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The effects of a radiation reaction on thermal electrons in a magnetically confined plasma, with parameters
typical of planned burning plasma experiments, are studied. A fully relativistic kinetic equation that includes
the radiation reaction is derived. The associated rate of phase-space contraction is computed and the relative
importance of the radiation reaction in phase space is estimated. A consideration of the moments of the
radiation reaction force show that its effects are typically small in reactor-grade confined plasmas, but not
necessarily insignificant.
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I. INTRODUCTION

A charged particle that is accelerated by an external elec-
tromagnetic field will radiate and, because of the radiation,
be subject to an additional force called the radiation reaction
force (RRF) [1]. Under ordinary circumstances the RRF is
very small compared to the external force that induces it.
Therefore it is rarely taken into account in studies of labora-
tory plasma. Recently, however, Andersson, Helander, and
Eriksson[2] have shown that the radiation reaction can bear
significantly on the behavior of runaway electrons in high-
temperature tokamaks. Here we look at radiation reaction
effects associated with thermal electrons in a reactor-sized
tokamak such as ITER[3].

Our starting point differs from the previous analysis in
using the relatively recent formulation of radiation reaction
due to Rohrlich[4] (see also Ref.[5]). Beginning with the
perturbative treatment of Landau and Lifshitz[6], Rohrlich
derives an exact expression for the RRF that cures the con-
ventional formulation of its major defects:(1) The Rohrlich
version of the RRF vanishes in the absence of an external
accelerating field.(2) The possibility of radiative runaway is
avoided, and the time derivative of the acceleration does not
appear. Thus the kinetic equation, whose derivation we out-
line in Sec. II, can be expressed in six-dimensional phase
space.

A conclusion of Sec. II is that in the confined plasma case
the RRF is most naturally compared, not to the macroscopic
electromagnetic field, but rather to the dynamical friction due
to Coulomb collisions. The point is that the RRF, like dy-
namical friction, does not conserve phase space. We find, not
surprisingly, that under typical fusion conditions the dynami-
cal friction exceeds the RRF by roughly three orders of mag-
nitude. However, the RRF is distinctive in acting primarily
on electrons. By depleting energy and momentum from the
electron fluid exclusively, the RRF acts like a collisional pro-
cess that fails to conserve plasma momentum and energy.

In Sec. III we explore this qualitative difference by exam-
ining the energy-momentum moment of the RRF and com-
paring it to the corresponding, well-known moments of the
collision operator. Recalling that the outward particle flux
due to collisions is automatically ambipolar in an axisym-
metric confinement system, we compute the nonambipolar
flux due to the RRF and discuss its significance. We also

compare the electron energy loss due to the RRF to its col-
lisional counterpart.

Our conclusions are summarized in Sec. IV.

II. KINETIC THEORY OF THE RADIATION REACTION

A. General form of the kinetic equation

For simplicity and generality we express the kinetic equa-
tion in Lorentz-covariant form. We use units in which the
speed of light is unity, although factors ofc are restored in
certain key results for the sake of clarity. The Minkowski
tensor is denoted byhmn; Greek indices vary from 0 to 3,
Roman indices from 1 to 3. We use the notation, for any
four-vectoram,

am = sa0,aid = sa0,ad.

The momentum four-vector is

pm = „p0,mgsvdv…,

where v is the ordinary three-vector velocity of a particle
with massm and gsvd=s1−v2d−1/2. For a physical particle,
the mass shell condition

pmpm = − m2 s1d

yields p0=Espd on the mass shell, where

Espd ; Îp2 + m2.

Recall that the relativistic factorg measures the particle
energy

E = mg. s2d

We denote an arbitrary four-vector force byFmsx,p,td; it
prescribes the change in momentumpm with respect to
proper timet according to Newton’s law:

dpm

dt
= Fm. s3d

Recall here that, ift is the time measured in the frame in
which the particle has velocityv, then

dt = gdt. s4d
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Since the forces under consideration cannot affect the rest
mass, Eq.(1) implies pmFm=0 or

F0 =
p ·F

E
. s5d

The conventional (relativistic) distribution function
fsx ,p,td depends on only three momentum variables. How-
ever, it is sometimes convenient to consider an equivalent
distribution

gsx,pd =
dsp0 − Ed

E
fsx,p,dt, s6d

which depends on the four-momentum. It can be shown that
both f andg are Lorentz scalars. Notice that

E d4pgsx,pd =E d3p

E
fsx,p,td.

Using Eq.(5) one finds that

]

]pm sFmgd = dsp0 − Ed
]

]p
·SF f

E
D . s7d

We now turn to the kinetic equation. A manifestly cova-
riant kinetic equation for the distributiong is

]

]xmSpmg

m
D +

]

]pm sFmgd = C,

whereC represents the collision operator. The collision op-
erator has the form

C = −
]

]pmGC
m, s8d

whereGC
m is the collisional flow in velocity space. The ki-

netic equation forg is therefore

]

]xmSpmg

m
D +

]

]pm sFmg + GC
md = 0. s9d

To obtain the kinetic equation forf, in six-dimensional
phase space, we first restrict the collisional flow to the mass
shell using

GC
m =

dsp0 − Ed
E

ḠC
m.

Since rest mass is conserved, Eq.(5) holds and we have

]

]pmGC
m = dsp0 − Ed

]

]p
·S ḠC

E
D . s10d

Now we combine Eqs.(6), (7), and(10) to find

]f

]t
+

]

]x
·S p

E
fD +

]

]p
·SmF f + ḠC

E
D = 0. s11d

The same result can be obtained starting from the micro-
scopic(Klimontovich-Dupree) distribution function[7].

We next verify that our kinetic equation conserves par-
ticles. The four-vector particle flow is defined by

Gm ;E d4ppmg =E d3p

E
pmf . s12d

Its temporal component is the density, denoted by

E d3pfsx,p,td = nsx,td. s13d

The particle conservation law is obtained by integrating Eq.
(11) over all three-momenta. We quickly find

]n

]t
+ = · G = 0

or

]Gm

]xm = 0. s14d

The total electrodynamic force on a charged particle is

Fm = FL
m + FR

m. s15d

Here the first term denotes the Lorentz force on a particle
with chargee and massm:

FL
m =

e

m
Fmnpn, s16d

whereFmn is the Faraday tensor. The second termFR
m is the

RRF. Following Rohrlich[4] we express this force as

FR
m =

2

3
S e

m
D3

fpkpl]lFmk − eWel
kplshk

m + m−2pkpmdg.

s17d

HereW=B2−E2 is the well-known Lorentz scalar and

el
k = −

FknFnl

W
s18d

is an operator introduced previously[8]. The key property of
el

k applies when the parallel electric field is relatively small,

E ·B ! W,

as is the case in tokamak experiments. Then one finds[8]
that el

k acts as a projection operator for the two directions
perpendicular toB:

el
kAl < A'

for an arbitrary four-vectorAm.
It can be verified that the RRF, like the Lorentz four-force,

satisfies Eq.(5). The details are omitted.

B. Collision term

The collisional flowḠC results from Coulomb collisions.
In a hot, weakly coupled plasma it has Fokker-Planck form

ḠC = − D ·
]f

]p
+ FCf , s19d

whereD is the diffusion tensor andR is the dynamical fric-
tion. After substituting this form into Eq.(11) we have
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]f

]t
+

p

E
·

]f

]x
+

]

]p
·Fm

E
fsFL + FR + FCdG =

]

]p
·D ·

]f

]p
.

s20d

The radiation reaction also acts like a friction force, so
our comparisons, below, will involveFR and FC. Here we
recall the form ofFC in the case of Maxwellian, or nearly
Maxwellian, electrons:

FC =
2pe4n log L

me

v
v3Ferfsxd − x

derfsxd
dx

G , s21d

where x;v /vte, with vte=Î2Te/me the electron thermal
speed. The quantity logL is the Coulomb logarithm.

C. Phase-space contraction

The quantityFL, constituting the three spatial components
of a Lorentz four-vector, differs from the ordinary Lorentz
force by a factor ofg=E/m. It satisfies

]

]p
·SFL

E
D = 0. s22d

Since the invariant phase-space volume element isd3xd3p/E,
Eq. (22) expresses the conservation of phase space under the
Lorentz force and allows the Lorentz force in Eq.(11) to be
extracted from the momentum-divergence operator. Indeed
the kinetic equation is conventionally presented with the
macroscopic force outside the momentum derivative, thereby
distinguishing this force from collisional effects. The latter
do not conserve phase space in so far as they remove energy
and momentum from a given plasma species.

Here we point out that the total electrodynamic force does
not conserve phase space. The radiation reaction causes par-
ticles to lose energy and momentum, even in the absence of
collisions. We next compute the resulting contraction of
phase space.

First note that

]

]pm spkpld = pkhm
l + plhkm. s23d

Therefore, if we introduce for convenienceZm such that

FL
m = −

2

3
S e

m
D3

Zm,

then

]Zm

]pm = pk]mFmk − eWem
kshk

m + m−2pkpmd − 5m−2eWel
kplpk

= pk]mFmk − 2eW− 6m−2eWel
kplpk. s24d

Maxwell’s field equations convert the first term of Eq.(24) to

pk]mFmk = − pkJk,

whereJk is the four-vector current density. According to Eq.
(18) the last term is

− 6m−2eWel
kplpk = 6m−2FkspkFslpl

= − 6m−2FskpkFslpl

= − 6m−2sm/ed2FL
sFLs,

which is(proportional to) the square of the Lorentz force. We
conclude that

]FR
m

]pm = −
2

3
S e

m
D3

spkJk + 2eW+ 6e−2FL
sFLsd. s25d

As a damping mechanism, the RRF cannot be expected to
conserve phase space; the result, Eq.(25), is unsurprising.
However, it confirms that the proper reference in estimating
the size and importance of the RRF is not the enormously
larger Lorentz force, but dynamical friction.

D. Relative size

We compare typical magnitudes of the RRF and dynami-
cal friction in a parameter regime characterizing a large to-
kamak such as ITER. In such a device the electron thermal
speed is roughly a tenth of the light speed, so we are inter-
ested in the nonrelativistic limit of the RRF. It is easily seen
from Eq. (17) that

FR = −
2

3

e4

me
2B2v' + Osv2d s26d

is the dominant contribution whenB@E and v!1. (Here
and below e represents the magnitude of the electronic
charge.) For the dynamical friction we use Eq.(21) to
estimate

FC <
4pe4n log L

mevte
3 v' s27d

for thermal electrons. When computing the ratiouFR/FCu we
return to conventional units, with the light speedc=3
31010 cm/sec. One finds

FR

FC
,

mi

me log L
SvA

c
D2Svte

c
D3

, s28d

where vA=B/Î4pmin is the Alfvén speed. In a reactor-
regime tokamak, each velocity ratio is of order 10−1 and
log L,20, whence

FR

FC
, 10−3. s29d

Recall that the lowest-order distribution function in a
magnetically confined plasma is independent of gyrophase
and therefore unaffected by the Lorentz magnetic force[9].
In fact it is determined by a balance between collisional dif-
fusion and dynamical friction. The radiation reaction com-
bines with dynamical friction and therefore modifies the
lowest-order distribution; Eq.(29) shows that for thermal
particles the modification is minor.

The macroscopic properties of the confined plasma de-
pend upon moments of the kinetic equation. We next con-
sider how these properties are affected by the radiation reac-
tion.
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III. MOMENTS OF THE RADIATION REACTION

A. Energy-momentum evolution

After multiplying the kinetic equation(11) by pm and in-
tegrating over momentum[using the mass-shell Jacobian as
in Eq. (12)], we obtain a familiar energy-momentum evolu-
tion law. Specializing to the case of electrons, but suppress-
ing e subscripts, we have

]Tmn

]xn + eFmnGn = Cm − Rm, s30d

whereTmn is the electron energy-momentum tensor,Cm is the
four-momentum moment of the collision operator,

Cm =E d4ppmC, s31d

andRm is the corresponding moment of the RRF:

Rm =E d4ppm
]FR

ng

]pn . s32d

The three spatial components of Eq.(30) describe the accel-
eration of the electron fluid; the temporal component de-
scribes the electron energy change.

We can use Eq.(8) to write the collisional moment as

Cm =E d4pGC
m =E d3p

E
ḠC

m. s33d

Similarly,

Rm = −E d4pFR
mg = −E d3p

E
FR

mf . s34d

The moments of the collision operator are well known
[10] and considered presently. A complete expression for the
RRF moments may be found in the recent literature[11];
here we are interested only in the nonrelativistic limit, where
Eq. (26) quickly yields

Rk <
2

3

e4

m2WeknGn.

Notice that the dominant temporal component, to be consid-
ered presently, comes from a different term inFR. SinceW is
well approximated byB2 in a magnetic confinement device,
we have

R =
2

3

e4

m2B2G'. s35d

B. Comparison to collisional friction

The spatial components of the collisional moment give
the collisional friction force, measured by Ohmic current
[10]. In view of Eq.(35), the perpendicular component is the
appropriate standard of reference:

C,
enJ'

s'

,

whereJ' is the perpendicular plasma current density and

s' , e2ntei/me

is the perpendicular conductivity. Heretei is the electron-ion
collision time. Since lowest-order fluid equilibrium provides
the diamagnetic currentJ, =p/B, with p=nsTe+Tid the
plasma pressure, we can estimate

C,
me = p

eBtei
. s36d

Turning to the corresponding RRF of Eq.(35), we note
that G' has a corresponding diamagnetic termG'

, = snTed /eB. Hence the ratioR' /C' is easily found to be

R'

C'

, j,

where

j ; Ve
2teisr0/cd s37d

is the basic parameter measuring the significance of the RRF
on transport phenomena. Here we have restored factors ofc,
as in Eq.(28) and assumedTi ,Te; Ve=eB/mec is the elec-
tron gyrofrequency andr0=e2/mec

2 is the classical electron
radius.

Note that

r0/c < 10−23 sec.

The presence of this very small factor explains why the RRF
is ordinarily ignored in confinement physics. In the present
case, it is almost defeated by the gyrofrequency factors, since

Ve , 1012 sec−1

in devices like ITER. However, the collision time is roughly
tei,3310−4, so

j , 3 3 10−3 s38d

remains small. We next show that even this small a force can
play a significant role in confinement.

C. Nonambipolar electron flux

Lowest-order equilibrium of the electron fluid in a con-
fined plasma depends upon a balance among the electron
pressure gradient, the fluid Lorentz force, and collisional
friction. Here we add the RRF to this balance and obtain the
equilibrium equation

=pe + ensE + Ve 3 Bd =Ce −R.

Of course the last term on the right-hand side is very small.
We first neglect this term and then solve for the perpendicu-
lar velocity to obtain a familiar result

Ve' < VE + VeP+ VeC, s39d

whereVE is the E3B drift, VeP=b3 =pe/ send is the dia-
magnetic drift, andVeC=b3Ce/ send yields classical colli-
sional transport. Hereb=B /B is a unit vector in the direction
of the confining field.

Let us denote the small gyroradius parameter by

R. D. HAZELTINE AND S. M. MAHAJAN PHYSICAL REVIEW E 70, 046407(2004)

046407-4



d ; sgyroradiusd/sgradient scale lengthd.

Then one finds thatVE andVeP are measured bydvte while
VeC,d2. Indeed a straightforward calculation of the friction
force provides[9]

VeC= − smeVe
2nteid−1 = p. s40d

Because collisions conserve momentum,

Ce = −Ci ,

classical transport is intrinsically ambipolar:

ViC = VeC.

In order to compute an ambipolar potential, one must pro-
ceed to third order indi, where nonambipolar ion flows ap-
pear. Requiring ambipolarity at third order indeed yields an
equation for the potential(see, for example,[12]). Note,
however, that

di , 10−3 s41d

in a large tokamak. At this level a number of small effects
can enter.

The RRF is an example of such an effect. By adding to
the friction force it contributes an additional electron flux

VR = b 3R/send,

which is strictly “unipolar,” since there is no measurable
RRF effect on ions. We calculate this flow iteratively from
Eq. (35), using the lowest-order velocityVe'

s0d ;VE+VeP:

VR = −
2

3
Ver0b 3 Ve'

s0d . s42d

As expected, the new flow is small compared to classical
transport:

VR

VC
, j, s43d

as in Eq.(37). However, Eqs.(38) and (41) show that the
flow due RRF is not necessarily small compared to the ion
flow that is used to compute the ambipolar potential.

As a concrete example, we consider a fusion experimental
device on the scale of the planned international experiment,
ITER. Thus we assume a magnetic fieldB=5.3 T and an
electron-ion collision timetei=9.53103 sec to find

j = 9.23 10−4.

In the same device one finds that the parameterdi has the
nominal value 1.2310−3. Hence the radiation reaction force
contributes to nonambipolar diffusion at a level roughly 70%
the size of conventional contributions.

D. Energy loss

Electrons in a tokamak lose energy through several chan-
nels, including collisional exchange with ions, line radiation,
and bremstrahlung. Here we compare the energy loss from
radiation reaction to the collision exchange rate. The latter is
given by a familiar formula[10]

Qei = 3
me

mi

n

tei
sTe − Tid. s44d

The energy loss due to the RRF,R0, comes primarily
from the last term in Eq.(17). The term that dominatesR
contributes negligibly here because the projectorel

0 is very
small in fusion experiments. Hence, using Eq.(34) and re-
calling that the electrons are Maxwellian in lowest order, we
have

R0 = −
2

3

e4

me
3B2E d3p

E
fMv'

2 , s45d

where fM is the electron Maxwellian normalized as in Eq.
(13). The integral is elementary and we find

R0 = −
4

3

e4

me
3B2pe. s46d

From Eqs.(44) and (46) we compute

UR0

Qei
U ,

mi

me
j

Te

Te − Ti
. s47d

Herej appears multiplied by the large mass ratio, yielding a
quantity that is no longer small: radiation reaction energy
loss competes, in the environment of a large, hot, magneti-
cally confined plasma, with electron-ion energy exchange.
Equally significant is the fact that even after the electrons
and ion have equilibrated, an electron energy loss rate com-
parable or even larger than the equilibration rate is sustained
by RRF. This must be taken into account for a proper energy
inventory.

To consider again a specific example, we note that ITER
temperatures are expected to satisfy

Te

Te − Ti
= 0.09,

whence

UR0

Qei
U ,

mi

me
j

Te

Te − Ti
= 18.5.

Thus radiation reaction losses will be nearly 20 times those
due to collisional energy exchange in ITER.

IV. SUMMARY

Because of the radiation reaction force, classical electro-
dynamics does not conserve phase space. The damping ex-
perienced by a radiating electron in a hot plasma is similar to
the dynamical friction from collisions with ions, with two
key differences: it is smaller than the collisional process by a
factor of order 10−3 (in fusion experimental regimes), and it
fails to conserve plasma momentum. Because the moments
of the energy and momentum losses are properly compared
to collisional effects that are themselves quite small, the ra-
diation reaction can affect fusion plasma confinement in
measurable ways.

The most important effects of the radiation reaction may
pertain to suprathermal electrons, such as runaway electrons

RADIATION REACTION IN FUSION PLASMAS PHYSICAL REVIEW E70, 046407(2004)

046407-5



[2] or electrons on the tail of a Maxwellian distribution.
Thus, while our analysis focuses on thermal electrons, we
develop a fully relativistic kinetic description in Sec. II that
could be applied more generally. The kinetic equation(20)
makes the radiative contraction of phase space explicit, as in
Eq. (25). It also shows the parallel between the radiation
reaction and dynamical friction, leading to an estimate, Eq.
(28), of the relative importance of radiation reaction effects
in the kinetic theory of a fusion-regime plasma.

A similar comparison between the momentum loss due to
radiation and the momentum exchanged by electron-ion col-
lisions is shown in Sec. III to be characterized by the
parameter

j = Ve
2teisr0/cd,

which is of order 10−3 in a device like ITER. Effects this
small are rarely of interest to magnetic confinement physics.

However, we note that the ratio between nonambipolar ion
radial transport(third order in the gyroradius) and conven-
tional, ambipolar transport is comparable toj. (The occur-
rence of 10−3 in three contexts—kinetic effects of the radia-
tion reaction, its transport effects, and the ion gyroradius
parameter—is coincidental.) Therefore the radiation reaction
should be included in classical calculations of the ambipolar
potential. Finally we show that the electron energy loss due
to the radiation reaction is comparable, under fusion-regime
parameters, to the collisional energy exchange with ions.
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