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I. INTRODUCTION

A central issue for fusion is the description of turbulence
phenomena in a plasma at high temperature. The magnetic
turbulence appears as a plausible candidate for determining
the anomalous transport properties of a hot magnetized
plasma. The magnetic fluctuations, whose intensity is mea-
sured by the dimensionless magnetic Kubo numberKm (to be
defined below), even when small, can destroy the nested
magnetic configurations in a toroidal confinement geometry,
such as in a tokamak. Moreover, in such disturbed regions
where the magnetic field is completely stochastic, a single
magnetic line fills a three-dimensional region. As a result,
any particle makes radial displacements, thus enhancing the
radial transport. The study of transport in such stochastic
magnetic fields is therefore of great importance for the fu-
sion.

In the present paper we restrict ourselves to the study of
the geometrical aspect of the problem: we thus analyze the
properties of the magnetic lines of a sheared stochastic mag-
netic field alone. We consider the simplified model of the
slab approximation including the shear. The presence of the
shear influences the length of a magnetic line between two
fixed z values(z is a coordinate in the direction of the refer-
ence magnetic field). It will be shown in the following that
the magnetic shear and the magnetic Kubo numberKm have
an important influence on the diffusion of the magnetic field
lines. The problem is simplified whenever the study is re-
stricted to stochastic magnetic fields with small amplitudes
and/or large perpendicular correlation lengths for which the
magnetic Kubo numberKm is small. The main contribution
of our work consists, however, in analyzing the influence of
the shear in both weak- and strong-turbulence regimes for
the stochastic magnetic fields. Until now the influence of the
shear on the diffusion coefficients was analyzed only in the
quasilinear limit—i.e., the small-Kubo-number regime. The
diffusion coefficients for the magnetic field lines were stud-
ied for both small- and large-Kubo-number regimes in many
papers(see, e.g.,[1,2]) but for the shearless case.

Our analysis is not restricted only in a range of small
magnetic Kubo numberKm,1. Using a recently developed

method of investigation of the diffusion in a stochastic ve-
locity field [3] we extend our analysis to a relatively large-
Kubo-number regimeKm.1. Because of the existence of the
two parameters(to be defined below)—the magnetic Kubo
numberKm and the shear parameterus—a richer class of
behaviors of the diffusion coefficients is observed. The com-
petition between these two parameters plays an important
role and seems to be decisive in the determination of the
trapping effects.

The paper is organized as follows. The Langevin equa-
tions for the sheared stochastic magnetic field are established
in Sec. II. In Sec. III, in the framework of decorrelation
trajectory(DCT) method, the expressions of the Lagrangian
correlations and of the diffusion tensor are obtained. In Sec.
IV the decorrelation trajectories are analyzed. In Sec. V the
running and asymptotic diffusion coefficients are studied.
The conclusions are summarized in Sec. VI.

II. LANGEVIN EQUATIONS FOR THE MAGNETIC
FIELD LINES

In the present paper we consider a magnetic field of the
following form [4]:

BsX,Y,Zd = B0hez + bbxsX,Y,Zdex + fbbysX,Y,Zd + Ls
−1Xgeyj,

s1d

whereb is a dimensionless parameter measuring the ampli-
tude of the magnetic field fluctuations relative to the main
constant magnetic fieldB0.

The linear term depending onX in the right-hand side of
Eq. (1) is the shear term,Ls is the shear length, and Eq.(1) is
the so-called “sheared slab” configuration which must be un-
derstood as a local approximation. This approximation mim-
icks the field around a rational surfaceX=0 existing in tor-
oidal systems and is valid only foruXu!Ls. The magnetic
field fluctuations are described by the dimensionless func-
tions bisX,Y,Zd , i =sx,yd, which depend on the spatial coor-
dinatesX,Y,Z but may also depend on timet. We will study
in this paper only the stationary case. The fluctuation
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bisX,Y,Zd is taken to be a Gaussian random process which is
fully specified by its binary correlation. If we consider the
system with a quasi gyrotropical symmetry(because of ex-
istence of the shear)—i.e., quasi-isotropy in a plane perpen-
dicular to the main magnetic fieldB0— the two characteristic
lengths in this plane are equal to each other:lx=ly;l'.
The third characteristic length islz;li.

We introduce the coordinatesx,y,z which are dimension-
less quantities related to the dimensional onesX,Y,Z by the
relations

x =
X

l'

, y =
Y

l'

, z=
Z

li

, s2d

wherel' andli are the characteristic lengths characterizing
the turbulent state; they are called, respectively, perpendicu-
lar and parallel correlation lengths. An additional character-
istic length is related to the shear:Ls. We thus construct two
dimensionless parameters describing the stochastic magnetic
geometry:

Km = b
li

l'

, us =
li

Ls
. s3d

The equations for the magnetic field lines are obtained
from Eq. (1):

dX

bB0bx
=

dY

bB0by + B0Ls
−1X

=
dZ

B0
. s4d

These equations can be rewritten by considering theZ vari-
able as a mere parameter which plays the role of “time”:

dX

dZ
= bbxsX,Y;Zd,

dY

dZ
= bbysX,Y,Zd + Ls

−1X. s5d

Using Eq.(2), Eq. (1) becomes

Bsx,y,zd = B0hez + bbxsx,y,zdex + fbbysx,y,zd + l'Ls
−1xgeyj.

s6d

The magnetic field given in Eq.(1) or Eq. (6) must satisfy
the zero-divergence constraint= ·B=0 imposed by Max-
well’s equations. This condition is automatically fulfilled if
we consider that the fluctuating magnetic field derives from
the following vector potential which has only az component:

AsX,Y,Zd = B0l'b csx,y,zdez. s7d

Equations(5) can then be rewritten in the following dimen-
sionless form:

dxszd
dz

= Kmbxfxszd,yszd,zg = KmU ] csx,y,zd
] y

U
x=xszd

,

dyszd
dz

= Kmbyfxszd,yszd,zg + usxszd

= − KmU ] csx,y,zd
] x

U
x=xszd

+ usxszd. s8d

The system(5) is of the same form as the system for the
guiding center motion of a test particle in a fluctuating elec-
trostatic field, with the addition of the shear contribution[3].
It also represents the characteristic system of equations for a
Liouville stochastic equation(or hybrid kinetic equation) for
the density probability function; the shear term in Eqs.(5) is
an advection term in the Liouville stochastic equation and is
not a directly fluctuating term. We deal in Eqs.(5) with a
single vectorial stochastic function with the components
bisx,y;zd , i =sx,yd. The fluctuating potential function
csx,y;zd is assumed to be Gaussian, spatially homogeneous,
gyrotropic, and with zero average. The second-order moment
of c— i.e., the Eulerian autocorrelation function of the di-
mensionless potential—is assumed to be of the following
factorized form:

Esx,y,zd = kcs0,0,0dcsx,y,zdl = E1srdE2szd, s9d

wherer =Îx2+y2 and:

E1srd = expS−
x2 + y2

2
D, E2szd = expS−

z2

2
D . s10d

The Fourier transform ofEsx,y,zd, is very useful in deriving
the correlations between the stochastic functions and has the
following form:

Ẽsk,kid ; Ẽ1skdẼ2skid = s2pd−3/2 expS−
k2

2
DexpS−

ki
2

2
D ,

s11d

wherek=Îkx
2+ky

2. Various types of Fourier spectra were al-
ready considered(see, e.g.,[1,2]) but only for the shearless
stochastic magnetic field. The Eulerian autocorrelation func-
tion of the Fourier transform of the potential is

kc̃sk,kidc̃sk8,ki8dl = Ẽ1skdẼ2skiddsk + k8ddski + ki8d,

s12d

where the following definition for the Fourier transform ofc
was used:

csx,y;zd =E dk dkic̃sk,kidexpsik · r + ikizd. s13d

The mixed Eulerian correlations between the potential and
the magnetic field are defined in[5] as

Ccnsx,y,zd = kcs0,0,0dbnsx,y,zdl,
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Cncsx,y,zd = kbns0,0,0dcsx,y,zdl = − «nj
] Esx,y,zd

] xj
,

n, j = x,y, s14d

where «nj is the antisymmetric tensor(«12=−«21=1,
«11=«22=0d and the following relations between these
correlations holdf5g:

Ccxsx,y,zd = − Cxcsx,y,zd =
] Esx,y,zd

] y
= − yEsx,y,zd

and

Ccysx,y,zd = − Cycsx,y,zd = −
] Esx,y,zd

] x
= xEsx,y,zd.

s15d

The dimensionless autocorrelation tensor for the fluctuating
magnetic field components is

Bijsx,y,zd = kbis0,0,0dbjsx,y,zdl = fdi js1 − r2d + xixjgEsx,y,zd,

i, j = x,y, s16d

and its components are derived fromEsx,y,zd as [5,6]

Bxxsx,y,zd = −
]2Esx,y,zd

] y2 = s1 − y2dEsx,y,zd, s17d

Byysx,y,zd = −
]2Esx,y,zd

] x2 = s1 − x2dEsx,y,zd,

Bxysx,y,zd = Byxsx,y,zd =
]2Esx,y,zd

] x ] y
= xyEsx,y,zd.

Equations(5) are the starting point of our analysis. Their
solution depends on two dimensionless parameters: the mag-
netic Kubo numberKm and the shear parameterus. The forth-
coming treatment is closely following the paper of Vladet
al. [3].

III. DCT METHOD FOR THE MAGNETIC FIELD LINES
DIFFUSION

The Langevin equations(8) will be used in order to cal-
culate the running and consequently the asymptotic diffusion
coefficient of the magnetic field lines in both small- and
large-Kubo-number regimes for different values of the shear
parameter. The Lagrangian correlation of the directly fluctu-
ating parts from Eqs.(8) is defined as usual as:

Lijszd = Km
2 kbifxs0d;0gbjfxszd;zgl, s18d

where k¯l denotes the ensemble average over the realiza-
tions of the fluctuating magnetic field components andx
=sx,yd. The running diffusion coefficient is calculated from
Eq. (18) as

Dijszd =E
0

z

dzLijszd, s19d

provided that the stochastic field is “stationary”; the
asymptotic diffusion coefficient is calculated as

Dij
as= lim

z→`
Dijszd. s20d

The main tool for determining the running and asymptotic
diffusion coefficient is then the Lagrangian correlation de-
fined in Eq.(18); an important simplification of the calculus
can be done if a relation between the Lagrangian correlation
and the corresponding Eulerian one can be established. Un-
fortunately, until now, there does not exist a general exact
relation between these correlations, which is valid for both
weak- and strong-turbulence regimes. However, for a weak-
turbulence regime,—i.e.,Km,1—an approximate formula
which relates the two types of correlations exists: this is the
celebrated Corrsin approximation[7,8] which includes the
quasilinear and Bohm approximations. The Corrsin approxi-
mation consists in two hypothesis:(a) the statistical indepen-
dence between the particle trajectories and the stochastic ve-
locity field and (b) the displacements have a Gaussian
distribution. In our paper, the geometrical point from a mag-
netic field line plays the role of the test particle. The Corrsin
approximation is a very good approximation for a Kubo
number in the rangeKm,1 and it can determine perturbative
corrections of the diffusion coefficient(see, e.g.,[6] for the
shearless case). We write here, for convenience, Corrsin’s
relation between the Lagrangian and Eulerian correlations:

Lijszd = Km
2E dxkbifxs0d;0gbjfx;zgd„x − xszd…l

.
Corrs

Km
2E dxkbifxs0d;0gbjfx;zglkd„x − xszd…l.

s21d

As can be seen from Eq.(21), Corrsin assumed that, at least
in some asymptotic sense, the exact propagatord(x−xszd) is
approximated by its ensemble average. However, at large
Kubo numberKm.1, the numerical simulations for already
studied cases(see, e.g.,[1,2,9–12]), which are similar to
ours, have confirmed that the displacements are not Gauss-
ian: a trapped particle(a geometrical point in our case) wind
on almost closed paths ofsmall size near the maxima or
minima of the stochastic field while for small absolute values
of the stochastic potential the geometrical point makeslarge
displacements. This fact implies that the Corrsin approxima-
tion is not adequate for the study of a relatively strong-
turbulence regime.

In our paper we use the DCT approximation, a significant
step beyond the well-known Corrsin approximation. In the
framework of DCT method general expressions of the run-
ning (and consequently asymptotic) diffusion coefficients
can be derived for both small- and large-Kubo-number re-
gimes. We briefly recall the main ideas of the DCT approxi-
mation; see Ref.[3]. The main idea of this method is to study
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the Langevin system(8) not in the whole space of realiza-
tions of the potential fluctuations; the whole space is then
subdivided intosubensembles S, characterized by given val-
ues of the potential and of the fluctuating field at the starting
point of the trajectories[see below Eq.(23)]. The exact ex-
pression of the Lagrangian correlation can be written in the
form of a superposition[i.e., a summing up of the contribu-
tion of each subensembleS; see below Eq.(24)] of Lagrang-
ian correlations in the various subensembles[see below Eqs.
(24) and (25)]. We mention that Eq.(24) is an exact equa-
tion. The existence of an average Eulerian velocity in the
subensemble determines an average motion(decorrelation
trajectory). The definition of the DCT approximation method
consists practically in the following two statements.

(i) In each subensemble is defined a deterministic trajec-
tory xSszd by the following criterion: theEulerian averageof
the potentialcS in the subensembleS, calculated along this
deterministic trajectory, equals theLagrangian average of
the same potential in the subensembleS:

cSfxSszd;zg = kcfxszd;zglS. s22d

This deterministic trajectory is called decorrelation trajec-
tory.

(ii ) The average Lagrangian velocity in the subensemble
S is approximated with the average Eulerian velocity calcu-
lated along the deterministic trajectory[see below Eq.(29)].

Equation(22) states that in the DCT method we can con-
sider the Lagrangian average of the potential as the corre-
sponding Eulerian average calculated along the deterministic
trajectory[i.e., the solutions of the system(27) (see below)]
in the same subensemble. Implementing these approxima-
tions in the exact formula for the Lagrangian field correlation
yields an approximation that is valid, in principle, for arbi-
trarily large values ofKm. The main reason for this statement
is that the DCT method takes into account the trapping pro-
cesses, which are neglected in previous theories based on the
Corrsin approximation. The trapping process is an essential
ingredient of strong turbulence theories. The validity of the
approximation involved in DCT method can be assessed bya
posterioricomparison with experiment and simulations, as is
done in all theories of strong turbulence.

The DCT method is now systematically developed for the
present problem. We first define a set of subensemblesS of
the realizations of the stochastic sheared magnetic field that
are defined by given values of the potentialc and magnetic
field fluctuationb in the pointx=0 at the “moment”z=0:

cs0;0d = c0, bis0;0d = bi
0, i = x,y. s23d

The correlation of the Lagrangian fluctuating fields defined
in Eq. (5) can be represented as a sum over the subensembles
S of the correlations calculated in each subensemble:

Lijszd = Km
2E dc0db0Psb0,c0dkbis0;0dbjfxszd;zglS,

s24d

where Psb0,c0d=Psbx
0dPsby

0dPsc0d, with Psmd
=s2pd−1/2 exps−m2/2d, is the probability density ofb , c

having the valuesb0,c0 at x=0, and at the “moment”z
=0.

Since the initial fluctuating fields in the subensembleSare
bis0;0d=bi

0 for all trajectories, the subensemble average de-
fined in Eq.(24) is

kbis0;0dbjfxszd;zglS= bi
0kbjfxszd;zglS s25d

and thus the Lagrangian correlationLijszd is simply the
weighted average Lagrangian of the fluctuating field in all
subensembles. We need first to calculate the average Eulerian
fields bi in the subensembleS.

bx
Ssx;zd ; kbxsx;zdlS,

by
Ssx;zd ; kbysx;zdlS. s26d

The next step in the DCT method is to define a determin-
istic trajectory in each subensemble as a solution of the sys-
tem (5) in which the right-hand sides are replaced by the
average fieldsbj

S in the subensemble. The equations for the
decorrelation trajectory are thus

dxSszd
dz

= Kmbx
SfxSszd;zg,

dySszd
dz

= Kmby
SfxSszd;zg + usx

Sszd, s27d

wherexSs0d=0. In order to study the shape of the DCT we
adopt the polar coordinates

bx
0 = b0 cosa, by

0 = b0 sin a, s28d

wherea is the angle betweenb0 and thex axis.
According to the DCT method[see the above statement

(ii )], the average Lagrangian velocities in the subensembleS
is approximated by the Eulerian averages calculated along
the deterministic trajectories that are the solution of the sys-
tem (30) written below[see Eq.(22)]:

kbjfxszd;zglS. bj
SfxSszd;zg, j = x,y, s29d

wherexSszd are the solutions of the system(30); the averages
from Eqs.(27) are performed using the method described in
[3] and the resulting system is

dxSszd
dz

= Kmh− c0yS+ b0xSyS sin a + b0f1 − sySd2g

3cosajE1srdE2szd

; Kmbx
SsxS;zd,

dySszd
dz

= Kmhc0xS+ b0xSyS cosa + b0f1 − sxSd2gsin aj

3E1srdE2szd + usx
S

; Kmby
SsxS;zd + usx

S. s30d

The Eulerian correlations of the magnetic field fluctuations
bjsx ;zd in the subensembleS have been obtained as in Ref.
[3] [using the usual definition of the conditional probability
and Eqs.(15) and (17)]:
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bi
Ssx;zd = c0Ccisx;zd + bx

0Bxisx;zd + by
0Byisx;zd, i = x,y.

s31d

In deriving Eq.(30) we have made the following usual ap-
proximation, specific to the DCT method[5]: we have con-
sidered that the contribution of the subensemble-averaged
shear termkusxszdlS in Eqs.(26), in each subensemble S, is
equal to its value along the deterministic trajectory, usx

Sszd.
The Lagrangian average ofxszd in the subensembleS is

then approximated byxS.
Using Eqs.(25) and (29), for arbitrary values of the di-

mensionless parametersKm, us, and a and given Eulerian
correlations[see Eqs.(14)–(17)] of the fluctuating magnetic
field components that exist in Eq.(5), the Lagrangian corre-
lation tensor given in Eq.(24) has the following components:

Lxxszd = s2pd−3/2Km
2E

0

2p

daE
−`

`

dc0E
0

`

db0sb0d2 cosa

3expF−
sc0d2 + sb0d2

2
Gbx

SfxSszd;zg, s32d

Lxyszd = s2pd−3/2Km
2E

0

2p

daE
−`

`

dc0E
0

`

db0sb0d2 cosa

3expF−
sc0d2 + sb0d2

2
Gby

SfxSszd;zg,

Lyxszd = s2pd−3/2Km
2E

0

2p

daE
−`

`

dc0E
0

`

db0sb0d2 sin a

3expF−
sc0d2 + sb0d2

2
Gbx

SfxSszd;zg,

Lyyszd = s2pd−3/2Km
2E

0

2p

daE
−`

`

dc0E
0

`

db0sb0d2 sin a

3expF−
sc0d2 + sb0d2

2
Gby

SfxSszd;zg,

where bx
SfxSszd ;zg and by

SfxSszd ;zg are identified from Eq.
(31) and are calculated with the solutions of the system(30).
Integrating Eq.(32) with respect toz we obtain the running
diffusion tensor componentsDij .

The analysis of the diffusion tensor components will be
the object of Sec. V of the paper.

IV. DECORRELATION TRAJECTORIES

We consider now the solutions that are obtained by a nu-
merical integration of the system(30). A specified trajectory
depends on the parameters that define the subensembleS:
c0, b0, anda. It depends also on the magnetic Kubo number
Km and on the shear parameterus. In the following example
we choose a subensembleS defined by the following values
of the parameters:c0=2, b0=1, anda=p /3. We also choose
three different values of the Kubo numberKm, Km=0.1, Km
=1, Km=3 and for each of them three different values for the

shear parametersus, us=0, us=1, andus=6. In Figs. 1–3, the
DCT are shown; for all pictures the dotted curves correspond
to us=0, the dashed ones tous=1, and the solid ones tous
=6.

The general shape of the decorrelation trajectories con-
sists of a first, more or less localized portion, followed by a
linear portion parallel to they axis. The latter appears when
the Lagrangian field correlation—or, equivalently, the La-
grangian average field—has been damped out by the factor
E2szd=exps−z2/2d. For large values ofz, xSszd<xS and
ySszd<usx

Sz. For smallKm as in Fig. 1sKm=0.1d the local-
ized portion is short(weak trapping) and is essentially pro-
duced by the effect of the shear(e.g.,us=6).

In Fig. 2 sKm=1d, the trajectory for large shearsus=6d
exhibits strong trapping, performing a turn before escaping.
For larger nonlinearity(Km=3, Fig. 3) all trajectories are
strongly trapped: forus=6 the DCT performs two turns be-
fore escaping. The competition between the Kubo number
and the shear parameter will be more clearly exhibited in the

FIG. 1. Decorrelation trajectories forKm=0.1 Solid line:us=6.
Dashed lineus=1. Dotted lineus=0.

FIG. 2. Same as in Fig. 1 but forKm=1.
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next section when the diffusion coefficient behavior will be
examined.

V. DIFFUSION COEFFICIENTS

A computer code based on the Runge-Kutta-Fehlberg 45
(RKF45) method has been developed[13]. Using this code
we have calculated the Lagrangian correlation tensor and the
running and asymptotic diffusion tensor components. It de-
termines the decorrelation trajectories[Eq. (30)] for a large

enough number of subensembles and performs the integrals
in Eqs. (32) and (19). A careful analysis of the integrands
permits the optimization of the choice of the parameters. For
the evaluation of the Lagrangian correlation tensor we have
calculated 120331331 decorrelation trajectories; for any
decorrelation trajectory we have used 200 points for “time”
and the final integration time(z final) was 10—i.e., a safe
value in order to reach the asymptotic regime(see Figs.
4–6). For an arbitrary value ofa the diffusion tensor is non-
diagonal; the shear term breaks the isotropy of space and
introduces the dependence on the anglea. This largely in-
creases the computation time.

In Figs. 4–6 the running diffusion tensor components are
represented for three different values of the Kubo number
Km: Km=0.1,Km=1, andKm=3. For each Kubo number four
different values of the shear parameter have been chosen:
us=0 (dotted curves), us=0.2 (dash-dotted curves), us=1
(dashed curves), andus=6 (solid curves) in all pictures.

In Fig. 4(a), the influence of the shear is exhibited in a
decrease of the asymptotic valueDxx

asof the component
Dxxszd; for zù3 the asymptotic regime is practically
achieved for all values of the shear parameter. In Fig. 4(d),
the asymptotic valuesDyy

as of Dyyszd are almost the same for
allvalues of the shear parameter; comparing the asymptotic
values forus=0.2 from Figs. 4(a) and 4(d) we can state that
Dxx

as<Dyy
as. In Fig. 4(c) there is an obvious increase in abso-

lute value of the asymptotic valueuDyx
asu when the shear pa-

rameter increases; the same behavior is manifest forDxy
as as

we can see from Fig. 4(b). In the limit of a reasonable error
s<10−3d the asymptotic valueuDyx

asu for us=0.2 is practically

FIG. 3. Same as in Figs. 1 and 2 but forKm=3.

FIG. 4. The running diffusion coefficients forKm=0.1 and for four values of the shear parameter. In all picturesus=0 (dotted line),
us=0.2 (dash-dotted line), us=1 (dashed line), andus=6 (solid line).
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zero. At the same time, also forus=0.2, Dxy
as/Dxx

as

<Dxy
as/Dyy

as,1 These results are in agreement with those ob-
tained in a previous work[4]. In all pictures from Fig. 4 all
componentsDjnszd of the diffusion tensor exhibit a monoto-
nous increase(in absolute value) followed by a saturation.

This means that there is no trapping in this case for any value
of us,6.

In the case of intermediate Kubo number(Km=1, Fig. 5) a
number of new features appear. The componentDxxszd is
strongly affected by the shear. Whenusù1 the correspond-

FIG. 5. Same as in Fig. 4 but forKm=1.

FIG. 6. Same as in Figs. 4 and 5 but forKm=3.
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ing function presents a maximum and the asymptotic value is
significantly smaller than forus=0. This is a clear signature
of the trapping effect. On the other hand, the coefficient
Dyyszd is almost unaffected by the presence of the shear. The
nondiagonal coefficients are strongly affected by the shear:
their behavior is quite different from the small-Km regime.
The coefficientDyxszd exhibits a minimum[at the same value
of z as the maximum ofthe correspondingDxxszd], followed
by a saturation at a value which becomes positive for large
us. The componentDxyszd has a behavior qualitatively simi-
lar to Dxyszd, but the trapping effect appears for higher values
of us.

In the case of largeKm (Km=3, Fig. 6) all these features
are enhanced. For the diagonal componentDxxszd (“radial”
running diffusion coefficient) the trapping effect is present
even forus=0, and is accompanied(for us=6) by the appear-
ance of a minimum before the saturation. Unexpectedly, for
Dyyszd the shear has an inverse effect. The trapping is strong
for smallus (marked peak), becomes weaker forus=1, and is
barely present forus=6. Strong shear produces a marked
negative minimum inDyxszd, followed by asaturation at a
positive value. The behavior ofDxyszd is qualitatively similar
to Dxxszd.

We now discuss the dependence of the asymptotic diffu-
sion coefficients onKm and onus, limiting ourselves to the
diagonal ones.

In Figs. 7 and 8 the coefficientsDxx
as, Dyy

as are plotted ver-
susKm (in a log10− log10 representation) for three values of
us=0,1,6. We first note the common feature: for small values
of Km, in almost all cases, the curves start with a sloped0
.1.95, very close to the expected quasilinear valued=2 [4].
There is no significant trapping in this region, except forDxx

as

for us=6, in which case the curve departs earlier from the
quasilinear regime.

For Km.1 the trapping becomes important and produces
a final slope smaller than 2, hence an important deviation

from the quasilinear value. We stress the fact that in absence
of shear the slope of both coefficientsDxx

as andDyy
as (which are

equal), d1.0.11, is much smaller than the one appearing in
the equivalent problem treated in[3]. In the latter case the
Eulerian potential correlation was assumed to be(in the
present notation) E1srd,f1+r2/2ng−n, 0.5,n,2, and
E2szd,exps−zd, in contrast to the present choice, Eq.(10).
Thus, the Gaussian correlation produces much stronger trap-
ping than the Lorentzian. This fact was noticed for the elec-
trostatic guiding center diffusion.

For both diagonal coefficients, the presence of shear pro-
duces a final slope larger than the shearless one, but still
smaller than the quasilinear value. Forus=1 this slope isd
.0.43 forDxx

as andd.0.25 forDyy
as. Forus=6, the final slope

is not yet reached in Figs. 7 and 8. Its determination would
require higher values ofKm, for which the numerical calcu-
lations become very strongly time consuming.

VI. CONCLUSIONS

In most previous works the problem of the diffusion of
magnetic lines is treated by starting either from Langevin
equations(as in the present paper) or from a hybrid kinetic
(or stochastic Liouville) equation and applying a strong ap-
proximation. In [4] the hybrid kinetic equation is treated
within the quasilinear approximation, thus yielding the scal-
ing Dxx

assKmd<Km
2 . In [6] the Lagrangian magnetic field cor-

relation is evaluated by using the well-known Corrsin ap-
proximation [7]. The latter yields the quasilinear result for
small Km and the Bohm scalingDxx

assKmd<Km for largeKm.
The latter scaling is known, however, to be incorrect. Indeed,
the Corrsin approximation ignores the trapping effect which
necessarily exists in a strongly turbulent plasma[14,15].

The method of the decorrelation trajectories was specifi-
cally designed in order to take the latter effect into account
[3]. It was applied in previous works to various plasma tur-
bulence situations or, in particular, to the diffusion of guiding
centers in presence of a fluctuating electrostatic potential and

FIG. 7. The diagonal asymptotic diffusion coefficientDxx
as as a

function of the magnetic Kubo numberKm for different values of
the shear parameter in a log10-log10 plot. Diamonds:us=6. Squares:
us=1. Circles:us=0.

FIG. 8. Same as in Fig. 4 but forDyy
as.
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a constant magnetic field[3]. The latter problem is equiva-
lent to the present one forus=0.

In the present paper we analyzed the influence of a
sheared reference magnetic field on the diffusion of fluctuat-
ing magnetic lines. We applied to this problem the decorre-
lation trajectory method.

In Sec. IV we exhibited a selection of deterministic
decorrelation trajectoriesfor various values ofKm and ofus.
Increasing values of the latter parameter produce an incom-
plete oscillation around the starting point before the final
linear escape in they direction. Thisindividual trappingef-
fect is more pronounced, the largerKm and largerus.

In Sec. V we examined the global combined effect ofKm
and of us. The shape of therunning diffusion coefficients
provides an interesting insight into the transient behavior of
these quantities(Figs. 4–6). The diagonal coefficients start
with a linear part, defining aballistic regime Djjszd,z but
the nondiagonal coefficients have adifferent start:Djnszd
,zpsp.1, j Þnd. In all of them atrapping effectoccurs for
large enoughKm and/orus. This effect consists of a tempo-
rary inversion of the monotonous growth toward the
asymptotic value, with the appearance of a maximum atzM

or even an oscillation, as in Fig. 6. This trapping regime does
not appear simultaneosly and not with the same strength in
the four running diffusion coefficients, thus providing vari-
ous shapes shown in Figs. 4–6.

Finally the behavior of theasymptotic diffusion coeffi-
cientsis shown in Fig. 7. The somewhat unexpected feature
appearing here is that the shearincreasesthe final slope of
the log10 Djj

as vs log10 Km curves. Thus theglobal trapping
effectis weaker for largerus, whereas thetransient trapping
effect[e.g., inDxxszd] is enhanced by the shear.

In all cases(exceptus=6 for which the final slope was not
reached) the final slope is below the Bohm valued=1.
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