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Intrinsic trapping of stochastic sheared magnetic field lines
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The decorrelation trajectory method is applied to the diffusion of magnetic field lines in a perturbed sheared
slab magnetic configuration. Some interesting decorrelation trajectories for several values of the magnetic
Kubo number and of the shear parameter are exhibited. The asymmetry of the decorrelation trajectories appears
in comparison with those obtained in the purely electrostatic case studied in earlier work. The running and
asymptotic diffusion tensor components are calculated and displayed.
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I. INTRODUCTION method of investigation of the diffusion in a stochastic ve-

A central issue for fusion is the description of turbulencelocity field [3] we extend our analysis to a relatively large-
phenomena in a plasma at high temperature. The magnetitibo-number regim&,,> 1. Because of the existence of the
turbulence appears as a plausible candidate for determinirfy/0 parametergto be defined beloy—the magnetic Kubo
the anomalous transport properties of a hot magnetizeumberKg and the shear parametét—a richer class of
plasma. The magnetic fluctuations, whose intensity is meaehaviors of the diffusion coefficients is observed. The com-
sured by the dimensionless magnetic Kubo nunigg(to be  petition between these two parameters plays an important
defined below, even when small, can destroy the nestedrole and seems to be decisive in the determination of the
magnetic configurations in a toroidal confinement geometrytrapping effects.
such as in a tokamak. Moreover, in such disturbed regions The paper is organized as follows. The Langevin equa-
where the magnetic field is completely stochastic, a singldions for the sheared stochastic magnetic field are established
magnetic line fills a three-dimensional region. As a resultjn Sec. Il. In Sec. lll, in the framework of decorrelation
any particle makes radial displacements, thus enhancing thgajectory(DCT) method, the expressions of the Lagrangian
radial transport. The study of transport in such stochasti€orrelations and of the diffusion tensor are obtained. In Sec.
magnetic fields is therefore of great importance for the fulV the decorrelation trajectories are analyzed. In Sec. V the
sion. running and asymptotic diffusion coefficients are studied.

In the present paper we restrict ourselves to the study of he conclusions are summarized in Sec. VI.
the geometrical aspect of the problem: we thus analyze the
properties of the magnetic lines of a sheared stochastic mag-
netic field alone. We consider the simplified model of the !l LANGEVIN EQUATIONS FOR THE MAGNETIC
slab approximation including the shear. The presence of the FIELD LINES
;hear influenceg the Ieng_th of a magn.etic _Iine between two |, the present paper we consider a magnetic field of the
fixed z values(z is a coordinate in the direction of the refer- following form [4]:
ence magnetic field It will be shown in the following that
the magnetic shear and the magnetic Kubo nunigehave  B(X,Y,Z) = Bole, + Boy(X,Y,2)e + [ Bby(X,Y,Z) + L;lx]ey},
an important influence on the diffusion of the magnetic field (1)
lines. The problem is simplified whenever the study is re-
stricted to stochastic magnetic fields with small amplitudesvhere is a dimensionless parameter measuring the ampli-
and/or large perpendicular correlation lengths for which thgude of the magnetic field fluctuations relative to the main
magnetic Kubo numbeK, is small. The main contribution constant magnetic fielB,.
of our work consists, however, in analyzing the influence of The linear term depending ox in the right-hand side of
the shear in both weak- and strong-turbulence regimes fdeq. (1) is the shear termi, is the shear length, and Ed) is
the stochastic magnetic fields. Until now the influence of thethe so-called “sheared slab” configuration which must be un-
shear on the diffusion coefficients was analyzed only in thederstood as a local approximation. This approximation mim-
guasilinear limit—i.e., the small-Kubo-number regime. Theicks the field around a rational surfage=0 existing in tor-
diffusion coefficients for the magnetic field lines were stud-oidal systems and is valid only fdX|<Ls. The magnetic
ied for both small- and large-Kubo-number regimes in manyfield fluctuations are described by the dimensionless func-
papers(see, e.9.[1,2]) but for the shearless case. tionsb;(X,Y,Z),i=(x,y), which depend on the spatial coor-

Our analysis is not restricted only in a range of smalldinatesX,Y,Z but may also depend on tinteWe will study
magnetic Kubo numbeK,,<1. Using a recently developed in this paper only the stationary case. The fluctuation
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b,(X,Y,Z2) is taken to be a Gaussian random process which is
fully specified by its binary correlation. If we consider the
system with a quasi gyrotropical symmeftyecause of ex-
istence of the shepri.e., quasi-isotropy in a plane perpen- -_K JP(xy,2) +0

. . e o ==Ky —— X(2).
dicular to the main magnetic fieB,— the two characteristic aX x=x(2)
lengths in this plane are equal to each othgr=N =N\ .
The third characteristic length ¥s,=\,.

We introduce the coordinatesy,z which are dimension-

less quantities related to the dimensional oKe¥,Z by the
relations

dz_(ZZ) =Knby[x(2),y(2),2] + 0X(2)

(8

The system(5) is of the same form as the system for the
guiding center motion of a test particle in a fluctuating elec-
trostatic field, with the addition of the shear contribut{Gh.

It also represents the characteristic system of equations for a
Liouville stochastic equatiotor hybrid kinetic equationfor

the density probability function; the shear term in E¢g.is

an advection term in the Liouville stochastic equation and is
not a directly fluctuating term. We deal in Eq$) with a
where\ | and\; are the characteristic lengths characterizingsingle vectorial stochastic function with the components
the turbulent state; they are called, respectively, perpendicuy(x,y;2),i=(x,y). The fluctuating potential function

lar and parallel correlation lengths. An additional characteh/,(x,y;z) is assumed to be Gaussian, spatially homogeneous,
istic length is related to the shedrs. We thus construct two  gyrotropic, and with zero average. The second-order moment
dimensionless parameters describing the stochastic magnefi¢ y— i.e., the Eulerian autocorrelation function of the di-

X Y Z
2=

==, 2
N )

geometry:

Ay Ay

Kn=B8—", 60;=—. 3
=Bl b= ®

The equations for the magnetic field lines are obtained

from Eq. (2):

dX dy  _dz

BBobx  BBob, +BoLs'X By’

(4)

These equations can be rewritten by consideringZiveari-
able as a mere parameter which plays the role of “time”:

dX
dZ - BbX(X,Y,Z),

dy i
Wz B0,(X,Y,Z) + L'X.

Using EQ.(2), Eq. (1) becomes

(5

B(X,Y,2) = Bo{e, + Bby(X,y, 26 + [ Bby(X,y,2) + N L'X]ey}.
(6)

The magnetic field given in Eq1) or Eqg. (6) must satisfy
the zero-divergence constraimM-B=0 imposed by Max-

well's equations. This condition is automatically fulfilled if

mensionless potential—is assumed to be of the following
factorized form:

E(X!y! Z) = <l/,(0101()¢(x!y! Z)> = El(r)E2(2)1 (9)

wherer =\x?+y? and:

2.2 2
El(r):exr<—x ;y ) Ez(z):exy<— E) (10

The Fourier transform d&(X,y, z), is very useful in deriving
the correlations between the stochastic functions and has the
following form:

~ ~ ~ k2 1
E(k,k) = E1(KEy(k) = (2m)~%2 eXl{‘ E)ex;{— E)’

11

wherek= \s’k§+ k§ Various types of Fourier spectra were al-
ready considere@see, e.g.[1,2]) but only for the shearless
stochastic magnetic field. The Eulerian autocorrelation func-
tion of the Fourier transform of the potential is

(K, k) Ak ) = Ey(KEp(ky) S(k + k") 8k, + K/,
(12

we consider that the fluctuating magnetic field derives fromvhere the following definition for the Fourier transform f

the following vector potential which has onlyza&aomponent:

A(X,Y,Z) =Bo\ | B XY, 2)e,. (7

Equations(5) can then be rewritten in the following dimen-

sionless form:

dz = Knb[x(2),y(2),2] = Ky Y lyx@

was used:

WXy = f dk dk gk, k)expik - +ik2). (13)

The mixed Eulerian correlations between the potential and
the magnetic field are defined jB] as

Czﬁn(xayaz) = (lﬁ(olqubn(xiyiz»,
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JE(X,Y,2)

&Xj

Cm//(xvyvz) = <bn(01010¢(X!y! Z)> == Snj DI](Z) = J dgl—lj(g)v (19)
0

nj=xy, (14) provided.thgt the stocha.stic.field is “stationary”; the
asymptotic diffusion coefficient is calculated as
where e,; is the antisymmetric tenso(el2=-21=1,
£11=¢22=0 and the following relations between these Dfj*= limDj;(2). (20
correlations hold5]: e

JE(XY,2) The main tool for determining the running and asymptotic
Cux(X,Y,2) == Cy(X,y,2) = ———= = - yE(X,Y,2) diffusion coefficient is then the Lagrangian correlation de-
¥x Xy J . . . ; T
y fined in Eq.(18); an important simplification of the calculus

and can be done if a relation between the Lagrangian correlation
and the corresponding Eulerian one can be established. Un-

IE(X,Y,2) fortunately, until now, there does not exist a general exact

Cyy(Xy,2) = - Cyy(x,y,2) = - Tax =xE(x,y,2). relation between these correlations, which is valid for both

weak- and strong-turbulence regimes. However, for a weak-
(159  turbulence regime,—i.eK,,<1—an approximate formula
which relates the two types of correlations exists: this is the
%elebrated Corrsin approximatidi7,8] which includes the
quasilinear and Bohm approximations. The Corrsin approxi-
i —(h _ ZT8.(1 —r2) + vy, mation consists in two hypothesig) the statistical indepen-
Bij(x.y.2) =(bi(0,0,0b;(xy,2)) = [;(1 =r) + X JE(xy,2), dence between the particle trajectories and the stochastic ve-
o locity field and (b) the displacements have a Gaussian
LI=Xy, (16)  distribution. In our paper, the geometrical point from a mag-
netic field line plays the role of the test particle. The Corrsin
approximation is a very good approximation for a Kubo
PE(X,Y,2) number in the rangK,,<1 and it can determine perturbative

The dimensionless autocorrelation tensor for the fluctuatin
magnetic field components is

and its components are derived frdfx,y,z) as[5,6]

B.(X,Y,2) = - —=01 -y)E(X,y,2), (17 corrections of the diffusion coefficierisee, e.g.[6] for the
ay shearless cageWe write here, for convenience, Corrsin’s
relation between the Lagrangian and Eulerian correlations:

&ZE 1)
Byy(X,,2) = - % =(1-x)E(x,Y,2),
X Lij(2) =K, f dx(bi[x(0);0]b;[x; Z]8(x — X(2)))
(92E(X,y,2) Corrs
Byy(X,Y,2) = Byy(X,y,2) = Toxay =xyEX,y,2). = Kﬁqf dx(bi[x(0); 0]b;[x; Z])(8(x = X(2))).
Equations(5) are the starting point of our analysis. Their (20

solution depends on two dimensionless parameters: the mag-
netic Kubo numbeK,, and the shear paramet@r The forth- ~ As can be seen from E21), Corrsin assumed that, at least
coming treatment is closely following the paper of Viatl in some asymptotic sense, the exact propagéotx(2)) is
al. [3]. approximated by its ensemble average. However, at large
Kubo numberK,>1, the numerical simulations for already
studied casegsee, e.g.[1,2,9-12), which are similar to
ours, have confirmed that the displacements are not Gauss-
ian: a trapped particléa geometrical point in our capwind

The Langevin equationg) will be used in order to cal- ©on almost closed paths afmall size near the maxima or
culate the running and Consequenﬂy the asymptotic diffusioﬁninima of the stochastic field while for small absolute values
coefficient of the magnetic field lines in both small- and of the stochastic potential the geometrical point makege
large-Kubo-number regimes for different values of the sheaglisplacements. This fact implies that the Corrsin approxima-
parameter. The Lagrangian correlation of the directly fluctution is not adequate for the study of a relatively strong-

IIl. DCT METHOD FOR THE MAGNETIC FIELD LINES
DIFFUSION

ating parts from Eqs(8) is defined as usual as: turbulence regime.
In our paper we use the DCT approximation, a significant
Lij(2) = Krzn<bi[x(0);O]bj[x(z);z]>, (18)  step beyond the well-known Corrsin approximation. In the

framework of DCT method general expressions of the run-
where(:--) denotes the ensemble average over the realizaning (and consequently asymptotidiffusion coefficients
tions of the fluctuating magnetic field components and can be derived for both small- and large-Kubo-number re-
=(x,y). The running diffusion coefficient is calculated from gimes. We briefly recall the main ideas of the DCT approxi-
Eq. (18) as mation; see Ref.3]. The main idea of this method is to study
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the Langevin systeni8) not in the whole space of realiza- having the value®?y° at x=0, and at the “momentz
tions of the potential fluctuations; the whole space is then=0.

subdivided intosubensembles, 8haracterized by given val- Since the initial fluctuating fields in the subensen®kre
ues of the potential and of the fluctuating field at the startingy(0;0)=b? for all trajectories, the subensemble average de-
point of the trajectoriegsee below Eq(23)]. The exact ex- fined in Eq.(24) is

pression of the Lagrangian correlation can be written in the ] ) )

form of a superpositiofi.e., a summing up of the contribu- (bi(0;0)b;[x(2):2))°= bX{by[x(2);2])° (29
tion of each subensemb® see below Eq24)] of Lagrang-  and thus the Lagrangian correlatidg(z) is simply the
ian correlations in the various subensemijiese below Egs. eighted average Lagrangian of the fluctuating field in all

(24) and (29)]. We mention that Eq24) is an exact equa- sybensembles. We need first to calculate the average Eulerian
tion. The existence of an average Eulerian velocity in thejelds b, in the subensembls.

subensemble determines an average motaeTorrelation

trajectory. The definition of the DCT approximation method b3(x;2) = (by(x;2))*,
consists practically in the following two statements.
(i) In each subensemble is defined a deterministic trajec- bj(x;2) = (by(x;2))". (26)

tory x5(z) by the following criterion: theEulerian averagef
the potentialy® in the subensembl§, calculated along this
deterministic trajectory, equals theagrangian average of
the same potential in the subensem8le

The next step in the DCT method is to define a determin-
istic trajectory in each subensemble as a solution of the sys-
tem (5) in which the right-hand sides are replaced by the
average fieldsbjS in the subensemble. The equations for the

WIxX2):7] = (U x(2): 2))S. (22) decorrelation trajectory are thus

This deterministic trajectory is called decorrelation trajec- @ = Kmbf[xs(z); z,
tory. Z
(i) The average Lagrangian velocity in the subensemble a0
Sis approximated with the average Eulerian velocity calcu- 9 _ Sion. s
lated along the deterministic trajectoigee below Eq(29)]. dz Kmbﬁ[x (2):2]+ 6072, @7

Equation(22) states that in the DCT method we can con- S
sider the Lagrangian average of the potential as the corrdvherexx0)=0. in ordt_ar to study the shape of the DCT we
sponding Eulerian average calculated along the deterministdOPt the polar coordinates
trajectory[i.e., the solutions of the syste(@7) (see belowy] b?=h°cosa, bg =h’sin a, (28)
in the same subensemblienplementing these approxima-
tions in the exact formula for the Lagrangian field correlationwherea is the angle between® and thex axis.
yields an approximation that is valid, in principle, for arbi-  According to the DCT methogisee the above statement
trarily large values oK., The main reason for this statement (i)], the average Lagrangian velocities in the subense@ble
is that the DCT method takes into account the trapping prois approximated by the Eulerian averages calculated along
cesses, which are neglected in previous theories based on tH® deterministic trajectories that are the solution of the sys-
Corrsin approximation. The trapping process is an essentid@m (30) written below[see Eq(22)]:
ingredient of strong turbulence theories. The validity of the _ NS — hS () - -
approximation involved in DCT method can be assesseal by (blx@:2)) bJS[X @z, j=xy, 29
posterioricomparison with experiment and simulations, as iswherex(z) are the solutions of the systei®0); the averages

done in all theories of strong turbulence. from Egs.(27) are performed using the method described in
The DCT method is now systematically developed for the[3] and the resulting system is
present problem. We first define a set of subensentleis dxS(2)
the realizations of the stochastic sheared magnetic field that =Kd— 25+ b%SSsin a + b1 - (y9?]
are defined by given values of the potentfahnd magnetic dz
field fluctuationb in the pointx=0 at the “moment’z=0: X C0S a}E4(1)Ey(2)
$(0;0)=yP, b(0;0)=b’, i=xy. (23) = Knb3(x%2),

The correlation of the Lagrangian fluctuating fields defined dyS(2)
in Eqg. (5) can be represented as a sum over the subensembles
S of the correlations calculated in each subensemble: dz

=K fy®S + b%SyS cos a + b 1 - (x5?]sin a}

XE;(N)Ex(2) + 65
Lij(2 = K3, J dyPdb®P(b®, yO)(bi(0;0)bj[x(2); 2])°, = Kb3(x52) + 65, (30)
(24)  The Eulerian correlations of the magnetic field fluctuations
bj(x;2) in the subensembl8 have been obtained as in Ref.

where  P(b°,yP)=P(bQ)P(bJ)P(y°), with P(m)  [3] [using the usual definition of the conditional probability
=(2m) Y2exp(-m?/2), is the probability density oo, #»  and Eqs(15) and(17)]:
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bi(x;2) = ¥°C,i(x;2) + byB,i(x;2) + bIBi(x;2), i=XY.
(31)

In deriving Eq.(30) we have made the following usual ap-
proximation, specific to the DCT methd8]: we have con-

sidered that the contribution of the subensemble-averagec

shear term{ 6x(2))° in Egs.(26), in each subensemblg B
equal to its value along the deterministic trajectopx3(z).

The Lagrangian average afz) in the subensembl8 is
then approximated by®,

Using Egs.(25) and (29), for arbitrary values of the di-
mensionless parametels,, 6, and « and given Eulerian
correlationsg[see Eqs(14)—(17)] of the fluctuating magnetic
field components that exist in E¢p), the Lagrangian corre-
lation tensor given in Eq24) has the following components:

2m o o
Li(2) = (2m)%%K2, f da J dyP f db°(b%? cos a
0 —00 0

0\2 0\2
xexp[— W}bf[xs(z);z], (32)

2 o o
Liy(2) = (2m) 322 f da J dyP f db’(b%? cos a
0 - 0

0\2 0\2
xexp[— W] bj{x%(2);2],
2w o0 %
Ly(2) = (277)_3/2K§1f da’f dl/lof db’(b%)? sin &
0 —o 0

0\2 0\2
Xexp[— w}bi[xs(z);z],

2 % o
Lyy(2) = (2m) /%3, fo do f dy’ L db’(b%)? sin

0\2 0\2
Xexp{— W}bﬁ[xs(a;ﬂ,

where b{x%(2);z] and bj{x%(2);Z] are identified from Eq.
(31) and are calculated with the solutions of the syst&@).
Integrating Eq(32) with respect taz we obtain the running
diffusion tensor component;;.

The analysis of the diffusion tensor components will be
the object of Sec. V of the paper.

IV. DECORRELATION TRAJECTORIES

We consider now the solutions that are obtained by a nu-

merical integration of the syste(0). A specified trajectory
depends on the parameters that define the subensenble
JP, b° anda. It depends also on the magnetic Kubo number
K, and on the shear parametyr In the following example
we choose a subensemi@alefined by the following values
of the parameters/°=2, b°=1, anda= /3. We also choose
three different values of the Kubo numbi€, K,=0.1,K,

=1, K,,=3 and for each of them three different values for the
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FIG. 1. Decorrelation trajectories féf,,=0.1 Solid line: 6s=6.
Dashed linefgs=1. Dotted line6s=0.

shear parametei, 6,=0, 6;=1, andf;=6. In Figs. 1-3, the
DCT are shown; for all pictures the dotted curves correspond
to 6s=0, the dashed ones =1, and the solid ones té

=6.

The general shape of the decorrelation trajectories con-
sists of a first, more or less localized portion, followed by a
linear portion parallel to thg axis. The latter appears when
the Lagrangian field correlation—or, equivalently, the La-
grangian average field—has been damped out by the factor
E,(2)=exp(-Z%/2). For large values ofz, x3(z)=~xS and
yS(2) = 6x%z. For smallK,, as in Fig. 1(K,,=0.1) the local-
ized portion is shortweak trapping and is essentially pro-
duced by the effect of the shege.g., 6;=6).

In Fig. 2 (K,=1), the trajectory for large shed,=6)
exhibits strong trapping, performing a turn before escaping.
For larger nonlinearityK,=3, Fig. 3 all trajectories are
strongly trapped: fo;=6 the DCT performs two turns be-
fore escaping. The competition between the Kubo number
and the shear parameter will be more clearly exhibited in the

1

05

oF

-

~1.5

L L
-0.3 —0.2

X

L L L
-07 -0.6 -05 -0.4 0.1

FIG. 2. Same as in Fig. 1 but fdt,,,=1.
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~08 -07 -08 -05 0.4 -03 0.2 —0.1 0 0.1 02

X 6s=0 (dotted curvep 6,=0.2 (dash-dotted curves ;=1
(dashed curvgsand 6;=6 (solid curveg in all pictures.

In Fig. 4@), the influence of the shear is exhibited in a
decrease of the asymptotic valugSof the component
next section when the diffusion coefficient behavior will be D,,(z); for z=3 the asymptotic regime is practically
examined. achieved for all values of the shear parameter. In Fid),4
the asymptotic value@f,‘f, of Dy(2) are almost the same for
allvalues of the shear parameter; comparing the asymptotic
values for6s=0.2 from Figs. 4a) and 4d) we can state that

A computer code based on the Runge-Kutta-Fehlberg 4533~ DJ’. In Fig. 4c) there is an obvious increase in abso-
(RKF45 method has been developgtB]. Using this code lute value of the asymptotic valq@§‘§| when the shear pa-
we have calculated the Lagrangian correlation tensor and themeter increases; the same behavior is manifelejj@ras
running and asymptotic diffusion tensor components. It dewe can see from Fig.(8). In the limit of a reasonable error
termines the decorrelation trajectoriggg. (30)] for a large  (=1073) the asymptotic vaIuGD;‘)SJ for 6,=0.2 is practically

FIG. 3. Same as in Figs. 1 and 2 but #5,=3.

V. DIFFUSION COEFFICIENTS

0.05 . S ———
L L =
Z-
£
0.04 P
y)
0.03
D§ D;
0.02
0.01
0
0 1 2 3 4
(a) z (b)
x 107

yX
yy

-8
2
(c) z (d)

FIG. 4. The running diffusion coefficients fd€,,=0.1 and for four values of the shear parameter. In all pictéke® (dotted ling,

0s=0.2 (dash-dotted ling 6s=1 (dashed ling and 65=6 (solid line).
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23 ' ' ' ' ' ' ' ' ' enough number of subensembles and performs the integrals
in Egs. (32) and (19). A careful analysis of the integrands
permits the optimization of the choice of the parameters. For
the evaluation of the Lagrangian correlation tensor we have
calculated 12X 31X 31 decorrelation trajectories; for any
decorrelation trajectory we have used 200 points for “time”
and the final integration timéz final) was 10—i.e., a safe
value in order to reach the asymptotic regirfeee Figs.
4—6). For an arbitrary value od the diffusion tensor is non-
diagonal; the shear term breaks the isotropy of space and
introduces the dependence on the angleThis largely in-
creases the computation time.
In Figs. 4—6 the running diffusion tensor components are
j represented for three different values of the Kubo number
Km Kp=0.1,K,=1, andK,,=3. For each Kubo number four
15 : ‘ s : w ‘ : : : different values of the shear parameter have been chosen:

-4

x10
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(© z
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(b) z

(d) z

FIG. 5. Same as in Fig. 4 but fdt,,=1.

zero. At the same time, also for=0.2, D}j/D5g

This means that there is no trapping in this case for any value

~D§j/Dy;<1 These results are in agreement with those obof 6;<6.

tained in a previous work4]. In all pictures from Fig. 4 all

In the case of intermediate Kubo numigky,=1, Fig. 5 a

componentd;,(2) of the diffusion tensor exhibit a monoto- number of new features appear. The comporiep(z) is

nous increaséin absolute valugfollowed by a saturation.

8

strongly affected by the shear. Whég=1 the correspond-

14
1.2
1 N M- _ A
P ~ -
.. 08 I
o 1
0.6 !
o4t It
, - -
02 /] —‘_l_,—-—-—.
l’/'
0
0 1 2 3 4
(b) z
14
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8 - —————— = =
N '\__a'
0 s S
\N
-,
4 .’.”"”FF"--F.',—.'.HxH.-H.'.-l-.
2
0 .
0 1 2 3 4
() z

FIG. 6. Same as in Figs. 4 and 5 but #5,=3.
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15 T T T T 2 T T T T
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FIG. 7. The diagonal asymptotic diffusion coefficiédf; as a FIG. 8. Same as in Fig. 4 but f@.
function of the magnetic Kubo numbé,, for different values of W

the shear parameter in a lggo lot. Diamonds#s=6. Squares: - .
01 Circpl)es-e o d10P s=o- > from the quasilinear value. We stress the fact that in absence
ST+ -Us— e

of shear the slope of both coefficie$; andDJF (which are

ing f . . dth . | .equa), 6;=0.11, is much smaller than the one appearing in
Ing function presents a maximum and the asymptotic value I§, o oquivalent problem treated f8]. In the latter case the

significantly smaller than fo8;,=0. This is a clear signature Eulerian potential correlation was assumed to (e the
of the trapping effect. On the other hand, the coefficient) .cant notation E;(r)~[1+r2/2n]™" 0.5<n<2, and

=,(2) ~exp(—2), in contrast to the present choice, Ed0).
Thus, the Gaussian correlation produces much stronger trap-

their behavior is quite different from the small, regime. ping than the Lorentzian. This fact was noticed for the elec-

The coefficienD_yX(z) exhibits a minimun{at the same value trostatic guiding center diffusion.

of 7 as the maximum ofthe correspondifig,(2)], followed For both diagonal coefficients, the presence of shear pro-
by a saturation at a value which becomes positive for larggj,ces a final slope larger than the shearless one, but still
05 The componenD,(z) has a behavior qualitatively simi-  gmajler than the quasilinear value. Fy=1 this slope iss

lar to D,(2), but the trapping effect appears for higher values_ g 43 forD2S and 6= 0.25 forD?, For 6,=6, the final slope

of 6. . is not yet reached in Figs. 7 and 8. Its determination would
In the case of larg&, (Kn=3, Fig. § all these features require higher values df,, for which the numerical calcu-
are enhanced. For the diagonal comporiegiz) (“radial lations become very strongly time consuming.

running diffusion coefficientthe trapping effect is present
even forfs=0, and is accompanigdbr 6;=6) by the appear-

ance of a minimum before the saturation. Unexpectedly, for VI. CONCLUSIONS
D,,(2) the shear has an inverse effect. The trapping is strong
for small 65 (marked peak becomes weaker fdi;=1, and is In most previous works the problem of the diffusion of

barely present forf;=6. Strong shear produces a markedmagnetic lines is treated by starting either from Langevin
negative minimum inD,(2), followed by asaturation at a equations(as in the present papeor from a hybrid kinetic
positive value. The behavior &,,(2) is qualitatively similar ~ (or stochastic Liouvillg equation and applying a strong ap-
to Dy (2). proximation. In[4] the hybrid kinetic equation is treated
We now discuss the dependence of the asymptotic diffuithin the quasilinear approximation, thus yielding the scal-
sion coefficients orK,, and ond,, limiting ourselves to the NG Dix(Ky) =KZ,. In [6] the Lagrangian magnetic field cor-
diagonal ones. relation is evaluated by using the well-known Corrsin ap-
In Figs. 7 and 8 the coefficien3;, D?/ss/ are plotted ver-  proximation[7]. The latter yields the quasilinear result for
susKp, (in a logo—log;, representationfor three values of ~small Ky, and the Bohm scalin®3;(K,) =~ K, for large K,
6,=0,1,6. We first note the common feature: for small valuesThe latter scaling is known, however, to be incorrect. Indeed,
of K, in almost all cases, the curves start with a slége the Corrsin approximation ignores the trapping effect which

=1.95, very close to the expected quasilinear vala@ [4].  necessarily exists in a strongly turbulent plasihi4,15.

There is no significant trapping in this region, exceptBd; The method of the decorrelation trajectories was specifi-
for 6,=6, in which case the curve departs earlier from thecally designed in order to take the latter effect into account
quasilinear regime. [3]. It was applied in previous works to various plasma tur-

For K,,>1 the trapping becomes important and producedulence situations or, in particular, to the diffusion of guiding
a final slope smaller than 2, hence an important deviatiolgenters in presence of a fluctuating electrostatic potential and
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a constant magnetic fielt8]. The latter problem is equiva- or even an oscillation, as in Fig. 6. This trapping regime does
lent to the present one fai,=0. not appear simultaneosly and not with the same strength in
In the present paper we analyzed the influence of ahe four running diffusion coefficients, thus providing vari-

sheared reference magnetic field on the diffusion of fluctuatous shapes shown in Figs. 4—6.

ing magnetic lines. We applied to this problem the decorre- Finally the behavior of theasymptotic diffusion coeffi-

lation trajectory method. . ___ cientsis shown in Fig. 7. The somewhat unexpected feature
In Sec. IV we exhibited a selection of deterministic gppearing here is that the sheacreasesthe final slope of

decorrelation trajectoriedor various values oK, and offs.  he log Dﬁs vs logy, K., curves. Thus theylobal trapping

Increasing values of the latter parameter produce an iNCOMsto ctis weaker for larged,, whereas theéransient trapping
plete oscillation around the starting point before the f'naleffect[e g., inD,(2)] is enhanced by the shear
.g., X )

linear escape in thg direction. Thisindividual trappingef- In all casegexceptd.=6 for which the final slope was not

fect is more pronounced, the largéy, and largerés. ) .
In Sec. V we examined the global combined effecKqf reachegl the final slope is below the Bohm valu&=1.

and of ;. The shape of theunning diffusion coefficients
provides an interesting insight into the transient behavior of
these quantitiegFigs. 4—6. The diagonal coefficients start
with a linear part, defining &allistic regime Dj(2) ~z but Two of us(M.N. and I.P) would like to acknowledge the
the nondiagonal coefficients have adifferent stddj,(z) ~ warm hospitality of the members of Laboratoire de Physique
~Z°(p>1,j #n). In all of them atrapping effectoccurs for  Statistique et Plasmas, Universite Libre de Bruxelles, Bel-
large enougtK,, and/or 6. This effect consists of a tempo- gium. We also want to thank Dr. M. Vlad and Dr. J. H.
rary inversion of the monotonous growth toward theMisguich for very fruitful discussions. This work was sup-
asymptotic value, with the appearance of a maximumgat ported by Association EURATOM-MEC, Romania.
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