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Synchronization of chaotic oscillators due to common delay time modulation
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We have found a synchronization behavior between two identical chaotic systems when their delay times are
modulated by a common irregular signal. This phenomenon is demonstrated both in two identical chaotic maps
whose delay times are driven by a common chaotic or random signal and in two identical chaotic oscillators
whose delay times are driven by a signal of another chaotic oscillator. We analyze the phenomenon by using
the Lyapunov exponents and discuss it in relation to generalized synchronization.
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Synchronization in chaotic oscillatorgl—4], which is In this paper, we report a synchronization phenomenon
characterized by the loss of exponential instability or neutralbetween two identical chaotic systems when their delay
ity in the transverse direction due to the interaction, hasimes are driven by a common irregular signal. We analyze
given rise to much attention for its application to diversethe synchronous behaviors in two identical logistic maps by
disciplines of science such as biolog], chemistry[6], and  studying the conditional and maximal Lyapunov exponents,
physics [1-4]. Extensive investigations have been under-and demonstrate them in two Réssler oscillators whose delay

taken_to !Jnderstand its ur_u_jerlying me_chan{smqlq. Syn- times are driven by a Lorenz oscillator.
chronization can be classified depending on the characteris- o, system can be described as follows:

tics of coupled systems. Complete synchronizatiof) [4]

is observed in identical systems while phase synchronization y=f(y), master,
[7] and lag synchronizatiof8] occur in slightly detuned sys-
tems. x=g(x,x(t-7(y))), slave 1,

Recently a more general type of synchronization has been
described in coupled systems with different dynamics, which L,
is called generalized synchronizatiq®S) [9,10. GS is x'=g(x" x'(t-1(y)), slave 2, 1)
characterized by the appearance of a functional relationshignere the signaly of the master system drives the two
between the mastely=G(y), and the slave systems,  gjaves. The model describes two identical chaotic systems
=F(x,h(y)), whereh(y) is the function that describes the that are influenced by a common delay time modulation
coupling between the master and the slave. Equivalently, theyT) [23]. If the delay time is a constant, the two slaves
existence of a functional relationship implies that CS hag,ecome two independent time-delayed systems with fixed
been established between the slave and its replita gelay. To emphasize, when the delay times are modulated in
=F(x",h(y)) such thaf|x-x'|| ~0 ast—x [9,10. Gener- {ime what we observed is that the two slaves transit to the
ally, it is thought that this type of synchronization phenom'synchronization state above the threshold.
enon is also established even if the driving signal is noisy * For a simple example, we consider a system that consists

(11]. S o _ of a logistic map for the master and two logistic maps for the
In a real situation, time delay is inevitable, since thegayes as follows:

propagation speed of the information signal is finit2—1§.

Since Volterra’s predator-prey moddl9], the delay time has Y1 = 4Yn(1-yy), master,
been considered in various forms to incorporate realistic ef-

fects, e.g., distributed, state-dependent, and time-dependent Xne1= Yéa(T[L =X(7)], slave 1,
delay times. Up to now, the effects of these forms of delay in

dynamical systems have been extensively studied in many X = P(D[1-X(7)], slave 2,

fields of physicq20], biology [19], and economy21]. Also o

it was reported that synchronous behavior is enhanced iWherex,(7)=(1-a)x,+ax,-, anda is the coupling strength.
neural systems by discrete time deld@®]. Recently, the Here we taker=[Ay,] as the common delay time ardis a
effect of delay time modulation on the characteristics of thescaling parameter of the DTM. Heflely,] is the largest
chaotic signal was reportg@3]. In this report, the delayed integer less tham\y, which is introduced to get an integer
system transits to a complex state and does not simplify theaumber for the iteration. Figure 1 shows the temporal behav-
chaotic attractor into a low-dimensional manifold. In this re-iors of two coupled logistic maps by a common DTM. The
gard, it is important to understand the effect of delay timemodulated delay time as a function of time is presented in
modulation on the synchronization of chaotic oscillators, beFig. 1(a) and the temporal behavior of one of the slaves is
cause it is one of the fundamental phenomena in dynamicadresented in Figs. () and Xc) at two different reference
systems. points[A andB in Fig. 3@)], respectively. While the differ-
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”” wr' rw w[”w In order to understand the threshold behavior, we analyze

e X ' the Lyapunov exponents of the two logistic mgag]. For
‘] J Jl m J ‘ these we consider the difference dynamics as follows:
lll “ﬂ | \J. |I.I 1 Mnlh
0
0 200 400 600 800 1000 AXpeq = JAX, + Koy, (2)

where

X,
o000

In= 1= )AL = [*(D) +x,(D]},

Kn= a1 =[Xa(7) +X4(D) -7 = X-0),

POOoSS

andAX,=x,—x/,. The above equation is nonautonomous and
has the unusual term &,,. Accordingly, we iterate the above
equation with one master and two slave equations, alto-
gether. Her\X,, is treated as an independent variable. From
the iteration, we can evaluate the conditional Lyapunov ex-
. ponent, which describes the synchronization behaviors be-
tween the two slave systems, such thak.
=limy_.(1/N)log(|]AXy/ AXg|) [11]. In order to understand
the dynamical property of the whole system, we calculate the
5000, maximal Lyapunov exponent,, which describes the chaotic
Iteration property of a system. In this case, we need one more replica
of the master system with different initial conditions such

:
:

Lol
~
&

:

FIG. 1. Temporal behaviors of the slave logistic maps when —
=3.5 andA =60. () The modulated delay time as a function of ~that ~ AXn.;=J,AX,+K,,  where J;,=(1-a) 7{1_[21(7)
time; (b) x, and (d) x,—x;, at «=0.7 [the reference poind in Fig.  +x/(7')]} and K= a{1=[X,(7) +X,(7") [}(Xq-, =X ).

3(@)]; (¢) X, and(€) x,~x; at a=0.8[the reference poir in Fig. The conditional and maximal Lyapunov exponents are
3@1. presented as functions ¢f,A) in Fig. 2. The conditional

ence of the two slave systems is chaotic as shown in Fig-yaPunov exponent shows the synchronized reditne gray
1(d) below the thresholdi.e., at the reference poitin Fig. ~ region of Fig. 2a)] for the two slaves in thex, A) space. In
3(a)], surprisingly the slaves are synchronized above théhat regime the transverse variabl&, converges to zero.
threshold(i.e., at the reference poiin Fig. 3b)] justby a  That s, the system becomes stable in the transverse direction

common DTM as shown in Fig.(&) without any changing AX, due to DTM. The maximal Lyapunov exponent which
of the chaotic behaviors of the two slave oscillators. We emdescribes the chaotic property of the system is positive ex-
phasize that this phenomenon is purely originated from the€ept in the narrow periodic reginj¢he dark gray region on
common DTM. If the modulation is turned off, the two the («,A) plane of Fig. 2b)]. Therefore one see synchroni-
slaves become two independent systems with a fixed timeation of the two slave logistic maps in the regime where the
delay and so they cannot be synchronized. two slaves are chaotic.

FIG. 2. (a) Conditional Lyapunov exponent. as a function of(A,«). The gray(green region indicates the regime in which the
conditional Lyapunov exponent is negatigies, the synchronization regimeand the white region shows the regime in which the exponent
is positive.(b) Maximal Lyapunov exponent,, as a function of A, «). The gray(green region shows the regime where the exponent is
positive and the dark grayed) region shows the regime in which the exponent is negative. We added a small noise of ofderdr@ of
the slaves in order to avoid abrupt synchronization due to round-off error in the simulation.
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FIG. 4. Temporal behaviors of the Rossler oscillators of Egjs.
and (4). (a) 7(t) as a function of time wher=0.012,3=0.0067,
and7y=0.9; and the difference motion between two slaves whgn
the coupling strengtl= 0.238 andc) 0.240.

FIG. 3. (a) Synchronization regime determined by the time se- . . .
ries. The gray(green region shows the synchronization regime . To show the_ universal feature Of_ this type of synchroniza-
which coincides with that of the contour plot of Figa2 A andB 10N, we consider the Lorenz oscillator as master and the
indicate the reference points used to present the time series in FigROSsler oscillators as slavés] as follows:

1. The dashed lines are the border of synchronization when the ep=a(q-p),

driving signal is replaced by a random siggl One sees that the
synchronization regime is extended in this cabgThe conditional .
Lyapunov exponents on the two reference linegapfas a function €q=-pr+ap-gq,
of a. The upper line is ah =60 and the lower a\ =40.

er =pq-br, master, 3)
The periodic regime corresponds to the imprint of the
periodic behavior of slave systems when the delayed feed- X=y-z,
backs are absent. However, when the delayed feedback is
turned on, the system becomes chaotic. The slaves return to y=X+cy,

the independent logistic maps wheix0 or A<1. (The re-
sults of Figs. 1-3 show the chaotic output of the slave sys- - —
tems and a wide synchronization regime depending on the z=d+z+X, slave, (4)
modulation amplitude and the coupling strength, evenyhere ¢=10,a=28,b=8/3,¢c=0.15,d=0.2, and x=(1
though we tooky=3.5. We also performed the same studies_ )y + ox[t- r(p)]. Here ¢ is the time scaling parameter to

with r(])the_r Ptff“amm?fs/ﬂ-& 3.9, and 4.0 and observed a qr0) the average oscillation frequency of the driving sys-
synchronization regimg. tem. We take the delay time in the form afp) =8p(t) + 7,

By tracing the time series in thgy,A) space, we obtain . . . .
o ! . T where B describes the modulation amplitude angdis the
the synchronization regime which we show in Figaj3One center of the delay time. In this model, the Lorenz oscillator

can see that the synchronization regime in F{@) 8oincides L :
with that of Fig. Za). To confirm the numerical results of plays the role of a driving system for a common DTM. F|g-_
Fig. 3a), we redraw the conditional Lypunov exponent asure 4 shows the temporal behay|or_s of the two slave chaotic
shown in Fig. 80) when A=60 andA=40. Even when we systems near the synchronization threshold when
replace the master system by a random sighalwe can =0.012,8=0.0067, anda-o_:O.Q. Above the threshold,_ the
observe a similar synchronization regime whose border i§WO0 slaves are synchronized as shown in Figr).4while
presented by a dashed line in FigaB One sees that the €ach oscillator is in a chaotic state. As we analyzed the lo-
synchronization is enhanced when the delay time modulatiogistic maps, we can easily understand the synchronization
is noisy. This fact leads us to understand the synchronizationhenomenon in these systems.

phenomenon in the framework of the synchronization by a It is worth discussing the relationship between this phe-
common signal which can be chaotic or no[dyl]. Specifi- nomenon and GS. GS is characterized by CS between the
cally, in our system the driving common signal is fed into theslave oscillatorx=f(x,h(y)) and its replicax’ =f(x’,h(y)).
delay time implicitly, while in previous systems the driving The master signal is directly fed into the slaves in the form
signal is explicitly introduced11]. of the explicitly defined functiorh. On the contrary, since
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the delay times of our slave systems are modulated by thkay time modulation can be implemented by using a digital
master signal, the functional dependency between the mastéelay line or computer interface.
and the slave is not explicitly revealed. That is to say, the |n conclusion, we have investigated the synchronization

the case of GS until the two slaves are converged int0 &,qylated by a common irregular signal. We have demon-

synchronization state, because the feedback signal is propotz aie that synchronization can be achieved by a common
tional to the value of its own state vector, not a common

feeding signal as in G§.e., feedback signals are not com- DTM in chaotic maps and flows. And we have clarified that
mon sincex(t- 1) is for slave 1 and’(t-7) is for slave 2. If & common DTM alters the stability of two chaotic oscillators

one introduces a multiplicative coupling such tht)y(t), a_md leads the systems to be synchronized. We h_ave con-
the feedback forces can be different in the two slaves. Howfirmed the observed phenomenon through analysis of the
ever, the force is proportional to the master signal as well asonditional and maximal Lyapunov exponents. We expect
the slave one in this case, while the feedback force is prothat the observed phenomenon will extend the concept of
portional to the slave signal only in our systems, becaus&S, and that the introduced systems will be useful for under-
x(t—7) is just a previous trajectory of the slave systems. Instanding synchronization phenomena with time delay in such
this respect, the observed synchronization could be classifiegarious fields as neurolod22,24 and population dynamics
into an extended type of GS. [21].

Regarding an experimental realization of our method, we
can consider a laser system with optical feedback, where the The authors thank M.-W. Kim and K. V. Volodchenko for
delay time can be modulated by a vibrating feedback mirrovaluable discussions. This work wss supported by Creative
using a piezoelectric or electromagnetic ¢ske the second Research Initiatives of the Korean Ministry of Science and
reference of Ref[22]). Also in an electronic circuit, the de- Technology.
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