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Radiation reaction in fusion plasmas
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The effects of a radiation reaction on thermal electrons in a magnetically confined plasma, with parameters
typical of planned burning plasma experiments, are studied. A fully relativistic kinetic equation that includes
the radiation reaction is derived. The associated rate of phase-space contraction is computed and the relative
importance of the radiation reaction in phase space is estimated. A consideration of the moments of the
radiation reaction force show that its effects are typically small in reactor-grade confined plasmas, but not
necessarily insignificant.
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I. INTRODUCTION compare the electron energy loss due to the RRF to its col-

A charged particle that is accelerated by an external eledisional counterpart. o
tromagnetic field will radiate and, because of the radiation, ©ur conclusions are summarized in Sec. IV.
be subject to an additional force called the radiation reaction
force (RRP [1]. Under ordinary circumstances the RRF is
very small compared to the external force that induces it. Il. KINETIC THEORY OF THE RADIATION REACTION
Therefore it is rarely taken into account in studies of labora- A. General form of the kinetic equation
tory plasma. Recently, however, Andersson, Helander, and . ) L
Eriksson[2] have shown that the radiation reaction can bear. O Simplicity and generality we express the kinetic equa-
significantly on the behavior of runaway electrons in high-ion in Lorentz-covariant form. We use units in which the
temperature tokamaks. Here we look at radiation reactiorfP€€d Of light is unity, although factors ofare restored in
effects associated with thermal electrons in a reactor-sizef€"ain key results for the sake of clarity. The Minkowski
tokamak such as ITER]. tensor is d(_anoted by**; Greek indices vary fro_m 0 to 3,
Our starting point differs from the previous analysis in Roman indices from 1 to 3. We use the notation, for any
using the relatively recent formulation of radiation reactionfour-vectora‘,
due to Rohrlich[4] (see also Ref[5]). Beginning with the
perturbative treatment of Landau and Lifshj&, Rohrlich
derives an exact expression for the RRF that cures the cord-he momentum four-vector is
ventional formulation of its major defect&l) The Rohrlich = (0%, my(u)o)
version of the RRF vanishes in the absence of an external P pLmrwjv),
accelerating field(2) The possibility of radiative runaway is wherev is the ordinary three-vector velocity of a particle
avoided, and the time derivative of the acceleration does natith massm and y(v)=(1-v?~Y2 For a physical particle,
appear. Thus the kinetic equation, whose derivation we outthe mass shell condition
line in Sec. Il, can be expressed in six-dimensional phase
space. PP =~ (1)
Aconqlusion of Sec. Il is that in the confined plasma cas§ields p°=E(p) on the mass shell, where
the RRF is most naturally compared, not to the macroscopic
electromagnetic field, but rather to the dynamical friction due E(p) = Vp?+ .
to Coulomb collisions. The point is that the RRF, like dy- L ,
namical friction, does not conserve phase space. We find, n&ecall that the relativistic factory measures the particle
surprisingly, that under typical fusion conditions the dynami-&N€r9y
cal friction exceeds the RRF by roughly three orders of mag- E=my. 2)
nitude. However, the RRF is distinctive in acting primarily
on electrons. By depleting energy and momentum from théVe denote an arbitrary four-vector force BY(x,p,t); it
electron fluid exclusively, the RRF acts like a collisional pro-prescribes the change in momentupt with respect to
cess that fails to conserve plasma momentum and energy. proper timer according to Newton’s law:
In Sec. Il we explore this qualitative difference by exam- d
ining the energy-momentum moment of the RRF and com- dp” = F~, (3)
paring it to the corresponding, well-known moments of the dr
collision operator. Recalling_that the (_)utwar(_JI particlg fluX Recall here that, it is the time measured in the frame in
due .to coII|_S|ons is automatically ambipolar in an axisym-\ nich the particle has velocity, then
metric confinement system, we compute the nonambipolar
flux due to the RRF and discuss its significance. We also dt=ydr. (4)

a*=(a%a) =(a%a).
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Since the forces under consideration cannot affect the rest . d®p
mass, Eq(1) implies p,F#=0 or It = f d PP“QFJ Ep"f- (12)
FO = E (5) Its temporal component is the density, denoted by
E
The conventional (relativistic) distribution function jdspf(x,p,t):n(x,t). (13

f(x,p,t) depends on only three momentum variables. How-
ever, it is sometimes convenient to consider an equivalenthe particle conservation law is obtained by integrating Eq.

distribution (12) over all three-momenta. We quickly find
Sp°-E on
g(x,p)=(pT)f(x,p,)t, (6) ot V-I=0

which depends on the four-momentum. It can be shown thatr

both f andg are Lorentz scalars. Notice that P

= 14)
d3p oxH (
fdﬂ'pg(x, p) :J ?f(x,p,t)-
The total electrodynamic force on a charged particle is
Using Eq.(5) one finds that Fi= Fl o+ L. (15)
i(pug) = 8(p°- E)i (F_f) (7) Here the first term denotes the Lorentz force on a particle
ap* g \E with chargee and massn:
We now turn to the kinetic equation. A manifestly cova- e
riant kinetic equation for the distributiog is Fi= EF’”’PW (16)
i(p_ﬂg) + i(pug) =C, whereF*" is the Faraday tensor. The second tdffis the
X\ m /) ap* RRF. Following Rohrlich{4] we express this force as
where C represents the collision operator. The collision op- 2/ e)\3 . . >
erator has the form Fr= 3l [p.p*a\F*  — eWep* (7 + m “p,p")].
J
c=-—2or, ® (7
P Here W=B2-E? is the well-known Lorentz scalar and
wherelI'% is the collisional flow in velocity space. The ki- .
. . ; FF
netic equation fog is therefore gf=-—=2 (18)
W
J (P9 J p . . .
o m + ﬁ(Fﬂg +I'%)=0. 9) is an operator introduced previoug]. The key property of
XA m P ey applies when the parallel electric field is relatively small,
To obtain the kinetic equation fof, in six-dimensional
. ! ' E-B<W,
phase space, we first restrict the collisional flow to the mass
shell using as is the case in tokamak experiments. Then one fi8fls
S0 E that e acts as a projection operator for the two directions
Tt= (p )Fé. perpendicular td:
E
egA = A,

Since rest mass is conserved, E9). holds and we have .
for an arbitrary four-vectoA*.

I 0 d FC It can be verified that the RRF, like the Lorentz four-force,
——le=dp - E)ﬁ_p "\ /- (100 satisfies Eq(5). The details are omitted.

apt E
Now we combine Eqs(6), (7), and(10) to find B. Collision term
PP o (mEf+T. The collisional flowI'¢ results from Coulomb collisions.
4= .(Bf> +—. <—C> =0. (11) In a hot, weakly coupled plasma it has Fokker-Planck form
gt ox \E ap E p
The same result can be obtained starting from the micro- I'c=-D- a_p+FCf’ (19

scopic(Klimontovich-Dupreg distribution function[7].
We next verify that our kinetic equation conserves par-whereD is the diffusion tensor an® is the dynamical fric-
ticles. The four-vector particle flow is defined by tion. After substituting this form into Eq11) we have
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Rt 9 [Tf(F +Fp+F )}—i p. !
Eox op L[E - R YT o

(20)

The radiation reaction also acts like a friction force, so
our comparisons, below, will involv&r and F.. Here we
recall the form ofFc in the case of Maxwellian, or nearly
Maxwellian, electrons:

o
at

- 6m %eWep*p, = 6m *F<’p,F,\p*
== 6m—2FUKpKF0')\p)\
= - 6m 2(m/e)’FF,,,

which is(proportional t9 the square of the Lorentz force. We
conclude that
Fr__2

3
€ K -2 0
vy =- 5(5) (pJ*+2eW+ 6e “FF_,). (25)

2me*nlog A v derf(x)
= f —
Me vs{er( )X dx

where x=v/vy, With v,=12T,/m, the electron thermal
speed. The quantity log is the Coulomb logarithm.

} , (21)

¢ As a damping mechanism, the RRF cannot be expected to

conserve phase space; the result, &%), is unsurprising.
However, it confirms that the proper reference in estimating
the size and importance of the RRF is not the enormously
larger Lorentz force, but dynamical friction.

C. Phase-space contraction . .
D. Relative size

The quantityF , constituting the three spatial components
of a Lorentz four-vector, differs from the ordinary Lorentz
force by a factor ofy=E/m. It satisfies

We compare typical magnitudes of the RRF and dynami-
cal friction in a parameter regime characterizing a large to-
kamak such as ITER. In such a device the electron thermal

g (F, speed is roughly a tenth of the light speed, so we are inter-
" (E) =0. (22)  ested in the nonrelativistic limit of the RRF. It is easily seen
P from Eq.(17) that
Since the invariant phase-space volume elemeditdg®p/E, 2l
Eqg. (22) expresses the conservation of phase space under the Fr=-2-—B%, +0(v? (26)
Lorentz force and allows the Lorentz force in Efjl) to be 3m,

extracted from the momentum-divergence operator. Indeeg the dominant contribution wheB>E and v <1. (Here
the kinetic equation is conventionally presented with thegng pelowe represents the magnitude of the electronic
macroscopic force outside the momentum derivative, therebynarge)y For the dynamical friction we use Eq21) to
distinguishing this force from collisional effects. The latter gstimate
do not conserve phase space in so far as they remove energy
and momentum from a given plasma species. _ 4me’nlog A
Here we point out that the total electrodynamic force does c— mevfe
not conserve phase space. The radiation reaction causes par- )
ticles to lose energy and momentum, even in the absence & thermal electrons. When computing the rai/Fc| we
collisions. We next compute the resulting contraction offeturn to conventional units, with the light speexd-3

Lo (27)

phase space.
First note that

J
0—pu(pkp*) =7y + P (29

Therefore, if we introduce for convenienzé such that
3
F/L/- - _ g(E) Zl’«,
3\m

then

Jz* _ _

P P, F* =~ eWe (7 + T p,p) — S e Wep'p,
= p,d,F** ~ 2eW- 6m2eWe&p*p,. (24)

Maxwell’s field equations convert the first term of Eg4) to

pKaMF’uK == pKJKv

whereJ~ is the four-vector current density. According to Eq.

(18) the last term is

X 10'° cm/sec. One finds

- 22
Fc mlogA\ ¢ c/’
where v,=B/\4mmn is the Alfvén speed. In a reactor-

regime tokamak, each velocity ratio is of order i@nd
log A ~ 20, whence

(28)

F
—R 103,

Fe (29)

Recall that the lowest-order distribution function in a
magnetically confined plasma is independent of gyrophase
and therefore unaffected by the Lorentz magnetic f¢&je
In fact it is determined by a balance between collisional dif-
fusion and dynamical friction. The radiation reaction com-
bines with dynamical friction and therefore modifies the
lowest-order distribution; Eq(29) shows that for thermal
particles the modification is minor.

The macroscopic properties of the confined plasma de-
pend upon moments of the kinetic equation. We next con-
sider how these properties are affected by the radiation reac-
tion.
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IIl. MOMENTS OF THE RADIATION REACTION o, ~ eznTei/me

A. Energy-momentum evolution is the perpendicular conductivity. Herg is the electron-ion
After multiplying the kinetic equatioril1) by p# and in-  collision time. Since lowest-order fluid equilibrium provides
tegrating over momenturfusing the mass-shell Jacobian asthe diamagnetic currend ~ Vp/B, with p=n(T+T;) the
in Eq. (12)], we obtain a familiar energy-momentum evolu- plasma pressure, we can estimate
tion law. Specializing to the case of electrons, but suppress-

ing e subscripts, we have C~ rne_Vp. (36)
o eB/Tei
a 14
pw +eFT, =CF = R¥, (30) Turning to the corresponding RRF of E(®5), we note
that I', has a corresponding diamagnetic terin,
whereT#” is the electron energy-momentum tengitjs the  ~ V(nT.)/eB. Hence the ratidR , /C, is easily found to be
four-momentum moment of the collision operator, R
1
—_ — g,
Cﬂ:fd“ppuc, (31) Cy
where
andR* is the corresponding moment of the RRF: )
- £=0%7e(rd) (37)
Rﬂ:f d‘bp“ﬁ. (32 is the basic parameter measuring the significance of the RRF

on transport phenomena. Here we have restored factars of

The three spatial components of Eg0) describe the accel- as in Eq.(28) and assumed; ~ Te’zﬂ =eB/mg is the elec-
eration of the electron fluid; the temporal component detron gyrofrequency andy,= ez/meC is the classical electron

scribes the electron energy change. radius.
We can use Eq8) to write the collisional moment as Note that
ro/c~ 1023 sec.
CH= f d*pI4 —f —F“ (33 ) )
The presence of this very small factor explains why the RRF

is ordinarily ignored in confinement physics. In the present
case, it is almost defeated by the gyrofrequency factors, since

fd4p|: g=- f_lz,uf (34) Q. ~ 102sec?
in devices like ITER. However, the collision time is roughly
The moments of the collision operator are well known ;.35 1074, so
[10] and considered presently. A complete expression for the®
RRF moments may be found in the recent literat[i#]; E~3x1073 (38

here we are mtergsted only in the nonrelativistic limit, Whereremains small. We next show that even this small a force can
Eq. (26) quickly yields

play a significant role in confinement.

Similarly,

2¢e ”
Rk~ 5—2Wé< r,.

Notice that the dominant temporal component, to be consid- |owest-order equilibrium of the electron fluid in a con-

ered presently, comes from a different ternfig SinceWis  fined plasma depends upon a balance among the electron
well approximated byB? in a magnetic confinement device, pressure gradient, the fluid Lorentz force, and collisional

C. Nonambipolar electron flux

we have friction. Here we add the RRF to this balance and obtain the
2 equilibrium equation
==—=B7T,. 35
R 3m (35) pe+tenE+V,XB)=C.—-R.

Of course the last term on the right-hand side is very small.

We first neglect this term and then solve for the perpendicu-
The spatial components of the collisional moment givelar velocity to obtain a familiar result

the collisional friction force, measured by Ohmic current

B. Comparison to collisional friction

[10]. In view of Eq.(35), the perpendicular component is the Ver = Ve+Vept Vec, (39)
appropriate standard of reference: where Vg is the EX B drift, Vo p=b X Vp./(en) is the dia-
enl, magnetic drift, andV,c=b X C./(en) yields classical colli-

C~

sional transport. Here=B/B is a unit vector in the direction
of the confining field.
whereJ , is the perpendicular plasma current density and Let us denote the small gyroradius parameter by

g
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& = (gyroradiug/(gradient scale lengjh me N
. . Qei=3——(Te—Ty). (44)
Then one finds tha¥g andVp are measured byu,, while My Tei
Vec~ & Indeed a straightforward calculation of the friction  The energy loss due to the RRR?, comes primarily
force provides 9] from the last term in Eq(17). The term that dominateR
Vo= — (MO2nm)"1V p. 40 contnt_)utes _negllg|bly. here because the_ prOJedbrs very
ec™ ~ (MeleN7e) "V p (40 small in fusion experiments. Hence, using E84) and re-
Because collisions conserve momentum, calling that the electrons are Maxwellian in lowest order, we
have
Ce == Ci y
. . . o, 2€ [dp, ,
classical transport is intrinsically ambipolar: RO= - 5—35 ?fMUL, (45)
Mg
Vic = Vec.

where fy, is the electron Maxwellian normalized as in Eq.
In order to compute an ambipolar potential, one must pro13). The integral is elementary and we find
ceed to third order in%, where nonambipolar ion flows ap- .
pear. Requiring ambipolarity at third order indeed yields an RO=— z_le_sz (46)
equation for the potentiaisee, for example[12]). Note, 3m ¢

however, that
From Egs.(44) and(46) we compute

5~1073 (41)

RO

in a large tokamak. At this level a number of small effects Q_
can enter. el
The RRF is an example of such an effect. By adding toHere ¢ appears multiplied by the large mass ratio, yielding a
the friction force it contributes an additional electron flux quantity that is no longer small: radiation reaction energy
loss competes, in the environment of a large, hot, magneti-

Vr=b X R/(en), cally confined plasma, with electron-ion energy exchange.

which is strictly “unipolar,” since there is no measurable Equally significant is the fact that even after the electrons
RRF effect on ions. We calculate this flow iteratively from @nd ion have equilibrated, an electron energy loss rate com-
Eq. (35), using the lowest-order veIociN(O) VetV parable or even larger than the equilibration rate is sustained
’ el BT TeP by RRF. This must be taken into account for a proper energy
inventory.
To consider again a specific example, we note that ITER

. ~ temperatures are expected to satisfy
As expected, the new flow is small compared to classical

Nﬂg Te

—_—. (47
me " Te—T;

2
Vr==30ueb v, (42)

. T
transport. = _eT - 009,
VR e i
V_c =& (43 whence
as in Eq.(37). However, Eqs(38) and (41) show that the EO _ ﬂg Te _ 185

flow due RRF is not necessarily small compared to the ion Qe me To—T,
flow that is used to compute the ambipolar potential. o . ) .

As a concrete example, we consider a fusion experimenté'l_hus radlatlpn reaction losses will b_e nearly 20 times those
device on the scale of the planned international experimenglué to collisional energy exchange in ITER.
ITER. Thus we assume a magnetic fidd5.3 T and an
electron-ion collision timer,;=9.5x 10° sec to find IV. SUMMARY

£=9.2x 104 Because of the radiation reaction force, classical electro-
dynamics does not conserve phase space. The damping ex-
In the same device one finds that the paramétdias the  perienced by a radiating electron in a hot plasma is similar to
nominal value 1.X 1073, Hence the radiation reaction force the dynamical friction from collisions with ions, with two
contributes to nonambipolar diffusion at a level roughly 70%yey differences: it is smaller than the collisional process by a
the size of conventional contributions. factor of order 10 (in fusion experimental regimgsand it
fails to conserve plasma momentum. Because the moments
of the energy and momentum losses are properly compared
Electrons in a tokamak lose energy through several charto collisional effects that are themselves quite small, the ra-
nels, including collisional exchange with ions, line radiation,diation reaction can affect fusion plasma confinement in
and bremstrahlung. Here we compare the energy loss frommeasurable ways.
radiation reaction to the collision exchange rate. The latter is The most important effects of the radiation reaction may
given by a familiar formuld10] pertain to suprathermal electrons, such as runaway electrons

D. Energy loss

046407-5



R. D. HAZELTINE AND S. M. MAHAJAN PHYSICAL REVIEW E 70, 046407(2004

2] or electrons on the tail of a Maxwellian distribution. However, we note that the ratio between nonambipolar ion
p
Thus, while our analysis focuses on thermal electrons, weadial transporithird order in the gyroradiysand conven-
develop a fully relativistic kinetic description in Sec. Il that tjonal, ambipolar transport is comparable &o(The occur-
could be applied more generally. The kinetic equaii@®  yence of 10° in three contexts—Kkinetic effects of the radia-
makes the radiative contraction of phase space explicit, as iy reaction, its transport effects, and the ion gyroradius
rEe%cgtizo?. ;;;'g‘onzm‘é"; ftngtigr?r?ggijitr)le%egﬂ tehsiir;ﬁéat'é’nparameter—is coincidentalTherefore the radiation reaction
ynam ' 19 . * Eshould be included in classical calculations of the ambipolar
(28), of the relative importance of radiation reaction eﬁeaspotential. Finally we show that the electron energy loss due

in the kinetic theory of a fusion-regime plasma. . oo : .
A similar comparison between the momentum loss due td0 the radiation reaction is comparable, under fusion-regime

radiation and the momentum exchanged by electron-ion coParameters, to the collisional energy exchange with ions.
lisions is shown in Sec. Ill to be characterized by the
parameter
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