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We consider a solvable model of the decay of scalar variance in a single-scale random velocity field. We
show that if there is a separation between the flow scalekflow

−1 and the box sizekbox
−1 , the decay ratel

~ skbox/kflowd2 is determined by the turbulent diffusion of the box-scale mode. Exponential decay at the ratel

is preceded by a transient powerlike decay(the total scalar variance,t−5/2 if the Corrsin invariant is zero,t−3/2

otherwise) that lasts a timet,1/l. Spectra are sharply peaked atk=kbox. The box-scale peak acts as a slowly
decaying source to a secondary peak at the flow scale. The variance spectrum at scales intermediate between
the two peaksskbox!k!kflowd is ,k+ak2+ . . . sa.0d. The mixing of the flow-scale modes by the random
flow produces, for the case of large Péclet number, ak−1+d spectrum atk@kflow, where d~l is a small
correction. Our solution thus elucidates the spectral make up of the “strange mode,” combining small-scale
structure and a decay law set by the largest scales.
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I. INTRODUCTION

The problem of the decay of passive-scalar variance has
recently been reexamined in the literature following the re-
alization that the decay rates, spectra, and higher-order sta-
tistics based on small-scale Lagrangian-stretching theories
[1–4] are not consistent with either numerical[5–8] or ex-
perimental[9,10] results in the long-time limit. Instead, the
scalar decay is dominated by an eigenmodelike solution
dubbed “the strange mode”[5] because it combines intricate
small-scale structure with globally determined decay rate and
self-similar statistics(self-similarity is also seen in numerical
simulations of the related problem of kinematic dynamo
[11]). There has been a growing understanding[10,12–15]
that the overall decay rate is set by the slowest-decaying
system-scale modes. This brings to mind homogenization
theory [16], which considers the turbulent diffusion of pas-
sive scalar at scales much larger than the flow scale and
where it is the largest-scale mode that decays most slowly. In
this paper, we use a simple solvable example to demonstrate
that the strange-mode decay rate is the rate of turbulent dif-
fusion of the box-scale mode and show how the spectra of
scalar variance accommodate both this box-scale diffusion
and small-scale structure.

Qualitatively, the key idea quantified by our theory is as
follows. A scalar field whose variance is at the scale smaller
than or equal to the scale of the ambient random flow is
mixed at a rate determined by the Lyapunov exponent of the
flow—this is the Lagrangian-stretching approach. However,
if the size of the box is larger than the scale of the flow, the
scalar field can have variance at the scale of the box. The rate
of transfer of this large-scale variance to the flow scale(tur-
bulent diffusion) can be much smaller than the Lagrangian
mixing rate, in which case this slow transfer sets the global
decay rate.

Our model emphasizes scale separation between the box
and the flow. Our results are complementary to[17], where
the decay of a scalar field is studied with more generality(in
two dimensions).

We consider the advection-diffusion equation

]tu + u · = u = hDu, s1d

with a random Gaussian white-in-time velocity field
kuist ,xdujst8 ,x8dl=dst− t8dki jsx−x8d known as the Kraichnan
model [18]. The mean scalar concentration has been
subtracted—i.e.,kul=0. For the Kraichnan velocity, the
angle-integrated scalar-variance spectrum ind dimensions
Tskd=edVkkd−1kuuskdu2l satisfies an integro-differential
equation valid at allk:1

]tTst,kd + s2h + k0dk2Tst,kd = kikj E ddk8ki jsk − k8dTst,k8d,

s2d

where k̂i jskd= k̂skdsdi j −kikj /k
2d is the Fourier transform of

ki jsx−x8d and k0=s1/ddkiis0d is the turbulent diffusivity(d
is the dimension of space).

In Sec. II, we review the theory of scalar decay at small
scales, which leads to the standard Lagrangian-stretching re-
sults. In Sec. III, the theory for a finite-scale flow is
developed—this is the main part of the paper. Concluding
remarks are in Sec. IV.

*Electronic address: as629@damtp.cam.ac.uk

1The derivation is analogous to the standard one in the dynamo
theory: see, e.g.,[32] and references therein. Note that thex space
version of Eq.(2) is local, but we stay with the integral equation
because we are interested in spectra. Forx space calculations, see
[13,17].
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II. SMALL-SCALE THEORY

If the Péclet number Pe=ukflow
−1 /h is large, u varies at

scales as small as Pe−1/2 times the scale of the flow. This
small-scale structure can be considered in the approximation
of spatially linear velocity field[19,20]—viz.,

ki jsyd . k0di j −
1

2
k2Sy2di j −

1

2
yiyjD . s3d

For the Kraichnan velocity, the Lagrangian-stretching theo-
ries [1–4] amount to the approximation(3). The scalar-
variance spectrum satisfies a Fokker-Planck-type equation
[18,20]

]tT = D
]

]k
Fk2]T

]k
− sd − 1dkTG − 2hk2T, s4d

where D=fsd−1d /2sd+1dgk2. This equation is valid fork
@kflow. In this limit, it either can be obtained from Eq.(2) by
expanding the mode-coupling term on the right-hand side or
derived directly by assuming linear velocity field[20].

The solution of Eq.(4) that decays atk→` is

Tst,kd = Cle−lg0tk−1+d/2Ksd/2dÎ1−lsk/khd, s5d

whereCl is a constant,Knszd is the modified Bessel function
of the second kind,g0=sd2/4dD, kh=sD /2hd1/2, andl is the
nondimensionalized decay rate, which must be calculated by
applying the correct boundary condition at smallk. If we
assumed that the decay rate is fully determined by the small
scales, a reasonable procedure would be to choose some in-
frared cutoff k* and require the flux of scalar variance
through k* [the square brackets in Eq.(4)] to vanish (cf.
[21]). This can be satisfied only forl.1. For k* !kh, the
zero-flux condition becomes sinfsd/2dÎl−1 lnsk* /2khdg=0.
Placing the cutoffk* at the largest zero ensures thatTskd is
everywhere positive. We get(cf. [17])

l = 1 +
s2p/dd2

flnsk* /2khdg2 = 1 +Os1/log2Ped. s6d

This implies aksd−2d/2 spectrum atk@kh. If the scalar vari-
ance is initially atk@kflow, these results(or their analogs for
other model flows) hold during the initial stage of the scalar
decay. However, in the long-time limit for cases in which the
system (box) size is (several times) larger than the flow
scale, both numerical simulations[14] and experimental re-
sults [10] obtain much smaller decay rates and spectra with
negative exponents. The conclusion is that the zero-flux
boundary condition is incorrect and the decay ratel,1 must
be determined by matching the solution(5) to the solution at
nonlargek where Eq.(4) is invalid and Eq.(2) must be used
instead. The spectrum atkflow !k!kh is then,kssld, where
[from Eq. (5)]

ssld = − 1 + sd/2ds1 −Î1 − ld. s7d

Note that forl!1, ssld.−1+sd/4dl, which coincides with
the formula proposed in[14].

For the initial spectrum concentrated atk,kh, the period
of validity of Eq. (6) is the time it takes the spectrum to
spread tok,kflow. The spreading can be shown to be expo-

nentially fast with a rate,g0. Since kh,Pe1/2kflow, the
Lagrangian-stretching results are valid fort!g0

−1 log Pe.

III. THEORY FOR A FINITE-SCALE FLOW

The challenge now is to findl by solving Eq.(2). Let us
specialize to three dimensions(theory in 2D is analogous)
and choose a simple form for the velocity correlator:k̂skd
=Ndsk−kflowd, where N=15k2/16pkflow

4 [note that k2

=s2/5dkflow
2 k0]. This describes a Kraichnan ensemble of ran-

domly oriented “eddies” of sizekflow. We setkflow =1 and
carry out angle integrations in Eq.(2) to get

]tTst,kd + s2h + k0dk2Tst,kd =
15

32
k2kE

u1−ku

1+k dk8

k8
Ksk,k8dTst,k8d,

s8d

whereKsk,k8d=−k84+2s1+k2dk82−s1−k2d2. It is not hard to
ascertain that Eq.(8) reduces to Eq.(4) when k@1. Let us
now consider the opposite limitk!1—i.e., the evolution of
scale variance at scales much larger than the scale of the
flow. In this limit, the integral in Eq.(8) is dominated by the
modes in the neighborhood of the flow scalek=1. Neglect-
ing h, we get

]tT + k2T =
3

4
kE

−k

k

dqsk2 − q2dTst,1 +qd ; Sst,kd, s9d

where time is rescaledtk0kflow
2 → t. The solution is

Tst,kd = FTs0,kd +E
0

t

dt8Sst8,kdek2t8Ge−k2t. s10d

In order to complete the solution, we must determine
Tst ,1+qd. For q!1, it satisfies

]tT + T =
3

4
E

uqu

2+q dk8

k8
Sk82 −

k84

4
− q2DTst,k8d. s11d

As we shall see, the solution(10) is sharply peaked atk
=kpeak,1/Ît. In an infinite system, this peak would move
indefinitely towards ever smallerk. In a finite system,kpeak
eventually becomes comparable to the inverse system size.
Strictly speaking, this means that one must solve the problem
with a discrete set of modes and application-specific bound-
ary conditions(cf. [13,17,22]). Instead, we model the finite
box by introducing an infrared cutoffkbox into our continu-
ous theory. All lower integration limits ink space are subject
to this cutoff. This is not a rigorous operation, but it is a
reasonable modeling choice as long askbox!1. The time at
which kpeak,kbox is t,1/kbox

2 . Therefore, there will be two
asymptotic regimes of scalar decay:the transient stage t
!1/kbox

2 , when unmodified continuous theory can be used,
and the long-time limit t@1/kbox

2 , when the box cutoff is
important. Note that even for the transient stage, we assume
t@1; i.e., we consider times much longer than the “turnover
time” of the flow. For spectra initially at small scales, we
harden this condition tot@ log Pe, so that the Lagrangian-
stretching theory ceases to be valid.
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Consider Eq.(10). Sincek!1, we can Taylor-expand the
initial spectrum: Ts0,kd=C2k

2+C4k
4+. . .. Here C2 is the

Corrsin invariant,C2~ed3xkusxdus0dl [23]. Some aspects of
the scalar decay differ for cases withC2.0 andC2=0. We
shall first develop our theory forC2.0. The case ofC2=0
will be treated in Sec. III D.

A. Case ofC2.0

Consider first the transient stage 1! t!1/kbox
2 . Let us as-

sume that the dominant term in the solution(10) is

Tst,kd = C2k
2e−k2t, s12d

which peaks atkpeak=1/Ît. We shall justify this assumptiona
posteriori. Let us now determine the flow-scale solution[Eq.
(11)]. Assuming that the main contribution to the integral in
Eq. (11) is from k8!1 (also to be verified later) and substi-
tuting Eq. (12) for Tst ,k8d, we get, to leading order in 1/t
(and neglecting]tT),

Tst,1 +qd =
3

8

C2

t2
e−q2t ; T1stde−q2t, s13d

whereT1std=Tst ,1d. This describes the neighborhood of the
flow scale, where the coupling to the small-k modes pro-
duces a secondary peak with the width,1/Ît. We shall see
below that Eq.(13) is, in fact, valid beyond the width of the
peak and up touqu,sln t / td1/2. We now substitute Eq.(13)
back into Eq.(10) to see that Eq.(12) is, indeed, the domi-
nant solution.

For k!1/Ît, we getSst ,kd.k4T1std. Equation(10) be-
comes, to two leading orders ink,

Tst,kd . 3C2k
2 + 1C4 +E

0

t

dt8T1st8d2k44e−k2t. s14d

SinceT1std decays faster than 1/t [Eq. (13)], its time integral
in Eq. (14) tends to a constant whent@1 and is dominated
by the initial stage of the evolution ofT1st8d [there is no
divergence att8=0 because the solution(13) is only valid for
t8@1]. This time integral represents a finite amount of scalar
variance that is initially transferred from the flow scale to the
large scales(small k). That the effect of nonlinear coupling
only appears in thek4 term is a reflection of the conservation
of the Corrsin invariant: the coefficient in front ofk2 cannot
be changed. We see that, as long asC2@const3kbox

2 , the first
term in Eq.(14) dominates. Note that fork,1/Ît, it is still
true that the time integral in Eq.(10) is ,k4, so the above
estimates remain valid.

Now consider 1/Ît!k!1. In this limit, Sst ,kd
.s3/4dÎpT1stdt−1/2k3. Substituting into Eq.(10), we get

Tst,kd . C2k
2e−k2t +

3

4
ÎpT1stdt−1/2k. s15d

The second term becomes comparable to the first atk
,sln t / td1/2. At largerk (but still k!1), it replaces the solu-
tion (12) as the dominant asymptotic. The solution(15) is

uniformly valid across the transition region. Together with
Eq. (11), this implies that the solution(13) is valid for uqu
& sln t / td1/2.

In the long-time limit t@1/kbox
2 , Eq. (10) is still valid.

Again, we assume that the dominant solution is Eq.(12). Its
peak is atkpeak=kbox. In Eq. (11), the lower integration limit
is adjusted to maxhuqu ,kboxj, as explained above. The flow-
scale peak is now confined touqu,kbox. At theseq, Eq. (13)
is replaced by

Tst,1 +qd =
3

8

C2

t
skbox

2 − q2de−kbox
2 t. s16d

This solution gives the dominant contribution toSst ,xd [Eq.
(9)], so we have(integrating from −kbox to kbox) Sst ,kd
=s3/8dC2t

−1ksk2−kbox
2 /5dkbox

3 exps−kbox
2 td, which we substi-

tute into Eq.(10). The box mode obeys

Tst,kboxd . SC2kbox
2 +

3

10
C2kbox

6 ln tDe−kbox
2 t. s17d

The time integral now has a logarithmic divergence, repre-
senting a small amount of transfer of scalar variance from the
flow-scale mode to the box mode. This contribution is not
significant because the second term in Eq.(17) only exceeds
the first att=exps10/3kbox

4 d, which is unphysically large even
for moderately small values ofkbox. The width of the box-
scale peak, for which the decay law(17) is valid, is estimated
by k2−kbox

2 &1/t—i.e., k−kbox&1/2kboxt.
Outside the peaksk2−kbox

2 dt@1, we have

Tst,kd . C2k
2e−k2t +

3

8

C2

t
k
k2 − kbox

2 /5

k2 − kbox
2 kbox

3 e−kbox
2 t. s18d

The first and second terms are of the same order whenk2

−kbox
2 , ln t / t—i.e., k−kbox, ln t /kboxt. In the intermediate

scale rangekbox!k!1, we have

Tst,kd .
3

8

C2

t
kkbox

3 e−kbox
2 t = T1stdkboxk. s19d

Let us summarize what we have learned so far. We have
been concerned with two narrow bands of modes: the flow-
scale modesTst ,1+qd, q!1, and the large-scale peak
Tst ,kpeakd at kpeak=1/Ît, which became the box mode
Tst ,kboxd in the long-time limit t@1/kbox

2 . The width of the
peak was,1/Ît when t!1/kbox

2 and ,1/kboxt when t
@1/kbox

2 . The flow-scale modes could be assumed to be
coupled solely to the peak because of the peak’s sharp domi-
nance of all other modes: indeed,Tst ,kpeakd, tT1std@T1std.
The width of the secondary peak at the flow scale was deter-
mined by kpeak. This width can be parametrized byLstd
=skbox

2 +1/td1/2.
The large-scale peak and the flow-scale band are singu-

larities of the scalar-variance spectrum. Note that in the long-
time limit t@1/kbox

2 , the width of the flow-scale peak isL
=kbox, while the width of the box mode is 1/kboxt!kbox. In a
finite system, the spacing of the modes cannot be smaller
thankbox, so it is, of course, unphysical to talk about varia-
tion of the spectrum at distances less thankbox. In our con-
tinuous theory, the collapse of the singularities to profiles
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narrower thankbox means that they should be interpreted as
single modes. Formally, they can be represented asd func-
tions: thus, for the flow-scale band 1−Lstd,k,1+Lstd, we
write Tst ,kd=N1T1stdLstddsk−1d, where N1 is a constant
arising from integrating over the specific shape of the singu-
larity: N1=Îp in the transient stage andN1=4/3 in thelong-
time limit.

B. Nonsingular spectrum

Let us now consider the nonsingular part of the spectrum.
For all k.Lstd, we write

Tst,kd = N1LstdT1stdfdsk − 1d + fskdg. s20d

Substituting this decomposition into Eq.(8) and neglecting
d lnfLstdT1stdg /dt, we find the equation forfskd:

S1 +
1

10kh
2D fskd =

3

4
kS1 −

k2

4
DHs2 − kd

+
3

16

1

k
E

u1−ku

1+k dk8

k8
Ksk,k8dfsk8d, s21d

where Hs2−kd is the Heaviside step function[the term it
multiplies comes from integratingdsk−1d and vanishes for
k.2]. For k!1, we expandfsk8d under the integral around
k8=1 and find that the lowest-order term isfs1dk2. Clearly,
fs1d.0. Thus, the spectrum at scales intermediate between
the box scale and the flow scale is

Tst,kd = N1LstdT1stdfs3/4dk + fs1dk2 + ¯ g. s22d

Coefficients in higher-order terms will involve derivatives of
f at k=1. The first term in the expansion(22) comes from
coupling to the flow-scale mode and is consistent with the
asymptotics(15) and (19), so the nonsingular solution con-
nects smoothly to the large-scale peak. The interaction of the
nonsingular modes between themselves enters in the second
order.

To complete the solution, we would have to findfskd at
kù1. Forkø2, this means solving the full integral equation,
but we do not really need to do this. Note that the modes
with k.2 are not directly coupled to the flow-scale mode. In
a rough way, it can be said that the Fokker-Planck regime
starts atk=2 and the solution of Eq.(4) must be matched to
Tst ,2d=N1LstdT1stdfs2d. The specific value offs2d is not
important. The matching is done by settingCl~LstdT1std
and l=−g0

−1d lnfLstdT1stdg /dt (the effective decay rate) in
Eq. (5). Hereg0=s9/16dk2=s9/40dkflow

2 k0 is the decay rate
from the Lagrangian-stretching theory. During the transient
stage,l,1/t. In the long-time limit,l=s40/9dskbox/kflowd2

!1. The spectral exponent atk@1 is given by Eq.(7) and is
only slightly shallower than −1. The spectrum at small scales
is, thus, very similar to the Batchelor spectrum for the forced
scalar turbulence[19]. The physical reason for this similarity
is that the modes at the flow scale and above act as a slowly
decaying source to the small-scale part of the spectrum, thus
making the small-scale physics similar to the forced case(cf.
[14]).

C. Decay of scalar variance„C2.0…

Finally, we estimate the decay of the total scalar variance.
The total variance is the integral of the wave-number spec-
trum, which is made up of the nonsingular spectrum[Eq.
(21)] and the two singular peaks. To obtain the contribution
of the latter to the total variance, we must take into account
their time-dependent widths. We see that the contributions
from the flow-scale band and from the nonsingular spectrum
are always of the same order,LstdT1std [taking into account
that the spectrum atk@1 is fskd,k−1+s3/4dl up to kh,Pe1/2

gives an extra factor of Pes3/8dl to the nonsingular contribu-
tion]. Therefore, during the transient stagest!1/kbox

2 d, this
part of the variance decays as 1/t5/2. In the long-time limit
st@1/kbox

2 d, we haveLstdT1std,kboxT1std~ t−1 exps−ltd. The
large-scale peak always decays astT1std. In the transient
stage, its width is,1/Ît, which means that its contribution
,1/t3/2 dominates the rest of the spectrum by a factor of,t
and determines the overall decay law of the total variance.2

In the long-time limit, the width of the box mode is
,1/kboxt, so its decay law is,T1std /kbox: i.e., it has the
same time dependence as the rest of the spectrum, but its
contribution to the total variance exceeds that of all other
modes by a factor of,1/kbox

2 .
Note that these arguments can be tested for consistency

with the conservation law for the scalar variance in the fol-
lowing way. Pick some wave number 1!k!kh. Because of
the dominance of the box mode, the scalar variance inte-
grated up tok is the same as the total variance. Its time
derivative must be equal to the flux of variance throughk
[the negative of the expression in square brackets in Eq.(4)]
because dissipation is negligible atk!kh. It is easy to check
that this, indeed, holds true. This argument emphasizes that
the turbulent diffusion at the box scale, which we have
shown to control scalar decay, is not a dissipation mecha-
nism, but rather describes transfer of scalar variance to small
scales, where all the dissipation is done by molecular diffu-
sion.

D. Case ofC2=0

When the Corrsin invariant is zero, the theory developed
above has to be modified somewhat. The dominant term in
the small-k solution is,k4 and includes contributions both
from the initial spectrum and from the initial finite amount of
nonlinear transfer of scalar variance from the flow-scale
mode: Equation(12) is replaced by

Tst,kd = fC4 + Fst,kdgk4e−k2t, s23d

Fst,kd =
3

4
E

0

t

dt8ek2t8E
−1

1

dzs1 − z2dTst8,1 +kzd. s24d

In the transient stages1! t!1/kbox
2 d, we have, atk!1/Ît,

Fst ,kd.e0
t dt8T1st8d→const as long asT1std decays faster

2Note that the transient-stage powerlike decay laws for the scalar
variance can, in fact, be obtained from purely dimensional consid-
erations: see, e.g.,[28] and references therein. The same is true
about the decay laws for the case ofC2=0 derived in Sec. III D.
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than 1/t [cf. Eq. (14)]. SinceFst ,kd also remains finite for
k,1/Ît, we can estimate the flow scale modesTst ,1+qd by
substituting the solution(23) into Eq.(11) and assuming that
Fst ,kd is approximately constant at the values ofk that mat-
ter. This will produce errors of order unity in the prefactors
but yield correct scalings and asymptotic decay laws. Note
that because the nonlinear-transfer contribution is,k4, the
higher-order terms in the Taylor expansion for the initial
spectrum do not affect the asymptotic solutions.

Further derivation for theC2=0 case follows the same
general scheme as the theory forC2.0. In the transient
stage, Eq.(13) is replaced by

Tst,1 +qd ,
2 + q2t

t3
e−q2t, s25d

where we have dropped prefactors of order unity. Note that
the transient-stage decay of the flow-scale peak,T1std
,1/t3, is faster then for theC2.0. This is the only impor-
tant change that results from the vanishing ofC2. The inter-
mediate asymptotic s1/Ît!k!1d is again Tst ,kd
,T1stdt−1/2k [cf. Eq. (15)]. In the long-time limit, Eq.(16) is
replaced by

Tst,1 +qd ,
kbox

2

t
skbox

2 − q2de−kbox
2 t, s26d

the box mode decays according to[cf. Eq. (17)]

Tst,kboxd , kbox
4 e−kbox

2 tfC4 + Oskbox
4 ln tdg, s27d

and the intermediate asymptotic atkbox!k!1 is Tst ,kd
,T1stdkboxk [cf. Eq. (19)].

The developments for the nonsingular spectrum and for
the total scalar variance are exactly as described in Secs.
III B and III C. The only change is in the transient-stage
decay laws due to faster decay of the flow-scale mode[Eq.
(25)]: the contribution to the scalar variance from the flow
scale and the nonsingular spectrum is,1/t7/2: the contribu-
tion from the small-k peak is,1/t5/2. The latter dominates
and, therefore, determines the decay law for the total vari-
ance. The behavior in the long-time limit is the same as for
C2.0.

E. Numerical solution

We have checked our analytical solution by solving Eq.
(8) numerically. The powerlike decay laws for the flow-scale
modeTst ,1d and for the total variance are in good agreement
with theory, but they can only can be seen if the scale sepa-
ration between the box and the flow is sufficiently large
[kbox,0.01: see Fig. 1(a)]. Spectra(Fig. 2) and long-term
decay rates[Fig. 1(b)] are clearly in agreement with theory
already at moderate scale separations. A simple way to esti-
mate the threshold at which the decay rate ceases to be de-
termined by box-scale diffusion is by requiring that the box
decay rate should be smaller than the Lagrangian-stretching
value:l=s40/9dkbox

2 ,1, sokbox&0.47. Consistent with this
estimate, the box value still works forkbox=1/3 [Fig. 1(b);
cf. [17]]. Obviously, Eq.(8) itself with the cutoff atkbox is

only technically valid whenkbox!1, but we see that it con-
tinues to yield reasonable solutions even at moderatekbox.

IV. DISCUSSION

We now have a physical picture of the “strange mode”:
the small-k peak (singularity at the box scale) serves as a

FIG. 1. (a) Scalar-variance decay: bold lines depict the total
varianceEstd, thin lines the flow-scale modeTst ,1d, and dashed
lines the box modeTst ,kboxd. Dotted lines are theoretical slopes.
Time is in units ofg0

−1. The C2=0 runs are the same as in Fig. 2.
(b) Effective decay ratelstd=−d ln Estd /dt in units of the
Lagrangian-stretching decay rateg0 for various values ofkbox.
Dotted lines correspond tol=s40/9dkbox

2 . The initial spectrum was
the same as for Fig. 2.
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slowly decaying source to the flow-scale mode(singularity at
k=1), which, in turn, is mixed by the random flow and thus
excites the nonsingular modes at small[Eq. (5)] and large
[Eq. (22)] scales. The structure of the spectrum is illustrated
in Fig. 3.

The low-wave-number behavior of the decaying scalar
field was previously analyzed in a heuristic way by Kerstein
and McMurtry [24] (see also[25] for a treatment based on
one of the turbulence closure schemes, which gives mostly
similar results). They considered advection by a narrow-band
(i.e., single-scale) forced random flow in an unbounded
domain—i.e., in the regime that we call the transient
(powerlike-decay) stage. They recognized the defining role
of coupling between the large scalessk&kpeakd and the flow
scalesk=kflow =1d and derived thek4 scaling atk!kpeakwith
a exponential fall off atk.kpeak [Eq. (12)] and the ensuing
powerlike-decay laws for the case ofC2=0 (see the end of
Sec. III D). For the intermediate ragekpeak!k!1, they pre-
dicted ak2 spectrum(in 3D)—in contrast to ourk1 result
[Eqs. (15) and (22) and Sec. III D]. The reason for the dis-
crepancy is as follows. The analysis of[24] is based on
Taylor-expanding the flow aroundk=1—i.e., in terms of our
theory—settingTst ,1+qd.Tst ,1d in Eq. (9), which gives
Sst ,kd.k4Tst ,1d. If we had used the resulting equation to
solve forTst ,kd at kpeak!k!1, we would also have obtained
Tst ,kd,k2. However, as we have seen above, the width of
the flow-scale singularity is,kpeak [Eqs. (13) and (25)], so
Taylor expansion cannot be used in Eq.(9) for k@kpeak. In

this intermediate range, the integral in Eq.(9) must instead
be replaced by the integral over the entire flow-scale peak,
resulting in ourk1 scaling. Thek2 term enters as a correction
due to the interaction between nonsingular modes[Eq. (22)].

Finally, let us comment on our modeling assumptions.
The white-noise approximation might appear drastic: the cor-
relation time of any realistic flow is comparable to the flow
time scale,sukflowd−1,k2

−1. However, since the scalar decay
time is much longer than the flow time scale(providedkbox
!kflow), the white-noise model appears reasonable. We be-
lieve it also correctly captures the small-scale structure: the
key factor here is the statistics of fluid displacements, which
are integrals of velocity and are finite-time correlated even
for a white-in-time velocity.

Our model flow was single scale. Although such flows can
be set up in the laboratory[9,10],3 the real-world mixing
problems usually contain(at sufficiently small scales) a wide
(inertial) scale range of three-dimensional turbulent motions.
While the variance spectrum in the inertial range should fol-
low the Obukhov-Corrsink−5/3 law [26,27] and there will be
another transient powerlike-decay stage[13,23,28–30], the
long-term decay(after the scalar variance reachesk,kflow)
should still be qualitatively described by our theory. Another
modification that results from the relaxation of the single-
scale assumption concerns the intermediate wave-number
range kpeak!k!kflow. As noted in [24] and confirmed in
pipe-flow mixing experiments[31], the interaction between
the k=kpeak mode and the low-wave-number tail of the

3It was pointed out to us by Kerstein[33] that a single-scale
random flow could also be set up by randomly stirring a granular
material: studying mixing in such a flow would provide an interest-
ing experiment test.

FIG. 2. Evolution of normalized spectrumTst ,kd /Estd for kbox

=0.1. The initial spectrum wasTs0,kd=k4expf−sk/khd2g. The long-
term solution forkbox=0.01 is also shown. Spectra atk,1 are
steeper thank1 due to higher-order corrections: they can be well
fitted by polynomials in the formk+ak2+¯ [Eq. (22)]. The blip at
k=3 is the point where the solutions of Eq.(8) at k,3 and of Eq.
(4) at k.3 are spliced together. This device allows us to achieve
higher Pe. We have checked that moving around the splicing wave
number or solving the full integral equation in the entire domain(at
lower Pe) do not change the solution.

FIG. 3. Structure of the “strange mode.” The spectrum is from a
run with kbox=0.1, kh=100 (the same as in Fig. 2,t=1000). Gray
arrows show directions of couplings(transfer of scalar variance).
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kinetic-energy spectrums,k4d can change the scaling of the
scalar-variance spectrum in this range.

In conclusion, we emphasize that, in any laboratory ex-
periment aiming to test our results, the stirring must be done
at scales substantially smaller than the system size to ensure
thatkbox!kflow. It was just such a set up(in 2D) that allowed
Voth et al. [10] to show experimentally that the global mix-
ing rate was much smaller than that predicted by the
Lagrangian-stretching theories and consistent with the box-

scale turbulent-diffusion rate—precisely the point the theory
presented above is meant to demonstrate.
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