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A modified shell model for rotating turbulence is proposed. The effect of rotation is introduced by a
randomized linear term. Randomization is shown to be important in correctly modeling the rotation effect.
Numerical simulation shows that the exponent of the energy spectrum in the inertial range changes from −5/3
to −2 as rotation rate increases. The mechanism behind this change is explained by weak turbulence theory and
supported by numerical results.
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I. INTRODUCTION

Statistical properties of rotating turbulence are less under-
stood than those of homogeneous isotropic turbulence, al-
though rotating turbulence is important in fluid motion both
in the atmosphere and oceans and in turbomachinery. The
equations of motion are the Navier-Stokes equations for an
incompressible fluid in a rotating frame,

] u

] t
+ u · = u + 2V 3 u = −

1

r
= p + n¹2u, s1d

= ·u = 0, s2d

whereV is the angular velocity of system rotation. When the
rotation is strong, or in other words, the Rossby number
Ro=U /VL,uu ·=uu / uV3uu is much smaller than 1 and the
Reynolds number is sufficiently large, the flow is considered
to approach an essentially two-dimensional(quasi-2D) state
as expected from the Taylor-Proudman theorem after a(pos-
sibly long) transient process. The small-scale turbulence is
important not only in the transient process but also in the
quasi-2D state where some kind of forcing injects energy so
that the turbulent component is maintained. In the quasi-2D
state, stretching and folding of vorticity lines in the direction
of the rotation axis are suppressed; energy transfer is also
suppressed. It should be noted that the quasi-2D state is usu-
ally different from the two-dimensional turbulence as dis-
cussed below.

There have been different predictions for the power law of
the energy spectrum in the inertial range: the same argument
used for nonrotating homogeneous turbulence givesEskd
~k−5/3; two-dimensionalization due to strong rotation can
lead toEskd~k−3 for two-dimensional homogeneous turbu-
lence; assuming that the energy dissipation is proportional to
the rotating frequency,Eskd~k−2 is obtained by dimensional
analysis. The exponent is most likely to depend on some
additional parameters, the most important one being the
Rossby number. The direct numerical simulation by Smith

and Waleffe[1] found the exponent −3. Recently the experi-
ment by Baroudet al. [2] found the exponent −2 for strong
rotation. They also studied the scaling of the probability dis-
tribution functions of the velocity difference and the struc-
ture function.

In this paper, we propose a modified shell model for ro-
tating turbulence and use it to study statistical properties of
the rotating turbulence. Shell models have been successfully
used to study statistical properties of turbulence by many
authors(see Biferale[3] for a review). Most of them dealt
with homogeneous isotropic turbulence. Hattori and Ish-
izawa [4] studied magnetohydrodynamic(MHD) turbulence
using a shell model. They were concerned mostly with the
two-dimensional case, where direct numerical simulations
show that large-scale coherent magnetic structures are
formed and control the dynamics; for example, the energy
spectrum scales ask−3/2, which is explained by an argument
similar to weak turbulence theory. A linear term which rep-
resents the effect of the coherent structures is introduced to
the shell model for MHD turbulence. The modified model
successfully predictsk−3/2 spectrum whenBC, which is the
strength of the coherent structures, is large and randomized.
Note that randomization is necessary in this model as the
energy spectrum obeys different scaling whenBC is constant.
The same idea can be applied to the rotational turbulence as
there is strong similarity between the MHD turbulence and
the rotating turbulence as recognized by Zhou[5].

The paper is organized as follows. The shell model for
rotating turbulence is introduced and its properties are stud-
ied using weak turbulence theory in Sec. II. Then we use the
model to study statistical properties of the rotating turbu-
lence in Sec. III. Concluding remarks are given in Sec. IV.

II. MODIFIED SHELL MODEL

A. Equation

Let us consider the following shell model for the rotating
turbulence:
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dZn

dt
= iakn+1Zn+2Zn+1

* + ibknZn+1Zn−1
* − igkn−1Zn−1Zn−2

− nkn
2Zn + iVnstdZn + fn, s3d

whereZn is a representative mode ofu corresponding to the
wave numberkn=k0ln anda+b+g=0. WhenVnstd=0, it is
an improved shell model by L’vovet al. [7] for nonrotating
turbulence. The additional termiVnstdZn models the effect of
rotation. The rotation rateVnstd is defined by

Vn = Vc + Vn8,
dVn8

dt
= −

Vn8

T
+

Ṽnstd
T

, s4d

dṼn

dt
= −

Ṽn

t
+

gnstd
t

, s5d

wheregnstd is Gaussian white noise with

kgnstdgnssdl = sndst − sd. s6d

ThusVn is a sum of the mean valueVc and the fluctuating
part Vn8, which has the correlation timet. In fact Vn8 is a

filtered noise ofṼn, T−1 being the low-pass cutoff frequency;

Ṽn is correlated askṼnstdṼnssdl~exps−ut−su /td. Note that
the fluctuating part has a significant role in correctly taking
account of the rotational effect as shown later.

We may interpret the randomized linear term introduced
above as follows. The inertial waves

u = U expfisk ·x − vtdg,

k ·U = 0, v = 2V ·
k

k
= 2V cosu, s7d

are solutions of Eqs.(1) and (2) if we neglect the nonlinear
and viscous terms. Hereu is the angle betweenV and k.
SinceZn represents Fourier modes whose wave vectors sat-
isfy k0lnøk,k0ln+1, u should vary asZn moves among the
Fourier modes. In other words,Zn stochastically represents
the corresponding set of Fourier modes. The corresponding
variation of the angular frequencyv is taken account into
Vn. The time scale of variation ist ; in the numerical com-
putation we sett=Vc

−1 as it would be reasonable that these
two time scales are in the same order of magnitude. The
low-pass cutoff is introduced so thatVn is smooth; we set
T=0.1Vc

−1. The results below are insensitive tot andT as far
as they are in reasonable ranges of values, while choosing
too larget is essentially same with constantV.

The shell model equation(3) has two invariants,

E = o
n

uZnu2, H = o
n
Sa

g
Dn

uZnu2, s8d

when a+b+g=0,n=0,fn=0. In the following, the param-
eters are set toN=26,l=kn+1/kn=2,a=1,b=g=−0.5; we
have confirmed that the results below are essentially un-
changed by varying these parameters as long as the model
stays in a chaotic regime. Forcing is given atn=1: f1=0.5
+0.5i , fn=0snù2d.

B. Theoretical approach: Weak turbulence theory

Here we apply a weak turbulence approximation to the
present shell model in order to obtain scaling properties of
the energy spectrum analytically. Weak turbulence theory
originates in the observation of Benney and Saffman[10]
that the infinite hierarchy of moment equations generated by
the statistical theory of a nonlinear dispersive wave equation
admits an “intrinsic closure” provided that the wave ampli-
tudes decorrelate in time due to linear phase scrambling
rather than due to nonlinear interactions. The closure is pos-
sible because by assumption, this theory contains a small
parameter: the ratio of the typical nonlinear decorrelation
time to the linear decorrelation time. The condition that this
ratio is small proves to limit the wave amplitudes, hence the
term “weak” turbulence. More details are available in the
recent comprehensive treatise by Zakharovet al. [9].

For modes for which both the forcing and viscous damp-
ing can be neglected, Eq.(3) becomes

dZn

dt
= iVnstdZn + iakn+1Zn+2Zn+1

* + ibknZn+1Zn−1
*

− igkn−1Zn−1Zn−2. s9d

Define

kVn8stdVn8ssdl = Rnst,sd. s10d

For the model defined by Eq.(4)

Rnst,sd = sn
2H t

t − T
e−ut−su/t −

T

t − T
e−ut−su/TJ . s11d

If T=0 so thatVn8=Ṽn,

Rnst,sd = kṼnstdṼnssdl = sn
2e−ut−su/t, s12d

but for nonzeroT, when ut−su is small,

Rnst,sd < sn
2 + Osut − su2d. s13d

The linear part of the problem,

dZn

dt
= iVnstdZn, s14d

has the obvious solution

dZn

dt
= expFiE

s

t

dtVnstdGZnssd, s15d

so that if the response function is defined by the property

kZnstdl = Gnst,sdkZnssdl, s16d

we have[11]

Gnst,sd =KexpFiE
0

t

dtVnstdGL = expf− Cnst,sd/2gHst − sd,

s17d

where
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Cnst,sd =E
s

t

dtE
s

t

dsRnst,sd. s18d

In particular, if Vnstd were simply white noise so thatt=T
=0 in Eqs.(4) and (5), then

Rnst,sd = sndst − sd, s19d

and

Gnst,sd = e−snst−sd/2Hst − sd. s20d

If insteadRn is given by Eq.(12) , then

Gnst,sd = e−sn
2hst−sdt−t2+t2 expf−st−sd/tgjHst − sd. s21d

The applicability of weak turbulence theory to Eq.(9) is
linked to the linear decorrelation mechanism provided by the
random processVn8std. First recall the crucial diagonal prop-
erty of correlations in the shell model of L’vovet al. [7],

kZnstdZm
* ssdl ~ dnm. s22d

Define the correlations

Unst,sd = kZnstdZn
*ssdl,

Un
†st,sd = kZnstdZnssdl. s23d

In the weak turbulence approximation, the dominance of
linear decorrelation implies that the two-time and single-time
correlations in shelln are related by

Unst,sd =KexpFiE
s

t

dt VnstdGZnssdZn
*ssdL = Gnst,sdUnssd,

s24d

Un
†st,sd =KexpFiE

s

t

dt VnstdGZnssdZn
*ssdL = Gnst,sdUn

†ssd,

s25d

if tùs, where Unssd denotes the single-time correlation
Unssd=Unss,sd. SinceUn

†st ,sd=0 if Un
†ssd=0, this correlation

will be ignored in what follows.
The perturbation theory described in detail in Zakharovet

al. [9] or Benny and Saffman[10] leads to the governing
equation for the single-time correlationsUnstd=Unst ,td,

dUn

dt
= akn+1

2 Qn+2,n+1,nfgUn+1Un + bUn+2Un + aUn+2Un+1g

+ bkn
2Qn+1,n,n−1fgUnUn−1 + bUn+1Un−1 + aUn+1Ung

+ gkn−1
2 Qn,n−1,n−2fgUn−1Un−2 + bUnUn−2 + aUnUn−1g,

s26d

where

Qm+1,m,m−1 =E
0

`

dtGm+1stdGmstdGm−1std. s27d

Time stationarity has been assumed, so thatGst ,sd=Gst−sd
is a function of time difference only.

Defining

Jp = Qp+1,p,p−1kp
2faUp+1Up + bUp+1Up−1 + gUpUp−1g,

s28d

Eq. (26) takes the form

dUn

dt
= aJn+1 + bJn + gJn−1 = faJn+1 − gJng

− faJn − gJn−1g. s29d

A constant flux solution of Eq.(29) is defined by

« = aJn+1 − gJn, s30d

where « denotes the energy flux. For the linear response
function defined by Eq.(20),

Qm+1,m,m−1 =
1

sm+1 + sm + sm−1
. s31d

Equation(31) is also a good approximation for large shell
indicesm for the more general response function Eq.(21).

Power counting in Eq.(30) shows that if

sm , km
m , s32d

and if, as usual, the shells are in a geometric progression,
kn=k0ln, then Eq.(26) admits the formal solution

Um , km
−1+m/2. s33d

Standard arguments(compare L’vovet al. [9]) show that a
solution of Eq.(26) exists with the scaling Eq.(33) in the
“region of transparency” in which the unforced, inviscid
equation Eq.(9) is valid.

Equation(33) corresponds to an energy spectrum scaling
as

Em , km
−2+m/2. s34d

In particular, for the case studied by Hattori and Ishizawa[4]
in which m=1, Em,k−3/2, in agreement with their numerical
simulations. In the present case withm=0, we have the the-
oretical predictionEm,km

−2.
It was noted earlier that weak turbulence theory applies

only when linear phase decorrelation dominates nonlinear
phase decorrelation, so that

sm @ Îkm
3 Em. s35d

If weak turbulence generates an energy spectrum for which
km

3 Em increases withm, the inequality in Eq.(35) can be
satisfied for smallm but violated for sufficiently largem. For
large km, linear decorrelation is a perturbation of nonlinear
decorrelation, and Kolmogorov scalingEm,km

−5/3 is recov-
ered.

The phenomenological theory proposed by Zhou[5] and
the closure theory of Canuto and Dubovikov[6] both predict
the same picture of the spectral scaling in rotating turbu-
lence, withEskd,k−2 at large scales, Kolmogorov scaling at
small scales, and a transition between these two regimes
when the rotation rateV satisfiesV<e1/3k2/3. These argu-
ments perhaps apply better to the present problem, which is
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effectively “isotropic,” than to rotating turbulence, in which
anisotropy has an important role. The role of anisotropy in
the spectral scaling of rotating turbulence remains an open
question; “anisotropic” shell models in which the complex
amplitudeZn is replaced by a higher dimensional geometric
quantity may have a role in deciding this question.

It is noteworthy that weak turbulence scalings can be ob-
tained from a problem in which resonant triads are entirely
absent. The essential feature which permits weak turbulence
scaling is the existence of the linear decorrelation mecha-
nism provided by the random phase factorsVnstd. But we
stress that in a shell model, linear decorrelation only occurs
if the phase factors arerandom; the introduction ofdetermin-
istic phase factors cannot disrupt normal Kolmogorov scal-
ing. This conclusion agrees with the numerical simulations
of Hattori and Ishizawa[4] in which the scaling exponent
depends onl when, in effect,Vn is constant in each shell.
The situation is of course entirely different for dispersive
waves in two or three dimensions: although the linear deco-
rrelation mechanism is deterministic, the interaction of
waves with different wavevectors introduces the necessary
phase randomization.

III. NUMERICAL RESULTS

A. Energy spectrum

Figure 1 shows the energy spectrum obtained by the
present shell model. The spectrum is multiplied byk2 so that
we can see subtle differences in the scaling exponent. In Fig.
1(a), the scaling law is close to the Kolmogorov lawEn
~kn

−5/3 for Vc=0, the nonrotating case; actually the exponent

is slightly smaller than −5/3. AsVc increases, there appears
a region ofn for which the scaling exponent is close to −2.
For Vc=71, we seeEn~kn

−2 in the entire inertial range. In
Fig. 1(b), we compare the cases with and without the fluc-
tuation Vn8 in the rotation term. The energy spectrum does
not show power law behavior for the case without fluctua-
tion. Therefore the fluctuation is a key factor for the shell
model to take account of strong rotation as discussed in the
previous section.

B. Correlation

According to weak turbulence theory, the transition from
the k−2 spectrum to theK41 spectrum is caused by the
change in the characteristic time scale. We can see this
change in Fig. 2, where the correlation defined by

Corsn;td =
kZnstdZn

*st + tdl
kuZnstdu2l

=
Unst,t + td

Unst,td
,

is shown for various modes. ForVc=0, the time scale is
proportional tokn

−1/3. On the other hand, forVc=71, the time
scale is the same for all modes. The minima of the real part
of the correlation are seen to be around 0.03; this is of the
same order asp /Vc,0.044, which is the phase reversal
time. Therefore the phase has the correlation time deter-
mined by the rotation effect.

FIG. 1. Energy spectrum.(a) Vc=0,1.4,7,21,35, and 71.(b)
Comparison of constant and random large-scale effects.Vc=71.
Note thatkn

1/3 in (a) corresponds to the Kolmogorov 5/3 law. FIG. 2. Correlation(see text for the definition). (a) Vc=0, real
part, (b) Vc=0, imaginary part,(c) Vc=0, real part,(d) Vc=71,
imaginary part.
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C. Third-order structure function

Figure 3 shows the “third-order structure function”

S3sknd = ImkZn−1ZnZn+1
* l, s36d

introduced by L’vovet al. [7]. As in L’vov et al. we have

d

dt
kuZnu2l = 2knF2aS3skn+1d + bS3sknd +

g

2
S3skn−1dG + 2kfn

*Znl,

s37d

neglecting viscosity, which in stationary conditions leads to

S3sknd =
1

kn
FA + BSg

a
DnG , s38d

with some constantsA andB. ThusS3~kn
−1 for largen. Fig-

ure 3(a) confirms this relation. Note that the magnitude ofS3
is rather small forVc=71. In other words, energy transfer is
reduced owing to the rotation effect. This is relatively sig-
nificant for small wave numbers as shown in Fig. 3(b). For
Vc=0, S3/ sS2d3/2 (the “second-order structure function”S2 is
kuZnu2l as usual) is nearly constant in the inertial range; for
Vc=71, it increases withkn. As a result energy accumulates
in small-wave-number modes, leading to the steeper energy
spectrumEn~kn

−2.

D. PDF

The energy spectrum scales asEn~kn
−2 when the rotation

effect is strong; the same power law is observed in the ex-
periment by Baroudet al. [2]. Then it is of interest to see
whether or not probability distribution function(PDF) be-
haves similarly. In order to construct velocity fields from

shell variables, we employ the method used in Jensen[8];
that is,

usx,td = o
n=1

N

cnfZnstdexpsikn ·xd + c.c.g,

where kn=knen and en and cn are unit vectors in random
directions. We impose

cn ·en = 0, n = 1, . . . ,N,

which is a sufficient condition for incompressibility. We av-
erage over a large number of setshscn,endj to achieve a good
statistical average.

Figure 4 shows PDF’s of the longitudinal velocity differ-
encedu obtained by the method described above. The PDF’s
are not self-similar either forVc=0 or for Vc=71. There is
no significant difference betweenVc=0 and 71. This differs
from the experiment which observed self-similar but non-
Gaussian PDF’s for strong rotation.

These results raise the more general question of anoma-
lous scaling in turbulent systems subject to external agencies.
Recent investigations[12,13] of turbulence and shell
models driven by forcing with power-law correlation
kfsk ,tdfs−k ,tdl,ak−gdst−sd (for simplicity, we only write
the scalar amplitude of the force correlation; more complete
definitions are found in the cited references) suggest that
when the forcing dominates nonlinearity, higher order struc-
ture functions obey the “normal” scaling obtained by dimen-
sional analysis, and velocity difference PDF’s over inertial
range separations are self-similar. However, when the forcing
decays sufficiently rapidly at largek, nonlinearity becomes
dominant, and the non-self-similar velocity difference PDF’s
of unforced turbulence are recovered.

A heuristic analogy between such forced systems and the
present shell model might suggest that when linear decorre-
lation is dominant over all scales, as whenVc=71, self-
similar velocity difference PDF’s should be observed, with
increasingly dominant anomalous effects asVc approaches
zero. At this point, we cannot resolve the discrepancy be-
tween this expectation and our contrary computational re-

FIG. 3. Third-order structure function.Vc=0 and 71.(a) knS3,
(b) S3/ sS2d3/2.

FIG. 4. Normalized PDF.r =r02
1+3msm=0,1, . . . ,7d ,r0=2p /kN.

(a) Vc=0, (b) Vc=71.
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sults: perhaps forcing has a more direct impact on shell mod-
els than modification of the time scale; alternatively, the
linear decorrelation mechanism proposed here may simply
be much weaker than the linear decorrelation of dispersive
waves. Another possibility is that the subtle interplay be-
tween external agencies and nonlinearity is simply beyond
the scope of our shell model. In any case, perhaps our results
underscore the apparent independence of second order statis-
tical properties like spectral scaling exponents from more
refined details like anomalous scaling properties.

IV. CONCLUDING REMARKS

We have proposed a modified shell model for rotating
turbulence. The transition fromk−5/3 spectrum for weak ro-
tation tok−2 spectrum for strong rotation is observed as pre-
dicted by weak turbulence theory. Although the energy spec-
trum obeys the same power law as the experiment by Baroud

et al. [2], the results on PDF’s are different. The PDF’s ob-
tained by the present model are non-Gaussian as in the ex-
periment. However, unlike the self-similar PDF’s observed in
the experiment, they are not self-similar. The direction of
energy cascade may be responsible for this difference. The
present model shows the normal cascade from small wave
number to large wave number, while the experiment showed
some evidence for the inverse cascade. The present model
would be more closely related to the numerical simulation by
Smith and Waleffe[1] ; they observedk−2 spectrum fork.kf
with kf being the forcing wave number, which implies that
the direction of energy cascade is normal. Simulations with
higher Reynolds numbers are expected for more precise
evaluation of the present model.

It is shown that introduction of the randomized rotation
term leads tok−2 spectrum. The same idea can be applied to
other cases for which weak turbulence theory works, e.g.,
turbulence of gravity waves.
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