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The authors propose an alternative interpretation of Markovian transport models based on the well-mixed
condition, in terms of the properties of a random velocity field with second order structure functions scaling
linearly in the space-time increments. This interpretation allows direct association of the drift and noise terms
entering the model, with the geometry of the turbulent fluctuations. In particular, the well-known nonunique-
ness problem in the well-mixed approach is solved in terms of the antisymmetric part of the velocity correla-
tions; its relation with the presence of nonzero mean helicity and other geometrical properties of the flow is
elucidated. The well-mixed condition appears to be a special case of the relation between conditional velocity
increments of the random field and the one-point Eulerian velocity distribution, allowing generalization of the
approach to the transport of nontracer quantities. Application to solid particle transport leads to a model
satisfying, in the homogeneous isotropic turbulence case, all the conditions on the behavior of the correlation
times for the fluid velocity sampled by the particles. In particular, correlation times in the gravity and in the
inertia dominated case, respectively, longer and shorter than in the passive tracer case; in the gravity dominated
case, correlation times longer for velocity components along gravity, than for the perpendicular ones. The
model produces, in channel flow geometry, particle deposition rates in agreement with experiments.
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I. INTRODUCTION

In Lagrangian models, the concentration of a quantity
transported by a turbulent field is reconstructed from the tra-
jectories of the individual particles advected by the flow
[1–4]. Since each trajectory is associated with an indepen-
dent realization of the turbulent flow, what is obtained is
actually the mean concentration profile, given a certain dis-
tribution of sinks and sources for the transported quantity.

One keeps into account the fact that the turbulent length
and time scales are nonzero, by assuming that the particle
velocity obeys a Langevin equation; this results in the system
of equations, in terms of the particle Lagrangian velocityv
and coordinatex,

dx = v dt,

dv = asv,x,tddt + dw,

kdwidwjl = Bi jsv,x,tddt. s1d

A strong physical motivation for a Lagrangian model in the
form of Eq.(1) is the linear scaling of the Lagrangian veloc-
ity structure functions for inertial range time separations[5].
In the case of passive tracers, we have

kfvistd − vis0dgfv jstd − v js0dgl . di jC0ēt s2d

with ē the mean viscous dissipation andC0 a universal con-
stant; Eq.(1) will then result from assuming a Markovian
behavior for v, i.e., that ai and Bi j depend solely on the
current values ofv andx and not on their previous history.

The well-mixed condition, introduced in Ref.[4], lead to
a great advance in Lagrangian models, providing a simple
technique for expressing the drift coefficienta in Eq. (1) in
terms of observed properties of the flow.

In the current approach, it is assumed that the noise term
dw in Eq. (1) accurately represents, in high Reynolds num-
ber turbulent regimes, the inertial range scaling of the La-
grangian velocity increments,

Bi jsv,x,td = di jC0ēsx,td. s3d

Then, at least when the flow is incompressible, the well-
mixed criterion allows us to determine the drift coefficienta
in terms of ē and the Eulerian probability density function
(PDF) for the fluid velocity usx ,td: rEsu ,t ,xd;r(usx ,td).
(In the general compressible case, the Eulerian PDF must be
weighed on the fluctuating fluid density, which is tantamount
to substituterE with the Lagrangian PDF for the fluid parcels
velocity and position[4]).

The great advantage of the well-mixed approach, coupled
with Eq. (3), is that no knowledge of the spatiotemporal
structure of the turbulent fluctuations is required, rather, it is
the outcome, encoded in the drift coefficient, of the well
mixed condition. This strength of the model, however, turns
into weakness, whenever the turbulent structure plays a rel-
evant role. A first hint that this, actually, is always the case, is
the nonuniqueness of the solution fora given ē and rEsud
[4,6]. In the well mixed approach, the drift coefficienta is
determined only up to a velocity curl, and interpretation of
this freedom in terms of the properties of the flow is awk-
ward.

There are situations in which the structure of turbulence
plays an explicit role. A first example is produced when co-
herent structures dominate the flow, a rather common occur-
rence in turbulence, which takes a dramatic form in near wall
regions. These regions become relevant in many situations of
practical interest in industrial flows, but also, to name a few,
in the study of transport in tree canopies and in indoor pol-
lution. These flows are often characterized by moderate Rey-
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nolds number, and, for this reason, not only the viscous scale
may be not negligible, but a well developed inertial range
may even be absent, so that the conditions justifying Eq.(3)
cease to be valid. Now, standard techniques exist which al-
low for the inclusion of non-Gaussianity[7] and anisotropy
[6,8] in Lagrangian models, as well as for the effect of finite
Reynolds numbers[9]. However, these techniques do not
take into account the geometric structure of the turbulent
fluctuations, which calls for information about space corre-
lation.

In the range of scales we are considering, another issue
will come into play, if we are interested in modeling solid
particle transport. In this case, nontracer behaviors associated
with inertia and gravity will begin to be felt(inertia and
trajectory crossing effects[10–12]). This is especially true
for atmospheric aerosol, characterized by heavy particles
with relative density of the order of 1000 and particle diam-
eters in the range 10−2–102 mm. Inertia effects are generally
negligible in ABL (atmospheric boundary layer) mesoscale
modeling, but can become relevant in the near wall regions
of wall bounded flows[13], which is relevant for problems
of air conditioning and abatement of indoor pollution. Tra-
jectory crossing effects related to gravity can have deep im-
plications not only in wall bounded flows, but also for par-
ticulate transport in the ABL[10].

These effects reflect heavily on the possibility of using
Eqs. (2) and (3) to model the Lagrangian velocity incre-
ments, and call back for the need of information on the spa-
tiotemporal structure of the turbulent fluctuations.

Some attempts in this direction were carried out in Refs.
[14,15], but disregard of correlations between fluid velocity
increments along solid particle trajectories lead to difficulties
in the fluid particle limit[16] and in the implementation of
the well-mixed condition.

In order to be able to understand the constraints imposed
by the turbulent structure on the form of a Lagrangian model,
one may try a derivation from a velocity fieldusx ,td of pre-
scribed statistics. If the structure functionkfuisx ,td
−uis0,0dgfujsx ,td−ujs0,0dgl scaled linearly for small space-
time separations, the velocity increment between two points
lying on a trajectory would be given by

du = kf]t + usx,td · ¹ guusx,tduusx,tdldt + dw s4d

with kdwl=0 and dw2=Osdtd. We could then introduce a
Lagrangian model obeying Eq.(1), with

asv,x,td = kf]t + usx,td · ¹ gusx,tduusx,td = vl,

Bi jsv,x,tddt = kdwi dwjuusx,td = vl. s5d

With the coefficients given in this equation, Eq.(1) would
provide a Markovianized version of the dynamics of a par-
ticle moving in the random velocity fieldusx ,td.

It turns out that, provided the structure functions foru
scale linearly, the well-mixed technique could be imposed
directly on the random fieldusx ,td, before any trajectory is
defined. This means expressing the form of the conditional
averages of the velocity derivatives:k]tusx ,td uusx ,tdl and
k¹usx ,td uusx ,tdl in terms of the Eulerian PDFrEsu ,x ,td.

This has the important consequence that a passive tracer ad-
vected by an incompressible flow, will satisfy the ergodic
property

rLsvux,td = rEsv,x,td, s6d

whererLsv ux ,td is the Lagrangian PDF for a tracer passing
at the pointx at time t, to have velocityv. Thus, the well-
mixed condition imposed on the random field extends natu-
rally to the Lagrangian model defined by Eqs.(1) and (5).
This is advantageous in the compressible case, where it will
be shown that, contrary to the Thomson-87 approach, knowl-
edge ofrE is sufficient for the determination of a well-mixed
model.

Clearly, linear scaling at small separations does not corre-
spond to the properties of a real turbulent field, which, at
high Reynolds numbers is more rough, and whose time cor-
relations, due to the sweep effect, have Lagrangian nature at
short time scales[5]. This is compensated, however, by con-
trol over the large scale structure of the correlations, which is
the relevant aspect for the determination of turbulent trans-
port.

A related issue, concerning solid particle transport, is that
anomalous scaling of the fluid velocity increments sampled
by a solid particle, are known to occur at sufficiently short
time scales[17]. Analysis of the different ranges character-
izing solid particle motion was carried on in Ref.[16], and
Lagrangian models resolving the anomalous scaling range
were presented in Refs.[18,16], based, respectively, on the
use of fractional Brownian motion and synthetic turbulence
algorithms. Again, consideration of these short-time effects
is neglected in favor of control of large scale geometry.

Compared to the standard approach in Lagrangian model-
ing, the one proposed here has definite advantages. Spa-
tiotemporal turbulent structures can be included in a rela-
tively simple way. The nonuniqueness problem is solved in a
simpler way, since only purely Eulerian properties of the
flow are invoked(helicity is one example). The advection of
passive tracers and solid particles are treated exactly on the
same footing, hence, extension of the model to solid particle
transport is automatic and does not need introducing addi-
tional assumptions.

This paper is organized as follows. In Sec. II, a local
characterization of a random velocity field will be given,
introducing generalized “four-dimensional” Langevin and
Fokker-Planck equations, and providing local and global ex-
istence conditions. The condition of local existence appears
to take the form of a generalized form of the well-mixed
condition, which will be discussed in Sec. III. This will be
used to calculate conditional averages in the formk¹u uul
andk]tu uul from the property of dw and the Eulerian veloc-
ity PDF, and the relation with the spatiotemporal structure of
the random field will be discussed. In Sec. IV, expressions
for the noise amplitudekdw dwl will be derived, and their
relation with the symmetric sector of the velocity correlation
will be discussed in terms of the SOs3d technique introduced
in Ref. [19]. The antisymmetric sector of the velocity corre-
lation will be discussed in Sec. V, illustrating how it relates
to the problem of nonuniqueness in the well-mixed approach,
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and showing how helicity and other geometrical features
could be included in the random field. Section VI will be
devoted to the derivation of a Markovian Lagrangian model
in the form of Eq.(5), and to presentation of its main prop-
erties. The relation with the Thomson-87 model[4] will be
discussed. Sections VII and VIII will be devoted to analysis
of the Markovian approximation in the Lagrangian model
and to proof of the ergodic property given by Eq.(6). Sec-
tions IX and X will illustrate two applications of the La-
grangian model to solid particle transport, respectively, in
homogeneous isotropic turbulence, and in a turbulent chan-
nel flow. Section XI contains the conclusions.

II. CHARACTERIZATION OF THE RANDOM VELOCITY
FIELD

Let us introduce a zero-mean, incompressible random ve-
locity field usx ,td, with Second order structure functions
scaling linearly in the increment at small space-time separa-
tions. We introduce 4-vector notation,

xm = hx0,xij ; ht,xj, ]m ;
]

] xm , s7d

and stick rigorously to the Einstein convention of summation
over covariant-controvariant repeated indices. We have the
following equation for the velocity increment:

dui ; dxm ]mui = Am
isu,xmddxm + dwi , s8d

where

Am
isu,xmd = k]muisx,tduusx,tdl s9d

andkdw uul=0. From linearity, the contribution to the veloc-
ity structure function is dominated, for small values of the
increments, by the correlation for dw, and we have

kdwi dwjuusx,tdl = kduisx,tddujsx,tdl = Osudxu,dtd. s10d

We limit our analysis to random velocity fields where the
statistics of the velocity increments is independent of that of
the total velocity.

kdwidwjuul = kdwi dwjl. s11d

Incompressibility of the velocity field]iu
i =0, leads to the

constraint, indicatingDm;Dxm,

Ai
i = 0,

] kDwiDwjl
] Di = 0. s12d

From Eqs.(8) and(10), we obtain the following generalized
Itô’s lemma; for a generic smooth functionfsud:

dfsud = sAm
i dxm + dwid]uifsud +

1

2
kdwi dwjl]ui]ujfsud

s13d

and from here, we can derive an equation for the change of
the one-point PDFrEsu ,xmd;r(usx ,td), in passing from the
point xm to to the pointxm+dxm,

drE ; dxm ]mrE = − ]uisAm
i dxm rEd +

1

2
]ui]ujskdwidwjlrEd.

s14d

Notice that the form of the two equations(13) and (14) is
independent of incompressibility and Eq.(12). The sequence
leading from Eq.(8) to (14) is very suggestive, in that it
generalizes the one from a Langevin to a Fokker-Planck
equation[20]. However, contrary to the case of a standard
Fokker-Planck equation, Eq.(14) does not admit in general
solution for rE. In fact, once the noise amplitudekdwi dwjl
and the driftAm

i are given, Eq.(14) becomes a system of
four partial differential equations for the single PDFrE, and
this system is generally overdetermined. In the next section,
it will be shown how a generalized version of the well-mixed
condition is able to take care of this local existence problem.

The ill-posedness of the problem is reflected at the global
level, in the fact that a local definition for the “noise” incre-
ment amplitudekdwi dwjl is not sufficient to define a real-
ization forwsx ,td, and consequently forusx ,td. This in con-
trast with the case of the standard Langevin equation. In fact,
if we integrate Eq.(8) along a closed curve in space-time,
and consider uncorrelated increments dw along the curve, we
will obtain in general a nonzero total velocity increment in
the closed loop. In other words, if we disregard these corre-
lations forw, the differential du entering Eq.(8) will not in
general be exact.

The question becomes at this point the existence of a ran-
dom velocity field with local structure described by Eq.(8).
It turns out that such a velocity field can be constructed ex-
plicitly, although the construction described below is by no
means unique.

Given a pointxm and a direction in space-time defined by
the versorrm srmrm=1d, we can introduce the stochastic pro-
cessûissd; ûisxm ,rm ;sd obeying the Langevin equation

dûissd = rmAm
isû,xmdds+ dŵi ,

kdŵi dŵjl =
d

ds
kfuisxm + rmsd − uisxmdg

3fujsxm + rmsd − ujsxmdgls=0+ ds. s15d

The correlation functions for the stochastic processûssd,
starting from the second order oneCijsxm ,srmd=kûisxm ,rm ;
−s/2dûjsxm ,rm ;s/2dl, will identify a random velocity field
usxmd whose local statistical properties are those imposed by
Eq. (8), and whose restriction to straight lines in space-time
will be, by construction, Markovian. As with the correlation
time of the solution of a standard Langevin equation, the
correlation length in the directionrm will be encoded in the
drift coefficient rmAm

isû ,xmd. A random field realization is
obtained, in the simpler Gaussian case, by first carrying on
the principal orthogonal decomposition(POD) of
Cijsxm ,Dmd, and then random superposing, with the appropri-
ate amplitudes, the resulting POD modes[21].
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III. DETERMINATION OF THE DRIFT

The real meaning of Eq.(14) is to provide a consistency
condition forkdwidwjl andAm

i, that could be used to gener-
alize the Thomson-87 technique and determine from
kdwi dwjl andrE, the expression forAm

i. The difference with
the standard case is that, instead of calculating the condi-
tional meank]tvi uvl of the Lagrangian velocity time deriva-
tive, we seek here the conditional mean of all the derivatives
of the Eulerian velocity, namelyk]mui uul. These averages
contain important information on the behavior of the velocity
correlationCijsxm ,Dmd=kuisxm−Dm /2dujsxm+Dm /2dl

Cijsxm,Dmd = 1
2fRijsxm − Dm/2d + Rijsxm + Dm/2dg

− 1
2kDuiDujl + CA

ij . s16d

Here,Rijsxmd=Cijsxm ,0d indicates the Reynolds tensor, while

CA
ij = 1

2fCijsxm,Dmd − Cijsxm,− Dmdg s17d

is the antisymmetric part of the velocity correlation. It is
clear that the noise amplitude is associated with the symmet-
ric sector of the velocity correlation, and for smallDm:
kDwiDwjl.kDuiDujl.

Let us try to generalize the Thomson-87 approach to cal-
culate the driftAm

i from rE. It is convenient to split the drift
into three pieces,

Am
i = Ām

i +
1

rE
Fm

i +
1

rE
Cm

i , s18d

whereĀm
i is chosen to cancel the noise term in the Fokker-

Planck equation(14). Exploiting independence of the noise
amplitude fromu:

Ām
idxm =

1

2
kdwidwjl]ujlog rE s19d

andĀm
i, from the second of Eq.(12), is automatically trace-

less. The termFm
i is chosen to cancel the contributions to

Eq. (14) from statistical nonuniformity and nonstationarity,

]uiFm
i = − ]mrE. s20d

The termC is necessary to cancel the trace ofF and must be
divergenceless with respect tou,

]uiC j
i = 0, C0

i = 0, Ci
i = − Fi

i . s21d

As in the Thomson-87 approach[4], the drift is defined up to
a nonunique terms1/rEdJm

i satisfying

Ji
i = 0, ]uiJm

i = 0 s22d

which, substituted into Eq.(14), will produce an identically
zero contribution.

The drift Am
i is associated with the velocity correlation

through the equation

kuiDujl = kuikDujuull = kuiAm
jlDm, s23d

Let us analyze individually each of the terms inAm
i. Substi-

tuting Eq. (19) into Eq. (23) we see thatĀm
i gives just the

symmetric piece of the correlation, i.e., the −1
2kDuiDujl in

Eq. (23). The F and C terms are more easily analyzed in

Fourier space,f̃shd=ed3u e−ihiu
i
fsud. Using Eqs.(18), (19),

and (23) will read

kuiDujl = − 1
2kDwiDwjl − iDm]h j

sF̃m
i + C̃m

idh=0. s24d

Using the fact that the generating functionr̃E obeysr̃E=1
− 1

2Rijhih j +Osh3d, we can write, from Eq.(23),

F̃m
i = −

i

2
]mRijh j + Osh2d s25d

so that the contribution fromF to the correlation function is,
from Eq. (24), 1

2dxm ]mRij , which accounts for the spatial
inhomogeneity of the correlation[the 1

2sRij +Rijd term on the
right-hand side(RHS) of Eq. (16), which is centered at,xm].

We see thatĀm
i andFm

i account for all of the contribution
to the correlations, which either are symmetric, or come from
inhomogeneity of the statistics. We know at this point that
both Cm

i andJm
i will be able to contribute only to the anti-

symmetric part ofAm
i. We give in explicit form the contri-

bution fromCm
i. Exploiting the first of Eq.(21), we utilize

the ansatz

C̃ j
i = isd j

ihkc̃
k − h jc̃

id, C̃0
i = 0 s26d

and, fromCi
i =−Fi

i and Eq.(25),

c̃k =
1

4
s]lR

lkd + eklmhl f̃m + Osh2d s27d

with f arbitrary. The contribution toC j
i from f is traceless

and can be reabsorbed into the nonunique termJ; the final
result is therefore

C̃ j
i =

i

4
fd j

i s]lR
lkdhk − s]lR

lidh jg + Osh3d s28d

and the contribution to the correlation function is
1
4f]lR

lk dxi −]lR
li dxkg, which is antisymmetric as required.

Explicit expressions for the drift terms are promptly ob-
tained in the case of Gaussian statistics(expressions for the
case of a symmetricrE with kurtosis larger than three are
given in the Appendix A). The velocity PDF reads therefore

rEsu,xmd ; rGsu,xmd

= s8p3iRid−1
2expS−

1

2
Siju

iujD s29d

with Sij =sR−1di j the Reynolds tensor inverse. In this case, the
higher order terms inhi entering Eqs.(25)–(28) disappear
and we are left with

Ām
i dxm = −

1

2
kdwi dwjlSjku

k, s30d

Fm
i =

1

2
s]mRikdSklu

lrE, s31d
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C j
i =

1

4
f− d j

i s]lR
lkdSkm+ s]lR

lidSjmgumrE. s32d

We can use these explicit expressions to obtain more infor-
mation on the nature of the various contributions to the drift.
In analogy to the case of the standard Langevin equation, we

see thatĀm
i must be discontinuous atDm=0. From Eq.(19),

discontinuity of the correlation function derivative atDm=0
is necessary to balance the linear scaling of dw2. In the co-

ordinate system where, for the givenDm, Āj
i is diagonal, we

shall then have

kDuiuul , − uDiu. s33d

As regardsFm
i, we see from Eq.(31) that it produces an

amplification ofu when dxm is directed to a region in space-
time where the turbulence is stronger(this is easy to see
whenRij ~di j).

Finally, the C term, turns out to produce a complicated
mixture of rotations and amplification of the velocity vector.
Indicating ũi =Siku

k, and choosing the coordinate system so
that ]iR

il =4c̃d1
l , andD3=0 we have from Eq.(32),

kDu1uul = c̃ũ2D2, kDu2uul = − c̃ũ1D2, kDu3uul = 0.

s34d

If Rij ~di j , we will haveũi =ui and the result of Eq.(34) will
be a rotation ofu in the plane 12 as one moves in the direc-
tion x2.

IV. DETERMINATION OF THE NOISE TENSOR

In order to obtain the drift coefficients, which give the
decay of the turbulent correlations in the various space-time
directions, it is necessary first to determine the form of the
noise tensorkdwi dwjl. In fact, it is in the noise that all the
information on the turbulent structure is encoded(at least
that part relative to the symmetric sector of the correlations).
In the case of a Gaussian random velocity field, the noise
tensor can be determined directly from the turbulent correla-
tions by means of a fit in terms of products of exponentials
with sines and cosines(a common practice in turbulence
theory; consider, e.g., the Frenkiel functions[22]). Indicating
dxm=rm ds, rmrm=1, we fit the turbulent correlation by the
expression

]

] s
kuisxmdujsxm + rmsdl = ck

jkuisxmduksxm + rmsdl, s35d

whereci
j depends on the directionrm, the midpoint position

xm+Dm /2, but not on ds. This imposes linear dependence of
the random field drift on the velocity

kduiuul = dxmAm
i = cj

iuj ds s36d

(notice that Gaussian statistics, by itself, imposes linearity
through the well mixed condition, only on the symmetric

contribution to the driftĀm
i). Using Eq.(36), Eq. (23) takes

the form kukduil=cj
iRjk ds and, from Eq.(17), we obtain

kdwi dwjl = kdui dujl = 1
2sck

iRkj + ck
jRkidds. s37d

We stress that, although Eq.(37) describes the behaviors of
the random field correlations at small separations, the coef-
ficients cj

i descend from a fit of turbulent correlations at
finite separations.

A very general form for the noise tensor, satisfying the
incompressibility condition]kDwiDwjl /]Di =0, allowing as-
sociation of Eq.(37) with geometric features of the flow, is a
superposition of terms in the form

kDwiDwjl =
2uT

2

tE
fBt

ijsD0d + BijsD − ūD0dg,

]DiBijsDd = 0. s38d

Here,tE fixes the time scales of the fluctuations and in the
Gaussian case coincides with the Eulerian correlation time

(see next), uT
2= 1

3Ri
i, andBt

ij = uD0udi j +B̂t
i j , with B̂t

i j symmetric
and traceless.(For lighter notation we leave in this section
the dependence from the space-time position unindicated.)

We see that the presence of mixed space-time increment
contributions can account for situations in which the time
correlations have Lagrangian nature. In this way, pure time
decorrelation will take place in the reference system moving
locally with the mean flowū. A situation with purely Eule-
rian time correlation will be realized by settingū=0.

In moderately anisotropic situations, it may be expedient
to expand the space componentBij in spherical tensors, fol-
lowing the SOs3d decomposition technique[19],

BijsDd = o
J=0

BJ
ijsDd, s39d

whereBJ
ij indicates a combination ofJth order spherical ten-

sors(see Appendix B). The symmetry ofkDwiDwjl imposes
selection rules on which spherical tensors may contribute; it
turns out that to keep the lowest order anisotropic contribu-
tion, it is enough to consider spherical tensors of orderJ=0
and J=2. The incompressibility condition]DiBJ

ij =0 gives
then (the hats identify versors)

BijsDd =
uDu
uT

Ssa + 4blmD̂lD̂mddi j +
1

3
f− a + s2blm − clmd

3D̂lD̂mgD̂iD̂ j − D̂lfs2bli + clidD̂ j + s2blj + cljdD̂ig

+ 4cijD , s40d

where a gives theJ=0 part, while the tensorsbij and cij ,
which are symmetric and traceless, account for theJ=2 part.
We consider next some relevant limit cases.

A. Isotropic turbulence

In this case, all the spherical tensors withJ.0 are zero.
We are thus left with the simple expression
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kDwiDwjl =
2uT

2

tE
FuD0udi j +

auDu
uT

Sdi j −
1

3
D̂iD̂ jDG . s41d

The parametera identifies a length-scalelu=uTtE/a for the
fluctuations and has therefore the meaning of a ratio between
the eddy lifetimetE and the eddy rotation timelu/uT.

B. Long axisymmetric vortices

Let us imagine that the correlation tensor is dominated by
the effect of long axisymmetric vortices directed alongx1.
Let us try to use this information to impose a structure to the
space structure tensorBij defined in Eq.(40). Let us impose
the condition that BijsDd=0 for D=hD ,0 ,0j. For D
=hD ,0 ,0j, we have from Eq.(40),

uTB11

uDu
=

1

3
s2a + 2b11 + 5c11d,

uTB22

uDu
= a + 4b11 + 4c22,

uTB33

uDu
= a + 4b11 + 4c33,

uTB12

uDu
= 3c12 − 2b12,

uTB13

uDu
= 3c13 − 2b13,

uTB23

uDu
= 4c23, s42d

and we find immediately the result

c12 = c13 =
2

3
b12 =

2

3
b13, b23 = c23 = 0,

b11 = −
3

8
a, b22 = b33 =

3

16
a, c11 = −

a

4
, c22 = c33 =

a

8
.

s43d

We are free to impose the conditionb1i =c1i =0 for i Þ1 and
we reach the expression for genericD of the B components
along 11 and 22:

uTB11sDd
uDu

=
1

6
D̂1

2 +
3

4
D̂'

2 −
1

6
D̂1

4 +
1

12
D̂1

2D̂'
2 ,

uTB22sDd
uDu

=
3

2
−

3

2
D̂1

2 +
3

4
D̂'

2 −
4

3
D̂2

2 −
1

6
D̂1

2D̂2
2 +

1

12
D̂'

2 D̂2
2,

s44d

whereD'
2 =D2

2+D3
2 and superscripts 2 indicate squares. Ana-

lyzing Eq. (44) in function of D̂1 first for D̂2=0 and then for

D̂2=D̂', it is possible to show thatBij is always positive
defined, as required.

C. Two-dimensional structures

Suppose that the flow is two-dimensional, sayu
=hu1,0 ,u3j. In this case, the SOs3d decomposition reduces to

an SOs2d one. Keeping again only the lowest order aniso-
tropic correction, we find, forD=hD1,0 ,D3j,

BijsDd =
uDu
uT

Ssa + 3blmD̂lD̂mddi j +
1

2
f− a + sblm − clmd

3D̂lD̂mgD̂iD̂ j − D̂lfs2bli + clidD̂ j + s2blj + cljdD̂ig

+ 3cijD , s45d

whereb22=b33=0 and the traceless condition imposesb33=
−b11, c33=−c11.

D. Streaks

Two-dimensional streaks along the direction of the mean
flow appear to be one of the characteristic structures in the
viscous sublayer of wall turbulence[5]. Contrary to the
three-dimensional case, elongated structures cannot be ac-
commodated atJ=2 in an SOs2d decomposition: the result-
ing noise tensor would not be positive definite. Nonetheless,
a noise expression accounting for such structures can still be
determined. For instance, it is easy to see that, if the streaks
are oriented alongx1 and the flow is two-dimensional in the
x1x3 plane, an appropriate expression for the noise tensor will
be

BijsDd = a
uD3u
uT

d1
i d1

j . s46d

In the non-Gaussian case, Eq.(36) ceases to be valid, and the
random field correlation profile ceases to be in general a
simple product of exponentials and sines or cosines. Even if
we fit the turbulent correlation with an equation like(35), the
random field correlations will not obey that equation, rather,
one involving higher order correlations. This is because of
the relation, imposed by the well-mixed condition, between
non-GaussianrE and nonlinearAm

i. For instance, if we used
a bi-Gaussian distribution to model a high kurtosis PDF
[7,23,24], a double exponential decay of correlations would
ensue, with the slower decay associated with the intermittent
bursts(see the end of Appendix A) [25].

For large kurtosis, the noise amplitude determines only
the correlation times and lengths of the fast decaying expo-
nential. The simplest approach, in this case, is to renormalize
the noise amplitude, with respect to the Gaussian case, in
order to correct for the longer correlations produced by the
slowly decaying exponential. At the end of Appendix A, it is
shown that, in order to have the desired space and time scales
for the bursts, it is necessary to renormalize the noise ampli-
tude by a factorb=s2/3dk−1 with k the kurtosis[see Eq.
(A2)].

V. NONUNIQUENESS AND THE ANTISYMMETRIC
SECTOR

Once the noise tensor and the PDFrE are fixed and the
well-mixed condition is imposed, the symmetric sector of the
velocity correlation is completely determined. The nonu-
nique termJm

i can be used to fix the structure of the aniso-
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tropic sector. We consider for simplicity the homogeneous
caseCijsxm ,Dmd=CijsDmd.

We discover immediately the following important fact:
not all expressions for the nonunique termJm

i, and conse-
quently forAm

i, lead to a statistically realizableCijsDmd. This
is a different face of the problem of local existence for the
solutions of Eq. (14). Consider as a first example,J j

i

=ei2
ju

2. A contribution DC11=e12
3R

12 dx3 is then added to
C11sdxd, with dx=h0,0,dx3j, that has the inadmissible sym-
metry DCijsdxd=−DCjis−dxd. The second example isJ0

1

=u2, J0
2=−u1; in this case we find a contributionR12 dt to

C12sdtd with the inadmissible symmetryDC12sdtd=
−DC21sdtd.

We seek a form ofJm
i satisfying all the required symme-

tries, but still sufficiently general to describe most geometric
structures one may think of. In analogy with the case of the
noise tensor, this can be done in the frame of an SOs3d ex-
pansion starting fromCA, the antisymmetric component of
the correlation[see Eq.(17)].

As with the noise, the nonunique termJm
i can be deter-

mined in a unique way fromCA in the case of Gaussianu,
fitting the turbulent correlations with exponentials multiply-
ing sines or cosines; in this case,Jm

i will depend linearly on
u. Repeating withCA the steps followed to obtain the noise
tensor in Eq.(37), we obtain

CA
ki = 1

2fcj
iRjk − cj

kRjigds. s47d

It turns out that the appropriate quantity on which to carry on
the SOs3d expansion is notCA

ij , rather

SikSjlCA
kl = 1

2fci
kSkj − cj

kSkigds= rmjl
meli j ds+ ¯, s48d

whereSij =sR−1di j and the terms in the expansion indicated in
the formula are antisymmetric spherical tensors of orderJ
=0,1,2[see Eq.(B6)]. Isolating in Eq.(36) the contribution
from Jm

i and using Eqs.(47) and (48), we obtain therefore
for the nonunique term,

Jm
i = rEjl

melmjR
miuj + ¯ s49d

and it is immediate to check that the divergence free condi-
tion ]uiJm

i [the second of Eq.(22)] is satisfied.
We notice that, had we carried on the expansion directly

on CA
ij , the tensorRij entering Eq.(49), and consequently the

inverseSij enteringrE in that formula would have been sub-
stituted by the identity matrixdi j . The contributionJm

i /rE to
the drift (here rE contains the rightSij !) would have pro-
duced therefore explosive behaviors(eauuu2, a.0) in some
direction ofu. What happens is that linearity ofAm

i together
with antisymmetry of CA

ij , impose the propertyCA
ij

= c̃lmRliRmj with c̃lm antisymmetric, and, keeping only the
first terms in the SOs3d expansion forCA

ij would cause losing
this property.

We still need to enforce incompressibility, i.e., the zero
trace conditionJi

i =0 [the first of Eq.(22)]. The fact that the
SOs3d expansion is carried onSikSjlCA

kl, rather than onCA
ij ,

will lead to mixing of harmonics of different orderJ [com-

pare with the case of the noise tensor and Eqs.(B3) and
(B4)]. It is convenient to separate the antisymmetric part of
jm

l:

jm
l = j̄m

l + emk
l zk. s50d

The zero trace condition becomes

Ji
i = rEhj̄i

kRimeklmul + fRi
izl − Rl

izigulj = 0 s51d

which must be satisfied for anyul. This leads to the relation

betweenzk and j̄m
l ,

sRl
j − Rk

kdl
jdz j =

1

2
eklmfj̄R− Rj̄gkm. s52d

The presence of the commutatorfj̄R−Rj̄gkm suggests that we
should work in the diagonal system forRij . It becomes easy

in this way to separate the part ofj̄ j
i which anticommutes

with Rij , which is simply the part out of diagonal. Solution of
Eq. (52) gives then in the diagonal coordinate system, after
little algebra,

z1 = j̄23
R22 − R33

R22 + R33
, z2 = j̄13

R33 − R11

R11 + R33
, z3 = j̄12

R11 − R22

R11 + R22
.

s53d

We are now in the position to determine the effect of the
various components ofJi

j, on Ai
j and on the velocity corre-

lations.

A. Time component

It turns out that them=0 component of Eq.(49) is asso-
ciated with a combination of rotation and strain of the veloc-
ity, as time passes, at any given positionx; this is the Eule-
rian version of the mean velocity rotation along Lagrangian
trajectories discussed in Ref.[6]. Working in the diagonal
coordinate system forRij , the contribution fromj0

3 will be,
for instance,

J0
1 = rEj0

3R
11u2, J0

2 = − rEj0
3 R22u1. s54d

This turns into a pure rotation ifRij ~di j .
From the point of view of SOs3d, this is theJ=1 contri-

bution to the second of Eq.(B6), which is trivially symmet-
ric in space and antisymmetric in time.

B. Space component: diagonal part

Also this component is associated with a combination of
rotation and strain of the velocity, this time, as one moves at
fixed time from one space point to another. Focusing, e.g., on

the contribution fromj̄2
2, we find in the diagonal system for

Rij ,

J2
1 = − rEj̄2

2R11u3, J2
3 = rEj̄2

2R33u1. s55d

In the caseRij ~di j , this becomes a pure rotation in the plane
x1x3 as one moves in thex2 direction. The diagonal compo-
nent of the nonunique spatial term is the one associated with
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the presence of helicityH in the turbulent field. Indicating
with vi =ei j

k] ju
k the vorticity, we can write

H = kuiv
il = kuikviuull = ei j

kkuiAj
kl. s56d

Substituting the various contributions toAj
k in the above

formula, we see that the only terms giving nonzero result are

the diagonal ones inj̄. Working in the diagonal coordinate
system, we obtain then

H = 2fj̄11R22R33 + j̄22R11R33 + j̄33R11R22g. s57d

From the point of view of SO(3), this is a combination of
J=2 contributions from the second of Eq.(B6) (zero trace
part of j) and J=0 contributions from the first of the same
equation.

C. Space component: part out of diagonal

The effect of this component is illustrated, for the contri-

bution from j̄1
3, in Fig. 1. This effect consists of a strain of

the velocity components as one moves in the direction 2. We
give in the equation below the nonzero matrix elements of

Jk
i corresponding toj̄1

3 (components still evaluated in the
diagonal coordinate system),

J1
1 = 2rEj̄1

3 R11R33

R11 + R33
u2, J1

2 = − rEj̄1
3R22u1,

J2
1 = 2rEj̄1

3R11sR11 − R33d
R11 + R33

u1,

J2
3 = 2rEj̄1

3R33sR11 − R33d
R11 + R33

u3,

J3
2 = rEj̄1

3R22u3, J3
3 = − 2rEj̄1

3 R11R33

R11 + R33
u2. s58d

From the point of view of SOs3d, this is combination ofJ
=2 components from the Eq.(B6) (the z piece) and J=2

components from the second of the same equation(the out of
diagonalj piece). This is the case in which the incompress-
ibility condition needs, in order to be enforced, consideration
of spherical tensors of different orderJ.

It is possible to see that, in the non-Gaussian case, all the
results obtained starting from Eq.(49) can be recovered sub-
stituting in that equationrE with a Gaussian PDFrG with
identical Sij . Notice that, if a bi-Gaussian is used to model
rE, the ratiorG/rE entering the contribution to the drift will
decay like a Gaussian for largeu, when the slowly decaying
Gaussian enteringrE, which decays slower thanrG as well
[see Eqs.(A1), (A2), and(A4)] become dominant. However,
as in the case of the symmetric sector(see discussion at the
end of the preceding section), the correspondence between
drift and second order correlations ceases to be unique as Eq.
(36) becomes nonlinear and Eq.(35) begins to involve
higher order velocity correlations.

VI. DERIVATION OF MARKOVIAN LAGRANGIAN
MODELS

Knowing the form of the tensorsAm
i and kdwi dwjl, al-

lows the derivation of Lagrangian stochastic models. This is
done most naturally setting in Eq.(8) dxm=hdt ,v dtj, where
v is the particle velocity. This entails a Markovian assump-
tion on the Lagrangian statistics, whose validity will be
checked in the next two sections, although it is not very
different from the one used in standard Lagrangian models.

A. Passive tracers

Let us write explicitly the Langevin and Fokker-Planck
equations associated with our Lagrangian model, considering
first the simpler case of a passive tracerdxm=hdt ,u dtj where
ustd identifies the fluid velocity sampled by the moving par-
ticle,

dui ; u̇i dt = su ·A i + A0
iddt + dwi , s59d

s]t + u · ¹drL + ]uifsu ·A i + A0
idrLg = 1

2]ui]ujsBi jrLd,

s60d

where

Bi j =
d

dD0kDwiDwjl =
uT

2

tE
fBt

ijs1d + Bijsudg

[see Eq.(38)] andrLsu ,x ,td is the PDF of finding a Lagrang-
ian tracer atx with velocity u.

Exactly as in the Thomson-87 approach, in the Gaussian
case, the contribution to the driftu ·A i +A0

i from turbulence
nonhomogeneity is at most quadratic inu, with the quadratic
terms produced byu ·sFi +Cid. However, disregarding the
nonunique terms, the form of this contributions differs from
the one discussed in Refs.[4,6].

Also the nonunique contributionu ·Ji, to lowest order in
the SOs3d expansion, is at most quadratic inu, with the
quadratic piece associated with the space componentu ·Ji.
The observation in Ref.[26] that helical contributions in La-

FIG. 1. Sketch of the velocity lines in a coherent structure char-

acterized by a nonzero value ofj̄1
3 (part out of diagonal of the

nonunique spatial term). The velocity components in the 13 plane
are arranged along strain line with expanding and compressing di-
rections, respectively, alongx1 andx3.
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grangian stochastic models must be quadratic in the velocity
is thus confirmed.

Notice that, from the relationD=uD0, higher orders in the
SOs3d expansion correspond in the Lagrangian model to

higher order polynomials inu contributing to Bi j , u ·Ā i

+Ā0
i and u ·Ji +J0

i. Conversely, at the random field level,
independently of the order in the SOs3d expansion(and for
Gaussian statistics), the drift terms are at most linear inu.

The important feature of the model described by Eqs.(59)
and (60) is that the well-mixed condition imposed on the
random field, encoded in Eqs.(18), (20), and(28) [Eqs.(30)
and (32) in the Gaussian case], translates automatically into
an identical condition on the trajectories. In the incompress-
ible case considered here, this condition is equivalent to the
ergodic propertyrLsu ux ,td=rEsu ,x ,td, which will be shown
to hold, in the next section, right thanks to the conditionAi

i

=0. This property implies trivially that Eulerian averageskl
and averages along trajectoriesklL coincide.

At this point, the model described by Eqs.(59) and (60),
is undistinguishable from a model derived through the
Thomson-87 technique starting from the same PDF, the only
difference being in the form of the noise term. In its simplest
form, the noise tensorBi j is isotropic, and is obtained by
settingD=uD0 in Eq. (41) and deriving with respect toD0,

Bi j =
2uT

2

tE
Fdi j +

auuu
uT

Sdi j −
uiuj

3uuu2DG . s61d

This expression must be compared with the one in the
Thomson-87 approach:Bi j =di jC0ē. (As a technical aside, no-
tice that we started in Sec. II with an additive noise and we
have arrived here at a multiplicative noise term, which is
automatically intended, in the approach that we have fol-
lowed, in the Itô sense[20].)

The difference in the analytical expressions underlies a
difference in physical interpretation: while in the
Thomson-87 technique,Bi j dt is precisely the Lagrangian
time structure function for inertial time separation, in our
approach, it is a nonuniversal quantity whose form is deter-
mined in function of the large scale turbulence geometry. In
the Thomson-87 approach, the time scale is fixed by the
viscous dissipationē, which fixes the expression for the La-
grangian correlation time

tL =
2uT

2

C0ē
. s62d

In our approach, the time scale is fixed directly bytE. To be
precise, the association betweentL and ē in the Thomson-87
model, is strictly valid only in the Gaussian case[25]. Also
in our approach, however, non-Gaussian statistics leads totE
not being directly associated with the Eulerian time scales,
but only with the fast part of the correlation decay(see the
end of Appendix A).

The two approaches depend on dimensionless constants,
C0 anda, which can be related in a semiquantitative way. As
discussed in correspondence to Eq.(41), the parametera
identifies a characteristic length for the random fieldlu
=uTtE/a, which, at least in the Gaussian case, corresponds to

the integral length of the turbulence. Substituting the esti-
mate for the viscous dissipation from our modelē,uT

3 / lu
into Eq. (62) and settingtE,tL, we obtain

a , C0
−1.

This tells us that the Thomson-87 model cannot be recovered
from Eq. (61), for finite C0, by setting simultaneouslya=0
and 2uT

2 /tE=C0ē. The equivalent limitsa→0 and C0→`
correspond to the regime oftE much shorter than the eddy
rotation time corresponding to the Kraichnan model[28].
The way in which this limit is carried out, however, is dif-
ferent in the two approaches: in ours, it is the turbulence
integral scalelu that is sent to infinity[see comment after Eq.
(41)]; in the standard approach, the diffusive limitC0→`
corresponds directly to the onetE→0.

B. Solid particles

Let us pass to the analysis of the solid particle case. The
solid particle dynamics obeys an equation, which in quite
general form(neglecting memory effects associated with the
Basset force) can be written as

v̇ = Fsv,ud. s63d

A general form was derived in Ref.[30], where neglect lift
effects Ref.[31]. These equations are all derived in the limit
of particle diameterd small with respect to the scales of the
flow, and low particle Reynolds number Rep=duu−v u /n,
wheren is the kinematic viscosity. We will consider Eq.(63)
in simplified form by accounting only for linear Stokes drag
and gravity,

v̇ =
u − v + vG

tS
, s64d

wheretS=1/18gd2/n, with g the density of the particle rela-
tive to that of the fluid, is the Stokes time, andvG is the
particle terminal velocity in a uniform force field and a qui-
escent fluid. In the case of gravity,vG=tSg with g the gravi-
tational acceleration. More in general,vG, may account for
body forces like the effect of the Saffman lift[31].

The analogue of Eq.(59), in the solid particle case will be
obtained setting in Eq.(8) dxm=hdt ,v dtj, with v the solid
particle velocity,

dui ; u̇i dt = sv ·A i + A0
iddt + dwi , s65d

where nowustd is the fluid velocity sampled by the solid
particle andkdwidwjl=Bi jdt=suT

2 /tEdfBt
ijs1d+Bijsvdgdt. No-

tice that the drift tensorAm
i still depends onu, while

kdwi dwjl depends only onv. The Lagrangian PDF
rLsu ,v ,x ,td will obey the Fokker-Planck equation,

s]t + v · ¹ drL + ]visFirLd + ]uifsv ·A i + A0
idrLg

=
1

2
]ui]ujsBi jrLd. s66d

Equations(63), (65), and(66) are in the standard form for a
“two-fluid” Lagrangian model for solid particle transport,
i.e., a model in which the fluid and solid phase are taken into
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account at the same time and are treated on the same footing.
All problems in the fluid limit, present in models in which
the separation of fluid and solid particle trajectories was con-
sidered without accounting for the geometry of the process
[16] are clearly avoided: when inertia and gravity are sent to
zero, the fluid case described by Eqs.(59) and (60) is auto-
matically recovered.

We can easily estimate the turbophoretic drift, i.e., the
component of particle transport due to the turbulence inten-
sity gradient[32,33]. Multiplying Eq. (66) by vi and integrat-
ing in v andu we obtain at stationary state and for uniform
concentration] jkviv jlL =kFisv ,udlL, which, for linearFi, can
be inverted to obtainkvilL [subscriptL indicates that we are
averaging over the Lagrangian PDFrLsu ,v ,x ,td]. In the
Stokesian case described by Eq.(66), and small Stokes num-
ber St=tS/tE, we can approximatekviv jlL=Rij , and we ob-
tain

kvilL = − tS] jR
ij + vG

i . s67d

We can try to understand Eqs.(65) and(67) from the point of
view of a model satisfying the well mixed condition. The
particle flow, due to the effect of inertia, is compressible and
preferential concentration phenomena are known to occur
[29]. Therefore, we do not expect in general the ergodic
property rLsu ,v ux ,td=rEsv ,u ,x ,td to be satisfied. Turbo-
phoresis provides the simplest illustration of this phenom-
enon. Averaging Eq.(64) over rLsu ,v ,x ,td and combining
with Eq. (67), we obtain in fact the relation

kuilL = − tS] jR
ij Þ kuil = 0,

i.e., in inhomogeneous turbulence conditions, Eulerian and
Lagrangian averages give different results.

For these reasons, in the Thomson-87 approach, a two-
fluid solid particle transport model, would require knowl-
edge, in some reference situation, of the Lagrangian PDF
rLsu ,v ,x ,td, meaning that information must be available on
both the mean particle concentration usx ,td
=ed3u d3v rLsu ,v ,x ,td and the conditional PDF(the PDF
along a single particle trajectory) rLsu ,v ux ,td. Notice that
this may imply substituting Eq.(63) and (64) with a model
equation whose coefficient are determined by the well mixed
condition. Actually, one-fluid models exist, in which only the
particle phase is considered and only the PDFrLsv ux ,td must
be known, whileu is obtained from the continuity equation
]tu+ ¹ ·skvlLud=0 [39].

In our approach, knowledge ofrE is sufficient to deter-
mine the form of the equation foru (65) (the one forv is
unchanged) without any assumption on the form of
rLsu ,v ,x ,td. This will be shown in Sec. IX to produce auto-
matically the correct form of the Lagrangian correlations for
the fluid velocity along solid particle trajectories, accounting
for the effect of inertia and trajectory crossing[11]. Notice
that, imposing the well mixed condition onr̄Lsu ux ,td
=ed3v rLsu ,v ux ,td, within a simplifying ergodic hypothesis
r̄L=rE, is not sufficient to obtain these correct behaviors; the
anisotropic renormalization of the correlation times may be
accounted for only byad hocmodification of the expression
for the noise tensor Eq.(3) [12].

VII. LAGRANGIAN ONE-TIME STATISTICS AND
ERGODIC PROPERTIES

As discussed at the end of Sec. II, we can imagine Eq.(8)
as giving the local behavior of a random velocity field whose
restriction to straight lines in space-time are Markovian pro-
cesses. This allowed to have a random velocity field with
Eulerian correlations in time and space, which are both well
defined and easy to calculate. Unfortunately, unless thea
→0 limit of the Kraichnan model is considered[28], it is not
possible to hypothesize at the same time a Markovian behav-
ior along trajectories. In consequence of this, the Lagrangian
statistics becomes a complicated business.

However, it turns out that different statistical quantities
are affected by the presence of memory in qualitative differ-
ent ways and there are situations in which Markovianization
of the trajectories becomes appropriate. Let us try to under-
stand what happens in detail.

The central quantity one needs for a description of La-
grangian statistics are conditional probabilities in the form

rLsX0uX1 . . .Xnd, s68d

whereXk;Xstkd;husxstkd ,tkd ,xstkdj, k=0, . . .n. Let us con-
sider for now the simplest case of a passive tracer. Such
conditional probabilities could be obtained ideally by carry-
ing on a Monte Carlo of trajectories originating fromhtn,Xnj
and sampling the particle positions and velocities att= tk, k
=n−1, . . .1. Let usfocus on the casen=1, which presents
already all the difficulties due to memory. Actually, the tran-
sition probabilityrsX0uX1d gives precisely the evolution of a
cloud of tracers from an instantaneous release, i.e., a puff;
from the same transition probability, also the Lagrangian cor-
relation time could be determined and the calculation will be
illustrated in the next section. Suppose we have a set of
trajectories starting at timet1 with initial condition X1,
whose form is known up to timet. This allows us to recon-
structrLsXstd uX1d. The conditional probability at the instant
t+dt will be given by the formula

rL„Xst + dtduX1… =E d6XstdrLsXst + dtduXstd,X1drLsXstduX1d

s69d

which corresponds to first summing all the trajectories going
from ht1,X1j to ht+dt ,Xst+dtdj passing throughht ,Xstdj,
and then summing overXstd. Now, to determinersXst
+dtd uXstd ,X1d, we could average first on the part of the tra-
jectories going fromht1,X1j to ht ,Xstdj and then on that
going from ht ,Xstdj to ht+dt ,Xst+dtdj. From the point of
view of a Monte Carlo, this means that we can consider an
ensemble of fictitious trajectories whose dynamics are only
conditioned to the initial conditionht1,X1j and to the current
position ht ,Xstdj.

We thus reach the not so obvious conclusion that, to de-
termine the evolution of a PDF with conditions atn previous
instants, we need to study a dynamics conditioned ton+1
instants, but we do not need the whole trajectory history.
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Because of this, if we are interested in a one-time PDF,
Markovianization of the dynamics will be an appropriate
procedure.

This fact allows us to verify analytically that the one-
point velocity PDF sampled by a passive tracer coincides
with the Eulerian PDF; in other words the ergodic property
one expects from incompressibility is satisfied.

In the case of a passive tracer, dxm=hdt ,u dtj whereustd
identifies the fluid velocity sampled by the moving particle,
and Eqs.(59) and (60) will be the Langevin and Fokker-
Planck equations associated with the Markovianized dynam-
ics. From incompressibility[see Eq.(12)], and from the

properties of the drift componentsĀ, F, and C [see Eqs.
(18) and (21)], we can write

s]t + u · ¹ drL + ]uiF0
i + uj]uiF j

i

= − ]uifsĀj
iuj + Ā0

i − 1
2Bik]ukdrLg . s70d

Setting rL=rE, from Eqs.(19) and the time component of
Eq. (20), Eq. (70) reduces toui]irE=−uj]uiF j

i , which, from
Eq. (20), is an identity. The ergodic property is thus satisfied.

This is not a trivial property. We can easily construct a
counter-example in which the incompressibility property
]DikDwiDwjl=0 [the second of Eq.(12)] is not satisfied and
ergodicity is violated. Considering for simplicity stationary
homogeneous turbulence(henceFm

i =Cm
i =0) and choosing

Jm
i =0, we have in fact, setting in Eq.(19) dxm=hdt ,u dtj,

u ·A i + A0
i = 1

2Bi j]uj log rE s71d

while Eq. (60) dictates

u ·A i + A0
i = 1

2Bi j]uj log rL + 1
2]ujBi j . s72d

Combining Eqs.(72) and (73), leads to a differential equa-
tion for rL which, due to homogeneity ofB in uuu, can be
integrated along the directionû=u / uuu,

rLsud = constrEsudexph− ûj E dsfsB−1d jl]ukBlkgu=ûsj.

s73d

Taking a noise term not satisfying incompressibility, e.g.,
BijsDd=2uT/tEuD udi j , we would obtain rLsud
=constuuu−1rEsud and ergodicity violation.

We can repeat the calculation to check for departures from
ergodicity in the solid particle case. Ergodicity means in this
case that the fluid velocity distribution sampled by the solid
particle

r̄Lsuuxd =E rLsu,vuxddv s74d

coincides withrEsu ,xd. In all the Monte Carlo simulations
that we have carried on, described in detail in Sec. IX, we
have found that, despite compressibility of the solid particle
flow, ergodicity was satisfied in isotropic homogeneous con-
ditions. The mechanism seems to be the following.

In homogeneous stationary conditions, the Fokker-Planck
equation for the distributionrLsu ,vd will read, from Eq.
(66),

]visFirLd + ]uifsv ·A i + A0
idrLg = 1

2]ui]ujBi jrL, s75d

whereBi j =Bi jsvd. Exploiting well-mixed[see Eq.(19)] and
setting from isotropyJ=0, this equation can be rewritten in
the form

]visFirLd + ]uif 1
2Bi js]ujrL − rL]uj log rEdg = 0 s76d

and, integrating in d3v, we reach the following equation for
the deviation from ergodicity,

]uifr̄LskBi j uul]uj log r̄L/rE + ]ujkBi j uuldg = 0. s77d

We see that nonergodic behaviors are associated with the
divergence of the average over solid particle trajectories of
the velocity structure function,

]ujkBi j uul =E d3v]ujrLsvuudBi jsvd. s78d

In the case of solid particles, for whichkBi j uulÞBi jsud, we
would expect in general]ujkBi j uulÞ0. This turns out not to
be true, however, when turbulence is isotropic. Let us show
how this happens.

We can decompose¹urLsv uud in spherical vectors de-
pending onv [see Eqs.(B7) and (B8)]

¹urLsvuud = r01v + r11su ·vdv + r12u + ¯ , s79d

where, from isotropy,rlk=rlksuv u , uu u d. Higher harmonics
(not indicated) are by construction orthogonal(see Appendix
B). From Eq.(41), we see that only the term

h = r11su ·vdu + r12u s80d

can contribute to]ujkBi j uul. In order for this contribution to
be zero, it is sufficient that the curl with respect tov of h be
identically zero,

fuvu−1]uvur12 − r11gv 3 u = 0 s81d

so that h can be written in the form of a potential term
¹vgsu ,vd, and, substituting into Eq.(78) and integrating by
parts,

]ujkBi j uul = −E d3v gsu,vd]v jBi jsvd = 0.

Now, we can obtain Eq.(81) simply by imposing the condi-
tion, from isotropy,

]uikuvunv jvkuul = ]ujkuvunvivkuul, s82d

with i Þ j Þk andnù0. In fact, writing the averages in ex-
plicit form, Eq. (82) can be shown to be equivalent to

E d3vuvun+1vkf]vi]uj − ]vi]ujgrLsvuud s83d

and again, from orthogonality of the decomposition, only the
r11 andr12 terms in¹urL could contribute. Hence, exploiting
the fact thatri j depends only onuuu anduvu, Eq.(83) becomes
equivalent to
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E d3vfuvu−1]uvur12 − r11guvun+1 = 0

which implies Eq.(81) and satisfaction of the ergodic prop-
erty.

VIII. TWO-TIME STATISTICS AND THE LAGRANGIAN
CORRELATION TIME

Explicit determination of the Lagrangian dynamics taking
into account memory of an initial condition is possible when
the usx ,td is isotropic, homogeneous, and Gaussian. It thus
becomes possible to estimate the error implied in the Mark-
ovianization of the trajectories. The simplest estimator is the
Lagrangian correlation time

tL =
1

3uT
2E

0

`

dtkustd ·us0dl, s84d

whereustd;u(xstd ,t) and we are considering passive trac-
ers. As discussed at the start of the preceding section, we
need an evolution equation for the trajectoryhustd ,xstdj,
given an initial condition att=0 [for simplicity, fix xs0d=0].
The starting point is the following decomposition for the
tracer velocity:

ust + Dd = kust + Dduustd,xstd;us0d,0l + Dw s85d

plus knowledge of the conditional averages,

kust + Dduustd,xstd;us0d,0l

and

kDwDwuustd,xstd;us0d,0l. s86d

As discussed in detail in Appendix C, these averages can be
obtained from the correlation between velocities ath0,0j,
ht ,xstdj, and ht+D ,xst+Ddj. We identify correlations be-
tween points on a trajectory by

ĈijsDd = kuistdujst + Ddl. s87d

If u is Gaussian, homogeneous, and isotropic, these correla-
tions can be expressed in analytical form. The mean rate of
fluid velocity change along a generic space-time direction
h1,Vj will in this case take the form

A0
i + VjAj

i = −
1

tE
FS1 + a

uV u
uT

Du'
i + S1 + a

2uV u
3uT

Dui
iG ,

s88d

whereu' andui are the components ofu perpendicular and
parallel to the fixed directionV, and we have used Eqs.(29),
(30), and(41), and the expressionRij =uT

2di j .
Solving the equations for the correlation function along

h1,Vj,

d

dt
kuisVt,tdujs0,0dl = kfA0

i + VjAj
i gujs0,0dl s89d

and introducing longitudinal and transverse projectors

Pi
i jsVd =

ViVj

uV u2
, P'

i j sVd = di j − Pi
i jsVd, s90d

we obtain

kuisVt,tdujs0,0dl = P'
i j sVdCV'std + Pi

i jsVdCVistd, s91d

where

CV'std = uT
2 expS− S1 +

auV u
uT

D t

tE
D s92d

and

CVistd = uT
2 expS− S1 + a

2uV u
3uT

D t

tE
D . s93d

We shall need also the inverseDijstl − tmd of the correlation
matrix kuistldujstmdl, l ,m=1,2; t1=0, t2= t, defined by the
relation

o
m

Dijstl − tmdkujstmdukstndl = o
m

kukslndujstmdlDjistm − tld

= di
kdln. s94d

From Eqs.(91)–(93), we find

Dijstl − tmd = Pi j
'sUdD'stl − tmd + Pi j

i sUdDistl − tmd,

s95d

whereU=ustd−us0d,

D' =
1

CU'
2 s0d − CU'

2 std
S CU's0d − CU'std

− CU'std CU's0d
D s96d

and we have similar expression forDi. At this point, we can
obtain from Eq.(C7) the expression for the average evolu-
tion of the velocity along a trajectory, conditioned to an ini-
tial condition at time zero,

kuist + Dduustd,xstd;us0d,0l = fĈijsDdDjkstd + Ĉijst + Dd

3Djks0dguks0d + fCijsDdDjks0d

+ Cijst + DdDjkstdgukstd. s97d

As obvious, memory of the initial condition at time zero is
lost whent→`. Notice that, if all pointsh0,0j, ht ,xstdj, and
ht+D ,xst+Ddj are aligned along the same space-time direc-
tion h1,Vj, all the Pi andP' entering the correlation func-
tions in Eq.(95) will project along or perpendicular to the
same vectorV. In this case the components ofu parallel and
perpendicular toV decouple and the indices disappear; for
instance,

kuist + Dduustd,xstd;us0d,0l = fCVisDdDVistd + CVist + Dd

3DVis0dguis0d

+ fCVisDdDVis0d

+ CVist + DdDVistdguistd.

s98d

and all the correlations have the same decay rate fixed by Eq.
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(93). It is then easy to show that the first term on the RHS of
Eq. (98) disappears and we have

kuist + Dduustd,xstd;us0d,0l = uistdexpS− S1 + a
2uV u
3uT

D D

tE
D .

s99d

Hence kuist+Dduustd ,xstd ;us0d ,0l=kuist+Dduustd ,xstdl. If
the trajectory is developing along a straight line, we will
recover Markovian statistics as required.

Expressing Dw as the difference betweenkust
+Dduustd ,xstd ;us0d ,0l andust+Dd, and substituting into Eq.
(C8), we obtain instead, for the fluctuation term

kDwiDwjuustd,xstd;us0d,0l = Cijs0d − Dkls0dfClisDdCkjsDd

+ Clist + DdCkjst + Ddg − Dklstd

3fClisDdCkjst + Dd + Clist + Dd

3CkjsDdg. s100d

In Fig. 2 we compare the result of a Monte Carlo for the
Lagrangian correlation time Eq.(84) using the exact dynam-
ics described by Eqs.(85), (97), and (100), with that ob-
tained from the Markovianized version given by Eq.(59). As
could be guessed, the Markovian approximation becomes ex-
act in thea=0 limit, when the trajectory, in a correlation
time, remains close to the time lineh1,0j. At least in this
case, the choice given by Eq.(15), of Markovian statistics
along rectilinear cuts in space-time, is the most appropriate.

IX. SOLID PARTICLE TRANSPORT IN HOMOGENEOUS
ISOTROPIC TURBULENCE

Inertia and crossing trajectory effects determine a substan-
tial change in the statistics of fluid velocities sampled by the
solid particle with respect to that of passive tracer velocities.

Several authors reserved particular attention to the long
time behavior of correlation functions of sampled fluid ve-
locities and long-time particle diffusion coefficients
[10,11,34,35].

Following Csanady[10], Sawford and Guest[12] kept
into account the effect of gravity produced trajectory cross-
ing by a suitable assumption on the renormalization of the
correlation time of the fluid velocity sampled by the falling
particle. Their model was applied to grid-generated turbu-
lence and their results were found to agree with experimental
wind tunnel data. It is not clear, however, how much this
approach can be extended to generic nonhomogeneous and
nonstationary turbulent flows, especially in the case of strong
turbulence gradients[36].

Free-flight models[13] (see also Ref.[37] for a brief re-
view) are known to make unphysical assumptions about the
velocity that particles assume when they are projected to-
wards the wall from the buffer and logarithmic regions. As
regards the eddy-interaction model of Kallio and Reeks[37],
this has been shown in Ref.[38] not to satisfy the well-
mixed condition. The model described in Ref.[38] improved
this aspect, but without reproducing the build-up of concen-
tration. The issue, to be discussed in the next section, is the
difficulty in isolating near wall solid particle accumulation
effects from spurious concentration build-up from unproper
treatment of the well-mixed condition.

A recent advance was obtained in Ref.[39], but in this
approach a turbophoretic force had to be introduced from the
outside, whereas in our approach the turbophoretic flux re-
sults in self-consistent way from the dynamics[see Eq.(67)].

The central role in the solid particle dispersion is played
by the correlation timetL8, of the fluid velocity sampled by
the solid particles. In particular, withtL8sid we indicate the
longitudinal effective Lagrangian time, i.e., along the direc-
tion of gravity, and withtL8s'd the transverse effective La-
grangian time.

Let us briefly summarize the main properties oftL8sid.
When gravity is dominantsvG@uTd, the correlation function
of sampled fluid velocities decays faster than that of passive
tracers andtL8sid,tL, wherei is referred to longitudinalsid
or transverses'd [10,11]. Taking vG=gtS with g fixed, we
see thattL8sid decreases from the valuetL, corresponding to
tS=0, to zero astS increases. Furthermore, the correlation
functions do not decay in the same way in all directions. Due
to the continuity effect described in Ref.[10], the decay is
slower in the direction of gravity, so that the longitudinal
Lagrangian timetL8sid is longer than the transverse one
tL8s'd.

In the inertia dominated casesvG!uTd, the sampled cor-
relation function decays slower than that of passive tracer
velocities andtL8.tL. The limit tS→0 is the same as above,
but nowtL8 increases withtS and, in the limittS→`, tends to
the Eulerian time scaletE [11,34].

We will show shortly how all these effects are automati-
cally reproduced in our approach.

We consider a Gaussian homogeneous and stationary iso-
tropic zero-mean random velocity field. Thus, the drift term

Ām
i is given by Eq.(30) with Sij =di j /uT

2, the PDF is given by
Eq. (29) and the noise tensor is isotropic[see Eq.(41)]. The
termsFm

i and C j
i are zero for homogeneity and the nonu-

nique termsJm
i are zero for isotropy.

From now on in this section, we rewrite the equations
expressing the velocitiesu andv and timet in units ofuT and

FIG. 2. Dependence of the Lagrangian correlation time on the
ratio a between eddy lifetime and eddy rotation time;h, exact;L,
Markovian approximation.
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tE, respectively. Note that, in this way,tS becomes equiva-
lent to the Stokes number St[30], i.e., the ratio between the
Stokes time and a flow time scale(tE in this case). As re-
gards gravity, it resultsvG=St/Fr, being Fr=gtE/uT the
Froude number related to the magnitude of the gravityg with
respect to turbulence scales[11].

Under these conditions, Eq.(65) for the sampled fluid
velocity ustd and the associated expression for the noise ten-
sor Bi j will take the simplified form

dui = − s1 + auvudui dt + a/6v jujv̂
idt + dwi ,

kdwi dwjl = 2fs1 + auvuddi j − a/3uvuv̂iv̂ jgdt s101d

with v̂=v / uvu andv the particle velocity, whose dynamics is
given by Eq.(64). Applying to Eq.(101) the projectors de-
fined in Eq.(90), with V =v, it is easily seen that du is split
into a longitudinal and a transverse component, characterized
by different values of the drift:1+2/3auvu for the fluid ve-
locity component parallel to the particle velocity and 1
+auvu for the normal component. As the role of gravity in-
creases, the symmetry breaking of particle motion due to the
presence of a preferential direction, i.e., the direction of
gravity, involves a separation between the longitudinal and
transverse time scale(continuity effect). In the gravity domi-
nated case,vG@1, we haveuv u .vG, with the result

tL8sid .
3

2avG
, tL8s'd .

1

avG
,

tL8sid
tL8s'd

=
3

2
. s102d

It is difficult to obtain an analytical solution for the PDF
rLsu ,vd and the velocity correlation functionskuistdujs0dl be-
cause of the multiplicative noise. For this reason, numerical
simulations by means of Monte Carlo technique have been
performed to obtain solutions of Eqs.(64) and(101). Follow-
ing Yeung and Pope[40] (see also Ref.[41]), we choose a
value tL /tE<0.5, which, from Fig. 2, corresponds toa
=0.65.

As mentioned in Sec. VII, the ergodic property has been
verified to hold also in the solid particle case. Both in the
case of Gaussian statistics and of an isotropic kurtosis de-
scribed by Eq.(A3) (see Appendix A), with and without
gravity, the marginal Lagrangian PDFr̄Lsud defined in Eq.
(74) has been found to coincide, to within numerical error,
with the Eulerian PDFrEsud.

In the presence of gravity, this means that the average of
the sampled fluid velocitykulL coincides with its Eulerian
counterpartkul, which is zero, and that, therefore, no renor-
malization is produced on the value of the terminal velocity
vG.

Another nontrivial result from the numerical simulation is
that the correlation functions of both passive tracers veloci-
ties(tS=0 andvG=0) and of sampled fluid velocities appears
to decay exponentially as in the Gaussian case for standard
Lagrangian models.

In Fig. 3 the effective transverse Lagrangian timestL8s'd
have been plotted as function oftS ( in units of tE) for
different values ofvG (the Lagrangian time scale of passive
tracer has been reported for a comparison). In the range
vG,1 (inertia dominant) the curves are increasing from

tL /tE=0.52 and tend to about 1 astS→` (i.e., the Lagrang-
ian time tends to the Eulerian time). For vG.1 (gravity
dominant) the curves lose their dependence ontS and the
correlation time is approximately equal to the eddy crossing
time given(always in dimensionless units) by vG

−1. This is in
agreement with the asymptotic formulas in Eqs.(102). Fig-
ure 4 shows the behavior oftL8sid and tL8s'd as function of
vG for fixed tS. As expected, each curve tends to a constant
value in the limitvG→0. The longitudinal times are always
longer than the transverse ones and, in the limitvG→`, they
collapse onto two different curves, whose ratio is 3/2 as pre-
dicted by Eq.(102).

An exponential decay of the sampled fluid velocity corre-
lation function allows easy analytical calculation of the cor-
relation function forv [34,35,42]. The last one reads, fori
= i ,',

Cp
i std = kvistdvis0dl = Cp

i s0dFe−t/tS +
e−t/tL8sid − e−t/tS

1 − tS/tL8sid
G ,

s103d

where

FIG. 3. Behavior oftL8s'd as a function of the Stokes timetS

for different values of the adimensional terminal velocityvG (di-
mensionless units). L, vG=0; +vG=0.1; h, vG=0.5; 3 ,vG=1;
D ,vG=2; ! ,vG=5. Reference line attL8=tL=0.52.

FIG. 4. Behavior oftL8sid andtL8s'd as a function of the termi-
nal velocity vG= for different values oftS (dimensionless units).
Longitudinal: !, tS=10; 3, tS=1; +, tS=0.1. Transverse:D, tS

=10; h, tS=1; L, tS=0.1.
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Cp
i s0d =

uT
2

1 + tS/tL8sid
. s104d

The particle correlation timetpsid can then be calculated

tpsid =E
0

` Cp
i std

Cp
i s0d

dt = tS+ tL8sid.

By using Taylor’s theorem, the(long-time) diffusion coeffi-
cients

ksid =
1

2
lim
t→`

1

t
kfxistd − xis0dg2l, i = i ,'

can be expressed in terms of the Lagrangian correlation
times forv as follows:

t @ tpsid, ksid = tpsidCp
i s0d = tL8sid.

Thus, the diffusion coefficientsksid will behave exactly as
the effective Lagrangian timestL8sid. The adimensional dif-
fusion coefficient of passive tracers is simply given byk
=tL=0.52. Hence, in agreement with Ref.[11], ksid will be
larger than in the passive scalar case when inertia is domi-
nant, smaller when gravity is dominant. Furthermore, when
gravity is dominant, the longitudinal solid particle diffusion
coefficient will be larger than the transverse one.

X. SOLID PARTICLE TRANSPORT IN TURBULENT
CHANNEL FLOW

We focus in this section on phenomena of accumulation
and deposition associated with the interaction of inertial par-
ticles with the inhomogeneity of the flow and the presence of
solid boundaries. Starting from the work of McLaughlin
[43], the reference situation that is typically considered, both
to identify the main features of particle transport, and to test
the functionality of transport models, is that of the turbulent
channel flow.

We have tested our model in its simplest form, with a
Gaussian PDF, an isotropic noise and nonunique termJm

i set
to zero. We recall that, in this form, the model is described
by Eqs.(64) and (65), with the drift given by Eqs.(18) and
(30)–(32), and the noise by Eq.(41) with D=vD0;vDt. As
in the homogeneous-isotropic turbulence case, we have set
the free parametera=0.65, corresponding to the value of the
ratio between Lagrangian and Eulerian correlation time
tL /tE=0.52 [40,41]. We adopt standard wall variables iden-
tified where necessary with +, normalized with the friction
velocity u* , and the reference length and time scalesx2

*

=n /u* andt* =x2
* /u* , wheren is the kinematic viscosity.

For the Lagrangian correlation time we have used the in-
terpolation formula

tL = 7.122 + 0.5731x2
+ − 0.001 29sx2

+d2, x2
+ , 140,

tL = − 19.902 + 0.959x2
+ − 0.002 67sx2

+d2, 140, x2
+ , 180,

s105d

wherex2 identifies the cross-stream direction(we takex1 and
x3, respectively, in the streamwise and spanwise direction).

For x2
+,140, Eq.(105) coincides with the interpolation for-

mula quoted in Ref.[37]. Thus, Eulerian time scales span
from tE

max.140 in the channel center totE
min.14 at the

walls.
We have considered neither the effect of gravity, nor that

of Brownian motion. The second may be important in the
case of submicrometer particles. We have included, instead,
the contribution from the Saffman lift[31]; indicating as
usual withd the particle diameter andg the particle to fluid
density ratio,

vG = 0.39
tS

gd
Un

] ū1

] x2
U1/2

signS ] ū1

] x2
Dsu1 − v1d,

which is known to contribute to the solid particle dynamics
in the rangetS*10 [37].

As input data for the model, we have utilized the one-
point statistics from the DNS by Kim, Moin, and Moser[45].
The channel widthLc is nearly 360 wall units and the Rey-
nolds number is of order 3300, based on the maximum mean
velocity and the channel half-width.

We have carried on Monte Carlo simulations withNtot
=10 000 particles, uniformly distributed at the initial time. In
order to obtain, after a suitable time, a stationary concentra-
tion profile, we have introduced a source of particles at the
channel center to balance the deposition flux at the walls. As
in Ref. [44], for these conditions and for quite all Stokes
times, it seems that a simulation timeTsim of about 700 is
sufficient to achieve a stationary distribution for the solid
particles.

As a validation, Fig. 5 shows that the model reproduces,
in the fluid particle case, the input statistics. Furthermore, the
well-mixed condition has been verified: despite the possible
numerical complications arising from the presence of a mul-
tiplicative noise, a uniform passive tracer concentration pro-
file is preserved in time and no tracer deposition on the walls
takes place.

In Fig. 6 we give the profile of the fluctuation amplitude
for the normal velocity of a particle withtS=60. The Monte

FIG. 5. Comparison between input statistics for the Reynolds
tensorRij , from DNS [45], and simulated data from Monte Carlo.
The data are almost undistinguishable.(a) R11, (b) R12, (c) R22, (d)
R33.
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Carlo data strongly differ from the profile obtained from the
homogeneous isotropic turbulence estimate provided by Eq.
(104) and illustrate the difficulty in thea priori determina-
tion of a reference PDFrLsv ,x ,td in one-fluid Lagrangian
models(see discussion at the end of Sec. VI).

In Fig. 7 we give account of the particle concentration
build-up in the near wall regions. The peak height appears to
increase withtS up totS.10 and to decrease afterwards; the
same decrease was observed in Ref.[46]. In agreement with
both Refs.[44,46], and in contrast with the one-fluid model
in Ref. [39], we observe that the concentration maximum
occurs in the viscous sublayer atx2

+&1. Conversely, numeri-
cal data on the peak height present in literature show a defi-
nite scatter; anyway, our data are closer to those in Ref.[44]
than in Ref.[46], with an overestimation of the order of 50%
with respect to the first.

As regards particle deposition, we have studied the depen-
dence ontS of the deposition flux,

Jw =
LcNd

TsimNtot
,

beingLc the channel width,Nd the number of deposited par-
ticles in the simulation timeTsim, andNtot the total number of

particle simultaneously present in the channel. In our simu-
lations, we consider a particle deposited, when its distance
from a wall is smaller than its radiusd/2. Assuming that air
is the suspending medium, we fix for the density ratio the
value g=1000, and for the viscosityn=0.15 cm2/s; from
relationtS=1/18gd2/n, the particle diameter will then be, in
wall units,

d . 0.134tS
1/2.

Our results are shown in Fig. 8 and compared with experi-
mental data by Refs.[47,48], and with an example of one-
fluid Lagrangian model[39]. The agreement is good with
respect to the data in Ref.[48], apart of a slight overestima-
tion in the rangetS.10. On the contrary, our model per-
forms much better than the one-fluid model in the range
tS,10. As expected, the effect of the Saffman lift is felt only
in the rangetS,10; in any case, the contribution to both
deposition and particle accumulation appears to be small.

XI. CONCLUSIONS

We have studied the statistical properties of trajectories
extracted from a random velocity field with nonzero correla-
tion time, analyzing the conditions for a Markovian approxi-
mation of the Lagrangian velocity. Our result is that a gen-
eralized form of the Thomson-87 well-mixed condition[4]
can be derived also in the case of random fields, provided
their velocity structure functions scale linearly at small
space-time separations. In the incompressible case, the Mar-
kovian approximation for the Lagrangian velocity defines a
Lagrangian model obeying the Thomson-87 well-mixed con-
dition, with uniform concentration PDF given by the Eule-
rian one-point PDF for the random field.

Depending on the circumstances, a random field based
approach to Lagrangian modeling may be advantageous. In
the compressible case, knowledge of the one-point Eulerian
PDF for the random field is sufficient to determine the coef-

FIG. 6. Comparison between the Monte Carlo simulation results
for kv2

2l profile (a), and the homogeneous turbulence estimate for
the same quantity(b).

FIG. 7. Concentration profileu vs x2
+. (a) tS=3, (b) tS=10, (c)

tS=20, (d) tS=30, (e) tS=60.

FIG. 8. Comparison of experimental data on particle deposition
by Liu and Agarwal(L, Ref. [48]) and by Wells and Chamberlin
(!, Ref. [47]), with the results of our Monte Carlo simulations
(thick lines). The lower line corresponds to simulations without
taking into account the effect of the Saffman lift. The thin line is the
result of simulations from a one-fluid model(Ref. [39]).
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ficients of the associated Lagrangian model. The
Thomson-87 approach, instead, requires knowledge of the
particular Lagrangian PDF(indicated in Ref.[4] with ga)
which originates from an initial concentration profile equal
to the instantaneous local fluid density, and which does not
necessarily coincide withrE. Solid particle transport is an
example in which implementation of the Thomson-87 ap-
proach is not straightforward, unless ad-hoc hypotheses are
made on the Lagrangian statistics.

A second advantage of this approach concerns the nonu-
niqueness problem: knowledge of the two-point Eulerian
correlations completely fixes the form of the Lagrangian
model, which is of interest for turbulent flows in complex
geometry, where it is not clear which model satisfying the
well-mixed condition, should be chosen. The relation of
some of the nonunique terms with helicity[26] and rotation
[6] is confirmed, and additional terms associated with strain
have been identified. Similar approaches, in which DNS in-
formations on the two-point Eulerian correlations are used to
determine the form of Lagrangian models, have been re-
cently adopted in Ref.[27]. Alternative formulations for the
treatment of the nonuniqueness exist, in which the Lagrang-
ian acceleration is modeled by a Langevin equation, on the
same footing of the Lagrangian velocity(second order mod-
els [9]). In these models, however, the nonuniqueness prob-
lem is only displaced to the higher order acceleration.

A third advantage of the random field approach concerns
situations in which it is difficult to characterize an inertial
range, and in which concepts like the constantC0 cease to be
meaningful(e.g., in the buffer region of a turbulent boundary
layer). Comparing our approach with the Thomson-87 tech-
nique, the main difference is, to lowest order in the SOs3d
expansion, the form of the noise and the parametera taking
the place ofC0. Both noise expressions require knowledge of
quantities estimated from large scale features of the flow: the
viscous dissipationē and the Eulerian correlation timetE,
whose relative dependence(as the one betweena andC0) is
not an intrinsic characteristic of the models. In our approach,
however, a precise relation can be obtained between the pa-
rametera and the ratio of the Lagrangian to the Eulerian
correlation timetL /tE, which is valid also when the Rey-
nolds number is low. Using for this ratio the value obtained
in Ref. [40], we obtaina.0.65.

We have tested our model, with isotropic noise and
Gaussian statistics, to study solid particle transport both in
homogenous isotropic turbulence and in channel flow geom-
etry.

In homogeneous isotropic turbulence, the correct renor-
malization for the correlation time for the fluid velocity
along the solid particle trajectories have been obtained with-
out resorting toad hoc parametrizations. The form of Eq.
(101) descends directly from the random field and Mark-
ovianization along trajectories[see Eqs.(8) and (65)]. This
illustrates the importance of the parametera in providing the
most simple characterization of space correlations in the tur-
bulent flow. It is important to stress that, had we not taken its
contribution into account, Eq.(101) would have been unable
to reproduce the anisotropy of the time correlations.

An interesting aspect we have observed is satisfaction of
the ergodic property in solid particle transport by homoge-

neous turbulence, this, despite compressibility of the solid
particle flow. It is not clear whether this is an artifact of the
model; in any case, it is a nontrivial effect since the ergodic
property can be shown to be violated by very simple com-
pressible flows[see Eqs.(71)–(73) and discussion therein].

In channel flow geometry, we have found good agreement
with experimental data on particle deposition[47,48], and
partial agreement with numerical data on near wall accumu-
lation [44,46]. We stress that these results have been obtained
without any parameter fitting, apart from the choicea
=0.65 inferred from Ref.[40].

Clearly, a Gaussian model with isotropic noise cannot ac-
count for the effect of coherent structures and intermittency,
which are an important feature of turbulence in channel
flows. Imposing the appropriate form for the one-point PDF
and going to higher orders in the SOs3d expansion allows
consideration of these effects. Preliminary analysis suggests
that inclusion in the model of non-Gaussianity, noise aniso-
tropy, and nonunique terms, strongly affects particle deposi-
tion and transport in wall turbulence. Modeling the structure
of the turbulent correlations, based on empirical consider-
ations, appears to lead to models that perform worse, com-
pared to the data, than the simple isotropic Gaussian model,
a situation similar to that observed in Ref.[49]. This suggests
that careful consideration of the structure of the turbulent
correlation, based on DNS data, may be necessary; this will
be part of a different paper.

Some issues remain to be clarified as regards the defini-
tion of a random field purely in terms of its local properties.
The global extension provided by Eq.(15), in which the
random field is assumed “Markovian” along rectilinear cuts
in space-time is only one of the possibilities. This choice
produces effects on the form of the trajectories, which can be
accounted for only in the non-Markovian approach described
in Sec. VIII. (Markovianization along trajectories corre-
sponds to considering only local properties of the random
field.) An open question remains which global structure of a
random field would lead, for fixed local structure, to trans-
port properties which are approximated best by a Markovian
Lagrangian model. This, beside understanding whether the
assumption in Eq.(15), which leads in the Gaussian case to
exponential scaling of the random field correlations, fits the
turbulent structure in an appropriate way. For the choice pro-
vided by Eq.(15), and for homogeneous isotropic conditions
and Gaussian statistics, the error in the ratiotL /tE corre-
sponding toa.0.65 appears to be of the order of 15% in
defect.

Related to this issue is the fact that consideration of long-
lived coherent structures, corresponding to small values of
tL /tE and to large errors in the Markovian approximation, is
probably out of the range of applicability of our model. An
alternative strategy, which would allow taking into account
long-lived coherent structures, is the non-Markovian ap-
proach described in Sec. VIII. The noise and drift terms,
however, must to be rederived including the condition at the
emission point following Eqs.(97) and (100).

Extension of the present approach beyond one-point sta-
tistics is possible in principle, but is limited by the unphysi-
cal scaling of the random field structure function at small
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separations. Only concentration fluctuations on the scale of a
correlation length could then be taken into account.
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APPENDIX A: NON-GAUSSIAN CASE

A symmetric one-dimensional distribution with unitary
variance and kurtosis larger than three can be modeled by
means of a bi-Gaussian,

Psxd =
a

p1/2exps− x2d +
s1 − ad

s2pbd1/2expS−
x2

2b
D , sA1d

where

a =
4kx4l − 12

4kx4l − 9
and b =

2

3
kx4l − 1 sA2d

parametrize the strength of the kurtosiskx4l. From here, we
can obtain the expression for an isotropic non-Gaussian ve-
locity distribution,

rE =
1

spuT
2d3/2Fa expS−

u2

uT
2D +

1 − a

s2bd3/2expS−
u2

2buT
2DG

sA3d

and for an anisotropic distribution, in which one of the ve-
locity components, in the diagonal reference frame for the
Reynolds tensor, is non-Gaussian,

rE = ar1 + s1 − adr2 = rxfary1 + s1 − adry2grz, sA4d

where

rx =
1

s2pR̂11d1/2
expS−

û2
1

2R̂11D ,

rz =
1

s2pR̂33d1/2
expS−

û2
1

2R̂33D ,

ryi =
1

s2pR̂i
22d1/2

expS−
û2

2

2R̂i
22D, i = 1,2 sA5d

with R̂1
22=R̂22/2, R̂2

22=bR̂22, and the hat indicating the diag-
onal reference frame.

Let us calculate explicitly the drift terms in the case of
Eqs. (A4) and (A5). Substituting into Eq.(19), we find im-

mediately thatĀ is given by the superposition of the contri-
butions from each of the Gaussiansr1 andr2,

Ām
idxm = −

1

2r
kdwidwjlfar1Sjk

1 + s1 − adr2Sjk
2 guk sA6d

(notice the absence of the hats; it is not necessary here to
work in the diagonal reference frame). The contribution from
theF andC terms has a more complicated form. Let us take

the laboratory frame with the inhomogeneity direction along
x2 (the usual channel flow geometry in whichx1 is the mean
flow direction). We use the ansatz,

Fm
i = aFm1

i + s1 − adFm2
i + DFm

i, DF̂m
i = F̂md2

i ,

sA7d

whereF1 andF2 give the form ofF in the caserE=r1 and
rE=r2. Substituting into Eq.(20) and using Eqs.(A4) and
(A5), we obtain

]û2F̂m = − dm
2 ]̂ 2asr1 − r2d sA8d

leading to the result in the laboratory reference frame

DFm
i = − dm

2V2
i rxry

s2pd1/2]2aE
û2/ÎR2

22

û2/ÎR1
22

dûe−û2/2, sA9d

whereV2
i is the rotation matrix defined throughui =V j

i ûj, i.e.,
V j

i =ei ·êj.
Analogous procedure is followed to obtain theC term.

From Eq.(21), in analogy with Eq.(26), write

ci = aci + s1 − adci + Dci, Dĉi = d2
i G, sA10d

where 2]uici =−DFi
i =−F̂2, and decomposeC j

i in an analo-
gous way. From Eq.(A9), we obtain immediately,

G =
rxry

2s2pd1/2V2
2]2aE

−`

û2

dûE
û/ÎR2

22

û/ÎR1
22

dx e−x2/2, sA11d

and substituting again into Eq.(26) [in real space:C j
i

=d j
i]ukck−]ujci], we find

DC j
i = d j

i]û2G − V2
i V j

l]ûlG. sA12d

Assuming that the statistics of dw be independent of the
velocity, as we have done in Sec. II, has the consequence that
all of the non-Gaussianity is contained in the drift. The small
scale structure of the correlations, associated with dw remain
therefore Gaussian. This breaks, for large values of the kur-
tosis, the direct relationship between the drift coefficients
and the correlation lengths[25]. It is easy to see what hap-
pens looking at Eqs.(A4) and(A6). Whenever the value ofu
goes aboveuT, the slowly decayingr2 becomes dominant in
Eq. (A6) and leads to a reduced decay rate for the fluctuation
that can thus slowly grow to produce a burst. We thus have a
hierarchy of time scales(focus for simplicity on variations
along time),

tE → Time scale for backgroundsu , uTd,

btE → Time scale for burstssu , b1/2uTd,

b2tE → Spacing between bursts,

This difference between the time scale for bursts and back-
ground fluctuations is not physically meaningful in general.
This has the effect of overshooting the burst contribution to
turbulent dispersion, which is estimated by the product of the
probabilityb−1 of a burst, its time scale and the square of its
velocity scale,
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b−1 3 btE 3 buT
2 = buT

2tE. sA13d

(In comparison, the background contribution isuT
2tE, and, if

the time scales for burst and background were the same, the
background and burst contributions would be identical.)

APPENDIX B: SPHERICAL TENSORS AND THE SO(3)
TECHNIQUE

A symmetric two-index tensor function can be decom-
posed in spherical tensors in the form

di jYJsxd, ]i] jYJsxd, xixjYJsxd, sxi] j + xj]idYJsxd,

xnse jnmxi + einmxjd]mYJsxd and xnse jnm]i + einm] jd]mYJsxd,

sB1d

whereYJsxd is a J-order polynomial in the componentsxi,

YJsxd = yi1i2. . .iJxi1
xi2

. . .xiJ
, sB2d

and yi1i2. . .iJ is traceless with respect to any pair of indices
[19]. In consequence of this, the spherical tensors in Eq.(B1)
will be polynomials of orderL=J, J−2, J+2, J, J+1, and
J−1, respectively. In the case of the noise tensorkDwiDwjl,
we have the additional symmetry with respect to spatial in-
version, which imposes the condition thatL be even. This
implies J even for the first four spherical tensors andJ odd
for the last two. Limiting the analysis toJø2, we notice
immediately that the last spherical tensor in Eq.(B1) disap-
pears. Similarly the J=1 contribution from xnse jnmxi

+einmxjd]mYJsxd is absent due to incompressibility; writing
Y1sxd=ymxm,

]ixnse jnmxi + einmxjd]mY1sxd = 5e jnmxnym = 0

which imposesym=0. We are thus left only with theJ=0 and
J=2 contributions.

From Eq.(39), theJ=0 andJ=2 contributions toBij will
have the form

uTB0
i jsxd = auxudi j + â

xixj

uxu
, sB3d

utB2
i jsxd =

4blm

uxu
xlxmdi j + 2clmuxu]i] jxlxm +

dlm

uxu3
xlxmxixj

+
elm

2ux
sxj]i + xi] jdxlxm. sB4d

Applying the incompressibility condition]iB
ij =0 leads to the

equations

â = −
a

3
,

8blm + 4clm + 8elm = 0,

3dlm − 4blm − elm = 0. sB5d

Substituting the solution to Eq.(B5) into Eqs.(B3) and(B4)
leads to Eq.(40).

We give next the expressions for the spherical tensors
contributing to an antisymmetric two-index tensor,

ei jkxkYJ, ei jk]kYJ, and sxi] j − xj]idYJ. sB6d

In the case of the antisymmetric part of the correlationCA,
we have the additional property of antisymmetry with re-
spect to spatial inversion, which implies thatJ be even for
the first two and odd for the last.

In the case of a vector field, an analogous decomposition
can be obtained in terms of spherical vectors in the form

xiYJsxd, ]iYJsxd, and ei jkxj]kYJsxd. sB7d

If the vector field does not have an axial component, only the
first two spherical vectors can contribute. If we have axial
symmetry, identified by a directionu, the tensorsyi1i2. . .i l en-
tering Eq.(B2) will be zero trace symmetrized products of
componentsui and of the identity matrixdi j . The first spheri-
cal vectorsxiYJsxd and]iYJsxd are, respectively,

x, su ·xdx, ssu ·xd2 − 1
3uuu2uxu2dx sB8d

and

0, u, su ·xdu − 1
3uuu2x.

APPENDIX C: CONDITIONAL RANDOM FIELD
STATISTICS

We want to calculate conditional velocity moments in the
form

kuisx0,t0dujsx0,t0d . . . uusx1,t1d,usx2,t2d, . . .l. sC1d

Let us indicate, for l =0,1, . . . ,n, Ul =usxl ,tld, and Clm

=kUlUml, assuming for simplicity a symmetric correlation
tensor. For a Gaussian random field, the velocity correlations
at pointshtl ,xlj are obtained from the generating function

r̃shhljd = expS−
1

2 o
l,m=0

n

hl ·Clm · hmD . sC2d

Let us introduce the marginal PDF,

rshUl,i = 1, . . . ,njd = N expS−
1

2 o
l,m=1

n

Ul ·Dlm ·UmD ,

sC3d

whereN is the normalization andDlm is the inverse of the
restriction ofClm to l ,m=1, . . . ,n. We shall indicate in the
following this restriction with a prime:

o
lm

8 ; o
l,m=1

n

, hUl8j ; hUl,l = 1, . . . ,nj, etc. sC4d

The generating function forU0 conditioned to Ul, l
=1, . . . ,n is obtained by inverse Fourier transformingr̃shhljd
with respect tohhl8j in hUl8j and dividing by the marginal
PDF rshUl8jd,
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r̃sh0uhUl8jd =
1

rshUl8jd
E p8

l

d3hl expS− io
l

8hl ·Ul

−
1

2o
lm

8hl ·Clm · hm − o
l

8h0 ·C0l · hl

−
1

2
h0 ·C00 · h0D . sC5d

From here we can calculate the conditional moments in Eq.
(C1). We calculate first the mean velocity inht0,x0j given
velocitiesUl in htl ,xlj l =1, . . . ,n,

kU0uhUl8jl =
1

r̃s0uhUl8jd
U ] r̃sh0uhUl8jd

] ih0
U

h0=0

=
or

8 C0r

rshUl8jdr̃s0uuhUl8jd
·Ep

l

8d3hl hr

3expS−
1

2o
lm

8hl ·Clm · hm − io
l

8hl ·UlD .

sC6d

Carrying out the Gaussian integrals, we obtain the result

kU0uhUl8jl = o
lm

8C0l ·Dlm ·Um. sC7d

The calculation of the second conditional moment is analo-
gous and the result is

kU0U0uhUl8jl = −
1

r̃sh0uhUl8jd
U ]2r̃sh0uhUl8jd

] h0 ] h0
U

h0=0

= C00 − o
lm

8C0l ·Dlm ·Cm0 + kU0uhUl8jl

3kU0uhUl8jl. sC8d
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