], where the arguments of the bracket are
inverted. To perform such an integration, a new set of vari-
ables is preferred to the nondimensional velocities. The cen-
ter of mass and relative velocities are introduced for
electron-heavy collisions

sme + midG = mece + mici , sA10ad

g = ci − ce. sA10bd

The center of mass relative to the moving gas stream is given
by G0=G−v. In elastic collisions, the center of mass veloc-
ity and the module of the relative velocity are identical after
collision for physical considerations(G=G8 and g=g8).
Hence, it is verified thatg·g8=g2 cos x, where x is the
deflection angle. Following Devoto[40], nondimensional
center of mass and relative velocities are introduced for the
thermal nonequilibrium case:

G0 =Î 1

2kB
Sme

Te
+

mi

Th
DG0, sA11ad

g =Î 1

2kB

memi

sme + mid2Sme

Th
+

mi

Te
Dg. sA11bd

Nondimensional velocities defined in Eq.(46) are expressed
in terms of the vector quantities given in Eq.(A11),
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Ce =Î meTh

meTh + miTe
G0 −Î miTh

meTe + miTh
g, sA12ad

Ci =Î miTe

meTh + miTe
G0 +Î meTe

meTe + miTh
g. sA12bd

The determinant of the Jacobian of the transformation reads

U ] sG0,gd
] sCe,Cid

U =
1

me + mi

ÎsmeTh + miTedsmeTe + miThd
TeTh

sA13d

and

Ce
2 + Ci

2 = G0
2 + g2 + 2G0 ·gsTe – Thd

3Î memi

smeTh + miTed + smeTe + miThd
. sA14d

Providing that

maxSTe

Th
,
Th

Te
D !

mi

me
, sA15d

the previous expressions simplify as

g <Î me

2kBTe
g, sA16ad

Ce < ÎmeÎTh

Te
G0 − Îmi g, sA16bd

Ci < ÎmiG0 + ÎmeÎTe

Th
g, sA16cd

Ce
2 + Ci

2 < G0
2 + g2, sA16dd

U ] sG0,gd
] sCe,Cid

U < 1, sA16ed

whereme=me/mi and mi =1. The explicit calculation of the
partial bracket integrals such as given in Eq.(A9) presents
no difficulties and is not detailed here. The approximation
made in Eq.(A16) is justified under conditions of weak ther-
mal nonequilibrium. As pointed out by Devoto[40], under
extreme nonequipartition of energy, as might be obtained in a
strong electric field, this method of solving the Boltzmann
equation is certainly not valid.

APPENDIX B: COLLISION INTEGRALS AND BINARY
DIFFUSION COEFFICIENTS

In classical mechanics, the deflection angle is related to
the interaction potentialwsrd by the relation

x = p − 2bE
rm

` dr/r2

Î1 − b2/r2 − wsrd/S1

2

mimj

mi + mj
g2D ,

sB1d

whereb is the impact parameter,r the distance between col-
liding particles, andrm the distance of closest approach.
Cross sections are given in terms of the deflection angle

Qij
sld = 2pE

0

`

s1 − coslxdb db. sB2d

Collision integrals and binary diffusion coefficients in ther-
mal nonequilibrium are now introduced as follows:

(i) Heavy-heavy interactions,i , j PH

Vi j
sl,sd =ÎkBTh

2p

mi + mj

mimj
E

0

`

exp s− g2dg2s+3Qij
slddg

=
1

2Îp
S 1

2kBTh

mimj

mi + mj
Ds+3/2E

0

`

expS−
1

2kBTh

3
mimj

mi + mj
g2Dg2s+3Qij

slddg, sB3ad

Di j =
3

16n

mi + mj

mimj

kBTh

Vi j
s1,1d , sB3bd

whereg=hmimj / fsmi +mjd2kBThgj1/2g.
(ii) Heavy-electron interactions, iPH

Vie
sl,sd =Î kBTe

2pme
E

0

`

exp s− g2dg2s+3Qie
slddg

=
1

2Îp
S me

2kBTe
Ds+3/2E

0

`

expS−
me

2kBTe
g2Dg2s+3Qie

slddg,

sB4ad

Die =
3

16nme

kBTe

Vie
s1,1d , sB4bd

whereg=fme/ s2kBTedg1/2g.
(iii) Electron-electron interactions

Vee
sl,sd =ÎkBTe

pme
E

0

`

exp s− g2dg2s+3Qee
slddg

=
1

2Îp
S me

4kBTe
Ds+3/2E

0

`

expS−
me

4kBTe
g2Dg2s+3Qee

slddg,

sB5ad

Dee=
3

8nme

kBTe

Vee
s1,1d , sB5bd

whereg=fme/ s4kBTedg1/2g.
The collision integrals and binary diffusion coefficients

are symmetric in the species.
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APPENDIX C. TRANSPORT SYSTEMS

The transport matricesLi j
pq andHij

pq, i , j PS ,p,qPP, are
defined by the expressions

Li j
pq =

8

75kB
2Îmimj

TiTj
Hdi jo

kPS
xixkfS3/2

spdsC2dC,S3/2
sqd sC2dCgik8

+ xixjfS3/2
spdsC2dC,S3/2

sqd sC2dCg ji9J , sC1d

and

Hij
pq =

2

5kB
Hdi jo

kPS
xixkfS5/2

spdsC2dsC ^ C − C2I/3d,S5/2
sqd sC2dsC

^ C − C2I/3dgik8 + xixjfS5/2
spdsC2dsC ^ C − C2I/3d,

S5/2
sqd sC2dsC ^ C − C2I/3dg ji9J . sC2d

Note the misprint in the indices of the partial bracketf,g ji9 in
Ref. [6]. This misprint compensates the error indicated be-
fore in Eq.(A9).

(i) Heavy-particle subsystem,i , j PH
The transport matrices are detailed up to order 2 forL and

order 1 forH.

Li j
00 = L ji

00 = −
64

75kB
2Th

xixj
mimj

mi + mj
Vi j

s1,1d, i Þ j ,

sC3ad

Lii
00 =

64

75kB
2Th

o
jPH
jÞi

xixj
mimj

mi + mj
Vi j

s1,1d

+
64

75kB
2Te

STe

Th
D2

xixemeVie
s1,1d, sC3bd

Li j
01 = L ji

10 = −
64

75kB
2Th

xixj

mi
2mj

smi + mjd2

3S5

2
Vi j

s1,1d − Vi j
s1,2dD, i Þ j , sC3cd

Lii
01 = Lii

10 =
64

75kB
2Th

o
jPH
jÞi

xixj

mimj
2

smi + mjd2S5

2
Vi j

s1,1d − Vi j
s1,2dD ,

sC3dd

Li j
11 = L ji

11 = −
64

75kB
2Th

xixj

mi
2mj

2

smi + mjd3S55

4
Vi j

s1,1d − 5Vi j
s1,2d

+ Vi j
s1,3d − 2Vi j

s2,2dD, i Þ j , sC3ed

Lii
11 =

64

75kB
2Th

o
jPH
jÞi

xixj
mimj

smi + mjd3S5

4
s6mi

2 + 5mj
2dVi j

s1,1d

− 5mj
2Vi j

s1,2d + mj
2Vi j

s1,3d + 2mimjVi j
s2,2dD

+
64

75kB
2Th

xi
2mi

2
Vii

s2,2d, sC3fd

Hij
00 = Hji

00 = −
32

15kB
xixj

mimj

smi + mjd2

3S5Vi j
s1,1d −

3

2
Vi j

s2,2dD, i Þ j , sC3gd

Hii
00 =

32

15kB
o
jPH
jÞi

xixj
mj

smi + mjd2S5miVi j
s1,1d +

3

2
mjVi j

s2,2dD
+

32

15kB
xi

23

4
Vii

s2,2d. sC3hd

sii d Heavy-particle-electron subsystem,i PH
The transport matrices are detailed up to order 3 forL and

order 1 forH.

Lie
00 = Lei

00 = −
64me

75kB
2Te

Te

Th
xixeVie

s1,1d, sC4ad

Lie
01 = Lei

10 = −
64me

75kB
2Te

Te

Th
xixeS5

2
Vie

s1,1d − Vie
s1,2dD ,

sC4bd

Lei
01 = Lie

10 = 0, sC4cd

Lie
11 = Lei

11 = 0, sC4dd

Lie
02 = Lei

20 = −
64me

75kB
2Te

Te

Th
xixeS35

8
Vie

s1,1d −
7

2
Vie

s1,2d +
1

2
Vie

s1,3dD ,

sC4ed

Lei
02 = Lie

20 = 0, sC4fd

Lei
12 = Lie

21 = Lie
12 = Lei

21 = 0, sC4gd

Lei
22 = Lie

22 = 0, sC4hd

Hie
00 = Hei

00 = 0. sC4id

siii d Electron subsystem
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The transport matrices are detailed up to order 3 forL and
order 1 forH.

Lee
00 =

64me

75kB
2Te

o
jPH

xexjVej
s1,1d, sC5ad

Lee
01 = Lee

10 =
64me

75kB
2Te

o
jPH

xexjS5

2
Vej

s1,1d − Vej
s1,2dD , sC5bd

Lee
11 =

64me

75kB
2Te

o
jPH

xexjS25

4
Vej

s1,1d − 5Vej
s1,2d + Vej

s1,3dD
+

64me

75kB
2Te

xe
21

2
Vee

s2,2d, sC5cd

Lee
02 = Lee

20 =
64me

75kB
2Te

o
jPH

xexjS35

8
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