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Relations between Lagrangian models and synthetic random velocity fields
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The authors propose an alternative interpretation of Markovian transport models based on the well-mixed
condition, in terms of the properties of a random velocity field with second order structure functions scaling
linearly in the space-time increments. This interpretation allows direct association of the drift and noise terms
entering the model, with the geometry of the turbulent fluctuations. In particular, the well-known nonunique-
ness problem in the well-mixed approach is solved in terms of the antisymmetric part of the velocity correla-
tions; its relation with the presence of nonzero mean helicity and other geometrical properties of the flow is
elucidated. The well-mixed condition appears to be a special case of the relation between conditional velocity
increments of the random field and the one-point Eulerian velocity distribution, allowing generalization of the
approach to the transport of nontracer quantities. Application to solid particle transport leads to a model
satisfying, in the homogeneous isotropic turbulence case, all the conditions on the behavior of the correlation
times for the fluid velocity sampled by the particles. In particular, correlation times in the gravity and in the
inertia dominated case, respectively, longer and shorter than in the passive tracer case; in the gravity dominated
case, correlation times longer for velocity components along gravity, than for the perpendicular ones. The
model produces, in channel flow geometry, particle deposition rates in agreement with experiments.
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I. INTRODUCTION In the current approach, it is assumed that the noise term

In Lagrangian models, the concentration of a quantitydW In Bq. (1) accurately represents, in high Reynolds num-
transported by a turbulent field is reconstructed from the '[raper turbulent regimes, the inertial range scaling of the La-

jectories of the individual particles advected by the flow 9'angran velocity increments,
[1-4]. Since each trajectory is associated with an indepen-
dent realization of the turbulent flow, what is obtained is
3?;“3"3:1 thfe mﬁan rc];gncer;tratlc;nrp;:]ofllt?, nglver:tadcertarllr:itdls:rhen, at least when the flow is incompressible, the well-
ution of SINKS and sources Tor the transported quantity. e criterion allows us to determine the drift coefficient

One keeps into account the fact that the turbulent Iengt'gé terms of e and the Eulerian probability density function

Bi(v,x,t) = §1Che(x,t). (3)

welosity abeys a Langevin squation i result i the ayster 0P 10 the fluid velocityu(x, b pe(u, . =p(uix,v).
Y y 9 q y y In the general compressible case, the Eulerian PDF must be

g;gqc%%tig?nsétg terms of the particle Lagrangian velosity weighed on the fluctuating fluid density, which is tantamount
' to substitutepg with the Lagrangian PDF for the fluid parcels

dx =v dt, velocity and positior{4]).
The great advantage of the well-mixed approach, coupled
dv = a(v,x, H)dt + dw with Eq. (3), is that no knowledge of the spatiotemporal

structure of the turbulent fluctuations is required, rather, it is
o i the outcome, encoded in the drift coefficient, of the well
(dwdw) = Bi(v,x,t)dt. (1) mixed condition. This strength of the model, however, turns
into weakness, whenever the turbulent structure plays a rel-
evant role. A first hint that this, actually, is always the case, is
the nonunigueness of the solution fargiven e and pg(u)
[4,6]. In the well mixed approach, the drift coefficieatis
determined only up to a velocity curl, and interpretation of

A strong physical motivation for a Lagrangian model in the
form of Eq.(1) is the linear scaling of the Lagrangian veloc-
ity structure functions for inertial range time separati@bis

In the case of passive tracers, we have

[W'(t) = ' (O)[vi(t) - v (0)]) = dICyet 2) this freedom in terms of the properties of the flow is awk-
ward.
with e the mean viscous dissipation a@g a universal con- There are situations in which the structure of turbulence

stant; Eq.(1) will then result from assuming a Markovian plays an explicit role. A first example is produced when co-
behavior forv, i.e., thata' and B" depend solely on the herent structures dominate the flow, a rather common occur-
current values o andx and not on their previous history. rence in turbulence, which takes a dramatic form in near wall
The well-mixed condition, introduced in Rg#], lead to  regions. These regions become relevant in many situations of
a great advance in Lagrangian models, providing a simpl@ractical interest in industrial flows, but also, to name a few,
technique for expressing the drift coefficiemin Eq. (1) in in the study of transport in tree canopies and in indoor pol-
terms of observed properties of the flow. lution. These flows are often characterized by moderate Rey-
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nolds number, and, for this reason, not only the viscous scal€his has the important consequence that a passive tracer ad-
may be not negligible, but a well developed inertial rangevected by an incompressible flow, will satisfy the ergodic
may even be absent, so that the conditions justifying(Bg. property

cease to be valid. Now, standard techniques exist which al-

low for the inclusion of non-Gaussianify] and anisotropy pL(V]X,1) = pe(v,X,t), (6)

[6,8] in Lagrangian models, as well as for the effect of finite

Reynolds numberg9]. However, these techniques do not Wherep, (v|x,t) is the Lagrangian PDF for a tracer passing
take into account the geometric structure of the turbulenat the pointx at timet, to have velocityv. Thus, the well-
fluctuations, which calls for information about space corre-mixed condition imposed on the random field extends natu-
lation. rally to the Lagrangian model defined by Eg$) and (5).

In the range of scales we are considering, another issu€his is advantageous in the compressible case, where it will
will come into play, if we are interested in modeling solid be shown that, contrary to the Thomson-87 approach, knowl-
particle transport. In this case, nontracer behaviors associat@dlge ofpg is sufficient for the determination of a well-mixed
with inertia and gravity will begin to be feltinertia and model.
trajectory crossing effectgl0—12). This is especially true Clearly, linear scaling at small separations does not corre-
for atmospheric aerosol, characterized by heavy particlespond to the properties of a real turbulent field, which, at
with relative density of the order of 1000 and particle diam-high Reynolds numbers is more rough, and whose time cor-
eters in the range I8-10° um. Inertia effects are generally relations, due to the sweep effect, have Lagrangian nature at
negligible in ABL (atmospheric boundary layemesoscale short time scaleg5]. This is compensated, however, by con-
modeling, but can become relevant in the near wall region#ol over the large scale structure of the correlations, which is
of wall bounded flowg13], which is relevant for problems the relevant aspect for the determination of turbulent trans-
of air conditioning and abatement of indoor pollution. Tra- port.
jectory crossing effects related to gravity can have deep im- A related issue, concerning solid particle transport, is that
plications not only in wall bounded flows, but also for par- anomalous scaling of the fluid velocity increments sampled
ticulate transport in the ABIL10]. by a solid particle, are known to occur at sufficiently short

These effects reflect heavily on the possibility of usingtime scaleg17]. Analysis of the different ranges character-
Egs. (2) and (3) to model the Lagrangian velocity incre- izing solid particle motion was carried on in R¢l6], and
ments, and call back for the need of information on the spakagrangian models resolving the anomalous scaling range
tiotemporal structure of the turbulent fluctuations. were presented in Ref§18,1q, based, respectively, on the

Some attempts in this direction were carried out in Refsuse of fractional Brownian motion and synthetic turbulence
[14,15, but disregard of correlations between fluid velocity algorithms. Again, consideration of these short-time effects
increments along solid particle trajectories lead to difficultiesis neglected in favor of control of large scale geometry.
in the fluid particle limit[16] and in the implementation of Compared to the standard approach in Lagrangian model-
the well-mixed condition. ing, the one proposed here has definite advantages. Spa-

In order to be able to understand the constraints imposetiotemporal turbulent structures can be included in a rela-
by the turbulent structure on the form of a Lagrangian modelfively simple way. The nonuniqueness problem is solved in a
one may try a derivation from a velocity fieldx,t) of pre-  simpler way, since only purely Eulerian properties of the
scribed statistics. If the structure functiog[u'(x,t)  flow are invokedhelicity is one example The advection of
-u'(0,0)][ui(x,t)-ul(0,0)]) scaled linearly for small space- passive tracers and solid particles are treated exactly on the
time separations, the velocity increment between two point§@me footing, hence, extension of the model to solid particle

lying on a trajectory would be given by transport is automatic and does not need introducing addi-
tional assumptions.
du={[d+u(x,t) - V]ux,nu(x,t)dt+dw  (4) This paper is organized as follows. In Sec. II, a local

characterization of a random velocity field will be given,
introducing generalized “four-dimensional” Langevin and
Fokker-Planck equations, and providing local and global ex-
a(v,x,t) = ({3 +u(x,t) - VIulx,tlu(x,t) = v, istence conditions. The condition of local existence appears
to take the form of a generalized form of the well-mixed
condition, which will be discussed in Sec. Ill. This will be
used to calculate conditional averages in the fdiWo|u)
With the coefficients given in this equation, Ed) would  and({au|u) from the property of & and the Eulerian veloc-
provide a Markovianized version of the dynamics of a par-ity PDF, and the relation with the spatiotemporal structure of
ticle moving in the random velocity field(x,t). the random field will be discussed. In Sec. IV, expressions
It turns out that, provided the structure functions for for the noise amplitudédw dw) will be derived, and their
scale linearly, the well-mixed technique could be imposedelation with the symmetric sector of the velocity correlation
directly on the random fieldi(x,t), before any trajectory is will be discussed in terms of the $8 technique introduced
defined. This means expressing the form of the conditionaih Ref. [19]. The antisymmetric sector of the velocity corre-
averages of the velocity derivative§ju(x,t)[u(x,t)) and  lation will be discussed in Sec. V, illustrating how it relates
(Vu(x,t)|u(x,t)) in terms of the Eulerian PDlpg(u,X,t). to the problem of nonuniqueness in the well-mixed approach,

with (dw)=0 and adv*=O(dt). We could then introduce a
Lagrangian model obeying E¢L), with

Bi(v,x,t)dt = (dw' dw|u(x,t) = V). (5)
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and showing how helicity and other geometrical features A 1 .
could be included in the random field. Section VI will be dpe = dx* d,pe == dii(A," dx* pg) + Eﬁuiﬁui«dVV'dW’)PQ-
devoted to the derivation of a Markovian Lagrangian model
in the form of Eq.(5), and to presentation of its main prop-
erties. The relation with the Thomson-87 mod] will be
discussed. Sections VII and VIII will be devoted to analysisNotice that the form of the two equatioi$3) and (14) is

of the Markovian approximation in the Lagrangian modelindependent of incompressibility and EG2). The sequence
and to proof of the ergodic property given by E). Sec- leading from Eq.(8) to (14) is very suggestive, in that it
tions IX and X will illustrate two applications of the La- generalizes the one from a Langevin to a Fokker-Planck
grangian model to solid particle transport, respectively, inequation[20]. However, contrary to the case of a standard
homogeneous isotropic turbulence, and in a turbulent char=okker-Planck equation, E@l4) does not admit in general

(14)

nel flow. Section XI contains the conclusions. solution for pg. In fact, once the noise amplitudew' dw!)
and the driftA ' are given, Eq(14) becomes a system of
Il. CHARACTERIZATION OF THE RANDOM VELOCITY foyr partial Qifférential equations for.the single PIDE, and _
FIELD this system is generally overdetermined. In the next section,

it will be shown how a generalized version of the well-mixed
Let us introduce a zero-mean, incompressible random vezondition is able to take care of this local existence problem.
locity field u(x,t), with Second order structure functions  The ill-posedness of the problem is reflected at the global
scaling linearly in the increment at small space-time separaevel, in the fact that a local definition for the “noise” incre-

tions. We introduce 4-vector notation, ment amplitude(dw' dw!) is not sufficient to define a real-
P ization forw(x,t), and consequently far(x,t). This in con-
x# = O, X'} = {t,x}, 9,=——, (7) trast with the case of the standard Langevin equation. In fact,
ax®

if we integrate Eq(8) along a closed curve in space-time,

and stick rigorously to the Einstein convention of summationar.]d consldgr uncorrelated mcremem\saiong.the. curve, we
ill obtain in general a nonzero total velocity increment in

over covariant-controvariant repeated indices. We have th e closed loop. In other words, if we disregard these corre-
following equation for the velocity increment: lations forw, the differential di entering Eq(8) will not in

du' = dx* 9,u' = A (u,x*)dx* + dw', (8)  general be exact.
# . The question becomes at this point the existence of a ran-
where dom velocity field with local structure described by E8§).
oy g It turns out that such a velocity field can be constructed ex-
A, (UXH) = (3,u (X, Du(x,) (9 plicitly, although the construction described below is by no

and(dw|u)=0. From linearity, the contribution to the veloc- Means unique. y . _ _
ity structure function is dominated, for small values of the Given a pointx _and a direction in space-time defined by
increments, by the correlation fomd and we have the versor# (r#r,=1), we can introduce the stochastic pro-

o _ ' cessil'(s)=0'(x#,r*;s) obeying the Langevin equation
(dw' dw!|u(x,t)) = (du'(x,t)du’(x,t)) = O(|dx|,dt). (10)

Al _ | A~ A
We limit our analysis to random velocity fields where the di(s) = r#A,'(0,x*)ds + d/,
statistics of the velocity increments is independent of that of
the total velocity.

o d .
(dwdwl|u) = (dw dw). (11) (o W) = LU e =u o)

Incompressibility of the velocity fieldju'=0, leads to the X[UW(x* +r#s) — ul(x*) g+ ds.  (15)
constraint, indicating\#= Ax*,

(AW AW The correlation functions for the stochastic procéss),
T: (12 starting from the second order o1 (x#, sr™) = (' (x*, r#;
-s/2)0(x#,r#;s/2)), will identify a random velocity field
From Egs.(8) and(10), we obtain the following generalized u(x*) whose local statistical properties are those imposed by

A=0,

[td's lemma; for a generic smooth functiap(u): Eqg. (8), and whose restriction to straight lines in space-time
1 will be, by construction, Markovian. As with the correlation
do(W) = (A T dx* + dw)aid(u) + =(dw dwida.id. blu time of.the soluthn of a.star!dard Langevin equation, the
Hu) = (A, V0 plu) 2< Jhdud() correlation length in the direction* will be encoded in the

drift coefficient r#A '(G,x*). A random field realization is
(13 . . K . . :
obtained, in the simpler Gaussian case, by first carrying on
and from here, we can derive an equation for the change dhe principal orthogonal decomposition(POD)  of
the one-point PDRpg(u,x*) = p(u(x,t)), in passing from the C"(x*,A#), and then random superposing, with the appropri-
point x* to to the pointx*+dx*, ate amplitudes, the resulting POD mod24].
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ll. DETERMINATION OF THE DRIFT symmetric piece of the correlation, i.e., thé(AuiAuJ} in

The real meaning of Eq14) is to provide a consistency - (23). The & and¥ terms are more easily analyzed in
condition for(dw'dw/) andA ', that could be used to gener- Fourier spacef(n)=[d®u e f(u). Using Eqs.(18), (19),
alize the Thomson-87 technique and determine fronnd(23) will read
(dw' dwl) andp, the expression foh,. The difference with
the standard case is that, instead of calculating the condi-
tional mean(dp'|v) of the La}grangian velocity time dgrivg- Using the fact that the generating functipa obeyspe=1
tive, we seek here the_ conditional mean of all the derivatives 1R i +0(7%), we can write, from Eq(23)
of the Eulerian velocity, namelyd,u'|u). These averages 2~ ™™ ' ’ ’
contain important information on the behavior of the velocity ~

(AU = = HAWAW) =89, (B, + W) 5. (24)

correlationCll (x#, A#) =(U(x*— A"/ 2) Ul (x*+ A*[2)) D, =- E%R” 7+ O(7p) (29
Cl(x#, A¥) = 2[RI (x* — A#[2) + R (x* + A*/2)] so that the contribution fror to the correlation function is,
- %<AuiAuj>+C2. (16) from Eqg. (24), %dx/‘ d,RY, which accounts for the spatial

) ) inhomogeneity of the correlatidfthe (R’ +R) term on the
Here,R!(x*)=C'(x*,0) indicates the Reynolds tensor, while right-hand sidéRHS) of Eq. (16), which is centered at-x*].
cll = %[Cij(X,L’A,L) - Cli(x#, — A¥)] (17) We see tha{A#' andCI?M' account for all of thg contribution
to the correlations, which either are symmetric, or come from
is the antisymmetric part of the velocity correlation. It is inhomogeneity of the statistics. We know at this point that
clear that the noise amplitude is associated with the symmeboth \IIM‘ and= will be able to contribute only to the anti-
ric sector of the velocity correlation, and for smalt:  symmetric part ofA,'. We give in explicit form the contri-
(AwW'AW) = (AU'AU). bution from ¥ . Exploiting the first of Eq(21), we utilize
Let us try to generalize the Thomson-87 approach to calthe ansatz
culate the driftAM' from pg. It is convenient to split the drift o o _ .
into three pieces, V' =i(8 i - ), Wp=0 (26)
A, :K,ui N icpﬂi N i\yﬂi, (18 and, from¥;=-®; and Eq.(25),
Pe PE

~ 1 -
— ==(gR¥ + &My f +0 27
whereA ' is chosen to cancel the noise term in the Fokker- W( 4( iR i (772) @7

Planck equatior{14). Exploiting independence of the noise

amplitude fromu: with f arbitrary. The contribution toF'| from f is traceless

and can be reabsorbed into the nonunique t&mthe final

— i . result is therefore
A jdxk= §<dW'dWJ>o7uj|Og Pe (19

- i A
— V' = —[8(aR%) m — (aR") 7] + O(7° 28
andA,', from the second of Eq12), is automatically trace- ' 4[ i(ART) = (dRD 7]+ OCr) 28

less. The termd ' is chosen to cancel the contributions to

Eq. (14) from statistical nonuniformity and nonstationarity, and the contribution to the correlation function is

' z[gR* dx' -9 R" dx¥, which is antisymmetric as required.
ﬁuiq)'ul == d,PE- (20 Explicit expressions for the drift terms are promptly ob-
tained in the case of Gaussian statistiespressions for the
case of a symmetripg with kurtosis larger than three are
given in the Appendix A The velocity PDF reads therefore

The term¥ is necessary to cancel the tracedofind must be
divergenceless with respect tg

A — i_ i— _ g
&UI"PJ - 0, \IIO - 0, \I,i - (I)i' (21) pE(U,X’u) = pg(U,X'“)
As in the Thomson-87 approag#, the drift is defined up to 1 1
a nonunique terntl/pg)E ' satisfying = (87%|R)"2exp| - ESjU'U'> (29
== =iz
2i=0, 4=, =0 (22 with §;=(R™%);; the Reynolds tensor inverse. In this case, the
which, substituted into Eqa14), will produce an identically higher order terms iny, entering Eqs(25—(28) disappear
zero contribution. and we are left with
The drift Aﬂ' is associated with the velocity correlation - 1
through the eq-uatllon o - Aﬂl dxt = — §<dw qu>Sjkuk’ (30)
(U'AW) = (U(AU|u)) = (U'A HAX, (23
Let us analyze individually each of the termsAr)'. Substi- i1 -
. yze Y termsAy.- =~ (3,RSupe. (31
tuting Eq.(19) into Eq. (23) we see tha#,' gives just the 2
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) , i A = /A [y = L oK jpki

W) = 4l 4GRSt GRSl (32 (W dwh) = (duf du) = 36 R + 6 RT)ds. - (37)
We stress that, although E@7) describes the behaviors of

We can use these explicit expressions to obtain more inforthe random field correlations at small separations, the coef-

mation on the nature of the various contributions to the drift.ficients cji descend from a fit of turbulent correlations at

In analogy to the case of the standard Langevin equation, winite separations.

see thath,| must be discontinuous at*=0. From Eq.(19), A very general form for the noise tensor, satisfying the

discontinuity of the correlation function derivative At=0  incompressibility conditiors{(Aw'Aw!)/JA'=0, allowing as-

is necessary to balance the linear scaling wf.dn the co-  sociation _qf Eq(37) with.geometric features of the flow, is a
ordinate system where, for the givéwt, A/ is diagonal, we superposition of terms in the form
shall then have

) ) 2u$ o . _
(AWAW) = —[B{J(AO) +BI(A -UuAY],
Te

(AuJuy ~ - [AT]. (33
As regardsd)M‘, we see from Eq(31) that it produces an -
amplification ofu when &k* is directed to a region in space- dxB"(A) =0. (38)
time where the turbulence is strongghis is easy to see
whenRY o §1). Here, 7= fixes the time scales of the fluctuations and in the

Finally, the ¥ term, turns out to produce a complicated Gaussian case coincides with the Eulerian correlation time
mixture of rotations and amplification of the velocity vector. (see next u%z%R}, and B‘tj =|A9| 51‘1+|§,iti, with |“3itj symmetric
IndicatingT; =S, u¥, and choosing the coordinate system soand traceless(For lighter notation we leave in this section

that 4R'=4¢5), andA®=0 we have from Eq(32), the dependence from the space-time position unindicated.
1o e A2 2l e k2 3\ We see that the presence of mixed space-time increment
(Autju) =TlipA®, - (Au|u) = =ThA®%,  (Au’u) =0. contributions can account for situations in which the time

(34 correlations have Lagrangian nature. In this way, pure time
decorrelation will take place in the reference system moving

If Rio 51, we will haveTi;=u; and the result of Eq34) will  |ocally with the mean flowu. A situation with purely Eule-
be a rotation ol in the plane 12 as one moves in the direc-rjan time correlation will be realized by setting=0.
tion ;. In moderately anisotropic situations, it may be expedient
to expand the space compondhtin spherical tensors, fol-
IV. DETERMINATION OF THE NOISE TENSOR lowing the S@3) decomposition techniquie 9],
In order to obtain the drift coefficients, which give the AN — ij
decay of the turbulent correlations in the various s%ace—time B(4)= JE_OBJ] @ (39

directions, it is necessary first to determine the form of the

hoise tensokdw dw/). In fact, it is in the noise that all the \hereB indicates a combination aith order spherical ten-
information on the turbulent structure is encoded least sors(see Appendix B The symmetry of AWAW!) imposes
that part relative to the symmetric sector of the correlajions selection rules on which spherical tensors may contribute; it
In the case of a Gaussian random velocity field, the nois@urns out that to keep the lowest order anisotropic contribu-
tensor can be determined directly from the turbulent correlation, it is enough to consider spherical tensors of orte®
tions by means of a fit in terms of products of exponentialsand J=2. The incompressibility condition,iB]=0 gives
with sines and cosinega common practice in turbulence then the hats identify versoys

theory; consider, e.g., the Frenkiel functid2g]). Indicating

dx“=r#ds, r#r,=1, we fit the turbulent correlation by the ) A 1
expression BI(A) = —((a +4b™MA A ) 8 + 5[— a+(2bMm-cm
T
J . . o AA _AAL A ) LA . LA
ﬁ—s<u'(x“)u1(x“ +r#9)) = (U (x*)uK(x* + r#s)), (35) XAARAAT = A[(2b" + AT+ (20" + T)AT]
) ij
wherec;,! depends on the directiart, the midpoint position +4c ) (40)
x*+A#[2, but not on &. This imposes linear dependence of
the random field drift on the velocity where a gives theJ=0 part, while the tensorb' and c/,
: o which are symmetric and traceless, account forJthe part.
(du'|uy=dx*A,'=¢/'u ds (36)  We consider next some relevant limit cases.
(notice that Gaussian statistics, by itself, imposes linearity )
through the well mixed condition, only on the symmetric A. Isotropic turbulence
contribution to theAd.rif'rAMi). Using Eq.(36), Eq. (23) takes In this case, all the spherical tensors witk-0 are zero.
the form(ukdu'>=cj'RJk ds and, from Eq(17), we obtain We are thus left with the simple expression

046305-5



P. OLLA AND P. PARADISI

(AW Aw) = ZUT{MSJ L'(al Miﬂ. (41)
T

The parametea identifies a length-scalg,=u;7=/a for the

fluctuations and has therefore the meaning of a ratio between Ur

the eddy lifetimerg and the eddy rotation timk/us.

B. Long axisymmetric vortices

Let us imagine that the correlation tensor is dominated by

the effect of long axisymmetric vortices directed alaxig

PHYSICAL REVIEW E70, 046305(2004

an Sd2) one. Keeping again only the lowest order aniso-
tropic correction, we find, foA={A;,0,A3},

14|

Bi(A) = ((a+ 30MA A & + %[— a+(bm-cm

XA ALJAAT = A[(2b" + AT+ (201 + AT
+ 3c”) , (45)

whereb??=b33=0 and the traceless condition impos#s=

Let us try to use this information to impose a structure to the-b!, ¢33=-cl,

space structure tens8 defined in Eq(40). Let us impose

the condition thatBi(A)=0 for A={A,0,0.. For A
={A,0,0}, we have from Eq(40),

uB 1 uB%?
|TA| =5a+ 2btt+ 5cth), |1T| =a+4b't+4c%,
33
U|TE| =a+4btt + 4c®,
urB"? 12 o UB® 13 13
—=3c“-2b, ——=3c"-2b"",
A A
u 823
IiTI = 4c%, (42)
and we find immediately the result
C12 - C13 - §b12 - :g))blS, b23 - C23 - 0’
3 3 a a
bll=—Za pR2=pB="ga cl=-S, 2=cB=2)
8 16 4 8
(43)

We are free to impose the conditit =c''=0 fori+ 1 and

we reach the expression for geneficof the B components

along 11 and 22:

11,
UTB|A|(A) }AZ §A2 __A4+_A2A2l’

uB%4(A 3 32, 32, 4
uwBA) A2+ =A% - -A2-

logay 1opn
SAZAZ+ —AZAS,
Al 2 27174 372 6 12 12477

(44)

D. Streaks

Two-dimensional streaks along the direction of the mean
flow appear to be one of the characteristic structures in the
viscous sublayer of wall turbulencgs]. Contrary to the
three-dimensional case, elongated structures cannot be ac-
commodated af=2 in an S@2) decomposition: the result-
ing noise tensor would not be positive definite. Nonetheless,
a noise expression accounting for such structures can still be
determined. For instance, it is easy to see that, if the streaks
are oriented along; and the flow is two-dimensional in the
X1X3 plane, an appropriate expression for the noise tensor will
be

Bi(A) = | |8 8. (46)

In the non-Gaussian case, EaG) ceases to be valid, and the
random field correlation profile ceases to be in general a
simple product of exponentials and sines or cosines. Even if
we fit the turbulent correlation with an equation li{&5), the
random field correlations will not obey that equation, rather,
one involving higher order correlations. This is because of
the relation, imposed by the well-mixed condition, between
non-Gaussiapg and nonIineaAM'. For instance, if we used

a bi-Gaussian distribution to model a high kurtosis PDF
[7,23,24, a double exponential decay of correlations would
ensue, with the slower decay associated with the intermittent
bursts(see the end of Appendix)A25].

For large kurtosis, the noise amplitude determines only
the correlation times and lengths of the fast decaying expo-
nential. The simplest approach, in this case, is to renormalize
the noise amplitude, with respect to the Gaussian case, in
order to correct for the longer correlations produced by the
slowly decaying exponential. At the end of Appendix A, it is
shown that, in order to have the desired space and time scales
for the bursts, it is necessary to renormalize the noise ampli-
tude by a factorB=(2/3)k—1 with k the kurtosis[see Eq.

whereA? =A3+AZ and superscripts 2 indicate squares. Ana-
lyzing Eq.(44) in function ofAl first for A2—0 and then for
A,=A |, it is possible to show thaB is always positive
defined, as required.

2)].

V. NONUNIQUENESS AND THE ANTISYMMETRIC
SECTOR

Once the noise tensor and the Ppfare fixed and the
well-mixed condition is imposed, the symmetric sector of the

Suppose that the flow is two-dimensional, say velocity correlation is completely determined. The nonu-
={uy,0,ug}. In this case, the S@) decomposition reduces to nique termEM' can be used to fix the structure of the aniso-

C. Two-dimensional structures
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tropic sector. We consider for simplicity the homogeneouspare with the case of the noise tensor and Eg&S) and
caseC' (x*,A*)=CU(AM). (B4)]. It is convenient to separate the antisymmetric part of
We discover immediately the following important fact: &*:
not all expressions for the nonunique tef', and conse- — |
quently forA !, lead to a statistically realizab@!(A#). This &= 84+ e 6 (50)
is a t_iifferent face of the prqblem of Ioca_ll existence foir thethe zero trace condition becomes
solutions of Eq.(14). Consider as a first examples,
=2 U2 A contribution AC'= €2, R12 dx® is then added to Zio o (AR U 4RIz - RN =
u A 3 s then a Ei = pel R et +[R¢ - RGIUI=0 (51
C(dx), with dx={0,0,d¢}, that has the inadmissible sym- T PE | R _R' ' _
metry AC'i(dx)=-ACl'(-dx). The second example i&,* which must be satisfied for any. This leads to the relation
=12, B,2=-u%; in this case we find a contributioR?dt to  betweenz* and &,
C'%(dt) with the inadmissible symmetry AC'(dt)= 1 -
~AC?(dt). o _ (RI= R = el €R— RE™ (52)
We seek a form OE#' satisfying all the required symme-

tries, but still sufficiently general to describe most geometri e oalkm
structures one may think of. In analogy with the case of th(;rhe presence of the commuta{@R-RE]'™ suggesits that we

noise tensor, this can be done in the frame of af3@x- Should work in the diagonal system fBH. It becomes easy

pansion starting fronC,, the antisymmetric component of in this way to separate the part gf which anticommutes
the correlatior{see Eq(17)]. with RY, which is simply the part out of diagonal. Solution of

As with the noise, the nonunique ter‘EnMi can be deter- I_Eq. (52) gives then in the diagonal coordinate system, after
mined in a unique way fronC, in the case of Gaussian, ~ little algebra,

fitting the turbulent correlations with exponentials multiply- — Ry~ Rys — Res— Ry — Ry;— Ry
ing sines or cosines; in this cagé,’ will depend linearly on ;= fzsm, = §13R TR (3= §12R R

u. Repeating withC, the steps followed to obtain the noise 227 1733 11 117 722
tensor in Eq(37), we obtain (53

We are now in the position to determine the effect of the
various components ¢&;', on A and on the velocity corre-

. . . lations.
It turns out that the appropriate quantity on which to carry on

the S@3) expansion is no€}, rather

Gl = 1e/R R “

A. Time component

K _1roke  _ ~Ke 1= dsd - -
SkSICA = 2GS ~ ¢ "Salds =r#¢ ejds+---,  (48) It turns out that theu=0 component of Eq(49) is asso-

-t . L ._ciated with a combination of rotation and strain of the veloc-
whereS§; =(R™);; and_ the term_s in the expansion indicated 'nity, as time passes, at any given positiarthis is the Eule-
the formula are antisymmetric spherical tensors of oiler jan version of the mean velocity rotation along Lagrangian
=0,1,2[see Eq(B6)]. Isolating in Eq.(36) the contribution  4iectories discussed in Re]. Working in the diagonal

from =" and using Eqs(47) and(48), we obtain therefore ., ginate system faRi, the contribution frome®, will be,
for the nonunique term, for instance

E,ui - pEfl,LEIijmiuj +oe- (49) Eol - PE§O3R11U2, EOZ - _ PEgos R221. (54)
his turns into a pure rotation R o< 5.

From the point of view of S(), this is theJ=1 contri-
ution to the second of E@B6), which is trivially symmet-
ric in space and antisymmetric in time.

and it is immediate to check that the divergence free condi
tion 9,E,' [the second of Eq22)] is satisfied.

We notice that, had we carried on the expansion directl
on C}, the tensoR entering Eq(49), and consequently the
inverseS; enteringpe in that formula would have been sub-
stituted by the identity matrix;. The contributiorE '/ pg to B. Space component: diagonal part
the drift (here pg contains the rightS;!) would have pro-
duced therefore explosive behavic(ef“‘”‘z, a>0) in some
direction ofu. What happens is that linearity Afﬂ' together

Also this component is associated with a combination of
rotation and strain of the velocity, this time, as one moves at
with antisymmetry of C, impose the propertyCl fixed tlme_ fro_m one s%ace p(?|nt '_[0 another. Focusing, e.g., on
=%mRIR™ with E,, antisymmetric, and, keeping only the tr}_e contribution fromé;, we find in the diagonal system for
first terms in the SCB) expansion foIC} would cause losing '
this property. = 1__  2pll1 3 3_ 2331

We still need to enforce incompressibility, i.e., the zero Sz =PRI, BT = pefpREU (55
trace conditior; =0 [the first of Eq.(22)]. The fact that the In the caseR! « 8/, this becomes a pure rotation in the plane
SQ(3) expansion is carried 08,S,Cy, rather than orCJ,  x1x3 as one moves in the? direction. The diagonal compo-
will lead to mixing of harmonics of different ordek[com-  nent of the nonunique spatial term is the one associated with

I
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FIG. 1. Sketch of the velocity lines in a coherent structure char

acterized by a nonzero value @f (part out of diagonal of the
nonunique spatial temThe velocity components in the 13 plane

are arranged along strain line with expanding and compressing d

rections, respectively, along andxs.
the presence of helicityd in the turbulent field. Indicating
with o'=€'l g;uk the vorticity, we can write

H = (uo') = (u(w'|u) = € (uA"). (56)

Substituting the various contributions ﬂqk in the above

formula, we see that the only terms giving nonzero result ar

the diagonal ones ig. Working in the diagonal coordinate
system, we obtain then

H = 2[£1Ro5Rs3+ £,0R11R33 + &33R11Ry2]. (57)

From the point of view of S(3), this is a combination of
J=2 contributions from the second of E@6) (zero trace
part of £) andJ=0 contributions from the first of the same
equation.

C. Space component: part out of diagonal

The effect of this component is illustrated, for the contri-
bution from &, in Fig. 1. This effect consists of a strain of

the velocity components as one moves in the direction 2. We
give in the equation below the nonzero matrix elements of

Eki corresponding t(ﬁ (components still evaluated in the

diagonal coordinate systom

1 3 1133 —2_
1 -~ W, == _pEgRZZUL

=2peé&y Ry, + Rag 2

Lo}
—
Ll

! ZPEﬁ

2

R11(Ri1— Rsa) y
Ri1+ Ras

i

1

3_
o=

il

ES R33(R11 - R33)

2
PesL Ri1+ Ras

3

— RuiRas
. lR11 + Ras

2
3

= pe&iRoNls, Eg°=-2p U. (58

e
=
.

From the point of view of S(B), this is combination of)
=2 components from the EqB6) (the ¢ piece and J=2

PHYSICAL REVIEW E70, 046305(2004

components from the second of the same equdtfanout of
diagonalé piece. This is the case in which the incompress-
ibility condition needs, in order to be enforced, consideration
of spherical tensors of different ordér

It is possible to see that, in the non-Gaussian case, all the
results obtained starting from E@9) can be recovered sub-
stituting in that equatiopg with a Gaussian PDIpg with
identical S'. Notice that, if a bi-Gaussian is used to model
pe, the ratiopg/ pg entering the contribution to the drift will
decay like a Gaussian for large when the slowly decaying
Gaussian enteringg, which decays slower thapg as well
[see Egs(Al), (A2), and(A4)] become dominant. However,
as in the case of the symmetric secteee discussion at the
end of the preceding sectiprthe correspondence between
drift and second order correlations ceases to be unique as Eq.
36) becomes nonlinear and E@35) begins to involve

igher order velocity correlations.

VI. DERIVATION OF MARKOVIAN LAGRANGIAN
MODELS

Knowing the form of the tensora,' and (dw' dw)), al-
lows the derivation of Lagrangian stochastic models. This is
gone most naturally setting in E¢B) dx*={dt,v dt}, where
Vv is the particle velocity. This entails a Markovian assump-
tion on the Lagrangian statistics, whose validity will be
checked in the next two sections, although it is not very

different from the one used in standard Lagrangian models.

A. Passive tracers

Let us write explicitly the Langevin and Fokker-Planck
equations associated with our Lagrangian model, considering
first the simpler case of a passive tradet={dt,u dt} where
u(t) identifies the fluid velocity sampled by the moving par-
ticle,

du' = 0 dt=(u-A'+Ag)dt +dw', (59)
(G +u - V)pL+ aul(u- AT+ Ag)p 1= 3dudu(BYpy),
(60)

where

- d S e .
Bl = (awaw) = T—;[B{J(l) +Bi(u)]
[see Eq(38)] andp,(u,X,t) is the PDF of finding a Lagrang-
ian tracer aix with velocity u.

Exactly as in the Thomson-87 approach, in the Gaussian
case, the contribution to the drift-A'+A,' from turbulence
nonhomogeneity is at most quadraticunwith the quadratic
terms produced byi-(®'+W'). However, disregarding the
nonunique terms, the form of this contributions differs from
the one discussed in Refgl,6]. _

Also the nonunique contribution-=', to lowest order in
the Sd3) expansion, is at most quadratic in with the
quadratic piece associated with the space compomest.

The observation in Ref26] that helical contributions in La-
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grangian stochastic models must be quadratic in the velocitthe integral length of the turbulence. Substituting the esti-
is thus confirmed. mate for the viscous dissipation from our modet uﬁ/lu

Notice that, from the relatiod =uA®, higher orders in the into Eq.(62) and settingre~ 7, we obtain
SQ(3) expansion correspond in the Lagrangian model to
higher order polynomials iru contributing to B, u-Al
+Koi andu_Ei+EOi' Conversely, at the random field level, This tells us that th_e _Thomson—87 mode_l cannot be recovered
independently of the order in the $8) expansionand for ~ from E,?- (61), for finite Co, by setting simultaneouslsi=0
Gaussian statistigsthe drift terms are at most linear in and it/ e=Coe. The equivalent limitsa—0 and Co—

The important feature of the model described by Egg) ~ correspond to the regime of much shorter than the eddy
and (60) is that the well-mixed condition imposed on the Fotation time corresponding to the Kraichnan mo¢28].
random field, encoded in Eq&L8), (20), and(28) [Egs.(30) The way in which this limit is cgirned out, _however, is dif-
and(32) in the Gaussian cakeranslates automatically into ferent in the two approaches: in ours, it is the turbulence
an identical condition on the trajectories. In the incompressintégral scald, that is sent to infinityfsee comment after Eq.
ible case considered here, this condition is equivalent to thé*D]; in the standard approach, the diffusive lin@p— o
ergodic property (u|x,t)=pe(u,x,t), which will be shown ~ corresponds directly to the ong— 0.
to hold, in the next section, right thanks to the conditin
=0. This property implies trivially that Eulerian averaggs B. Solid particles
and averages along trajectorigg coincide. Let us pass to the analysis of the solid particle case. The

At this point, the model described by Eq59) and (60), solid particle dynamics obeys an equation, which in quite
is undistinguishable from a model derived through thegeneral form(neglecting memory effects associated with the
Thomson-87 technique starting from the same PDF, the onlBasset forcgcan be written as
difference being in the form of the noise term. In its simplest

a~ Coh.

form, the noise tensoB' is isotropic, and is obtained by v=F(v,u). (63
settingA=uA® in Eq. (41) and deriving with respect t4°,  p general form was derived in Reff30], where neglect lift
o282 alul( . Uil effects. Ref.[;l]. These equa;ions are all derived in the limit
Bii = _T{gl + —(5'1 - _2)] ) (61) of particle diameted small with respect to the scales of the
TE ur 3Jul flow, and low particle Reynolds number Red|u-v/|/v,

This expression must be compared with the one in thé{"he.re”.is. the kinematic viscqsity. We wil _consider Ed3)
Thomson-87 approacl = 51 C e. (As a technical aside, no- in S|mpl|f|_ed form by accounting only for linear Stokes drag
tice that we started in Sec. Il with an additive noise and Weand gravity,
have arrived here at a multiplicative noise term, which is . U-VHvg
automatically intended, in the approach that we have fol- V=—"—, (64)
lowed, in the Itd sensg20].) s

The difference in the analytical expressions underlies avherers=1/18yd?/ v, with y the density of the particle rela-
difference in physical interpretation: while in the tive to that of the fluid, is the Stokes time, and is the
Thomson-87 technique3” dt is precisely the Lagrangian particle terminal velocity in a uniform force field and a qui-
time structure function for inertial time separation, in our escent fluid. In the case of gravityg=7<g with g the gravi-
approach, it is a nonuniversal quantity whose form is detertational acceleration. More in general;, may account for
mined in function of the large scale turbulence geometry. Irbody forces like the effect of the Saffman I[f31].
the Thomson-87 approach, the time scale is fixed by the The analogue of Eq59), in the solid particle case will be
viscous dissipatior, which fixes the expression for the La- obtained setting in Eq8) dx“#={dt,v dt}, with v the solid

grangian correlation time particle velocity,
2u2 (62 du' = Ul dt=(v-Al+A))dt+ dw/, (65)
us = .
Coe where nowu(t) is the fluid velocity sampled by the solid

In our approach, the time scale is fixed directly 4y To be  Particle a”d<dW'qW]>:B”dt:(U$/.TE)[BP(1)+B”(V)]dt' No-
precise, the association betwegrande in the Thomson-87  tice that the drift tensorA' still depends onu, while
model, is strictly valid only in the Gaussian cg@s]. Also ~ (dw dw)) depends only onv. The Lagrangian PDF
in our approach, however, non-Gaussian statistics leads to p.(U,V,X,t) will obey the Fokker-Planck equation,

not being directly associated with the Eulerian time scales,

(Ei . N
but only with the fast part of the correlation decgsee the (@ + V- V)p+0,i(Fip) + a,l(v - AT+ Ag)p]
end of Appendix A. 1 N
The two approaches depend on dimensionless constants, =23di(B'py). (66)
2

Co anda, which can be related in a semiquantitative way. As

discussed in correspondence to E4l), the parametea  Equationg63), (65), and(66) are in the standard form for a
identifies a characteristic length for the random fiéld “two-fluid” Lagrangian model for solid particle transport,
=urte/a, which, at least in the Gaussian case, corresponds tioe., a model in which the fluid and solid phase are taken into
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account at the same time and are treated on the same footing. VIl. LAGRANGIAN ONE-TIME STATISTICS AND

All problems in the fluid limit, present in models in which ERGODIC PROPERTIES

the separation of fluid and solid particle trajectories was con- . . .
sidered without accounting for the geometry of the process AS discussed at the end of Sec. Il, we can imagine(&.

[16] are clearly avoided: when inertia and gravity are sent t*S 9ving the local behavior of a random velocity field whose

zero, the fluid case described by E¢89) and (60) is auto- restriction to straight lines in space-time are Markovian pro-
mati,cally recovered. cesses. This allowed to have a random velocity field with

We can easily estimate the turbophoretic drift, i.e. theEulerian correlations in time and space, which are both well

component of particle transport due to the turbulence intendefined and easy to calculate. Unfortunately, unlessathe
sity gradien{32,33. Multiplying Eq. (66) by v' and integrat- —0 I]m|t of the Kralchnan model is can|der{3218], it is not
ing in v andu we obtain at stationary state and for uniform possible to hypothesize at the same time a Markovian behav-

concentratiomj@‘vj),_:<F‘(v u))., which, for linearF!, can ior along trajectories. In consequence of this, the Lagrangian
be inverted to obtairv'), [subscriptL indicates that we are statistics becomes a complicated business.
averaging over the Lagrangian PO¥;(u,v,x,t)]. In the

However, it turns out that different statistical quantities
: : are affected by the presence of memory in qualitative differ-
Stokesian case described by E86), and small Stokes num- y P ying
ber St=rg/ 7z, we can approximaté&'v’), =R, and we ob-

ent ways and there are situations in which Markovianization
i of the trajectories becomes appropriate. Let us try to under-
tain stand what happens in detail.
W'y, = - TsajRij +viG_ (67) Thg centra}l quantity one _needs for a _q§scr?ption of La-
grangian statistics are conditional probabilities in the form
We can try to understand Eq85) and(67) from the point of
view of a model satisfying the well mixed condition. The pL(XolX1 ... X, (68)
particle flow, due to the effect of inertia, is compressible and
preferential concentration phenomena are known to oCCUfhereX, = X (t)={u(x(tJ),t),x(t)}, k=0, ...n. Let us con-
[29]. Therefore, we do not expect in general the ergodiGjger for now the simplest case of a passive tracer. Such
property p (U, V[x,)=pe(v,u,x,t) to be satisfied. Turbo- qnqitional probabilities could be obtained ideally by carry-
phoresis prov_ldes the simplest illustration of this p_h_enom-Ing on a Monte Carlo of trajectories originating frdity, X .}
enon. Averaging Eq(64) over p (u,v,x,t) and combining 44 sampling the particle positions and velocities=t, k
with Eq. (67), we obtain in fact the relation =n-1,...1. Let usfocus on the case=1, which presents
W, =- = Ri # (U} =0, a'lr.eady all thg_ difficulties dye to memory. Actually, Fhe tran-
sition probabilityp(Xo|X 1) gives precisely the evolution of a
i.e., in inhomogeneous turbulence conditions, Eulerian angjoud of tracers from an instantaneous release, i.e., a puff;
Lagrangian averages give different results. from the same transition probability, also the Lagrangian cor-
For these reasons, in the Thomson-87 approach, a twqelation time could be determined and the calculation will be
fluid solid particle transport model, would require knowl- jllustrated in the next section. Suppose we have a set of
edge, in some reference situation, of the Lagrangian PDlrajectories starting at time;, with initial condition X,
pL(u,v,X,t), meaning that information must be available onwhose form is known up to time This allows us to recon-
both the mean particle concentration (x,t)  structp (X(t)|X;). The conditional probability at the instant
=[d® d® p(u,v,x,t) and the conditional PDthe PDF  t+dt will be given by the formula
along a single particle trajectory, (u,v|x,t). Notice that
this may imply substituting Eq.63) and (64) with a model
equation whose coefficient are determined by the well mixed (X (t + dt)|X ) =J dOX () pL (X (t+ dO) X (), X ) pL (X (D)X )
condition. Actually, one-fluid models exist, in which only the

particle phase is considered and only the RP#|x,t) must (69)
be known, whiled is obtained from the continuity equation
8,0+ V -((v)_ 6)=0 [39]. which corresponds to first summing all the trajectories going

In our approach, knowledge ¢f: is sufficient to deter- from {ti, Xy} to {t+dt,X(t+dt)} passing througHt,X ()},
mine the form of the equation far (65) (the one forv is ~ and then summing oveK(t). Now, to determinep(X(t
unchangeyl without any assumption on the form of +dt)|[X(t),Xy), we could average first on the part of the tra-
pL(u,v,x,t). This will be shown in Sec. IX to produce auto- jectories going from{t;, Xy} to {t,X(t)} and then on that
matically the correct form of the Lagrangian correlations forgoing from {t,X(t)} to {t+dt,X(t+dt)}. From the point of
the fluid velocity along solid particle trajectories, accountingview of a Monte Carlo, this means that we can consider an
for the effect of inertia and trajectory crossifitl]. Notice  ensemble of fictitious trajectories whose dynamics are only
that, imposing the well mixed condition op (u|x,t)  conditioned to the initial conditioft;, X} and to the current
=[d% p,(u,v|x,1t), within a simplifying ergodic hypothesis position{t,X(t)}.
pL=pe: is not sufficient to obtain these correct behaviors; the We thus reach the not so obvious conclusion that, to de-
anisotropic renormalization of the correlation times may betermine the evolution of a PDF with conditionsraprevious
accounted for only byad hocmodification of the expression instants, we need to study a dynamics conditioned-td
for the noise tensor Eq3) [12]. instants, but we do not need the whole trajectory history.
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Because of this, if we are interested in a one-time PDF, d,i(Fip) + a4l (v - AT+ A)p 1= 304diBp, (75
Markovianization of the dynamics will be an appropriate o
procedure. where B =B (v). Exploiting well-mixed[see Eq(19)] and

This fact allows us to verify analytically that the one- setting from isotropyE =0, this equation can be rewritten in
point velocity PDF sampled by a passive tracer coincideshe form
with the Eulerian PDF; in other words the ergodic property i 1 i B
one expects from incompressibility is satisfied. 3,(Fipy) + 3, 3B'(3pL~ pLéui 109 pe) | =0 (76)

In the case of a passive tracer“e{dt,u dt} whereu(t)
identifies the fluid velocity sampled by the moving particle
and Egs.(59) and (60) will be the Langevin and Fokker-
Planck equgtions asso_cig'ted with the Markovianized dynam- aulpL (B u)ay log pulpe + du(Blluy)]=0. (77
ics. From incompressibilitfsee Eq.(12)], and from the
properties of the drift componenss, ®, and ¥ [see Eqs. We see that nonergodic behaviors are associated with the
(18) and(21)], we can write divergence of the average over solid particle trajectories of

the velocity structure function,

and, integrating in &, we reach the following equation for
'the deviation from ergodicity,

(G+u- V)p+ddp+ ujr?uid)}
=— (AU + A - 1B¥a)p ). (70) 8u(Bu) = f FudipL(VIWBI(v). (78)

Setting p_=pe, from Egs.(19) and the time component of | the case of solid particles, for whig|u) + 51 (u), we

Eq. (20), Eq. (70) reduces tau'dipg=-u'g,;®j, which, from 514 expect in generad, (5 |u) # 0. This turns out not to
Eq.(20), is an identity. The ergodic property is thus SatISerd'be true, however, when turbulence is isotropic. Let us show

This is not a trivial property. We can easily construct ahow thi,s happené

counter-example in which the incompressibility property . . . )
Ini{AWAW)=0 [the second of Eq12)] is not satisfied and per\:\é?nginmd[esceoemggiiu%Q/JSZE;Q)]sphencal vectors de
ergodicity is violated. Considering for simplicity stationary
homogeneous turbulen¢kence® '=W '=0) and choosing VoL (V|U) = pov + pra(U - VIV + ppoi + -+

. . (79
E,'=0, we have in fact, setting in E¢19) dx*={dt,u dt},

_ - where, from isotropy,p=pi(v|,|u|). Higher harmonics
u-A'+Ag =384, log pe (71)  (not indicateg are by construction orthogon@ee Appendix
while Eq. (60) dictates B). From Eq.(41), we see that only the term

u-Al+A) =284, log p_ + 29,8". (72) h=py3(U-V)u+pgu (80)

Combining EqS(72) and (73), leads to a differential equa- can contribute tmul<BIJ |U> In order for this contribution to
tion for oL WhiCh, due to homogeneity af in |u|’ can be be Zero, it is sufficient that the curl with reSpeCl\/t(D)f h be

integrated along the directiai=u/|ul, identically zero,
" V[ dyp12— prv X u=0 81
pL(U) = constpg(u)exp(— f dS[(BY) ;10,8 =) - (M 0piz™ pul (81
so thath can be written in the form of a potential term
(73 V,g(u,v), and, substituting into Eq78) and integrating by

Taking a noise term not satisfying incompressibility, e.g.,Pa"s:
Bi(A)=2u/|A]d1, we would obtain p (u)
=constu|pe(u) and ergodicity violation. Fg(Buy = —f d® g(u,v)a,iB'(v) = 0.
We can repeat the calculation to check for departures from
ergodicity in the solid particle case. Ergodicity means in thisNow, we can obtain Eq81) simply by imposing the condi-
case that the fluid velocity distribution sampled by the solidtjon, from isotropy,
particle . .
a{IV|"wIvKu) = ay(|v["o'vNu), (82
pulubo = f pu(Uvix)dv T4 ith i#j#k andn=0. In fact, writing the averages in ex-

licit form, Eq. (82) can be shown to be equivalent to
coincides withpg(u,x). In all the Monte Carlo simulations P a-(82 q

that we have carried on, described in detail in Sec. IX, we 3 Lk

have found that, despite compressibility of the solid particle f & V"0 d,idui = diduilpL(V]u) (83
flow, ergodicity was satisfied in isotropic homogeneous con-

ditions. The mechanism seems to be the following. and again, from orthogonality of the decomposition, only the

In homogeneous stationary conditions, the Fokker-Plancl,, andp,, terms inVp, could contribute. Hence, exploiting
equation for the distributiorp (u,v) will read, from Eq. the fact thap;; depends only ofu| and|v|, Eq.(83) becomes
(66), equivalent to
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i\/i

f oIV iz pralV =0 mv)=ge MV=a-mv),  ©0

which implies Eq.(81) and satisfaction of the ergodic prop- we obtain
o WVELOU(0,0) =T (V)Cy, (0 + TTH(V)Cy(D), (1)

where
VIIl. TWO-TIME STATISTICS AND THE LAGRANGIAN

aV|\t
CORRELATION TIME Cy, () =u2 exp(— (1 + M)—) (92

Explicit determination of the Lagrangian dynamics taking Ur /7
into account memory of an initial condition is possible whenand
the u(x,t) is isotropic, homogeneous, and Gaussian. It thus 5
becomes possible to estimate the error implied in the Mark- Cy () =u2 exp(— (1 +aM>l). (93)
ovianization of the trajectories. The simplest estimator is the 3ur/ e

Lagrangian correlation time We shall need also the inverg;(t—t,,) of the correlation

1 (* matrix (U'(t)ul(t,)), 1,m=1,2;t,=0, t,=t, defined by the
L= QJO dt(u(t) - u(0)), (84  relation
T

. e . .
whereu(t)=u(x(t),t) and we are considering passive trac- 2 Dyt = (W (U (te)) = 2 (U )U (£ YD (b = 1)
ers. As discussed at the start of the preceding section, we " "

need an evolution equation for the trajectdy(t),x(t)}, =5f5|n- (94)
given an initial condition at=0 [for simplicity, fix x(0)=0]. .

The starting point is the following decomposition for the From Egs.(91)93), we find

tracer velocity: Dij(t = ta) = 115 (U)D, (t = t) + II;(U)Dy (1~ t),
u(t+A) = (u(t+A)[u(t),x(t);u(0),0) + Aw  (85) (99
plus knowledge of the conditional averages, whereU=u(t)-u(0),
(u(t+M)lu(®),x();u(0),0) D=t ( Cu. (0 - cmo) (6
and Cu. (0)-Cj, ()\=Cy, () Cy.(0)

(AWAW|U(t),x(t);u(0),0). (86) and we have similar expression fBﬁ. At this point, we can
obtain from Eq.(C7) the expression for the average evolu-
As discussed in detail in Appendix C, these averages can k#on of the velocity along a trajectory, conditioned to an ini-
obtained from the correlation between velocities{@i0}, tial condition at time zero,
{t,x(t)}, and {t+A,x(t+A)}. We identify correlations be- _ L .
tween points on a trajectory by U'(t+ A)|u(t),x(t);u(0),0) =[C(A)Dj(t) + Cl(t + A)

Ci(a) = (U Dui(t+4)). (87) XDj(0)]u(0) + [CI(A)Dy(0)

ij ) k
If uis Gaussian, homogeneous, and isotropic, these correla- Ut A (97
tions can be expressed in analytical form. The mean rate o&s obvious, memory of the initial condition at time zero is
fluid velocity change along a generic space-time directiorlost whent— . Notice that, if all pointg0, 0}, {t,x(t)}, and

{1,V} will in this case take the form {t+A,x(t+A)} are aligned along the same space-time direc-
™ 2V tion {1,V}, all thell, andII, entering the correlation func-
A5+V1A} = _Kl +a—>u'L + (1 +a—>ufl], tions in Eq.(95) will project along or perpendicular to the
TE Ur Ur same vectoW. In this case the componentswfparallel and

(89 perpendicular tov decouple and the indices disappear; for

) instance,
whereu , andu, are the components of perpendicular and

parallel to the fixed directiol, and we have used EqR9), (uy(t+ A)Ju(t),x(t);u(0),0) = [Cy;(A)Dy, (1) + Cy(t + A)
(30), and(41), and the expressioRI =u3 4. %Dy, (0)]u(0)
Solving the equations for the correlation function along witO L

{1,v}, +[Cy(A)Dy,(0)
d i ) ) o + CVH(t + A)Dvn(t)]U”(t) .
- J = ! A T
U VEDU(0,0) = (A + VIAUI(0,0)  (89) (98
and introducing longitudinal and transverse projectors and all the correlations have the same decay rate fixed by Eq.
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16— — T — T Following Csanady{10], Sawford and Guesf12] kept
0.9 - o 4 into account the effect of gravity produced trajectory cross-
08 < o i ing by a suitable assumption on the renormalization of the
oL o ) correlation time of the fluid velocity sampled by the falling
) O particle. Their model was applied to grid-generated turbu-
& 0.6 - ¢o ] lence and their results were found to agree with experimental
= 0.5 ¢ o 7 wind tunnel data. It is not clear, however, how much this
~ 04} © - approach can be extended to generic nonhomogeneous and
0.3k o i nonstationary turbulent flows, especially in the case of strong
0.2 - o g turbulenqe gradientg36]. .
o1 kL o O _ Free-flight modelg13] (see alsc_) Ref{37] for a brief re-
oy i o .0.. view) are known to make unphysical assumptions _about the
00?7 o1 1.0 10.0 velocity that particles assume when they are prOJ_ected to-
a wards the wall from the buffer and logarithmic regions. As

regards the eddy-interaction model of Kallio and Refgk§,

FIG. 2. Dependence of the Lagrangian correlation time on théhis has been shown in Ref38] not to satisfy the well-
ratio a between eddy lifetime and eddy rotation tinié; exact; ¢, mixed condition. The model described in REF8] improved
Markovian approximation. this aspect, but without reproducing the build-up of concen-

tration. The issue, to be discussed in the next section, is the

(93) It is then easy to show that the first term on the RHS Ofdlfflculty in iSOlating near wall solid partiCIe accumulation

Eq. (98) disappears and we have effects from spurious concentration build-up from unproper
V[ A tre:tment of tge well-mixed t():or)ditijop. RiSS), but in thi
recent advance was obtained in , but in this
(ut+A)lu(t).x(t);u(0),0)= u,(t)exp(— (1 " a3_LI-|—)T_E> ' approach a turbophoretic force had to be introduced from the
(99) outsiqle, Wherea§ in our approach the turbophoretic flux re-
sults in self-consistent way from the dynamjsse Eq(67)].
Hence (u,(t+A)|u(t),x(t);u(0),0)=(u,(t+A)|u(t),x(t)). If The central role in the solid particle dispersion is played
the trajectory is developing along a straight line, we will by the correlation timer/, of the fluid velocity sampled by
recover Markovian statistics as required. the solid particles. In particular, with/ (I) we indicate the

Expressing Aw as the difference between(u(t longitudinal effective Lagrangian time, i.e., along the direc-
+A)|u(t),x(t);u(0),0) andu(t+A), and substituting into Eq. tion of gravity, and with/ (L) the transverse effective La-

(C8), we obtain instead, for the fluctuation term grangian time.
o . y " Let us briefly summarize the main properties %fi).
(Aw'Aw![u(t),x(t);u(0),0) = C¥(0) - D (0)[C'(A)C(A) When gravity is dominantvg> uy), the correlation function

+Cli(t+ A)CKi(t + A)] = Dy (1) of sampled fluid velocities decays faster than that of passive

i ki i tracers andr (i) <7, wherei is referred to longitudinalll)
X[CH(A)CH(t+A) + Cl(t+A) or transverse 1) [10,17. Takingvg=grg with g fixed, we
xCH(A)]. (1000  see thatr (i) decreases from the valug, corresponding to
75=0, to zero asrg increases. Furthermore, the correlation
functions do not decay in the same way in all directions. Due
to the continuity effect described in RgfL0], the decay is

In Fig. 2 we compare the result of a Monte Carlo for the
Lagrangian correlation time E@84) using the exact dynam-

ics described by Eq985), (97), and (100), with that ob- slower in the direction of gravity, so that the longitudinal

tained from the Markowanlzed_ Version given _by E59). As Lagrangian timer () is longer than the transverse one
could be guessed, the Markovian approximation becomes ex-

act in thea=0 limit, when the trajectory, in a correlation (L), . . .
time, remains close to the time lifd,0}. At least in this In the inertia dominated caseg <uy), the sampled cor-

case, the choice given by E¢L5), of Markovian statistics fe';”‘“‘?p func(tle()’r;dec_?Ks lslo_\;ver th(;a_n i?]at of passwe;) tracer
along rectilinear cuts in space-time, is the most appropriate\l;e octies andr = 7. The imit 7s— 1 IS IN€ Same as above,
ut nowr| increases withrs and, in the limitrg— <, tends to
the Eulerian time scaleg [11,34.
We will show shortly how all these effects are automati-
IX. SOLID PARTICLE TRANSPORT IN HOMOGENEOUS cally reproduced in our approach

ISOTROPIC TURBULENCE We consider a Gaussian homogeneous and stationary iso-

Inertia and crossing trajectory effects determine a substarffopic zero-mean random velocity field. Thus, the drift term
tial change in the statistics of fluid velocities sampled by theA 'is given by Eq(30) with S/=§1/uf, the PDF is given by
solid particle with respect to that of passive tracer velocitiesEq. (29) and the noise tensor is isotroffeee Eq(41)]. The

Several authors reserved particular attention to the longerms® ' and Tj' are zero for homogeneity and the nonu-
time behavior of correlation functions of sampled fluid ve-nique terms= ' are zero for isotropy.
locities and long-time particle diffusion coefficients  From now on in this section, we rewrite the equations
[10,11,34,3% expressing the velocitiasandv and timet in units ofuy and
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Tg, respectively. Note that, in this wayg becomes equiva- 1 e A A
lent to the Stokes number §80], i.e., the ratio between the
Stokes time and a flow time scalez in this casg As re-
gards gravity, it resultevg=St/Fr, being Frgrz/u; the
Froude number related to the magnitude of the grayitith
respect to turbulence scalghl].

Under these conditions, E@¢65) for the sampled fluid
velocity u(t) and the associated expression for the noise ten-
sor Bl will take the simplified form

du' = - (1 +afv)u' dt + a/6vlu;'dt + dw, 0.3
(dw dw) = 2[(1 +alv))8i - a/3v[p'pildt (101 0.1 1 10 100

T8
with V=v/|v| andv the particle velocity, whose dynamics is
given by Eq.(64). Applying to Eq.(101) the projectors de-
fined in EQ.(90), with V =v, it is easily seen thatuis split
into a longitudinal and a transverse component, characteriz
by different values of the driftl+2/3a|v| for the fluid ve-
locity component parallel to the particle velocity and 1 7 /7.=0.52 and tend to about 1 as— < (i.e., the Lagrang-
+a|v| for the normal component. As the role of gravity in- jan time tends to the Eulerian timeFor vg>1 (gravity
creases, the symmetry breaking of particle motion due to thgominanj the curves lose their dependence snand the
presence of a prEferential direction, i.e., the direction Ofcorre]ation time is approximate|y equa| to the eddy Crossing
gravity, involves a separation between the longitudinal andime given(always in dimensionless unjtby U<_31- This is in
transverse time Scateontinuity eﬂ:eC). In the gravity domi- agreement with the asymptotic formulas in Equ) F|g_
nated caseys>1, we havelv| =ug, with the result ure 4 shows the behavior of (Il) and 7/ (L) as function of

3 1 A7) 3 vg for _fixed Ts As expected, each_ curve tends to a constant
1l)=—, 7(L)=— - =-. (102  value in the limitvg— 0. The longitudinal times are always

2avg e 7(L) 2 longer than the transverse ones and, in the lirgit> «, they
It is difficult to obtain an analytical solution for the PDF collapse onto two different curves, whose ratio is 3/2 as pre-
p.(u,v) and the velocity correlation functiorg/(t)u/(0)) be-  dicted by Eq.(102). _ .
cause of the multiplicative noise. For this reason, numerical An exponential decay of the sampled fluid velocity corre-
simulations by means of Monte Carlo technique have beefftion function allows easy analytical calculation of the cor-
performed to obtain solutions of Eq4) and(101). Follow-  relation function forv [34,35,42. The last one reads, for

FIG. 3. Behavior of7 (L) as a function of the Stokes time

for different values of the adimensional terminal veloaity (di-

e?ensionless unijs ¢, vg=0; +vg=0.1; O, vg=0.5; X,ve=1;
,ve=2; x,ug=5. Reference line at/ =7 =0.52.

ing Yeung and Pop@40] (see also Ref{41]), we choose a =1, L,
value 7 /7=0.5, which, from Fig. 2, corresponds @ _ o _ et () — gtits
=0.65. Cp(t) = (@' (H0'(0)) =CL(0)| €78+ ———— |,

As mentioned in Sec. VII, the ergodic property has been 1-7d7(i)
verified to hold also in the solid particle case. Both in the (103

case of Gaussian statistics and of an isotropic kurtosis de-
scribed by Eq.(A3) (see Appendix A with and without Where
gravity, the marginal Lagrangian PDg; (u) defined in Eq.
(74 has been found to coincide, to within numerical error,
with the Eulerian PDFpg(u).

In the presence of gravity, this means that the average of
the sampled fluid velocityu), coincides with its Eulerian
counterparfu), which is zero, and that, therefore, no renor-
malization is produced on the value of the terminal velocity
Ve

Another nontrivial result from the numerical simulation is
that the correlation functions of both passive tracers veloci-
ties(7s=0 andv¢=0) and of sampled fluid velocities appears
to decay exponentially as in the Gaussian case for standard
Lagrangian models.

In Fig. 3 the effective transverse Lagrangian timgsL)
have been plotted as function ef ( in units of r¢) for FIG. 4. Behavior of7 (Il) and /(L) as a function of the termi-
different values obg (the Lagrangian time scale of passive nal velocity vg= for different values ofrg (dimensionless unijs
tracer has been reported for a comparjsdn the range Longitudinal: x, 7s=10; X, 7s=1; +, 7s=0.1. Transversea, g
ve<1 (inertia dominant the curves are increasing from =10;0, 7s=1; ¢, 75=0.1.
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i u_2|_ 3 T T T T T T T
C0)=T——. (109
P 1+ 747 (i) 2.5 - Y
The particle correlation time,(i) can then be calculated 2
; 1.5
* Cy(t) d
N\ — ——pr\s — A ..
i) = fo Cip(O)d'[— s+ 7 (i). R 1 .
0.5
By using Taylor’s theorem, thdong-time) diffusion coeffi-
cients 0
l 1 —05 - b _
K(l) =3 Iim_([xi(t) - Xi(O)]2>, i=1 L ] ] 1 | ] ] I
2 t*}OOt _1

0 50 100 150 _300 250 300 350

can be expressed in terms of the Lagrangian correlation Zq

times forv as follows:
FIG. 5. Comparison between input statistics for the Reynolds

t>7(i), «(i)= Tp(i)Cip(O) =7 (i). tensorRI, from DNS [45], and simulated data from Monte Carlo.

e H 11 12 22
Thus, the diffusion coefficientg(i) will behave exactly as ;?9? data are almost undistinguishati@. R™, (b) R, (¢) R, (d)

the effective Lagrangian times (i). The adimensional dif-
fusion coefficient of passive tracers is simply given by . o . . .
=7,=0.52. Hence, in agreement with REL1], «(i) will be For x5 <140, Eq.(105) coincides with Fhe mterpolauon for-
larger than in the passive scalar case when inertia is doml|- ula quaated n Ref[37]. Thus, Eulerian t|rirr1]e scales span
nant, smaller when gravity is dominant. Furthermore, whe rom 7£%=140 in the channel center tg?"=14 at the

ravity is dominant, the longitudinal solid particle diffusion walls. . . .
goeffi)c/ient will be larger tha% the transverspe one We have considered neither the effect of gravity, nor that

of Brownian motion. The second may be important in the
case of submicrometer particles. We have included, instead,
the contribution from the Saffman liff31]; indicating as
usual withd the particle diameter ang the particle to fluid

We focus in this section on phenomena of accumulatiordensity ratio,
and deposition associated with the interaction of inertial par-

X. SOLID PARTICLE TRANSPORT IN TURBULENT
CHANNEL FLOW

ticles with the inhomogeneity of the flow and the presence of ve=0 395 Va_Ul 1lzsign(a—Ul)(u —vy)
solid boundaries. Starting from the work of McLaughlin ST T ax, It Y

[43], the reference situation that is typically considered, both

to identify the main features of particle transport, and to teswhich is known to contribute to the solid particle dynamics

the functionality of transport models, is that of the turbulentin the rangers= 10 [37].

channel flow. As input data for the model, we have utilized the one-
We have tested our model in its simplest form, with apoint statistics from the DNS by Kim, Moin, and Mose].

Gaussian PDF, an isotropic noise and nonunique frhset ~ The channel width. . is nearly 360 wall units and the Rey-

to zero. We recall that, in this form, the model is describednolds number is of order 3300, based on the maximum mean

by Egs.(64) and(65), with the drift given by Eqs(18) and  Velocity and the channel half-width.

(30)~(32), and the noise by Eq41) with A=vA°=vAt. As We have carried on Monte Carlo simulations with,;

in the homogeneous-isotropic turbulence case, we have s&tl0 000 particles, uniformly distributed at the initial time. In

the free parametea=0.65, corresponding to the value of the order to obtain, after a suitable time, a stationary concentra-

ratio between Lagrangian and Eulerian correlation timetion profile, we have introduced a source of particles at the

7./ 7=0.52[40,41. We adopt standard wall variables iden- channel center to balance the deposition flux at the walls. As

tified where necessary with +, normalized with the frictionin Ref. [44], for these conditions and for quite all Stokes

velocity u., and the reference length and time Scajés times, it seems that a simulation tindg;,, of about 700 is

=y/u. and T*:X;/U*, wherev is the kinematic viscosity. sufficient to achieve a stationary distribution for the solid
For the Lagrangian correlation time we have used the inparticles.
terpolation formula As a validation, Fig. 5 shows that the model reproduces,
in the fluid particle case, the input statistics. Furthermore, the
7.=7.122+0.573%; - 0.001 29x3)%, x; < 140, well-mixed condition has been verified: despite the possible
numerical complications arising from the presence of a mul-
7. =-19.902 + 0.958 - 0.002 67x;)?>, 140< x; < 180, tiplicative noise, a uniform passive tracer concentration pro-
(105 file is preserved in time and no tracer deposition on the walls
takes place.
wherex, identifies the cross-stream directiome takex; and In Fig. 6 we give the profile of the fluctuation amplitude

X3, respectively, in the streamwise and spanwise diregtion for the normal velocity of a particle withs=60. The Monte
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FIG. 8. Comparison of experimental data on particle deposition
FIG. 6. Comparison between the Monte Carlo simulation resultsyy Liu and Agarwal( <, Ref. [48]) and by Wells and Chamberlin
for (v3) profile (8, and the homogeneous turbulence estimate for(x, Ref. [47]), with the results of our Monte Carlo simulations
the same quantityb). (thick lines. The lower line corresponds to simulations without

. . . taking into account the effect of the Saffman lift. The thin line is the
Carlo data strongly differ from the profile obtained from the result of simulations from a one-fluid modRef. [39]).

homogeneous isotropic turbulence estimate provided by Eq.
(104 and illustrate the difficulty in the priori determina- _ _ ) )
tion Of a reference PDE)L(vaat) in One_ﬂuid Lagrangian pa!’tlcle S|mu|tan.eously present N the channel. In Our- sSimu-
models(see discussion at the end of Sec).VI lations, we consider a particle deposited, when its distance

In F|g 7 we gi\/e account of the partic|e Concentra‘[ionfrom a wall is smaller than its radiud 2. Assuming that air
build-up in the near wall regions. The peak height appears t&§ the suspending medium, we fix for the density ratio the
increase withrg up to 7s= 10 and to decrease afterwards; the value y=1000, and for the viscosity=0.15 cnt/s; from
same decrease was observed in R&8]. In agreement with  relation 7s=1/18yd?/ v, the particle diameter will then be, in
both Refs.[44,46, and in contrast with the one-fluid model wall units,
in Ref. [39], we observe that the concentration maximum 12
occurs in the viscous sublayerits 1. Conversely, numeri- d=0.134r5".
cal data on the peak height present in literature show a defpyr results are shown in Fig. 8 and compared with experi-
nite scatter; anyway, our data are closer to those in Réf.  mental data by Refg47,48, and with an example of one-
than in Ref[46], with an overestimation of the order of 50% fjuid Lagrangian mode[39]. The agreement is good with

with respect to the first. respect to the data in Re#8], apart of a slight overestima-
As regards particle deposition, we have studied the depefion in the rangerg™>10. On the contrary, our model per-
dence onrg of the deposition flux, forms much better than the one-fluid model in the range
LNy 75<<10. As expected, the effect of the Saffman lift is felt only
JW=W, in the rangers<<10; in any case, the contribution to both
sim* Mo

deposition and particle accumulation appears to be small.
beingL. the channel widthN4 the number of deposited par-

ticles in the simulation timé&g;,,, andN, the total number of

XI. CONCLUSIONS

50 T T T T T
45
40
35
30
25
20
15
10

We have studied the statistical properties of trajectories
extracted from a random velocity field with nonzero correla-
tion time, analyzing the conditions for a Markovian approxi-
mation of the Lagrangian velocity. Our result is that a gen-
eralized form of the Thomson-87 well-mixed conditip
can be derived also in the case of random fields, provided
their velocity structure functions scale linearly at small
space-time separations. In the incompressible case, the Mar-
kovian approximation for the Lagrangian velocity defines a
Lagrangian model obeying the Thomson-87 well-mixed con-
dition, with uniform concentration PDF given by the Eule-
rian one-point PDF for the random field.

Depending on the circumstances, a random field based
approach to Lagrangian modeling may be advantageous. In

FIG. 7. Concentration profil® vs x;. () 7s=3, (b) 7s=10,(c) ~ the compressible case, knowledge of the one-point Eulerian
75=20, (d) 75=30, (e) 7s=60. PDF for the random field is sufficient to determine the coef-

8/6(40)
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ficients of the associated Lagrangian model. Theneous turbulence, this, despite compressibility of the solid
Thomson-87 approach, instead, requires knowledge of thgarticle flow. It is not clear whether this is an artifact of the
particular Lagrangian PDFindicated in Ref.[4] with g))  model; in any case, it is a nontrivial effect since the ergodic
which originates from an initial concentration profile equal yyoperty can be shown to be violated by very simple com-
to the instantaneous local fluid density, and which does ”%ressible flowgsee Eqs(71)<73) and discussion thergjn

necessari!y coi_ncidg witlpe. SOI.id particle transport is an In channel flow geometry, we have found good agreement
example in which implementation of the Thomson-87 ap-ith experimental data on particle depositipé7,48, and

g]rgggho'ns tﬂZtheErg?gr?;g:]WStgi Sltjirglsess ad-hoc hypotheses arpeartial agreement with numerical data on near wall accumu-

A second advantage of this approach concerns the nonLIF_ttlon [44,49G. We stress that these results have been obtained

niqueness problem: knowledge of the two-point Eulerianithout any parameter fitting, apart from the choiee

correlations completely fixes the form of the Lagrangian=0:65 inferred from Ref{40].

model, which is of interest for turbulent flows in complex _Clearly, a Gaussian model with isotropic noise cannot ac-
geometry, where it is not clear which model satisfying thecount for the effect of coherent structures and intermittency,
well-mixed condition, should be chosen. The relation ofwhich are an important feature of turbulence in channel
some of the nonunique terms with helicit¥6] and rotation ~ flows. Imposing the appropriate form for the one-point PDF
[6] is confirmed, and additional terms associated with straifand going to higher orders in the £ expansion allows
have been identified. Similar approaches, in which DNS inconsideration of these effects. Preliminary analysis suggests
formations on the two-point Eulerian correlations are used tahat inclusion in the model of non-Gaussianity, noise aniso-
determine the form of Lagrangian models, have been retropy, and nonunique terms, strongly affects particle deposi-
cently adopted in Ref27]. Alternative formulations for the tion and transport in wall turbulence. Modeling the structure
treatment of the nonuniqueness exist, in which the Lagrangef the turbulent correlations, based on empirical consider-
ian acceleration is modeled by a Langevin equation, on thations, appears to lead to models that perform worse, com-
same footing of the Lagrangian velocityecond order mod- pared to the data, than the simple isotropic Gaussian model,
els[9]). In these models, however, the nonuniqueness proka situation similar to that observed in Rp£9]. This suggests
lem is only displaced to the higher order acceleration. that careful consideration of the structure of the turbulent
A third advantage of the random field approach concerngorrelation, based on DNS data, may be necessary; this will
situations in which it is difficult to characterize an inertial be part of a different paper.
range, and in which concepts like the const@ptease to be Some issues remain to be clarified as regards the defini-
meaningful(e.g., in the buffer region of a turbulent boundary tion of a random field purely in terms of its local properties.
layern. Comparing our approach with the Thomson-87 tech-The global extension provided by E@L5), in which the
nique, the main difference is, to lowest order in the($0 random field is assumed “Markovian” along rectilinear cuts
expansion, the form of the noise and the parameteking in space-time is only one of the possibilities. This choice
the place ofC,. Both noise expressions require knowledge ofproduces effects on the form of the trajectories, which can be
guantities estimated from large scale features of the flow: thaccounted for only in the non-Markovian approach described
viscous dissipatiore and the Eulerian correlation timex, in Sec. VIII. (Markovianization along trajectories corre-
whose relative dependen¢as the one betweemandCgy) is  sponds to considering only local properties of the random
not an intrinsic characteristic of the models. In our approachfield.) An open question remains which global structure of a
however, a precise relation can be obtained between the pgandom field would lead, for fixed local structure, to trans-
rametera and the ratio of the Lagrangian to the Eulerian port properties which are approximated best by a Markovian
correlation timer / 7, which is valid also when the Rey- Lagrangian model. This, beside understanding whether the
nolds number is low. Using for this ratio the value obtainedassumption in Eq(15), which leads in the Gaussian case to
in Ref. [40], we obtaina=0.65. exponential scaling of the random field correlations, fits the
We have tested our model, with isotropic noise andturbulent structure in an appropriate way. For the choice pro-
Gaussian statistics, to study solid particle transport both irvided by Eq.(15), and for homogeneous isotropic conditions
homogenous isotropic turbulence and in channel flow geomand Gaussian statistics, the error in the ratidr= corre-
etry. sponding toa=0.65 appears to be of the order of 15% in
In homogeneous isotropic turbulence, the correct renordefect.
malization for the correlation time for the fluid velocity = Related to this issue is the fact that consideration of long-
along the solid particle trajectories have been obtained withlived coherent structures, corresponding to small values of
out resorting toad hoc parametrizations. The form of Eq. 7./7 and to large errors in the Markovian approximation, is
(101) descends directly from the random field and Mark-probably out of the range of applicability of our model. An
ovianization along trajectoriesee Eqs(8) and(65)]. This  alternative strategy, which would allow taking into account
illustrates the importance of the paramedén providing the  long-lived coherent structures, is the non-Markovian ap-
most simple characterization of space correlations in the tuproach described in Sec. VIIl. The noise and drift terms,
bulent flow. It is important to stress that, had we not taken ithhowever, must to be rederived including the condition at the
contribution into account, Eq101) would have been unable emission point following Eqs(97) and (100).
to reproduce the anisotropy of the time correlations. Extension of the present approach beyond one-point sta-
An interesting aspect we have observed is satisfaction distics is possible in principle, but is limited by the unphysi-
the ergodic property in solid particle transport by homoge-cal scaling of the random field structure function at small
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separations. Only concentration fluctuations on the scale of the laboratory frame with the inhomogeneity direction along

correlation length could then be taken into account.
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APPENDIX A: NON-GAUSSIAN CASE

A symmetric one-dimensional distribution with unitary
variance and kurtosis larger than three can be modeled by

means of a bi-Gaussian,

(1-a) X2
P(x) = —W(flzexp(— X2) + —(Zwﬁ)allzexp<— %) , (A1)
where

A -12
YT A -9

parametrize the strength of the kurto&é). From here, we

and B= §<x4> -1 (A2)

can obtain the expression for an isotropic non-Gaussian ve-

locity distribution,

_;{ p<_“_2)+ﬂ p<_u_2>}
PE= ()32 @ ex 2@ ’8)3/28)( 2812

(A3)

and for an anisotropic distribution, in which one of the ve-

x? (the usual channel flow geometry in whighis the mean
flow direction. We use the ansatz,

D, =a®, +(1-a)D,, +AD,, AD =F,5,
(A7)

where®,; and®, give the form of® in the caseg=p; and
pe=po. Substituting into Eq(20) and using Eqs(A4) and
(A5), we obtain

3R, == 8.0 ,0(p1~ po) (A8)

leading to the result in the laboratory reference frame

- [522
U/ VR dae—GZIZ

(A9)

uzl\ng

i_ i _PxPy
ACI)MI - — 53LQ|2(27T)1/2(?26YJ
where()} is the rotation matrix defined through=Qii, i.e.,
Qi=€-&.

i i

Analogous procedure is followed to obtain tHe term.
From Eqg.(21), in analogy with Eq(26), write

J=ap+(L-a)y+Ay, A{%ZS-ZG,

where :Bunﬂ':—ACD::—IA:Z, and decomposd’ii in an analo-
gous way. From Eq(A9), we obtain immediately,

b (VR
G= 2(’%”%293(920[ f ddi f T dx e,
) —o  JnRE?

(A10)

(A11)

locity components, in the diagonal reference frame for thednd substituting again into Eq26) [in real space:¥;

Reynolds tensor, is non-Gaussian,

pe=ap1+(1-a)p;=plapy+ (1 -a)pylp, (A4)
1 03
Px= ~ expl - —= )
(27TR11)1/2 2R11
pz= - exp ~ = J
(2mR33)112 2R*

1 p( 02 ) _
pyi = - expp—-—— |, i=1,2 (A5)
(27TRi22)1/2 2R|22

where

with R¥?=R??/2, R%?= gR?2, and the hat indicating the diag-

onal reference frame.

Let us calculate explicitly the drift terms in the case of

Egs.(A4) and (A5). Substituting into Eq(19), we find im-

mediately thatA is given by the superposition of the contri-

butions from each of the Gaussiamsand p,,

—_ 1 S
A ldx* =~ 2—p<dw'dwj)[ap1§1k +(1-a)p,S Uk (A6)

= é}&ukw(—ﬁujlﬁj], we find

AW} = 852G - Q509G (A12)

Assuming that the statistics ofwdbe independent of the
velocity, as we have done in Sec. Il, has the consequence that
all of the non-Gaussianity is contained in the drift. The small
scale structure of the correlations, associated withremain
therefore Gaussian. This breaks, for large values of the kur-
tosis, the direct relationship between the drift coefficients
and the correlation lengtH25]. It is easy to see what hap-
pens looking at EqgA4) and(A6). Whenever the value af
goes abovel, the slowly decaying, becomes dominant in
Eqg. (A6) and leads to a reduced decay rate for the fluctuation
that can thus slowly grow to produce a burst. We thus have a
hierarchy of time scale&ocus for simplicity on variations
along time,

7z — Time scale for backgroun@u ~ uy),
Br= — Time scale for burstéu ~ f*uy),

B%7e — Spacing between bursts,

This difference between the time scale for bursts and back-
ground fluctuations is not physically meaningful in general.
This has the effect of overshooting the burst contribution to

(notice the absence of the hats; it is not necessary here tarbulent dispersion, which is estimated by the product of the
work in the diagonal reference framé&he contribution from  probability 371 of a burst, its time scale and the square of its
the® and¥ terms has a more complicated form. Let us takevelocity scale,
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Bt X Bre X BUE = BUlTe. (A13)

(In comparison, the background contributioru%’E, and, if

the time scales for burst and background were the same, the

background and burst contributions would be identjcal.

APPENDIX B: SPHERICAL TENSORS AND THE SO(3)
TECHNIQUE

A symmetric two-index tensor function can be decom-
posed in spherical tensors in the form

SYy(x), dIYx), XXYy(x), K +xd)Y,(x),

Xy ("X + €M) 5, Y5(x)  and Xy (é"Md + €M) Y 5(X),
(B1)

whereY;(x) is a J-order polynomial in the components

Y4(x) = yiliz"'inilxi2 X (B2)

5
and y'12-3 is traceless with respect to any pair of indices
[19]. In consequence of this, the spherical tensors in(B)
will be polynomials of ordei=J, J-2,J+2, J, J+1, and
J-1, respectively. In the case of the noise tengor' Aw!),

we have the additional symmetry with respect to spatial in-

version, which imposes the condition tHatbe even. This
implies J even for the first four spherical tensors ahddd
for the last two. Limiting the analysis td=<2, we notice
immediately that the last spherical tensor in E81) disap-
pears. Similarly theJ=1 contribution from X,(€"™x
+e"™x1)3,,Y;5(x) is absent due to incompressibility; writing
Y1(X)=ypX™,

3%, (€"X + ")) 3Y1(X) = 5"y = O

which imposey,=0. We are thus left only with th&=0 and
J=2 contributions.

From Eq.(39), theJ=0 andJ=2 contributions ta3' will
have the form

XixJ

urBJ(x) = ajx| & + éW (B3)
. Im . Im o
uBl(x) = mem&' + 2C™|X| 39X Xpn + Wx,xmx'x'
|m . . . .
+ — (X + X)X X B4
2|x( )XXm (B4)

Applying the incompressibility conditios,B'i =0 leads to the
equations

a=-_,

a
3
8hM + 4cm+ 8eM =0,

3dM-4hm-m=0. (B5)

Substituting the solution to E@B5) into Eqgs.(B3) and(B4)
leads to Eq(40).

PHYSICAL REVIEW E 70, 046305(2004)

We give next the expressions for the spherical tensors
contributing to an antisymmetric two-index tensor,
é*xY;  €%4Y; and (Xd-xd)Y;.  (B6)
In the case of the antisymmetric part of the correlat@q
we have the additional property of antisymmetry with re-
spect to spatial inversion, which implies thabe even for
the first two and odd for the last.

In the case of a vector field, an analogous decomposition

can be obtained in terms of spherical vectors in the form

XYy(x), dYyx), and €*xdY;(x). (B7)

If the vector field does not have an axial component, only the
first two spherical vectors can contribute. If we have axial
symmetry, identified by a directiom, the tensorg't'2-I en-
tering Eq.(B2) will be zero trace symmetrized products of
components!' and of the identity matrix'. The first spheri-
cal vectorsx'Y;(x) and d'Y;(x) are, respectively,
X, (u-x)x, ((u-x)2-3ulx?)x (B8)
and

0, u, (u-x)u-3iu>.

APPENDIX C: CONDITIONAL RANDOM FIELD
STATISTICS

We want to calculate conditional velocity moments in the
form

(U'(Xo, tW (X, to) ... [U(Xq,ty) U(Xp,t),..).  (C1)

Let us indicate, forl=0,1,...n, U=u(x,t), and C,
=(U,U,y, assuming for simplicity a symmetric correlation
tensor. For a Gaussian random field, the velocity correlations
at points{t;, x|} are obtained from the generating function

I

10
p({m}) =ex _E E 7 Cim* 7m

(C2
I,m=0
Let us introduce the marginal PDF,
1 n
p({U|,| = 1, - ,n}) :NeXp (_ E E U| . D|m . Um>,
|,m=1
(C3

where NV is the normalization an®,,, is the inverse of the
restriction ofCy,, to I,m=1, ... n. We shall indicate in the
following this restriction with a prime:

>, {Ut={U,l=1,...n}, etc. (C4H

|,m=1

IE’E

The generating function forU, conditioned to U, |
=1,... his obtained by inverse Fourier transformipg»})
with respect to{#} in {U/} and dividing by the marginal
PDF p({U}),
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1 , o
p(%HUI})_—p({U(})fH |d77| exp< |2| 7 U
1w, '
‘52 7]I'Clm'7]m_§|: 70 Cor - 7
1
‘5710'(300'710)- (CH)
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Carrying out the Gaussian integrals, we obtain the result

(U{uih = ; "Col*Dim - Upp. (C7)

From here we can calculate the conditional moments in Eq.

(C1). We calculate first the mean velocity {iy, X} given
velocitiesU, in {t;,x} I1=1,... n,

1 ap(ml{Ui})
POHUY  ding
- 2,Cy
U PBOI{U D

(Ug{uih =

79=0
: f I1'dn »
|

1 ! . !
X ex _52 M Cin* =12 77|'U|)-
Im |

(Co)

The calculation of the second conditional moment is analo-
gous and the result is

1
p(mo{Ur}) 79=0

=Cpo— E 'C0| “Dim - Crno + (Ug{U[ )
Im

f92f’(ﬁo|{u|'})
d 1909 1Mo

(UoUl{ui hy =~

X(Uol{U/}). (C9)

[1] G. I. Taylor, Proc. London Math. So@0, 196 (1921).
[2] A. M. Obukhov, Adv. Geophys6, 113(1959.
[3] H. van Dop, F. T. M. Nieuwstadt, and J. C. R. Hunt, Phys.
Fluids 28, 1639(1985.
[4] D. J. Thomson, J. Fluid Mechl80, 529 (1987.
[5] S. B. Pope,Turbulent Flows(Cambridge University Press,
Cambridge, 2000
[6] B. Sawford, Boundary-Layer Meteoro@3, 411 (1999.
[71 A. K. Luhar and R. E. Britter, Atmos. Environ23, 1911
(1989.
[8] M. S. Borgas, T. K. Flesch, and B. L. Sawford, J. Fluid Mech.
332 141(1997).
[9] B. L. Sawford, Phys. Fluids A3, 1577(1991).
[10] G. T. Csanady, J. Atmos. Sc20, 201(1963.
[11] M. W. Reeks, J. Fluid Mech83, 529 (1977).
[12] B. L. Sawford and F. M. Guest, Boundary-Layer Meteor®4,
147 (199)).
[13] S. K. Friedlander and H. F. Johnstone, Ind. Eng. Ché®).
1151(1957.

1
1

[21] P. J. Holmes, J. L. Lumley, and G. Berkodarbulence, Co-
herent Structures, Symmetry and Dynamical SystéDasn-
bridge University Press, Cambridge 1996

[22] J. O. Hinze,Turbulence(McGraw-Hill, New York, 1975.

[23] A. C. Cohen, Technometric8, 15 (1962.

[24] J. H. Baerentsen and R. Berkowicz, Atmos. Envirdg, 701
(1984).

[25] A. Maurizi, and S. Lorenzani, Boundary-Layer Meteor8b,
427 (2000.

[26] A. M. Reynolds, Boundary-Layer Meteorol03 143(2002.

[27] S. B. Pope, Phys. Fluid$4, 1696(2002.

[28] R. H. Kraichnan, Phys. Rev. Let#2, 1016(1994).

[29] L.-P. Wang and M. R. Maxey, J. Fluid Mecl256, 27 (1993.

[30] M. R. Maxey and J. J. Riley, Phys. Fluidk, 883(1983.

[31] P. G. Saffman, J. Fluid Mech22, 385 (1964).

[32] M. Caporaloni, F. Tampieri, F. Trombetti, and O. Vittori, J.
Atmos. Sci. 32, 565 (1975.

[33] M. W. Reeks, J. Aerosol Scil4, 729(1983.

[34] L. M. Pismen and A. Nir, J. Fluid Mech84, 193(1978.

—_ o=

[14] P. Desjonqueres, A. Berlemont, and G. Gousbet, J. Aerosdl35] A. Nir and L. M. Pismen, J. Fluid Mech94, 369 (1979.

Sci. 19, 99 (1988

[15] A. Berlemont, P. Desjonqueres, and G. Gousbet, Int. J. Multi
phase Flow16, 19 (1990.

[16] P. Olla, Phys. Fluidsl4, 4266(2002.

[17] Y. P. Shao, Math. Comput. ModelR1, 31 (1995.

[18] A. M. Reynolds and J. E. Cohen, Phys. Fluiti4, 342(2002.

[19] I. Arad, V. S. L'vov, and |. Procaccia, Phys. Rev.39, 6753
(1999.

[20] C. W. Gardiner,Handbook of Stochastic MethodSpringer,
Berlin, 1985.

[36] A. M. Reynolds, J. Colloid Interface ScR32, 135 (2000.

-[37] G. A. Kallio and M. W. Reeks, Int. J. Multiphase Flotb, 433

(1989.
[38] B. Y. Underwood, Int. J. Multiphase Flow9, 485 (1993.
[39] A. M. Reynolds, J. Colloid Interface ScR15 85 (1999.
[40] P. K. Yeung and S. B. Pope, J. Fluid Mec207, 531(1989.
[41] Y. Sato and K. Yamamoto, J. Fluid Meci75 183(1987.
[42] C. C. Meek and B. G. Jones, J. Atmos. S80, 239 (1973.
[43] J. B. McLaughlin, Phys. Fluids AL, 1211(1989.
[44] 3. W. Brooke, T. J. Hanratty, and J. B. McLaughlin,

046305-20



RELATIONS BETWEEN LAGRANGIAN MODELS AND... PHYSICAL REVIEW E 70, 046305(2004)

Phys. Fluids6, 3404(1994). [47] A. C. Wells and A. C. Chamberlin, Br. J. Appl. Phys8, 1793
[45] J. Kim, P. Moin and R. Moser, J. Fluid MechL77, 3990 (1967).

(1987). [48] B. Y.H. Liu and J. K. Agarwal, J. Aerosol Scb, 145(1974).
[46] C. Narayanan, D. Kakehal, L. Botto, and A. Soldati, Phys.[49] T. K. Flesch and J. D. Wilson, Boundary-Layer Meteor6l,

Fluids 15, 763(2003. 349(1992.

046305-21



