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We have found a synchronization behavior between two identical chaotic systems when their delay times are
modulated by a common irregular signal. This phenomenon is demonstrated both in two identical chaotic maps
whose delay times are driven by a common chaotic or random signal and in two identical chaotic oscillators
whose delay times are driven by a signal of another chaotic oscillator. We analyze the phenomenon by using
the Lyapunov exponents and discuss it in relation to generalized synchronization.
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Synchronization in chaotic oscillators[1–4], which is
characterized by the loss of exponential instability or neutral-
ity in the transverse direction due to the interaction, has
given rise to much attention for its application to diverse
disciplines of science such as biology[5], chemistry[6], and
physics [1–4]. Extensive investigations have been under-
taken to understand its underlying mechanism[7–10]. Syn-
chronization can be classified depending on the characteris-
tics of coupled systems. Complete synchronization(CS) [4]
is observed in identical systems while phase synchronization
[7] and lag synchronization[8] occur in slightly detuned sys-
tems.

Recently a more general type of synchronization has been
described in coupled systems with different dynamics, which
is called generalized synchronization(GS) [9,10]. GS is
characterized by the appearance of a functional relationship
between the master,ẏ=Gsyd, and the slave systems,ẋ
=F(x ,hsyd), where hsyd is the function that describes the
coupling between the master and the slave. Equivalently, the
existence of a functional relationship implies that CS has
been established between the slave and its replicaẋ8
=F(x8 ,hsyd) such thatix−x8i→0 as t→` [9,10]. Gener-
ally, it is thought that this type of synchronization phenom-
enon is also established even if the driving signal is noisy
[11].

In a real situation, time delay is inevitable, since the
propagation speed of the information signal is finite[12–18].
Since Volterra’s predator-prey model[19], the delay time has
been considered in various forms to incorporate realistic ef-
fects, e.g., distributed, state-dependent, and time-dependent
delay times. Up to now, the effects of these forms of delay in
dynamical systems have been extensively studied in many
fields of physics[20], biology [19], and economy[21]. Also
it was reported that synchronous behavior is enhanced in
neural systems by discrete time delays[22]. Recently, the
effect of delay time modulation on the characteristics of the
chaotic signal was reported[23]. In this report, the delayed
system transits to a complex state and does not simplify the
chaotic attractor into a low-dimensional manifold. In this re-
gard, it is important to understand the effect of delay time
modulation on the synchronization of chaotic oscillators, be-
cause it is one of the fundamental phenomena in dynamical
systems.

In this paper, we report a synchronization phenomenon
between two identical chaotic systems when their delay
times are driven by a common irregular signal. We analyze
the synchronous behaviors in two identical logistic maps by
studying the conditional and maximal Lyapunov exponents,
and demonstrate them in two Rössler oscillators whose delay
times are driven by a Lorenz oscillator.

Our system can be described as follows:

ẏ = fsyd, master,

ẋ = gsx,x„t − tsyd…d, slave 1,

ẋ8 = gsx8,x8„t − tsyd…d, slave 2, s1d

where the signaly of the master system drives the two
slaves. The model describes two identical chaotic systems
that are influenced by a common delay time modulation
(DTM) [23]. If the delay time is a constant, the two slaves
become two independent time-delayed systems with fixed
delay. To emphasize, when the delay times are modulated in
time, what we observed is that the two slaves transit to the
synchronization state above the threshold.

For a simple example, we consider a system that consists
of a logistic map for the master and two logistic maps for the
slaves as follows:

yn+1 = 4yns1 − ynd, master,

xn+1 = gx̄nstdf1 − x̄nstdg, slave 1,

xn+18 = gx̄n8stdf1 − x̄n8stdg, slave 2,

wherex̄nstd=s1−adxn+axn−t anda is the coupling strength.
Here we taket=fLyng as the common delay time andL is a
scaling parameter of the DTM. HerefLyng is the largest
integer less thanLyn which is introduced to get an integer
number for the iteration. Figure 1 shows the temporal behav-
iors of two coupled logistic maps by a common DTM. The
modulated delay time as a function of time is presented in
Fig. 1(a) and the temporal behavior of one of the slaves is
presented in Figs. 1(b) and 1(c) at two different reference
points [A andB in Fig. 3(a)], respectively. While the differ-
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ence of the two slave systems is chaotic as shown in Fig.
1(d) below the threshold[i.e., at the reference pointA in Fig.
3(a)], surprisingly the slaves are synchronized above the
threshold[i.e., at the reference pointB in Fig. 3(b)] just by a
common DTM as shown in Fig. 1(e) without any changing
of the chaotic behaviors of the two slave oscillators. We em-
phasize that this phenomenon is purely originated from the
common DTM. If the modulation is turned off, the two
slaves become two independent systems with a fixed time
delay and so they cannot be synchronized.

In order to understand the threshold behavior, we analyze
the Lyapunov exponents of the two logistic maps[11]. For
these we consider the difference dynamics as follows:

DXn+1 = JnDXn + Kn, s2d

where

Jn = s1 − adgh1 − fx̄nstd + x̄n8stdgj,

Kn = agh1 − fx̄nstd + x̄n8stdgjsxn−t − xn−t8 d,

andDXn=xn−xn8. The above equation is nonautonomous and
has the unusual term ofKn. Accordingly, we iterate the above
equation with one master and two slave equations, alto-
gether. HereDXn is treated as an independent variable. From
the iteration, we can evaluate the conditional Lyapunov ex-
ponent, which describes the synchronization behaviors be-
tween the two slave systems, such thatlc
=limN→`s1/NdlogsuDXN/DX0ud [11]. In order to understand
the dynamical property of the whole system, we calculate the
maximal Lyapunov exponentlm, which describes the chaotic
property of a system. In this case, we need one more replica
of the master system with different initial conditions such

that DXn+1= J̄nDXn+K̄n, where J̄n=s1−adgh1−fx̄nstd
+ x̄n8st8dgj and K̄n=agh1−fx̄nstd+ x̄n8st8dgjsxn−t−xn−t8

8 d.
The conditional and maximal Lyapunov exponents are

presented as functions ofsa ,Ld in Fig. 2. The conditional
Lyapunov exponent shows the synchronized regime[the gray
region of Fig. 2(a)] for the two slaves in thesa ,Ld space. In
that regime the transverse variableDXn converges to zero.
That is, the system becomes stable in the transverse direction
DXn due to DTM. The maximal Lyapunov exponent which
describes the chaotic property of the system is positive ex-
cept in the narrow periodic regime[the dark gray region on
the sa ,Ld plane of Fig. 2(b)]. Therefore one see synchroni-
zation of the two slave logistic maps in the regime where the
two slaves are chaotic.

FIG. 1. Temporal behaviors of the slave logistic maps wheng
=3.5 andL=60. (a) The modulated delay timet as a function of
time; (b) xn and (d) xn−xn8 at a=0.7 [the reference pointA in Fig.
3(a)]; (c) xn and (e) xn−xn8 at a=0.8 [the reference pointB in Fig.
3(a)].

FIG. 2. (a) Conditional Lyapunov exponentlc as a function ofsL ,ad. The gray(green) region indicates the regime in which the
conditional Lyapunov exponent is negative(i.e, the synchronization regime) and the white region shows the regime in which the exponent
is positive.(b) Maximal Lyapunov exponentlm as a function ofsL ,ad. The gray(green) region shows the regime where the exponent is
positive and the dark gray(red) region shows the regime in which the exponent is negative. We added a small noise of order 10−8 to one of
the slaves in order to avoid abrupt synchronization due to round-off error in the simulation.
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The periodic regime corresponds to the imprint of the
periodic behavior of slave systems when the delayed feed-
backs are absent. However, when the delayed feedback is
turned on, the system becomes chaotic. The slaves return to
the independent logistic maps whena=0 or L,1. (The re-
sults of Figs. 1–3 show the chaotic output of the slave sys-
tems and a wide synchronization regime depending on the
modulation amplitude and the coupling strength, even
though we tookg=3.5. We also performed the same studies
with other parametersg=3.8, 3.9, and 4.0 and observed a
synchronization regime.)

By tracing the time series in thesa ,Ld space, we obtain
the synchronization regime which we show in Fig. 3(a). One
can see that the synchronization regime in Fig. 3(a) coincides
with that of Fig. 2(a). To confirm the numerical results of
Fig. 3(a), we redraw the conditional Lypunov exponent as
shown in Fig. 3(b) when L=60 andL=40. Even when we
replace the master system by a random signaljn, we can
observe a similar synchronization regime whose border is
presented by a dashed line in Fig. 3(a). One sees that the
synchronization is enhanced when the delay time modulation
is noisy. This fact leads us to understand the synchronization
phenomenon in the framework of the synchronization by a
common signal which can be chaotic or noisy[11]. Specifi-
cally, in our system the driving common signal is fed into the
delay time implicitly, while in previous systems the driving
signal is explicitly introduced[11].

To show the universal feature of this type of synchroniza-
tion, we consider the Lorenz oscillator as master and the
Rössler oscillators as slaves[1] as follows:

eṗ = ssq − pd,

eq̇ = − pr + ap− q,

eṙ = pq− br, master, s3d

ẋ = y − z,

ẏ = x̄ + cy,

ż= d + z+ x̄, slave, s4d

where s=10, a=28, b=8/3, c=0.15,d=0.2, and x̄=s1
−adx+axft−tspdg. Here e is the time scaling parameter to
control the average oscillation frequency of the driving sys-
tem. We take the delay time in the form oftspd=bpstd+t0,
where b describes the modulation amplitude andt0 is the
center of the delay time. In this model, the Lorenz oscillator
plays the role of a driving system for a common DTM. Fig-
ure 4 shows the temporal behaviors of the two slave chaotic
systems near the synchronization threshold whene
=0.012,b=0.0067, andt0=0.9. Above the threshold, the
two slaves are synchronized as shown in Fig. 4(c), while
each oscillator is in a chaotic state. As we analyzed the lo-
gistic maps, we can easily understand the synchronization
phenomenon in these systems.

It is worth discussing the relationship between this phe-
nomenon and GS. GS is characterized by CS between the
slave oscillatorẋ= f(x ,hsyd) and its replicaẋ8= f(x8 ,hsyd).
The master signaly is directly fed into the slaves in the form
of the explicitly defined functionh. On the contrary, since

FIG. 3. (a) Synchronization regime determined by the time se-
ries. The gray(green) region shows the synchronization regime
which coincides with that of the contour plot of Fig. 2(a). A andB
indicate the reference points used to present the time series in Fig.
1. The dashed lines are the border of synchronization when the
driving signal is replaced by a random signaljn. One sees that the
synchronization regime is extended in this case.(b) The conditional
Lyapunov exponents on the two reference lines of(a) as a function
of a. The upper line is atL=60 and the lower atL=40.

FIG. 4. Temporal behaviors of the Rössler oscillators of Eqs.(3)
and (4). (a) tstd as a function of time whene=0.012,b=0.0067,
andt0=0.9; and the difference motion between two slaves when(b)
the coupling strengtha= 0.238 and(c) 0.240.
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the delay times of our slave systems are modulated by the
master signal, the functional dependency between the master
and the slave is not explicitly revealed. That is to say, the
effective forces acting on two slaves are quite different from
the case of GS until the two slaves are converged into a
synchronization state, because the feedback signal is propor-
tional to the value of its own state vector, not a common
feeding signal as in GS[i.e., feedback signals are not com-
mon sincexst−td is for slave 1 andx8st−td is for slave 2]. If
one introduces a multiplicative coupling such thatxstdystd,
the feedback forces can be different in the two slaves. How-
ever, the force is proportional to the master signal as well as
the slave one in this case, while the feedback force is pro-
portional to the slave signal only in our systems, because
xst−td is just a previous trajectory of the slave systems. In
this respect, the observed synchronization could be classified
into an extended type of GS.

Regarding an experimental realization of our method, we
can consider a laser system with optical feedback, where the
delay time can be modulated by a vibrating feedback mirror
using a piezoelectric or electromagnetic cell(see the second
reference of Ref.[22]). Also in an electronic circuit, the de-

lay time modulation can be implemented by using a digital
delay line or computer interface.

In conclusion, we have investigated the synchronization
behavior between two chaotic systems whose delay time is
modulated by a common irregular signal. We have demon-
strated that synchronization can be achieved by a common
DTM in chaotic maps and flows. And we have clarified that
a common DTM alters the stability of two chaotic oscillators
and leads the systems to be synchronized. We have con-
firmed the observed phenomenon through analysis of the
conditional and maximal Lyapunov exponents. We expect
that the observed phenomenon will extend the concept of
GS, and that the introduced systems will be useful for under-
standing synchronization phenomena with time delay in such
various fields as neurology[22,24] and population dynamics
[21].
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