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Diffusion of passive scalar in a finite-scale random flow
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We consider a solvable model of the decay of scalar variance in a single-scale random velocity field. We
show that if there is a separation between the flow sé&gfg and the box sizeék., the decay ratex
o (Kpox! Kiow)? is determined by the turbulent diffusion of the box-scale mode. Exponential decay at the rate
is preceded by a transient powerlike de¢te total scalar variancet 2 if the Corrsin invariant is zerd; /2
otherwis@ that lasts a timé~ 1/\. Spectra are sharply peakedkatk,,,,. The box-scale peak acts as a slowly
decaying source to a secondary peak at the flow scale. The variance spectrum at scales intermediate between
the two peakgKkpox<k<kKiow) is ~k+ak?+ ... (a>0). The mixing of the flow-scale modes by the random
flow produces, for the case of large Péclet numbek d? spectrum atk> kg, Where <\ is a small
correction. Our solution thus elucidates the spectral make up of the “strange mode,” combining small-scale
structure and a decay law set by the largest scales.
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I. INTRODUCTION Our model emphasizes scale separation between the box

The problem of the decay of passive-scalar variance ha@nd the flow. Our results are complementary18], where
recently been reexamined in the literature following the rethe decay of a scalar field is studied with more generaiity
alization that the decay rates, spectra, and higher-order sti¥0 dimensions
tistics based on small-scale Lagrangian-stretching theories We consider the advection-diffusion equation
[1-4] are not consistent with either numerida-8| or ex-
perimental[9,1(_)] result_s in the Iong-time limit. Ingtead, the_z GO+u -V 0= 7Ad, (1)
scalar decay is dominated by an eigenmodelike solution
dubbed “the strange mod¢3] because it combines intricate
small-scale structure with globally determined decay rate an#ith a random Gaussian white-in-time velocity field
self-similar statisticgself-similarity is also seen in numerical (u'(t,x)u(t",x"))=48(t—t")x" (x—x") known as the Kraichnan
simulations of the related problem of kinematic dynamomodel [18]. The mean scalar concentration has been
[11]). There has been a growing understandif@,12—1%  subtracted—i.e.,(6)=0. For the Kraichnan velocity, the
that the overall decay rate is set by the slowest-decayingngle-integrated scalar-variance spectrumdimimensions
system-scale modes. This brings to mind homogenizatiorr(k)= [dQ, k% %|6(k)[? satisfies an integro-differential
theory [16], which considers the turbulent diffusion of pas- equation valid at alk:*
sive scalar at scales much larger than the flow scale and
where it is the largest-scale mode that decays most slowly. In
this paper, we use a simple solvable example to demonstrat 2 — k. dir (e — 1! /
that the strange-mode decay rate is the rate of turbulent dif-%tT(t’k) + @7+ okT(LR = kik f k'l = kOT(EK,
fusion of the box-scale mode and show how the spectra of

: ) i (2
scalar variance accommodate both this box-scale diffusion
and small-scale structure. o N N N _

Qualitatively, the key idea quantified by our theory is asWhere k(k)=x(k)(&' —kikj/k?) is the Fourier transform of
follows. A scalar field whose variance is at the scale smallex” (X=X") and «o=(1/d)«"(0) is the turbulent diffusivity(d
than or equal to the scale of the ambient random flow ids the dimension of spage
mixed at a rate determined by the Lyapunov exponent of the [n Sec. II, we review the theory of scalar decay at small
flow—this is the Lagrangian-stretching approach. Howeverscales, which leads to the standard Lagrangian-stretching re-
if the size of the box is larger than the scale of the flow, thesults. In Sec. lll, the theory for a finite-scale flow is
scalar field can have variance at the scale of the box. The rafteveloped—this is the main part of the paper. Concluding
of transfer of this large-scale variance to the flow s¢ale ~ remarks are in Sec. IV.
bulent diffusion) can be much smaller than the Lagrangian

mixing rate, in which case this slow transfer sets the global The derivation is analogous to the standard one in the dynamo

decay rate. theory: see, e.9[32] and references therein. Note that thepace
version of Eq.(2) is local, but we stay with the integral equation
because we are interested in spectra. ¥repace calculations, see
*Electronic address: as629@damtp.cam.ac.uk [13,17.
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Il. SMALL-SCALE THEORY

If the Péclet number Peskl /7 is large, 6 varies at

scales as small as P& times the scale of the flow. This
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nentially fast with a rate~y,. Since k,~Pe%qq,,, the
Lagrangian-stretching results are valid feg 751 log Pe.

small-scale structure can be considered in the approximation

of spatially linear velocity field19,20—viz.,

) 1 o1
K (y) = Kkod" - 5K2<y26” - EY'W) : @)

lll. THEORY FOR A FINITE-SCALE FLOW

The challenge now is to findl by solving Eq.(2). Let us
specialize to three dimensioritheory in 2D is analogoys
and choose a simple form for the velocity correlate(k)

For the Kraichnan velocity, the Lagrangian-stretching theo=N&(k—kg,,), where N=15«,/16mk;,, [note that «,

ries [1-4] amount to the approximatio3). The scalar-

=(2/5)k4,, kol This describes a Kraichnan ensemble of ran-

variance spectrum satisfies a Fokker-Planck-type equatiolomly oriented “eddies” of sizé,,. We setky,,=1 and

(18,20

al T
4T=D—| k*— = (d = KT | - 29k°T, 4
h ak{ K (d-1) ] N (4)

where D=[(d-1)/2(d+1)]«,. This equation is valid foik

carry out angle integrations in E(R) to get

, 15 1+k dk’
OT(t,k) + (27 + ko)kT(t,K) = —— ok —K(kk")T(t,k"),
32 ‘l—k‘ k,

8

> Kyow- IN this limit, it either can be obtained from E@) by , 9 o2 O
expanding the mode-coupling term on the right-hand side owhereK(k,k')=—k""+2(1+k)k’*—(1-k%)" Itis not hard to

derived directly by assuming linear velocity figl20]. ascertain that Eq8) reduces to Eq4) whenk>1. Let us

The solution of Eq(4) that decays ak— o is now consider the opposite limik<1—i.e., the evolution of
e scale variance at scales much larger than the scale of the

T(t,k) = Cye™ 70K Kaa) i (Kky), 5 flow. In this limit, the integral in Eq(8) is dominated by the

whereC, is a constantk (z) is the modified Bessel function modes in the neighborhood of the flow scatel. Neglect-
of the second kindyo=(d?/4)D, k,=(D/27)"2 andx is the "9 7 We g€t

nondimensionalized decay rate, which must be calculated by 3 (kK

applying the correct boundary condition at smialllf we GT+ KT = Zkf da(k® - ) T(t,1+aq) =S(tk), (9)
assumed that the decay rate is fully determined by the small k

scales, a reasonable procedure would be to choose some {ghere time is rescaletika,,, —t. The solution is

frared cutoff k- and require the flux of scalar variance .

through k. [the square brackets in Eg4)] to vanish(cf. _ reytr ekt | okt

[21]). This can be satisfied only fOriFork*<k,], the Ttk = {T(O’k) +f0 dv'S(t’, ke ]e ' (10
zero-flux condition becomes $i/2) VA -1 In(k./2k,)]=0. _ _
Placing the cutofk. at the largest zero ensures tigk) is  In order to complete the solution, we must determine
everywhere positive. We gétf. [17]) T(t,1+q). Forg<1, it satisfies

(27/d)? _ _§f2+qd_k/( 12_k_’4_ 2) /
*[n(erz)p - L +OWogPe. (6 A4 k2= "0 = |Tk). (1D

qg ¥
This implies ak'*?'2 spectrum ak>k,. If the scalar vari-  As we shall see, the solutiofl0) is sharply peaked ak
ance is initially atk> k,,, these resultgor their analogs for =Kpeak™ 1/+t. In an infinite system, this peak would move
other model flows hold during the initial stage of the scalar jndefinitely towards ever smallée In a finite systemMKpeak
decay. However, in the long-time limit for cases in which theeventually becomes comparable to the inverse system size.
system(box) size is (several timeg larger than the flow  Strictly speaking, this means that one must solve the problem
scale, both numerical simulatiofi$4] and experimental re- with a discrete set of modes and application-specific bound-
sults[10] obtain much smaller decay rates and spectra withary conditions(cf. [13,17,23). Instead, we model the finite
negative exponents. The conclusion is that the zero-flilpox by introducing an infrared cuto,,, into our continu-
boundary condition is incorrect and the decay ratel must  ous theory. All lower integration limits ik space are subject
be determined by matching the solutig) to the solution at o this cutoff. This is not a rigorous operation, but it is a
nonlargek where Eq(4) is invalid and Eq(2) must be used reasonable modeling choice as longkgg,<1. The time at
instead. The spectrum &, <k <k, is then~k», where  which K eu Koo is t~ 1/kZ,,. Therefore, there will be two
[from Eq.(5)] asymzptotic regimes of scalar decayre transient stage t
—_ NI <1/kg,» When unmodified continuous theory can be used,
S =-1+(AA-V1-M). @ and the long-time limit & 1/kZ,,, when the box cutoff is
Note that forh <1, s(\) =-1+(d/4)\, which coincides with  important. Note that even for the transient stage, we assume
the formula proposed ifil4]. t>1; i.e., we consider times much longer than the “turnover
For the initial spectrum concentratediat k,, the period  time” of the flow. For spectra initially at small scales, we
of validity of Eq. (6) is the time it takes the spectrum to harden this condition té>log Pe, so that the Lagrangian-
spread tk~kqq,- The spreading can be shown to be expo-stretching theory ceases to be valid.
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Consider Eq(10). Sincek<1, we can Taylor-expand the uniformly valid across the transition region. Together with
initial spectrum: T(0,k)=C,k?+C,k*+.... Here C, is the  Eq. (11), this implies that the solutionl3) is valid for |q]
Corrsin invariantC, o [d3x(6(x) 8(0)) [23]. Some aspects of = (Int/t)2.

the scalar decay differ for cases wi@y>0 andC,=0. We In the long-time limitt>1/kZ,, Eq. (10) is still valid.
shall first develop our theory fa€,>0. The case oC,=0  Again, we assume that the dominant solution is @4). Its
will be treated in Sec. Il D. peak is akyea=Kkpox IN Eq. (11), the lower integration limit

is adjusted to maig|,kyo, as explained above. The flow-
scale peak is now confined q| <k, At theseq, Eq. (13)

A. Case 0ofC,>0 is replaced by
Consider first the transient stage<t<1/kZ,,. Let us as- 3G, 2
sume that the dominant term in the solutid) is Tt1+g) = gT(kgox_ q)e oot (16)

2
T(t,k) = Ck%e™, (12)  This solution gives the dominant contribution $¢t,x) [Eq.

which peaks akyeq=1/1t. We shall justify this assumptiom (9], so we havegintegrgting frorzn Koox 10 Koor) S(t.K)
=(3/8)Cot k(K2 =Ko,/ 5)Kpoy EXP(—Kiot), Which we substi-

posteriori Let us now determine the flow-scale solutidty. ) box

(11)]. Assuming that the main contribution to the integral in tute into Eq.(10). The box mode obeys

Eq. (1)) is from k' <1 (also to be verified lat¢rand substi- 3 )

tuting Eqg.(12) for T(t,k’), we get, to leading order in 1/ T(t,Kpoy) = <C2kﬁox+ Eczkgoxm t)e‘kbox‘. (17
(and neglecting);,T),

3c The time integral now has a logarithmic divergence, repre-
Tt,1+q) = __22€-q2t = Tl(t)e‘qzt, (13)  senting a small amount of transfer of scalar variance from the
8t flow-scale mode to the box mode. This contribution is not

significant because the second term in 8q) only exceeds

the first att=exp(10/3;,,), which is unphysically large even
for moderately small values d,,,. The width of the box-

scale peak, for which the decay la®) is valid, is estimated

by k2=, < 1/t—i.e., kK—Kpox= 1/ 2Kpout.

box

whereT,(t)=T(t,1). This describes the neighborhood of the
flow scale, where the coupling to the smilimodes pro-
duces a secondary peak with the widttl/vt. We shall see
below that Eq(13) is, in fact, valid beyond the width of the
peak and up tdg|~ (Int/t)*2 We now substitute Eq.13) . )
back into Eq.(10) to see that Eq(12) is, indeed, the domi- Outside the peakk®~kp,,)t>1, we have
nant solution. o 3C, K- /5 2
For k<1/\t, we getS(t,k)=K4T,(t). Equation(10) be- T(t,k) = Ck%e ™ + éTzk—kz_ E; Koo oot (18)
comes, to two leading orders k box
The first and second terms are of the same order w#en
, —k2 ~Int/t—i.e., k—kpoy~Int/kp,d. In the intermediate
T(t,k) = | Ck? + C4+fdt’T1(t’) K e®t.  (14)  scale rangd,,<k<1, we have
0 3C2 2
T(t,k) = ——=KI,,& ™00k = T () kpoyk. 19
SinceT;(t) decays faster than 1[Eq. (13)], its time integral th 8t o 1(0koo (19
in Eq. (14) tends to a constant whe®>1 and is dominated

t

S . , ; Let us summarize what we have learned so far. We have
by the initial stage of the evquUop OTl(F ) [there 1S N9 heen concerned with two narrow bands of modes: the flow-
divergence at’ =0 because the solutiaqi3) is only valid for scale modesT(t,1+q), q<1, and the large-scale peak
t’>1]. This time integral represents a finite amount of scalalzl.(t Koowd @t Kopme1/ % which became the box mode
variance that is initially transferred from the flow scale to the__,,’ Pea. peak™ =\ T 2 -

. U T(t kpgy In the long-time limitt>1/kg,,. The width of the
large scalegsmall k). That the effect of nonlinear coupling K 14t when t<1/k2 a4 ~1/kt when t
only appears in thi&* term is a reflection of the conservation pef/kzwas_l_h ]}| w enl dbox an id b boxt W edn b
of the Corrsin invariant: the coefficient in front &f cannot > € fiow-scale modes cou e assumed to be

box*
be changed. We see that, as long@Cas- constx kgox’ the first coupled solely to the peak because of the peak’s sharp domi-
term in Eqg.(14) dominates. Note that fdt~ 1/44, it is still

nance of all other modes: inde€tit, Kyead ~ tT1(t) > T4(1).
true that the time integral in EqL0) is ~k* so the above The width of the secondary peak at the flow scale was deter-
estimates remain valid.

mined by Kyeqe This width can be parametrized by(t)
Now consider 1{t<k<1. In this limit, S(t,k)

= (Kot 11112,
=3/ 4)@77T1(t)t‘1’2k3. Substituting into Eq(10), we get The large-scale peak and the flow-scale banq are singu-
larities of the scalar-variance spectrum. Note that in the long-
o 2, 3 [ 1/ time limit t>1/k2,,, the width of the flow-scale peak i
T(t.k) = Coke™ 4 2 VaTy (k. (15 =k, while the width of the box mode is kot <Kpor In @
finite system, the spacing of the modes cannot be smaller
The second term becomes comparable to the firsk at thank,,, so it is, of course, unphysical to talk about varia-
~(Int/t)*2. At largerk (but still k<1), it replaces the solu- tion of the spectrum at distances less tikgg. In our con-

tion (12) as the dominant asymptotic. The solutigtb) is  tinuous theory, the collapse of the singularities to profiles
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narrower thark,,, means that they should be interpreted as C. Decay of scalar variance(C,>0)

Sfi“gl? modes. Formally, they can be represented asc- Finally, we estimate the decay of the total scalar variance.
tions: thus, for the flow-scale band It) <k<1+A(t), We  Thg total variance is the integral of the wave-number spec-

write T(t,k)=N T () A(t) 5(k—1), where N, is a constant m which is made up of the nonsingular spectr{fu.
arising from integrating over the specific shape of the singur21)] and the two singular peaks. To obtain the contribution
larity: Ny =y in the transient stage adj=4/3 in thelong-  of the latter to the total variance, we must take into account
time limit. their time-dependent widths. We see that the contributions
from the flow-scale band and from the nonsingular spectrum
B. Nonsingular spectrum are always of the same orderA(t) T,(t) [taking into account
: —1+H
Let us now consider the nonsingular part of the spectrumt.h"’lt the spectrum a1 is f(k) ~ k= up tok,~ Pélz
For all k> A(t), we write gives an extra factor of B¥* to the nonsingular contribu-
5 . . . 2 .
tion]. Therefore, during the transient stage<1/kg,,), this
T(t,k) = NJA T[Sk — 1) + f(K)]. (20) part of the variance decays ast?7. In the long-time limit
(t>1/K2,,), we haveA () Ty(t) ~ kpoxT1(t) <t exp(—At). The
Substituting this decomposition into E() and neglecting  |arge-scale peak always decays tas(t). In the transient

dIn[A(t)T,(t)]/dt, we find the equation fof(k): stage, its width is~1/\t, which means that its contribution
5 ~1/t%2 dominates the rest of the spectrum by a factor-of
1 k . .
1+— |f(k)="kl1-—|H(2-k) and determines the overall decay law of the total varidnce.
10k;, 4 4 In the long-time limit, the width of the box mode is
31 (1 K ~1/Kpot, SO its decay law is~T;(t)/Kyoy i-€., it has the
+——J —K(kk)Hf(k'), (21 same time dependence as the rest of the spectrum, but its
16k Jj1 K contribution to the total variance exceeds that of all other

modes by a factor of-1/k?

box:
Note that these arguments can be tested for consistency

with the conservation law for the scalar variance in the fol-

where H(2-k) is the Heaviside step functiofthe term it
multiplies comes from integrating(k—1) and vanishes for

k>2]. ForI§<1, we expand (k') under the integral around lowing way. Pick some wave numberk<k,. Because of
k’=1 and find that the lowest-order termfiel)k°. Clearly, o qominance of the box mode, the scalar variance inte-

f(1)>0. Thus, the spectrum at sgales intermediate betweeé‘rated up tok is the same as the total variance. Its time
the box scale and the flow scale is derivative must be equal to the flux of variance throdgh
_ 2. [the negative of the expression in square brackets in(4{.

Ttk =NADOT,OLEAK+ DK+ -] (22) because dissipation is negligiblelakk,,. It is easy to check
Coefficients in higher-order terms will involve derivatives of that this, indeed, holds true. This argument emphasizes that
f at k=1. The first term in the expansia®2) comes from the turbulent diffusion at the box scale, which we have
coupling to the flow-scale mode and is consistent with theshown to control scalar decay, is not a dissipation mecha-
asymptotics(15) and (19), so the nonsingular solution con- Nism, but rather describes transfer of scalar variance to small
nects smoothly to the large-scale peak. The interaction of thgcales, where all the dissipation is done by molecular diffu-
nonsingular modes between themselves enters in the secoR®N-
order.

To complete the solution, we would have to fifdk) at o . _
k= 1. Fork=< 2, this means solving the full integral equation, ~When the Corrsin invariant is zero, the theory developed
but we do not really need to do this. Note that the modegbove has to be modified somewhat. The dominant term in
with k> 2 are not directly coupled to the flow-scale mode. Inthe smallk solution is~k* and includes contributions both
a rough way, it can be said that the Fokker-Planck regimdrom the initial spectrum and from the initial finite amount of
starts ak=2 and the solution of Eq4) must be matched to nonlinear transfer of scalar variance from the flow-scale
T(t,2)=N;A(t) To()f(2). The specific value of(2) is not ~mode: Equation(12) is replaced by
important. The matching is done by setti@ o« A(t) T,(t) _ &
and A=—; d In[A(t) Ty(t)]/dt (the effective decay raten T(tK) =[Cq + D(t k) K™, (23
Eq. (5). Here y,=(9/16)k,=(9/40kz ko is the decay rate . L
from the Lagrangian-stretching theory. During the transient d(t,k) = §f dt’ekzt'f dz21-A T, 1+ks. (24)
stage,\ ~1/t. In the long-time limit,\ =(40/9)(Kpox/Kiiow)? 4/ -1
< 1. The spectral exponentla®-1 is given by Eq(7) and is . 2 -
only slightly shallower than 1. The spectrum at small scaled! the tra?su,ant s:tagé1<t< 1/ki,,), we have, ak<1/\f,
is, thus, very similar to the Batchelor spectrum for the forced®(t,K)=[odt' Ty(t") —const as long ad(t) decays faster
scalar turbulencgl9]. The physical reason for this similarity
is that the modes at the flow scale and above act as a slowlyNote that the transient-stage powerlike decay laws for the scalar
decaying source to the small-scale part of the spectrum, thugriance can, in fact, be obtained from purely dimensional consid-
making the small-scale physics similar to the forced ¢ake erations: see, e.g[28] and references therein. The same is true
[14]). about the decay laws for the case®f=0 derived in Sec. Il D.

D. Case ofC,=0
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than 1t [cf. Eq. (14)]. Since®(t,k) also remains finite for , (a)

k~1/\t, we can estimate the flow scale modés, 1+q) by 1o § k=100 k0.1, C,-04

substituting the solutio23) into Eq.(11) and assuming that 10 k, =0.01, C,=01

d(t,k) is approximately constant at the valueskdhat mat- 10-2 k. =001 C.>0%
box & 1 2

104

Ll

ter. This will produce errors of order unity in the prefactors
but yield correct scalings and asymptotic decay laws. Note;-s
that because the nonlinear-transfer contribution-l¢, the 107 &
higher-order terms in the Taylor expansion for the initial 10°°
spectrum do not affect the asymptotic solutions. 1o

Further derivation for theC,=0 case follows the same {8,“
general scheme as the theory f65>0. In the transient |-

stage, Eq(13) is replaced by 1018
o

2+ 04 10-19

T(t,1+q) ~ 3q e‘qzt, (25) 10-18

t Lo-t7

where we have dropped prefactors of order unity. Note thaﬁgiiz

the transient-stage decay of the flow-scale peak(t) 1020

~1/t3, is faster then for th&€,>0. This is the only impor- 1o 4
tant change that results from the vanishingGgf The inter- 10::2 sl g n0 s N 1
mediate asymptotic (1/Vt<k<1) is again T(t,k) il 10 102 108 10 108
~T,(Ot™Y2% [cf. Eq.(15)]. In the long-time limit, Eq(16) is t

replaced by

K2
Tt 1+0) ~ =2%(, - e ko, (26)

the box mode decays according[td. Eq. (17)]

T T T

T(tkood ~ Kl B0i[Cy+ OKE, N D], (27) [

and the intermediate asymptotic &f,,<k<<1 is T(t,k) i
~T1(t)Kpoxk [Cf. Eq. (19)]. =

The developments for the nonsingular spectrum and for%
the total scalar variance are exactly as described in Secss |,
[l B and Il C. The only change is in the transient-stage i
decay laws due to faster decay of the flow-scale midattg =
(25)]: the contribution to the scalar variance from the flow
scale and the nonsingular spectrum-~ig/t”’% the contribu-
tion from the smalk peak is~1/t%2 The latter dominates
and, therefore, determines the decay law for the total vari-
ance. The behavior in the long-time limit is the same as for
C,>0.

2
i
T

T T T

At

T T T

10-3

T

i i il ponuprl  won piel g s ppmmd

E. Numerical solution
i . i FIG. 1. (@) Scalar-variance decay: bold lines depict the total
We have checked our analytical solution by solving EqQ.yrianceE(t), thin lines the flow-scale mode&(t,1), and dashed

(8) numerically. The powerlike decay laws for the flow-scalejines the box moddr(t,k,.,). Dotted lines are theoretical slopes.
modeT(t, 1) and for the total variance are in good agreementrime is in units ofy5L. The C,=0 runs are the same as in Fig. 2.
with theory, but they can only can be seen if the scale sepan) Effective decay rate\(t)=-dInE(t)/dt in units of the
ration between the box and the flow is sufficiently largeLagrangian-stretching decay ratg for various values ofkyy.
[kpox~0.01: see Fig. ®)]. Spectra(Fig. 2) and long-term  Dotted lines correspond m=(40/9)k§0x. The initial spectrum was
decay rategFig. 1(b)] are clearly in agreement with theory the same as for Fig. 2.

already at moderate scale separations. A simple way to esti-

mate the threshold at which the decay rate ceases to be denly technically valid wherk;,,,<1, but we see that it con-
termined by box-scale diffusion is by requiring that the boxtinues to yield reasonable solutions even at modedgaie
decay rate should be smaller than the Lagrangian-stretching

value:\=(40/9k2,, <1, soky.=<0.47. Consistent with this IV. DISCUSSION
estimate, the box value still works fég,,,=1/3 [Fig. 1(b); We now have a physical picture of the “strange mode”:

cf. [17]]. Obviously, Eq.(8) itself with the cutoff atk,,, is  the smallk peak(singularity at the box scaleserves as a
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108

10° e
box

? Kyox=0.1, k,=100 3 £
ol 0<t<20 (At=1) ] L mode i
———— 20<t<100 (At=10) 73 £ T, k) E
————— 100=t<1000 (At=20)] F ox
10 ¥ — t=1000 E 10 & -
Kyox=0.01, k, =100 1 F 3
1 —_— =105 4 1k -
107 3 10 E +
E L -
102 E| 10-2 3 3
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FIG. 2. Evolution of normalized spectruii(t,k)/E(t) for kyoy
=0.1. The initial spectrum wa§(0,k)=k4exp[—(k/k,7)2]. The long- FIG. 3. Structure of the “strange mode.” The spectrum is from a
term solution fork,,,=0.01 is also shown. Spectra k&1 are  run with kyo,=0.1, k,, =100 (the same as in Fig. 2=1000. Gray
steeper thark! due to higher-order corrections: they can be well arrows show directions of couplingsansfer of scalar variange
fitted by polynomials in the fornk+ak?+- - [Eq. (22)]. The blip at
k=3 is the point where the solutions of E@) atk<3 and of Eq.  thjs intermediate range, the integral in E§) must instead
(4) at k>3 are spliced together. This device allows us to achievepa replaced by the integral over the entire flow-scale peak,
higher Pe. We have checked that moving around the splicing wavgesyiting in ourk! scaling. Thek? term enters as a correction
number or solving the full integral equation in the entire donain ;e to the interaction between nonsingular mod&s (22)].
lower Pg do not change the solution. Finally, let us comment on our modeling assumptions.

slowly decaying source to the flow-scale magimgularity at "€ white-noise approximation might appear drastic: the cor-
k=1), which, in turn, is mixed by the random flow and thus relation time of any realistic flow is comparable to the flow
excites the nonsingular modes at smiah. (5)] and large  time scale~(uky,) ™t~ 5", However, since the scalar decay
[Eq. (22)] scales. The structure of the spectrum is illustratedime is much longer than the flow time scafgrovidedky,y
in Fig. 3. <kgow), the white-noise model appears reasonable. We be-
The low-wave-number behavior of the decaying scalalieve it also correctly captures the small-scale structure: the
field was previously analyzed in a heuristic way by Kersteinkey factor here is the statistics of fluid displacements, which
and McMurtry [24] (see alsd25] for a treatment based on are integrals of velocity and are finite-time correlated even
one of the turbulence closure schemes, which gives mostlfor a white-in-time velocity.
similar result$. They considered advection by a narrow-band Our model flow was single scale. Although such flows can
(i.e., single-scale forced random flow in an unbounded be set up in the Iaboratorp&),l()],3 the real-world mixing
domain—i.e., in the regime that we call the transientproblems usually contaifat sufficiently small scalgs wide
(powerlike-decay stage. They recognized the defining role (inertial) scale range of three-dimensional turbulent motions.
of coupling between the large scalgss ko) and the flow  While the variance spectrum in the inertial range should fol-
scale(k=kqo,=1) and derived thé&* scaling ak<kyezwith  low the Obukhov-Corrsitk™>' law [26,27 and there will be
a exponential fall off ak>kyea [EQ. (12)] and the ensuing another transient powerlike-decay stelde,23,28-3Q) the
powerlike-decay laws for the case 65=0 (see the end of long-term decayafter the scalar variance reaches kqq,,)
Sec. Ill D). For the intermediate raggea<k<1, they pre- should still be qualitatively described by our theory. Another

dicted ak? spectrum(in 3D)—in contrast to ourk® result
[Egs.(15) and(22) and Sec. Il O. The reason for the dis-
crepancy is as follows. The analysis [#4] is based on
Taylor-expanding the flow around=1—i.e., in terms of our
theory—settingT(t,1+q) =T(t,1) in Eq. (9), which gives

S(t,k)=k*T(t,1). If we had used the resulting equation to
solve forT(t,k) atk,eo<k<1, we would also have obtained

modification that results from the relaxation of the single-
scale assumption concerns the intermediate wave-number
range Kpeax<K<Kpqon. As noted in[24] and confirmed in
pipe-flow mixing experiment$31], the interaction between
the k=Kk,eax mode and the low-wave-number tail of the

31t was pointed out to us by Kersteif83] that a single-scale

T(t,k) ~ k2 However, as we have seen above, the width ofandom flow could also be set up by randomly stirring a granular

the flow-scale singularity is-K,eax [EQs. (13) and (25)], so
Taylor expansion cannot be used in E) for k>Kkyeq In

material: studying mixing in such a flow would provide an interest-
ing experiment test.
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kinetic-energy spectrur~k*) can change the scaling of the scale turbulent-diffusion rate—precisely the point the theory
scalar-variance spectrum in this range. presented above is meant to demonstrate.

In conclusion, we emphasize that, in any laboratory ex-
periment aiming to test our results, the stirring must be done
at scales substantially smaller than the system size to ensure ACKNOWLEDGMENTS
thatkyox<kKgow- It Was just such a set ujn 2D) that allowed
Voth et al. [10] to show experimentally that the global mix-  We thank J.-L. Thiffeault, A. Kerstein, and M. Gonzalez
ing rate was much smaller than that predicted by thefor stimulating discussions. A.A.S. was supported by the Le-
Lagrangian-stretching theories and consistent with the boxverhulme Trust through the UKAFF.
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