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Shell model for rotating turbulence
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A modified shell model for rotating turbulence is proposed. The effect of rotation is introduced by a
randomized linear term. Randomization is shown to be important in correctly modeling the rotation effect.
Numerical simulation shows that the exponent of the energy spectrum in the inertial range changes from -5/3
to -2 as rotation rate increases. The mechanism behind this change is explained by weak turbulence theory and
supported by numerical results.
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[. INTRODUCTION and Waleffe[1] found the exponent —3. Recently the experi-
lJ:nent by Baroucet al. [2] found the exponent —2 for strong

Statistical properties of rotating turbulence are less unde . . ) Y
stood than those of homogeneous isotropic turbulence, a[_otatmn. They also studied the scaling of the probability dis-

though rotating turbulence is important in fluid motion both ribution fpnctlons of the velocity difference and the struc
. . . ture function.
in the atmosphere and oceans and in turbomachinery. Th . -

In this paper, we propose a modified shell model for ro-

equations of motion are the Navier-Stokes equations for an . bul d X d istical . f
incompressible fluid in a rotating frame, ating turbulence and use it to study statistical properties o
the rotating turbulence. Shell models have been successfully
au 1 ) used to study statistical properties of turbulence by many
TR Vu+20 Xu=- P Vp+rve, (1) authors(see Biferalg[3] for a review. Most of them dealt
with homogeneous isotropic turbulence. Hattori and Ish-
V.u=0 ) iza_wa[4] studied magnetohydrodynamiHD) turbulen_ce
' using a shell model. They were concerned mostly with the
whereQ is the angular velocity of system rotation. When thetwo-dimensional case, where direct numerical simulations
rotation is strong, or in other words, the Rossby numbesshow that large-scale coherent magnetic structures are
Ro=U/QL~ |u-Vul|/|Q X u| is much smaller than 1 and the formed and control the dynamics; for example, the energy
Reynolds number is sufficiently large, the flow is consideredspectrum scales ds%2 which is explained by an argument
to approach an essentially two-dimensiotwlasi-2D state  similar to weak turbulence theory. A linear term which rep-
as expected from the Taylor-Proudman theorem afi@oa-  resents the effect of the coherent structures is introduced to
sibly long) transient process. The small-scale turbulence ishe shell model for MHD turbulence. The modified model
important not only in the transient process but also in thesuccessfully predict& 32 spectrum wherB¢, which is the
quasi-2D state where some kind of forcing injects energy sstrength of the coherent structures, is large and randomized.
that the turbulent component is maintained. In the quasi-2DNote that randomization is necessary in this model as the
state, stretching and folding of vorticity lines in the direction energy spectrum obeys different scaling wigns constant.
of the rotation axis are suppressed; energy transfer is alsbhe same idea can be applied to the rotational turbulence as
suppressed. It should be noted that the quasi-2D state is usiltere is strong similarity between the MHD turbulence and
ally different from the two-dimensional turbulence as dis-the rotating turbulence as recognized by ZIibh
cussed below. The paper is organized as follows. The shell model for
There have been different predictions for the power law ofrotating turbulence is introduced and its properties are stud-
the energy spectrum in the inertial range: the same argumefgd using weak turbulence theory in Sec. Il. Then we use the
used for nonrotating homogeneous turbulence gikés model to study statistical properties of the rotating turbu-
x k™53 two-dimensionalization due to strong rotation canlence in Sec. lll. Concluding remarks are given in Sec. IV.
lead to E(k) « k™3 for two-dimensional homogeneous turbu-
lence; assuming that the energy dissipation is proportional to Il. MODIFIED SHELL MODEL
the rotating frequencye(k) < k™2 is obtained by dimensional
analysis. The exponent is most likely to depend on some
additional parameters, the most important one being the Let us consider the following shell model for the rotating
Rossby number. The direct numerical simulation by Smithturbulence:

A. Equation
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dz,

dt = iakn+1Zn+2Z;+1 + i,Bann+1Z:1—1 —iyKn-1Zn-1Zn-2

B. Theoretical approach: Weak turbulence theory

Here we apply a weak turbulence approximation to the
. resent shell model in order to obtain scaling properties of
B VkﬁZ”HQ”(t)Z”’L o, ) fhe energy spectrum analytically. Weak turt?ulpen(?e theory
wherez,, is a representative mode ofcorresponding to the originates in the observation of Benney and Saffnjz@]
wave numbek,=k,\" and e+ B+y=0. When(,(t)=0, itis  that the infinite hierarchy of moment equations generated by
an improved shell model by L'voet al. [7] for nonrotating  the statistical theory of a nonlinear dispersive wave equation
turbulence. The additional terif,(t)Z, models the effect of admits an “intrinsic closure” provided that the wave ampli-

rotation. The rotation rat€,(t) is defined by tudes decorrelate in time due to linear phase scrambling
rather than due to nonlinear interactions. The closure is pos-

, dQ), Q) ﬁn(t) sible because by assumption, this theory contains a small

Qn=Qc+Qy, TR L (4)  parameter: the ratio of the typical nonlinear decorrelation

time to the linear decorrelation time. The condition that this
ratio is small proves to limit the wave amplitudes, hence the

@——%+ () g term ‘weak” turbulence. More details are available in the
dt =~ 7 7! ®) recent comprehensive treatise by Zakhaeowal. [9].
) ) _ _ _ For modes for which both the forcing and viscous damp-
whereg,(t) is Gaussian white noise with ing can be neglected, E(®) becomes
<gn(t)gn(s)>: Unﬁ(t—S). (6) dZn 07 +iak 7 7" igk7 . .7"
— =iQ,(0)Z, +iako1Zns +i 12
Thus ), is a sum of the mean valu@, and the fluctuating dt (020 + ek ZnsoZnsg +1BkeZnerZns

part O/, which has the correlation time. In fact (), is a

filtered noise ofzn, T~! being the low-pass cutoff frequency;

Q,, is correlated ag0),()Q,(s)) <exp(-|t—s//7). Note that Define
the fluctuating part _has a significant role in correctly taking QU (DQL(S)) = Ry(L,9). (10)
account of the rotational effect as shown later.

We may interpret the randomized linear term introduced~or the model defined by E@)
above as follows. The inertial waves

u=U exdi(k -x - ot)], Ry(t,5) = aﬁ{ —Te““SVT—

~ivKkn-1Zn-1Zn-2. (9)

T
T—

T
~|t=s//T
e . 11
=T } (4

K If T=0 so that;,=0),,
k-U=0, 0=20-: =20 cosé, () >0 T

| . . Ru(t,8) = (Qn(0)Q2(9) = ohe ™57, (12
are solutions of Eqq.l) and(2) if we neglect the nonlinear
and viscous terms. Herg is the angle betwee® andk.  but for nonzeroT, when|t-g is small,
SinceZ, represents Fourier modes whose wave vectors sat- 2 2
isfy ko\"< k< ko\"?, 6 should vary ag, moves among the Ri(t,s) = o7 + O(lt = ). (13)
Fourier modes. In other word&, stochastically represents  The linear part of the problem,
the corresponding set of Fourier modes. The corresponding
variation of the angular frequenay is taken account into dz, .
Q. The time scale of variation is; in the numerical com- dt 1002, (14)
putation we set=0:" as it would be reasonable that these
two time scales are in the same order of magnitude. Th&as the obvious solution
Iow—pass1 cutoff is introduced so th&k, is smooth; we set .
T=0.10.". The results below are insensitivetandT as far dz, - exp{if d’]’&)n(T):|Zn(S), (15)
as they are in reasonable ranges of values, while choosing dt s
too larger is essentially same with constafit

The shell model equatio8) has two invariants, so that if the response function is defined by the property
a\" (Zn(1)) = Gn(t,5)(Zy(9)), (16)
E:E |Zn|2! H :E <_> |Zn|21 (8) " " "
n n\Y we have[11]
when a+ 8+ y=0,r=0,f,=0. In the following, the param- t
eters are set ttN=26 A=k,,1/k,=2,a=1,8=y=-0.5; we Gy(t,9) = exp{if dTQn(T)] =exg- C,(t,9)/2]H(t-9),
have confirmed that the results below are essentially un- 0
changed by varying these parameters as long as the model (17)
stays in a chaotic regime. Forcing is givenratl: f;=0.5
+0.5,f,=0(n=2). where
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t t
C,(t,s) = J de doR,(7,0). (18)

In particular, if Q,(t) were simply white noise so that=T
=0 in Egs.(4) and(5), then

Ry(t,9) = 0,8(t - 9), (19
and
G,(t,5) = e 921 (t - 5). (20)
If insteadR, is given by Eq.(12) , then
Gy(t,9) = e 9= P exi-t9ldy ) (21)

The applicability of weak turbulence theory to HE) is

PHYSICAL REVIEW E70, 046311(2004

Defining
Ep = Opiapp-tkl aUpiaUp + BUpiaUp-r + WpUp-al,
(28
Eq. (26) takes the form
dau, _ - — — —
dt = aEp+ BEn+ YEn1=[aE i — VE]
—[aEn— ¥En-1l. (29
A constant flux solution of Eq29) is defined by
e=aEn1~ YEn, (30)

where ¢ denotes the energy flux. For the linear response

linked to the linear decorrelation mechanism provided by thdunction defined by Ec(20),

random proces§)/(t). First recall the crucial diagonal prop-

erty of correlations in the shell model of L'voet al. [7],

(Zy()Z(S)) = Samne (22)
Define the correlations
Un(t,9) =(Z,(1)Z,(9)),
UL(L,9) = (Zo(D)Zo(9)). (23)

1

Ome1t Omt O

(31

®m+l,m,m—l:

Equation(31) is also a good approximation for large shell
indicesm for the more general response function E2{l).
Power counting in Eq30) shows that if

(32)

and if, as usual, the shells are in a geometric progression,

om~ ki,

In the weak turbulence approximation, the dominance ok,=Ko\", then Eq.(26) admits the formal solution

linear decorrelation implies that the two-time and single-time

correlations in shelh are related by

S

t
U, (t,s) = <exp i f drQ(7) zn(s)z;(s)> =G,(t,9U(9),

(24)

t
i f d7Qn(7) Zn(S)Z;(S)> = Gy(t,9UN(S),

S

Uﬁ(t,s) = <exp

(25)

if t=s, where U,(s) denotes the single-time correlation

Un(S)=Uy(s,9). SinceU](t,s)=0 if U!(s)=0, this correlation
will be ignored in what follows.

The perturbation theory described in detail in Zakhagbv
al. [9] or Benny and Saffmaifil0] leads to the governing
equation for the single-time correlatiokk,(t)=U,(t,t),

du,
dt

= akﬁ+1®n+2,n+l,n[7Un+1Un + IBUn+2Un + aUn+2Un+1]

+ Bkﬁml,n,n—l[ YWnUp-1 + BUpiUpq + aUpiq U]
+ '}’kr21—1®n,n—l,n—2['yun—lun—2 +BUUp o+ aUnUn—l]a
(26)

where

®m+1,m,m—1:f dTGm+1(T)Gm(T)Gm—1(T)- (27)

0

Time stationarity has been assumed, so Gats)=G(t-s)
is a function of time difference only.

~1+ul2
Up ~ K172,

(33

Standard argumentgompare L'vovet al. [9]) show that a
solution of EQ.(26) exists with the scaling Eq.33) in the
“region of transparency” in which the unforced, inviscid
equation Eq(9) is valid.

Equation(33) corresponds to an energy spectrum scaling
as

Em ~ k;’]2+,u/2. (34)

In particular, for the case studied by Hattori and Ishizgha
in which u=1, E,,~ k2, in agreement with their numerical
simulations. In the present case wjih+0, we have the the-
oretical predictiorE,,~ k2.

It was noted earlier that weak turbulence theory applies
only when linear phase decorrelation dominates nonlinear
phase decorrelation, so that

J—
oS>\ k%Em.

(35

If weak turbulence generates an energy spectrum for which
kﬁqu increases withm, the inequality in Eq.(35) can be
satisfied for smalin but violated for sufficiently largen. For
large k,, linear decorrelation is a perturbation of nonlinear
decorrelation, and Kolmogorov scalirig,~ k> is recov-
ered.

The phenomenological theory proposed by Zjspand
the closure theory of Canuto and Duboviki@} both predict
the same picture of the spectral scaling in rotating turbu-
lence, withE(k) ~ k™2 at large scales, Kolmogorov scaling at
small scales, and a transition between these two regimes
when the rotation raté€) satisfiesQ =~ ¢/*%k?3. These argu-
ments perhaps apply better to the present problem, which is
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FIG. 1. Energy spectrum@a) .=0,1.4,7,21,35, and 71b) ©) (d)
Comparison of constant and random large-scale efféets:71.
Note thatk; in (a) corresponds to the Kolmogorov 5/3 law. FIG. 2. Correlation(see text for the definition (a) .=0, real
part, (b) Q.=0, imaginary part(c) .=0, real part,(d) Q.=71,
effectively “isotropic,” than to rotating turbulence, in which imaginary part.
anisotropy has an important role. The role of anisotropy in
the spectral scaling of rotating turbulence remains an opef slightly smaller than —5/3. A€), increases, there appears
question; “anisotropic” shell models in which the complex a region ofn for which the scaling exponent is close to —2.
amplitudeZ, is replaced by a higher dimensional geometricFor () =71, we seeE,x k;z in the entire inertial range. In
quantity may have a role in deciding this question. Fig. 1(b), we compare the cases with and without the fluc-
Itis noteworthy that weak turbulence scalings can be obtyation )/, in the rotation term. The energy spectrum does
tained from a prOblem in which resonant triads are entirelynot show power law behavior for the case without fluctua-
absent. The essential feature Wh|Ch permits Weak turbulenqﬁ)n_ Therefore the ﬂuctuation is a key factor for the She”

scaling is the existence of the linear decorrelation mechamodel to take account of strong rotation as discussed in the
nism provided by the random phase factéIg(t). But we  previous section.

stress that in a shell model, linear decorrelation only occurs

if the phase factors amandom the introduction ofletermin-

istic phase factors cannot disrupt normal Kolmogorov scal- B. Correlation

ing. This conclusion agrees with the numerical simulations

of Hattori and Ishizawd4] in which the scaling exponent

depends or\ when, in effect(),, is constant in each shell.

The situation is of course entirely different for dispersive

waves in two or three dimensions: although the linear deco

rrelation mechanism is deterministic, the interaction of

waves with different wavevectors introduces the necessary *

phase randomization. Cor(n;7) = <Z”E|I;Zzt()t|:> ) _ U'l‘J(t’(tt:)T),
n n\ts

According to weak turbulence theory, the transition from
the k™2 spectrum to theK41 spectrum is caused by the
change in the characteristic time scale. We can see this
change in Fig. 2, where the correlation defined by

. NUMERICAL RESULTS
is shown for various modes. Fd2,=0, the time scale is
proportional tok,*’%. On the other hand, fdR,=71, the time
Figure 1 shows the energy spectrum obtained by the&cale is the same for all modes. The minima of the real part
present shell model. The spectrum is multipliedkByso that  of the correlation are seen to be around 0.03; this is of the
we can see subtle differences in the scaling exponent. In Figame order asr/{).~0.044, which is the phase reversal
1(a), the scaling law is close to the Kolmogorov laky, time. Therefore the phase has the correlation time deter-
ock;5/3 for 1.=0, the nonrotating case; actually the exponentmined by the rotation effect.

A. Energy spectrum
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FIG. 3. Third-order structure functio).=0 and 71.(a) k,S;, n=1
(b) S/(S)¥2

where k,=k.e, and e, and ¢, are unit vectors in random

_ ) directions. We impose
C. Third-order structure function

Ch'6,=0, n=1,... N,

Figure 3 shows the “third-order structure function”
_ * which is a sufficient condition for incompressibility. We av-
Salkn) = IM(Zn-1Z0Z1), (36) erage over a large number of séfs,,e,)} to achieve a good
introduced by L'vovet al. [7]. As in L'vov et al. we have statistical average.
q Figure 4 shows PDF’s of the longitudinal velocity differ-
- Y * ou obtained by the method described above. The PDF’s
—(|Z,[3) = 2K, 20S5(Knep) + +2S(Ko-y) | + 2AFrZy,  ENCE y
dt<| ) n{ aSslknvd) + BS5(k) 2%( " 1)} (foo) are not self-similar either fof).=0 or for Q.=71. There is
(37)  ho significant difference betwedn=0 and 71. This differs
from the experiment which observed self-similar but non-
neglecting viscosity, which in stationary conditions leads to Gaussian PDF's for strong rotation.

1 n These results raise the more general question of anoma-
Si(ky) = —[A + B(Z) } , (38 lous scaling in turbulent systems subject to external agencies.
Kn a Recent investigations[12,13 of turbulence and shell

with some constanta andB. ThusS;=k:* for largen. Fig- ~ Models driven by forcing with power-law correlation
ure 3a) confirms this relation. Note that the magnitudeSpf ~ {f(K,Df(=k,0))~ak5(t—s) (for simplicity, we only write

is rather small fo),=71. In other words, energy transfer is the scalar amplitude of the force correlation; more complete
reduced owing to the rotation effect. This is relatively sig- definitions are found in the cited referenpesiggest that
nificant for small wave numbers as shown in Figo)3For ~ When the forcing dominates nonlinearity, higher order struc-
0,.=0, S;/(S,)¥2 (the “second-order structure functios; is  ture functions obey the “normal” scaling obtained by dimen-
(|Z|> as usualis nearly constant in the inertial range; for sional anaIyS|§, and velomty Q|ﬁerence PDF's over |nert|§1l
Q.=71, it increases witlk,. As a result energy accumulates range separations are self-similar. However, when the forcing

in small-wave-number modes, leading to the steeper enerdiecays sufficiently rapidly at large nonlinearity becomes
Spectrume, k-2 ominant, and the non-self-similar velocity difference PDF’s
n n *

of unforced turbulence are recovered.

A heuristic analogy between such forced systems and the
present shell model might suggest that when linear decorre-

The energy spectrum scalesl:éh'vpck;2 when the rotation lation is dominant over all scales, as whén=71, self-
effect is strong; the same power law is observed in the exsimilar velocity difference PDF’s should be observed, with
periment by Barouckt al. [2]. Then it is of interest to see increasingly dominant anomalous effects g approaches
whether or not probability distribution functioPDF) be-  zero. At this point, we cannot resolve the discrepancy be-
haves similarly. In order to construct velocity fields from tween this expectation and our contrary computational re-

D. PDF
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sults: perhaps forcing has a more direct impact on shell modet al. [2], the results on PDF’s are different. The PDF’s ob-
els than modification of the time scale; alternatively, thetained by the present model are non-Gaussian as in the ex-
linear decorrelation mechanism proposed here may simplperiment. However, unlike the self-similar PDF’s observed in
be much weaker than the linear decorrelation of dispersivéhe experiment, they are not self-similar. The direction of
waves. Another possibility is that the subtle interplay be-energy cascade may be responsible for this difference. The
tween external agencies and nonlinearity is simply beyongresent model shows the normal cascade from small wave
the scope of our shell model. In any case, perhaps our resultaimber to large wave number, while the experiment showed
underscore the apparent independence of second order stas®me evidence for the inverse cascade. The present model
tical properties like spectral scaling exponents from morevould be more closely related to the numerical simulation by
refined details like anomalous scaling properties. Smith and Waleffg1] ; they observed2 spectrum folk > k;
with k; being the forcing wave number, which implies that
the direction of energy cascade is normal. Simulations with
higher Reynolds numbers are expected for more precise
We have proposed a modified shell model for rotatingevaluation of the present model.
turbulence. The transition frork ®2 spectrum for weak ro- It is shown that introduction of the randomized rotation
tation tok™? spectrum for strong rotation is observed as pre-term leads tk™2 spectrum. The same idea can be applied to
dicted by weak turbulence theory. Although the energy specether cases for which weak turbulence theory works, e.g.,
trum obeys the same power law as the experiment by Baroutirbulence of gravity waves.

IV. CONCLUDING REMARKS
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