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We present an exact analytical solution of the spectral problem of quasi-one-dimensional scaling quantum
graphs. Strongly stochastic in the classical limit, these systems are frequently employed as models of quantum
chaos. We show that despite their classical stochasticity all scaling quantum graphs are explicitly solvable in
the formE,=f(n), wheren is the sequence number of the energy level of the quantum graphiaradknown
function, which depends only on the physical and geometrical properties of the quantum graph. Our method of
solution motivates a new classification scheme for quantum graphs: we show that each quantum graph can be
uniquely assigned an integer reflecting its level of complexity. We show that a network of taut strings with
piecewise constant mass density provides an experimentally realizable analogue system of scaling quantum
graphs.
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[. INTRODUCTION tistics of finite quantum graphs are never exactly Wignerian.

Quantum graph§1-3] are the “harmonic oscillators” of We investigate the spec@ral statistic_s of_a four-vertex sc_ali_ng
quantum chaos. Due to their structural simplicity they pro-duantum graph in detail. Comparing its spectral statistics
vide a test bed for a large number of properties and hypothwith the spectral statistics of more highly connected quantum
eses of quantum chaotic systems. Many theoretical invest@raphs we show that the index although indicative of the
gations, which are difficult to conduct for more familiar complexity of the spectrum of a quantum graph, does not
quantum chaotic systenfid—6], can be carried out explicitly uniquely characterize its spectral statistics. In Sec. VI we
for quantum graphs, both in the classical and in the quanturpresent Lagrange’s inversion formula as a new and alterna-
regimes. An example are recently obtained spectral formulave method for obtaining explicit spectral formulas. In Sec.
[7—10, which provide explicit analytical expressions for the VII we discuss our results. In Sec. VIII we summarize our
individual quantum energy eigenvalues of a subset of scalingiesults and conclude the paper. The paper has two appendi-
quantum graphs. ces. In Appendix A we provide a simple proof for the state-

Recently we were able to generalize our methods to thenent that the spectral equation of tie=0 complexity sub-
set ofall scaling quantum grapHd.1]. The purpose of this class of scaling quantum graphs has one and only one root
paper is to provide a more detailed discussion and to preseper root cell. This is important since our theory of explicit
new results on the spectral statistics and the convergence spectral formulas of scaling quantum graphs crucially hinges
our explicit solution formulas. We also present a new classion this statement. In Appendix B we show that our spectral
fication scheme of scaling quantum graphs. We show that fiormulas are indeed convergent, and in addition that they
is possible to label each scaling quantum graph with an inconverge to the correct spectral points.
tegerm which reflects the degree of complexity of its spec-
trum. We also suggest an experimentally realizable analogue
system of scaling quantum graphs. This shows that scaling
quantum graphs are more than academic constructs, and thatAs illustrated in Fig. 1, quantum graphs consist of a quan-
physical systems can be found which can be analyzed on thtem particle moving on a one-dimensional network of bonds
basis of the theory of scaling quantum graphs. This view isand vertices.
corroborated by a recently published microwave realization The bondsB;; of the graph may be equipped with poten-
of quantum graph§l12]. tials U;;. We refer to these potentials as bond potentials or the

Our paper is organized in the following way. In Sec. Il we dressingof the graph bonds. The parameters determining the
introduce scaling quantum graphs and review briefly explicitstrength and the shape of the bond potentials are referred to
spectral formulas obtained for a sub-class of scaling quanturasdressing parameterdn what follows the bond potentials
graphs. In Sec. Il we examine the spectral equation of scalare considered to becaling potentials, Ujj=\;;E, \jj=N\;i
ing quantum graphs. In Sec. IV we define spectral separatorsconst. The physical meaning and the reason for introducing
whose knowledge enables the construction of explicit specthe scaling assumption are discussed7rl(. In addition,
tral formulas for scaling quantum graphs. We also define an Sec. VII, we present a physical analogue system of scaling
new spectral hierarchy of scaling quantum graphs which iguantum graphs, a network of taut strings, which has the
based on the complexity of their spectra. In Sec. V we invessame spectral equation as scaling quantum graphs. The string
tigate the spectral statistics of quantum graphs. We show thalstem is an example of a naturally scaling system. In a more
because of the existence of a spectral cutoff the spectral stgeneral context one can consider the scaling assumption as a

II. SCALING QUANTUM GRAPHS
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,knz K1n+ Ko, (1)
where the constants,, k, are determined explicitly in terms
of the parameters of the quantum graph. Clearly, the points

k, separate the eigenvaluksfrom each other, and are there-
fore calledseparators(see Sec. IV.

|4 -
1 As soon as the separatd¢sand the density of statggk)
are known, an explicit expression for the energy eigenvalues
2 of a given quantum graph is obtained either by first comput-
;:é ing the momentum eigenvalues
kn
kﬁj p(k)k dk, 2
kn—l

<

_ and then usingg,=k2, or by computingg, directly as
FIG. 1. Quantum graph: a quantum particle moves along the

bonds of a generic graph and scatters at its vertices. En
g grap En:fA p(E)E dE, 3)

. . . E-
tool which allows avoidance of unnecessary mathematical 1

complications. For most physical systems scaling can bQ\/hereIAEn:kﬁ, p(E)dE=p(k)dk. An explicit periodic-orbit ex-

achieved, even experimentally3], by an appropriate choice pansion of the density of stategk) is given by[7,8]
of parameters. We also defifis=k? since for the discussion

below it is frequently more convenient to work wilthan to 1 ” .
work with E. ey p(K) =2 ok —ky) = S, Re=> S Ase'”%k, 4)
For =0 quantum graphs produce strongly stochastic n m T =1
(mixing) classical counterparts—@assicalparticle moving  where S, and A, are correspondingly the reduced action
on the same one-dimensional network, scattering randomliangths and the weight factors of the prime periodic orbits
on its vertices[1,2,14-16. We use the wordstochasticto  |abeled byp, v is the multiple traversal index, arf§ is the
characterize the classical dynamics of the particle on theptal reduced action length of the grap®]. The constant
graph since classically the scattering at the vertices is not germ in the expansiod) of p shows thatx, in Eq. (1) is
deterministic process as required for deterministic chaogiven by x;=/S,. In order to illustrate the construction of
[17], but a random, stochastic process, where the classicakplicit spectral formulas we assume, for simplicity, that
scattering probabilities are determined directly from the=1/2 and allA, are real. Both assumptions hold for a large
quantum dynamics in the limft — 0 [18]. class of regular quantum graphs. If we now use the expan-
Despite the apparent simplicity of quantum graphs, theiksion (4) in Eq. (3) we arrive at the following exact, explicit
behavior exhibits many familiar features of classically cha-periodic-orbit expansion of the individual energy levels of
otic systems. Examples are the exponential proliferation ofhe corresponding regular quantum graphs:
classical periodic orbits and the approximate Wignerian sta-
tistics of nearest-neighbor spacinfis2] (see also Sec. V ﬂ2<n2+ i) 47Tn|m2 j;_sir(g,g)emwpy

As a result quantum graphs agaantum stochastisystems, n- 3 12 s o prZ

which mimic closely the behavior of quantum chaotic sys-

tems. It is therefore very interesting that despite their classi- 4—77Re2 j;_[sin(gp_’/) _ (M)cos(g'i/)]em“’p”
cal stochasticity and despite many familiar phenomenologi- 320 o v%f, 2 2 2 '
cal features of quantum chaos exhibited in the quantum

regime, the spectral problem for scaling quantum graphs (5)
turns out to be explicitly solvablgl1,19. wherew,=7S)/ S, Therefore, according to E¢p), the index

Let us first outline the solution for a particular class of

scaling quantum graphs, calledgular in [7-10. We note n that counts the separatdks of the regular quantum graph

that the term “reqular” as used here refers to the re Iais a quantum numbein the sense that it explicitly enumer-
gu u 9ulaLies the physical eigenstates. In this respect, the explicit for-

behavior of the spectrum of the corresponding quantu
graphs and has nothing to do with regular graphs as defin?e}nm‘r;‘S for the quantum energy levéis of these systems are

: . ) s z%alogous to the well-known Einstein-Brillouin-Keller

in graph theory[2_0], 9., graphs with a fixed coordmr_:m_on EBK) quantization formulas for integrable systeiids-6].

?:?nbeerr.zﬁ Caﬁgr'entﬁg'grﬁ Err': relgfnt 2??6% byraSeh\;?r:glf;r; his is a very interesting fact from the point of view of the

i [t W hs with g_ul qu h tu ? P semiclassical periodic-orbit quantization theory. In this re-

0 guantum graphs with a special graph topology. pect, the regular quantum graphs represent curious hybrids
For regular quantum graphs there exists a set o

keintervals! . each of which contains preciselv one momen- f classical stochasticity and quantum spectral solvability.
n P y However, the systems for which the expangibis valid

tum eigenvaluek, (see Appendix A The end pointk, of  represent a very special class of quantum graphs. Just how
these intervalsl,=[k,_1,k,], form a periodic set, special such “spectral regularity” is can be illustrated in
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FIG. 2. Piercing property of the regular quan-
tum graphs. The spectral staircase function of a
regular quantum graph is pierced by its average

N(E).
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terms of the behavior of the corresponding spectral staircase

function,

N(E) = > 6(E-E,), (6)

where @ is the unit step function defined as

0, forx<o,

900

IIl. SPECTRAL EQUATION

In order to set the stage for the following discussion, let
us recall some general definitions and properties of quantum
graphs. As mentioned in the introduction, a quantum graph
[1-3] consists of a quantum particle moving on a one-
dimensional network ofNg bonds connecting\, vertices
(Fig. 1). Every bondB;; which connects the verticeg and

0(x)=41/2, forx=0,

(7) vV, carries a solution of the Schrodinger equatioty,
=Eq¢n. The length of the bonds is denoted by. With the

) constantscaledpotentialsU;; =\;;E defined on the bonds of
It was shown in[7,10], that for the regular systems, the av- the graph, the Schrédinger equation is

erage spectral staircag@/eyl’s averagg

2\ E+NO), (®

-\
v

1, forx>0.

N(E) = g2 5
d_xglﬂij(x)"'ﬁijElpij(X)zoa (10)
has thepiercing propertyj.e., it intersects every stair step of !
the spectral staircase functidd(E), as illustrated in Fig. 2.

If a quantum system has the piercing property, there exists

. . oA Whereﬁij:i\fl—)\ij.
exactly one intersection poinE,;, between every two Below we shall assume for simplicity that the eneEis
neighboring energy levelg,_; <E,,

kept above the maximal scaled potential height, i.e.,

A - ~ _ Nj<1,i,j=1,...,Ny, so that tunneling solutions are ex-
N(En-) =N(En-). Eng <Epa<Ep n=12... cluded and the general solution of E0) on the bond;; is
9

The E, thus defined may serve as separators for the quantun sl
energy spectrum. As shown in Fig. 2 the piercing-average \ZA'A
requirement(9) is indeed quite restrictive. Consequently, !
regular quantum graphs form a relatively small subset of
quantum graphs. As demonstrated [i0,22, only a few 2
graph topologiegfor instance linear chaingdmit a regular
regime for an appropriate choice of network parameters. As
an example, a four-vertex linear-chain quantum grésse

inset of Fig. 3, which is characterized by the values of the 06

1

v, V,

two reflection coefficients, andr; at the two middle verti- o8k

cesV, and Vs, is in the regular regime if these parameters » . ! ! ! ! L L .

fall into the shaded region shown in Fig. 3. -1 08 06 -04 02 0 02 04 06 08 1
The majority of scaling quantum graphs do not admit s

regular regimes. Hence it is intriguing to understand the
spectral behavior of irregular quantum graphs, i.e., those for FIG. 3. The parameter space of the four-vertex linear graph. The
which the piercing-average conditi@f) is violated. shaded region corresponds to the regular regime.
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i (X) = & e kBijXj + bijeikﬁijxij_ (11) 20 F

The quantization conditions for quantum graphs are the re- 15
sult of the requirement that the solutiofid) must satisfy the &
continuity and the current conservation conditions at every%Z 19
vertex V;. The procedure of imposing the boundary condi-

tions can be reformulated in terms of an auxiliary problem of 5
guantum scattering on the vertices of the grdpilo,14,

which provides an elegant solution of the graph quantization
problem. As shown i1j2,10,14 the consistency of the com-

plete set of boundary conditions at all vertices yields the g

spectral equation 0 kg k, " ks

A(K) =def1 -S(k)]=0, (12) Momentum, k
where S(k) is a Ngx2Ng unitary (scattering matrix FIG. 4. The three-vertex linear grapinse) and the correspond-
[2,10,14, ing staircase function. The intersections betweédk) and N(k)

: correspond to the separating poiﬁp,s
Su(k) = ty,ePtk, (13

Here the capital indicek,J are used to denote the directed B e
bonds,l,J=1,2,...,2Ng. We denote by’ the time-reversed S= EE LBy (18)
bond ofl. The elements; (discussed in detail ifil0]) have -

the meaning of transmissidreflection amplitudes for tran- 444, is a constant phase. The modulus is given @y
sitions between thédirected bondsl and J. Transmission

occurs ifl andJ are connected andl=1’. If | andJ are not N
connected, we havgy=0. An example here i =0 for all I. Ar(K) = cog Sk — myp) — >, aicogSk—my), (19
For J=1" the matrix element,; has the meaning of a reflec- i=1

tion amplitude[2,9,10,14. Due to the scaling condition, the
t;;'s are constantk-independentparameters.
For conventional quantum graphs without potential dress

whereg; are constant coefficienty; are constant phasesy
is the number of harmonic terms in the sum of EP) and

ing the connection between the coefficietpjand the expan- the frgquenmeﬁ are linear combmatpns of the reduced
classical bond action lengtl®=4/L,. S is the largest fre-

sion coefficientdA, in Egs.(4) and(5) was established early ) : ' : 4
P -
on in the seminal literature on quantum graphs, e.g., in RefdUency in Eq(19),i.e.,§<%,i=1...Nr. This fact will be of
rucial importance below.

[1,2]. Later it was shown to hold also in the case of dressed® . .
scaling quantum graphi5]. Each transition of an orbip The spectrum of the quantum graph is obtained from the

from a bondl to J contributes the factat, to the weightA, equation
of the orbit, so that Ar(K) = 0. (20)
Ay = 1T, (14) In Appendix A we prove that if the coefficients of tlcbar-
{p} acteristic functiond(k) of the graph,
where the product is taken over the sequence of bonds Np
traced. ®(k) = > acodSk - my), (21)
Note that the phases of the exponentials in @8) coin- i=1
cide with the classical actions associated with the particle N
path traversing the bon8,, satisfy the condition
— Np
S(k) = BLik. (15) S lal=a<1, 22

The spectral determinaiit?) can be written in the form =1
precisely one solutiotk, of Eq. (20) can be found between

— A0k
Alk) = e TAR(K), (16) each two sequential separators
where Ag(Kk) is the (real) modulus of A(k) and ®¢(k) is its

phase. The phase is given [§] k, = é(n +y+tu+l), (23

where u, an integer, is to be adjusted such that R1< K.
whereS,, the total reduced action length as introduced in Eq.This is the case, e.g. for a two-bond grajptig. 4) with the
(4), is given explicitly by bond lengthd_; andL,, for which the spectral equation is

00(k) = 3In detS= Sk — myy, (17)
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FIG. 5. The staircase and the avera_qidx) for the four-vertex linear graph in a reguldeft) and in an irregulacright) regime.

Sin(SHk) — r sin(Sk) = 0. (24)  neighboring extrema ofg(k), i.e. that the zeros and the
extremainterlace and “extra wiggles” such as, e.g., illus-
trated by the dashed line in Fig. 6, amet possible. Hence
the locations of extrema may be used as the separating points

Here S§=L181+L,85,5=L18:-L,B,, andr is a constant
positive reflection coefficient at the vertd% between the
two bonds. Sincér| <1, the condition(22) is satisfied and for bootstrapping the physical spectrum.

hence t.h's graph is always regular. . . Strictly speaking, all this works only for simple roots of

In this case every step of the spectral staircase funcuog(z) which is the generic case. Multiple roots may, and in
©®)is pierceg byAitS averageig. 4, or equivalently, every spe(,:ial cases do, occur. But as explained in Rmilq,
interval I,=[k,-1,K,] contains precisely one quantum eigen-these cases are trivial to deal with. In such a case the sepa-
value of the momentum. This spectral regularity is the keyrators and the spectral points are degenerate and no further
for obtaining the explicit harmonic expansion for each indi-computation is necessary.
vidual root of the spectral determinaii2). In general, how- Is it any easier to obtain the extrema Ak(k) than to
ever, the regularity conditio(22) does not hold and hence optain its roots? Interestingly, looking for the answer to this
the principle “one root per interval,” (see Appendix Ais  question provides us with a complete scheme for establishing
violated. This is illustrated in Flg 5, which shows the b9haV-a hierarchy of quantum graphs according to their Spectra|
ior of the spectral staircase for the four-vertex linear chain inrregularity. Let us examine this question more closely.

two different dynamical regimes. The spectral staircase on The equatiom\;(k) =0 that defines the extrema ak(k) is
the right corresponds to a case in which the parameters

andr; fall outside of the shaded regularity region in Fig. 3.

Hence, in order to proceed with an analysis similar to the Nr
one for regular quantum graphs, one needs to find a set of SiN(Sk — ) - > aesin(Sk-my) =0, (26)
separating points that “bootstrap” the spectrum, and allow us i=1

to integrate around each delta-peakptf), as in Eq.(2).
where

IV. SEPARATORS

What is the set of points that can be used as separators fq : : @ : =
a generic quantum graph? Since the poiqtthat need to be P e
separated, are the zeros of the spectral determifafk), Pl R R
one can invoke an elementary, classic theof@j, which '\ =N
states that between every two roots of a real, continuous| /: : ¥

diff tiable fi t th 1 t t. M -l : : " : : q : : ] : : :
Irerentiaple tunction ere exists an extremum poin ore \/ \/ \/ \/ \/ \/ \/

over, extending\g(k) into the complex planelg(k) — A(z),
and using the Hadamard representation of the resulting entir
function A(2),

A(z2) = SZ™0A] | (l - k£>e”kn, (25)

n

: . I I3 14 15 Iy Lo
whereg=0 is the multiplicity of the rook,=0, and all the
rootsk, are assumed to be real as required, sidgék) is FIG. 6. The interlacing sequence of roots and extrema of the
derived from a Hermitian eigenvalue problem, one can showgpectral determinant. The dashed line represents the forbidden “ex-
[24,25 that there is exactly one zero between every twotra wiggles.”
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S i W
a=2 <1, 27) KO = f POk dk. (33)
S KL,

Note that this is the same type of trigonometric polynomial
as the original spectral equatig@0) (with a shifted phase
7o), With the new characteristic function

Here we used the notatiolif) for the periodic separators
(23), for future convenience. Following this step, using the

separatorsf(?) obtained in Eq(33), we find the root, of
Np the spectral equation via

DI (k) = > aesin(Sk— ). (28)
i=1

KO
ko= J ; pO(k)k dk, (34)
k

n-1

However, compared to the origind(k) of Eq. (21), this

function has certainly a better chance of satisfying the reguwhere the notatiop®(k) was used for the density of states
larity condition(22), because the absolute values of the co-,(k).

efficientsa have been decreased by the factgrs 1, i.e., For the case of the four-vertex linear graph, this situation
is again illustrated in Fig. 3, in which it is now assumed that
g — ai€;. (29)  the differentiated equatiof26) satisfies the regularity condi-

tion all through the domain —%r,,r;<1. This would be the
case, e.g., if the bond action lengths are chosen tﬁbe
=0.25,5)=0.45, andS}=1-S)-S). For this case one can
immediately verify that the spectral equation of the four-

Let us assume that for a certain irregular graph with
=Nhja|>1, the new characteristic functioh®(k) actually
does satisfy the regularity conditiq@?2), i.e.,

Np vertex linear chain,
2‘1 laje| < 1. (30 SIN(Syk) = rasin(Sik + Sk — S)K) — r,r gsin(Sk — Sok + Sk)
+1,5in(Sik - Sk - k), (35)

According to the results of Secs. Il and Il this means that the

zeros of Ag(k) [the extremal points ofAg(k)] can be sepa- is irregular outside of the regiojng| +|r,rs| +|r,| <1, but the
rated from each other by the periodic sequence of separatoceefficients of the differentiated equation satisfy the regular-
(23), i.e., that there exists exactly one extremumAg{k) ity condition (22).

between every two poinlfsn. For functions of the typ&25) Clt_aarly this strategy can bg applied in the general case. If
the converse statement is also tf@é,23, i.e., there exists a the differentiated equatiof26) is not of the regular type, one
root of Ag(k) between every two extrema dfg(k). This ~ ¢an differentiate the spgctral equat@ﬁ)) as many times as
suggests a direct strategy for obtaining the roots of(g).. It IS necessary to obtain an equationrefular typeat the
First, as mentioned above, we note that the spectral equatidAth Step. Indeed, thieh derivative of the spectral equation is

for Ag(k) can be written in the form I Np |
N Ag><k>=cos(sok—wyo+%)—Eaiéicos(Sk—ww%).
i=1
AR(K) =) CjcogSk+ @) =0, (31)
j=0 (36)

whereC; and ¢; are constants. From this we obtain the fol- Obviously, since alle's are smaller than 1, we eventually
lowing explicit formula for thedensity-of-extremadunc-  (after a finite numbem of steps arrive at an equation that

tional p(k) satisfies the regularity conditiai22),
1 (" -

" ’ ” iyA! M

pP(K) = |ALK)| S(AL(K)) = |AR(k)|ZJ ev2rMdy gl laje"| < 1. (37)
0 o N . . .
, 1 © T An upper bound form is easily established. We hava
=] R(k)|2— > X ! H Jnj(ij)dY} <-In(EN5|a])/In(maxe). Then, once the conditiof87) for
g== M= L=< ]=0 the mth derivative of its spectral determinant is satisfied, its

2 n[Sk+ @] (32)  of points,

Np zeros are separated from each other by a periodic sequence
xXexpy i ,
1=0

~ o
where thelJ,, are Bessel functions of the first kirj@6], and ki = g)(” tvtutl) (39)
the integrals in Eq(32) converge forC; # 0. Now, using the
expansion(32) together with the periodic separato23),  as in Eq.(23). Using the density™ (k) of zeros ofAl"(k),
one obtains the separating poirkg) for the rootsk, of  which is obtained explicitly in complete analogy with Eqg.
Agr(k), via (32), we can evaluate the zeros themselves as
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r
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FIG. 7. The spectral regime diagram of the four-vertex linear-chain quantum graph. The bond-action lengths are choﬁn to be
=0.2,9=0.6565,3)=1-S-S) (left pane), andS)=0.1, 9=0.8565,S)=1-S)-S) (right pane) resulting in a maximum degree of irregu-
larity of m=2 (left pane) andm=6 (right pane).

S med) Km - dom matrix ensembles, both in the presence of the time re-
ko' = f‘(nﬂ p ™ (Kk dk. (39  versal symmetry (GOE), where the nearest-neighbor
kn-1 distribution is given by[5]
Obviously, these points are now the extremaAéT’D(k),
and moreover, since there is exactly one rooﬁé‘i’)(k) be- Psor(S) = gs exp(— S7l4) (40)
tween any two neighboring pointﬁm), A(Rm‘l)(k) has no ex-
trema other than the ones obtained in E3f). and in the absence of {GUE), where the nearest-neighbor

The newly obtained extrema aﬁ(Rm"l)(k) separate its ze- distribution is given by
ros from each other, and hence serve as the separators for the
roots ofA(RW1)(k). As a consequence, we can now fadtithe
roots of A(Rm_l)(k) by using Eq.(39) recursively until we
arrive at the 0-th level to obtain the rodtgs of the original o ) ] o
spectral determinant. This solves the problem of obtainin%ThIS circumstance is one of the most important motivations
the energy spectrum of any scaling quantum graph. or studying quantum graphs in the context of quantum chaos

It is important to realize that a quantum graph of a certairtheory. In particular it is hoped to gain more insight into the
topology can still have different degrees of irregularity de-connection between chaos and random matrix theory and, if
pending on the network’s bond lengths and dressing paranossible, to prove the Bohigas-Giannoni-Schmit conjecture
eters(for instance the values of the bond potentialbhis  [27,28, which states that, generically, the spectrum of quan-
point is eaS”y illustrated by once more using the examp|e ofum Hamiltonian SyStemS chaotic in the classical limit should
the four-vertex linear chain. Although the regularity region conform with the spectral properties of the random matrix
for this graph is always the same, the surrounding blaniensembles.
region in F|g 3, which Corresponds to the irregu|ar regime, However, the exact results presented above show that for
now acquires structure. Figure 7 shows the spectral diagrailantum graphs with a finite number of bonds and vertices
for the four-vertex linear-chain graph for two different sets of (finite quantum graphshe correspondence with the nearest-
graph parameters, corresponding to two different irregularity€ighbor distributiong40) and (41), respectively, can only
regimes. be approximate. Indeed, the existence of root separators im-

The central diamond_shaped regidms: O) in F|g 7 are plieS that the eigenvalues of the monjentl’]\qm,Wi” alW&yS
the same as in Fig. 3 and correspond to the same regularitie confined within the root cell, € [k,-1,k,]. Hence, for
region as in Fig. 3. The outer layers of the regular region irfinite quantum graphs, even though they may be highly con-
Fig. 7 correspond to parameter values that guarantee firstected, the statistical distributid®(s) of the nearest neigh-
(m=1), secondm=2), ..., degree of irregularity. bor separationss,=k,—k,_;, will be restricted to the finite
domain 0<s< sy, and will not have the characteristic long
tail of the nearest-neighbor distributiog40) and (41), re-
spectively. This general property of the spectra of scaling

It is well known that the statistical properties of the spec-quantum graphs also follows from the fact that their spectral
tra of generic quantum graphs are well described by randorfunction, Ag(k), is an almost periodic function of the mo-
matrix theory(RMT) [1,2]. In particular, the numerically ob- mentum, and hence its zeros form an almost periodic set
tained nearest-neighbor distributid¥(s) of the normalized [29]. It is clear, therefore, that the distances between neigh-
spacingss [5] of the eigenvalues of highly connected quan-boring points of this set are bounded, i85 Spay andP(s)
tum graphs follows closely the profile of the Gaussian ranis zero fors>s,,,. These observations, of course, do not

Psue(s) = 3?zszexp(— 4% 7). (42)

V. SPECTRAL STATISTICS
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FIG. 9. Range of nearest-neighbor spacisgs as a function of

FIG. 8. Increase Of the maxima”y a”owed nearest_neighbor{he irregularity degreen for the fOUr-VerteX Chain. The maXimaI
separation as a function of, generated by the hierarchy of the Separation was obtained based on the roots found in the interval 0
separators. At the regular lev@l™), the periodically spaced sepa- <k=10000, in eachm regimﬁ. 'rr]he bc(imd action Ienglths @i

y =0.1,5,=0.8999,5;=0.0001, which produce a maximal irregular-
ratorskﬁ]m) (marked byX) separate the roots aﬁg“)(kgm))zo (full $ S which produ ximal irregu

circles. Their maximally allowed distance iS2/S,). The second ity degree Offfina=27.

order separatorgthe roots ofA{y™ *(k™™)=0], may be maximally For example, the dressing parameters of a quantum net-
as far as 8r/S) apart, etc. The higher the hierarchy of the sepa-york can be changed continuously so that the system under-
rator, the larger the maximally allowed spacing of nearestypes a transition from an irregularity regime to an irregu-
neighbors. larity m+1 regime. As this transition happens, the roots of
the spectral equation do not respond to produce an abrupt

preclude the possibility that certain finite, highly connectedincrease of the nearest-neighbor separations7ib$,. In-
quantum graphs are well, or indeed even exactly describegtead, the maximal nearest-neighbor separation increases
by the finite matrix ensemblgs$)]. smoothly as a function of the dressing parameters.

However, the higher the degree of irregularity of a quan- There is a convenient way to illustrate this increase for the
tum graph, the larges,,,. Going upwards in the “hierarchy four-vertex chain network, using the structure of its spectral

of separators” leads to an increase in the allowed neare§g9ime diagramiFig. 7). As shown in Fig. 7, the parameter

neighbor spacings, since the maximal possible distance b&€9ions that correspond to different irregularity degrees for

tween neighboring separators grows by one unit of meaff!!s 9raph form a system of nested diamond shapes, with
spacing when going from complexity levei-1 to complex- high irregularity regimes concentrating toward the corners of

ity level m. The mechanism for the increase of the aIIowedthe diagram. A specific set of the action length values,

. . . A S, S, S,, defines the frequencies in E@5) and hence the
mgxtrg]:é ?r:eia:rigsténelghbors spacing as a functiomas il- maximal irregularity degreen,., i-€., the total number of

. ._diamond-shaped regions, while a choice of the reflection co-
Figure 8 also shows that the roots of a spectral equatioRficients r, andr,, puts the system onto a particular point in
Ag(k)=0 with irregularity degreem, may be no more than he dgiagram. Hence, one can study the effect of increasing
(m+1)7/ S, apart. This provides a simple rule for finding an jrregularity by traversing the spectral regime diagram from
upper limit for Syay its center(r,=r;=0) to one of the cornergsay, r,=r;=1)
along the liner,=r3;=r, 0<r<1. For each value of=r,
=r3 that corresponds to a particular irregularity degnee,
one can obtain numerically the maximal separation distance,
Snax DE€tween the nearest neighbors, and then follow its
Clearly, the possibility of having large separations betweerchange asn increases.
the nearest neighbors is necessary for producing a statistical In addition to the maximal separatiey,,, there also ex-
distribution fors,=k,—k,_; that resembles a Wignerian dis- ists a minimal separatios.;,. The vertical bars in Fig. 9
tribution profile, similar to the ones which were numerically represent the possible range of nearest-neighbor spacings
obtained in Ref[2]. Smin= S=< Spnax fOr givenm. Clearly, the maximal root separa-

On the other hand, it is essential to realize that a higtion is increasing with growingn. However the increase is
irregularity degream is not enough to guarantee Wignerian- slower than the one given by the linear estirmtﬁ@x in Eq.
like statistics of the nearest neighbor spacings. A simple nu¢42).
merical experiment with the spectral equati@b) shows Since the spectral equatiai35) is an almost periodic
that the separations between nearest neighbors do not necésaction, the maximal root separation found on a sufficiently
sarily assume the largest possible valg&®. Hence the de- large finite interval of the momentdarge compared to the
gree of irregularity indeed provides only an upper limit for smallest almost-period of the functiai@5)] is indeed the
the nearest-neighbor separations, and does not determine tmaximal root separation produced by this function on arbi-
itself their actual values. trary intervals.

max

§m < dm = g:(m +1). (42)
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08 T y around a peak defined by the Wignerian distribution.

i Overall, the results of the statistical analysis of the four-
vertex chain spectrum show that both the smsadlnd the
larges ends of theP(s) distribution profile change slowly
g with increasing irregularity degree. Even in the case of high
irregularity degree, the behavior of the roots of E8p) is
too restricted by the simple analytical nature of E8p) to
. exploit the possibility of getting as close to, or as far from,
one another as is allowed by the hierarchy of the separators.
Since the irregularity hierarchy presented in previous sec-
. tions is a completely general structure, the irregularity degree
m produced by this scheme is a very general index. However
16 it does not, by itself, determine the spectral characteristics of
s a given quantum graph. While a small irregularity degree can
be provided only by a few classes of graphs with relatively
imple geometry, a large degree of irregularity can be shared

07 [
o6 Pls)
0.5 [
04 [
03[
02 [
01 m=16

m=26
0 1 Z E“ -

FIG. 10. Nearest-neighbor spacing probability distributions for

the eigenvalues of the four-vertex linear-chain quantum graph wit| . - A .
bond action lengths=0.1, 9=0.8999,50=0.0001, in different  OY a wide variety of graphs, which include both the topologi-

regimes of irregularityn as a function of spacing (in units of ). Cally simple onegwith appropriate dressingsind the topo-
The distribution profile is not Wignerian. The higher the irregularity 10gically elaborate networks. It is natural, therefore, to ex-

index m, the higher the peak of the distribution arousd= ~ Pect that the statistical spectral properties produced by
~1/S,. topologically simple graphs can differ from the ones pro-

duced by topologically complex networks, even if they are

It is also important to notice that the maximal nearest-characterized by the same degree of irregulanityn the
neighbor separations,,,, can be different for two graphs sense of the bootstrapping scheme presented above.
with the same degree of irregularity. Moreover, two quantum The four-vertex chain graph, whose spectral equafBai
graphs with the same irregularity degree may have comcontains only four oscillating terms, is certainly too simple to
pletely different spectral statistics. This can be seen fronProduce random-matrix-like behavior, whereas a four-
comparing the cases of the topologically simple four-vertexduadrangle, whose spectral equation written in the f(85)
chain graph with the fully connected four-vertex quadranglecontains about 830 terms, is already sufficiently complex.
The spectral statistics provided by the latter example werd his situation emphasizes the fact that the general phenom-
previously discussed in Ref2]. It was shown that the enological statement “classical chaos implies Wignerian sta-
nearest-neighbor distribution follows quite closely the antici-tistics,” implicitly assumes sufficient complexity of the un-
pated Wignerian shapgoth in the GOE and in the GUE derlying classical system.
cases From the opposite perspective, it may be considered a
The analysis of the spectral equation of a four-vertexcuriosity that simple networks, such as the four-vertex chain,
quadrangle with no bond potentials and comparable bon@re capable of producing highly irregular spectra. It is inter-
lengths(the case considered in R¢2]) produces an irregu- €sting in this context to look for a more refined scheme that
larity degree that usually does not exceret 25. This level ~ could distinguish between the complexity of the spectra pro-
of irregularity can be easily achieved by the four-vertexVided by simple graphee.g. linear chainsand the spectra of
chain, which, unlike the quadrangle, does not produce th&ore complicated networks, which are capable of producing
characteristic Wignerian distribution profile. The distribution random-matrix-like spectral statistics.
produced by a four-vertex chain in different irregularity re-  In this section we studied spectral properties of quantum
gimes is shown in Fig. 10. graphs only as far as relevant in connection with our new
Some general features of these distribution curves can bén-scheme.” Much more is known about the spectral prop-
easily explained with the help of elementary quantum-erties of quantum graphs in generalsee, e.g.,
mechanical arguments applied to the four-vertex chain. Inf1-3,21,30-3p. In particular the thrust in the investigation
deed, it is clear from Fig. 7, that high irregularity degree forof spectral properties nowadays is on understanding spectral
a four-vertex chain can be achieved by selecting both refleccorrelation functiong1-3,33,34,3p and even deriving ex-
tion coefficients|r,| and|ry| close to 1. Physically, such a Plicit formuls for them[30,33.
ph0|ce |mpl|es that the_ bonds of the chain are essentially VI, LAGRANGE'S INVERSION FORMULA
isolated, since the particle almost never transmits from one
bond to another. This “bond decoupling” also manifests itself The periodic orbit expansions presented in Sec. IV are not
in the spectral properties of the system by the emergence ¢fie only way to obtain the spectrum of regular quantum
three apparent sub-sequences of eigenvalues, each associgieaphs explicitly. Lagrange’s inversion formu[87] offers
with one of the “isolated-bond spectragh/S. Hence, one an alternative route. Given an implicit equation of the form
would expect that in the cas#,|,|rj=1 the nearest-
neighbor separations will mostly concentrate around the val-
ues determined by the inverse bond lengths,|(7n;/S) Lagrange’s inversion formula determines a rodtof Eq.

—(wn,—/S1)|, wheren;, n; are independent integers, rather than(43) according to the explicit series expansion

X=a+we(x), (43
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w” dv—l

vl dxt

0
X* =a+ Y,

v=1

, (44)

a

¢"(x)

provided¢(x) is analytic in an open intervdlcontainingx*
and

Xx-a
|W|<‘M‘DXE|. (45)

Since the regularity conditio22) ensures that the condition

(45) is satisfied, we can use Lagrange’s inversion formula

(44) to compute explicit solutions of regular quantum graphs.
In order to illustrate Lagrange’s inversion formula we will

now apply it to the solution of Eq24). Definingx=Sk, the
nth root of Eq.(24) satisfies the implicit equation

Xp = 7N + (= 1)"arcsifr sin(px,) ], (46)

where p=S/S, and |p| <1. Choosing$,=0.3+0.742, S,
=0.3-0.7A2 and r=(y2-1)/(y2+1), we obtain x;**"

=3.26507.., X\2?=31.24664.. andx*"=313.98697...

PHYSICAL REVIEW E 70, 046206(2004)

here that it is not true that classically chaotic systems are
necessarily unsolvable. We hope that this insight will elimi-
nate much of the reservations commonly expressed toward
our results.

Examples of explicitly solvable chaotic systems are
readily available. The shift maf89,4Q,

Xm1= (2%) mod 1, x,e R, n=0,1,2,..., (48

for instance, is “BernoulliT40], the strongest form of chaos.
Nevertheless the shift map is readily solved explicitly,

Xp=(2"%g) mod 1, x,eR, n=0,1,2.... (49

Another example is provided by the logistic mapping
X, €[0,1], 0=

Xne1 = MXn(1 =Xp), n=<4,

n=0,1,2,.., (50

widely used in population dynamid89—41. For u=4 this

We now recompute these values using the first two terms if"@PPing is equivalent with the shift md@2] and therefore

the expansioni44). For our example they are given by
rp coqpmn)

V1 =r?sir’(pmn) }

(47)

X2 = 7 + arcsirﬁrSin(PTf”)]{ (=1)"+

We obtain x?=3.26502.., x2=31.24650.. and x<120>9
=313.9868L., in very good agreement witk ™, x\ %=
andx&a

100 - . .
Although both Eq(5) and Eq.(44) are exact, and, judging

from our example, Eq.(44) appears to converge very

quickly, the main difference between E&) and Eq.(44) is
that no physical insight is gained from Ed4), whereas Eq.

(5) is tightly connected with the classical mechanics of th
graph system providing, in the spirit of Feynman’s path in-
tegrals, an intuitively clear picture of the physical processes
in terms of a superposition of amplitudes associated with

classical periodic orbits.

VII. DISCUSSION

completely chaotic. Yet an explicit solution, valid @t 4, is
given by[42]

X, = sirf(2"arcsinX), %o e [0,1]. (51

Therefore, as far as classical chaos is concerned, there is no
basis for the belief that classically chaotic systems do not
allow for explicit analytical solutions. Our contribution in
this paper is to show that scaling quantum graphs provide the
first examples of explicitly solvable quantum stochastic sys-
tems.

In this paper we focused on scaling quantum graphs
mainly because of their mathematical simplicity. However,
we will show now that for some physical systems the scaling

eproperty arises naturally as a consequence of the underlying
physics.

Consider a taut string of length, clamped at both ends,

ith a piecewise constant mass densit{x) =e(X) ug, €(X)

=€, X1<x<g, i=1,...,4,8,=0, a,=L, where yg is the
average mass density of the string. This system contains the
same physics as a four-vertex linear scaling quantum graph
since the transverse acoustic excitations of the string satisfy
the same spectral equation as a four-vertex linear scaling

The first announcement of explicit periodic-orbit expan-duantum graph. The reason is the following. For small trans-

sions of the spectrum of regular quantum grap8k was

verse oscillations the string obeys the wave equation

universally met with disbelief and puzzlement. It seemed im-

possible to obtain explicit solutions for a quantum system
that had been shown to be an excellent model of quantum
chaog38] and, moreover, is completely stochastic in its clas-
sical limit [1]. However, we found that the rejection of our

LAY

]f(X)=0,

results was almost always based on the common misconcephereé(x) is the amplitude of the transverse acoustic field of
tion of the “unsolvability” of chaotic systems. We point out the string at poink andT is the tension in the string.
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Equation(52), supplemented with the boundary condition ematician Ramanujai#6] have proved deep theorems about
£0)=&(L)=0, can be written in the forni10) of a four- them. However, it is clear that both methods are completely
vertex scaling quantum graph. Defining=w?uy/T, we different, since even from the outset the mathematical cat-

obtain egories of the quantities involved are different.
Of particular importance for our investigations is the pa-
d? 5 per by Barra and Gaspaf@®5]. These authors arrive at an
P +BTE [4i(x) =0, (53)  explicit formula for the nearest-neighbor spacing distribution
' P(s) of quantum graphs. Even more. Since the methods of

Barra and Gaspard are only based on the quasi-periodicity of

where 8=\, x € [ai_1.a], $h(4) = &), a, <x<a. Itis : : i
obvious that a web of taut strings with more complex con-the spectral equation, their results apply to all quantum sys

o ) . . ) tems with a quasi-periodic spectrum, for instance to the
nectivity as in our example is capable of simulating any scaly;assed quantum graphs discussed in this paper. Since our

ing quantum graph. _ methods yield explicit formulas for the spectral eigenvalues
Although the string model has not yet been realized exihemselves, we hope to be able, in future work, to present
perimentally, a different model has been implemented regjternative explicit representations Bfs) based on our ex-
cently in the laboratory12]. This experiment models a quan- pjicit periodic-orbit expansions of the spectrum.
tum graph with the help of interconnected microwave wave The standard tool of the semiclassical theory used for
guides. The experimental conditions are arranged such thatudying quantum chaotic spectra is the periodic orbit expan-
only the TEM modg/43] can propagate in a frequency range sion for the density of states. Using the density of states
from about 100 kHz to 16 GHz. This allows the authors ofapproach, the individual energy levels are obtained indi-
Ref.[12] to study the spectral properties of these microwaverectly, typically with semiclassical accuracy, as the singulari-
graphs in great detail. Even the time-reversal violating casées of the periodic orbit sum. For quantum graphs, however,
is realized with the help of Faraday isolatd#4,49. We it turns out that one can go one step further, and express the
suggest here that the authors of R&®] could easily modify  individual quantum energy levelg, in terms of exact, ex-
their experimental set-up to include the case of scaling quarplicit formulas. Moreover, energy levels can be targeted and
tum graphs in their measurements. This is done by filling théabeled individually and computed individually without the
coaxial cables representing the edges of the quantum graphecessity of knowing any of the preceding energy levels. In
with dielectrics of different dielectric constants respec- addition we showed that we can assign a unique degree
tively. This simple modification would allow the authors of any given quantum graph, whera defines the minimum
Ref.[12] to extend the set of experimentally accessible wavenumber of differentiations of the spectral determinant neces-
graphs enormously. In addition to the analogues of “convensary to reach the regular level, which bootstraps the spec-
tional” quantum graphgquantum graphs without additional trum. Thus quantum graphs appear to have a certain intrinsic
potentials on the graph edgeshey would also be able to degree of complexity which is characterized iy
study the spectral characteristics and periodic-orbit structure As discussed in Ref10], in order to obtain the expansion
of general scaling microwave graphs, which are the anac) for a generic quantum graph, one needs to obtain the
logues of scaling quantum graphs. piercing average of the spectral staircase, which, in general,
The paper by Berkolaiko and Keatiig0] is relevant in  is a complicated task. The proposed scheme for bootstrap-
the context of arriving at explicit formulas for physical and ping the spectrum represents a convenient way to circumvent
mathematical characteristics of quantum graphs. Berkolaikthis problem, and in addition it provides a new and unex-
and Keating's result30], however, pertains to arriving at an pected perspective on the spectra of quantum graphs by al-
explicit formula for the spectral form factoK(7) [2,30, lowing to compare their complexities.
whereas the central result of our paper is to present explicit The expansior(5) is similar in spirit to the well-known
formulas for the spectrum itself. In addition the results of EBK semiclassical quantization formul@-6]. Given the
Berkolaiko and Keating are derived for the special case ofjuantum numben, Eq. (5) provides arindividual expansion
conventional, undressed star graphs, whereas our formulas the corresponding energy eigenvakjge In the same spirit
hold for a more general class of dressed quantum grapHsSBK theory provides individual energy eigenvalues for a
without restriction of the graph topology. Therefore the given set of quantum numbers by quantizing action integrals
methods and the physical quantities computed in [RR9] on tori. Thus the two methods are similar in the sense that
are fundamentally different from the methods and physicaboth provide explicit values for the eigenenergies simply by
guantities computed in our paper. This also gives us the opplugging an integefor a set of integejsinto a known for-
portunity to clarify a common confusion. It has been sug-mula. This superficial similarity notwithstanding the under-
gested to us that our method of separators is the same as tlying physics of the two methods is completely different.
method of partitions used in the paper by Berkolaiko andEBK relies on a simple, integrable structure of the underly-
Keating[30], when in fact these two methods have nothinging classical dynamics based ddynamical symmetries
in common. Our separators are real numbers which isolateshereas our method of explicitly solving for the spectrum of
spectral points. The partitions used by Berkolaiko and Keatgquantum graphs relies on the construction of a network of
ing are combinatorial entities related to the number of wayspectral separators.
one can represent an integer as a sum of other integers. Par-The complexity of the expansio(b) compared to the
titions are a highly interesting mathematical subject, and th&€BK quantization formula reflects the complexity of the
greatest mathematicians, including the famous Indian mathelassical periodic orbit structure of quantum graphs. More-
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and simplification of the individual quantum eigenvalue

quantization scheme outlined above will most likely prove to APPENDIX A: PROOF OF

be highly nontrivial. Apparently, one encounters a whole hi- “ONE ROOT PER ROOT CELL”

erarchy of complexities of the quantum spectra, even for

such simple systems as the quasi one-dimensional quantum Here we provide a proof for the statemesee Sec. )
graphs. that one and only one rodt, of Eq. (19) is found in the root

Concluding this section we would like to make a few jyteryalk,_, <k<k,, wherek, are the root separators defined

comments on the comparison between our analytical methp, Eq. (23). In order to simplify our task we scale and shift
ods and standard numerical methods for computing eigenvajyq argumenk in Eq. (19)

ues of quantum graphs. In Rg¢fl1] we argued that there is

an important conceptual difference between analytical and

numerical methods. For instance analytical methods, such as 1

ours, provide the solution of a whole class of objects simul- k— < (k+myp), (AL)
taneously, whereas numerical methods address specific solu- S

tions of specific cases, one by one. In this sense analytical

solutio_n_s are much more powerful tha_n numerical_ solutionsgpq prove without loss of generality that

In addition, our explicit analytical solutions of scaling quan-

tum graphs are exact, whereas the accuracy of a numerical

solution is bound by the word length of the computational N
device used, or, in case of “infinite-accuracy” algorithms, by F(x) = cogx) = ®(x) =0, P(X) = >, aco{wX+ B),
the time one is willing to wait for the solution. Even if one is i=1

content with the numerical computation of finite accuracy,
finite stretches of spectral eigenvalues, there are at least two
situations, that require auxiliary analytical inpdi: the com-

putation of spectral points for very large root numbeand  has precisely one zerk, in each intervall,=(v,1,7,),

(i) the computation of complete spectra. A discussion oer7 v,=nr, if the regularity condition(22) is fulfilled.
both cases can be found in R¢L1]. To this discussion we We start by showing that

would like to add the following recent development concern-
ing the topic of complete spectra, which were required for

the experimental and theoretical investigations of R&T). N 2
It was argued in Ref[47] that even a single missing state > awsin(wx + )
would have invalidated the experimental results reported in i=1

Ref. [47]. Certifying completeness of the experimental spec- g(x):= <1 (A3)
trum was only possible with the help of numerical support, N 2

which itself used auxiliary analytical input to certify the 1-| X acodwx+ B)

completeness of the numerical spectra. This example illus- i=1

trates clearly that the requirement of complete spectra is not

some idle academic pursuit, but that the need for complet
spectra, and thus for analytical spectral methods, occurs i

lwi] <1, (A2)

ﬁ)r all x. The proof is straightforward. Definin@; = w;x+ G;

real-life situations, including experimental physics. Wwe have

N 2 N 2
VIIl. SUMMARY AND CONCLUSIONS 1-| X acod®) | =1-| > |acod®))|
i=1 i=1
In summary, we solved the spectral problem of scaling N 2

quantum graphs by deriving explicit, exact expressions for =1-|> E

each individual energy eigenvalug, of the graph. On the i=1

level of the spectral equation our procedure for determining _ )

the energy eigenvalues also defines a method for solving —LTa

analytically and explicitly a class of transcendental equa- >0, (A4)

tions. This in itself is surprising and may have applications in
pure mathematics, in particular in the theory of almost peri-
odic functions[29]. and, with Eq.(A4),
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N 2
[E |y Sin(®i)|]
i=1

g(x) <
N 2
1- [E |3y cosol]
i=1

N
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-1+ [af?+ X |aayl{lcod ©)cogO))| + [sin(©;)sin(O))}

i=1 i

N 2
1- [E lay cos{@ol]
i=1

1-d?

=i- N 2
1—[2 lay cos{@ol]
i=1

<1.

We now complete the proof in six steps.
(i) We observe thad(x)|<=N,|a;| <1 for all x.
(i) We use(i) to show that the end points, of I, are not
roots of Eq.(A2): |F(v,)|=|(-D"-®(v,)|=1-|P(v,)|>0.
(iii) In 1, we define a new variablé according to

X=y,+§ 0<é<m. (AB)

Inserting Eq(A6) into Eq.(A2) we see that in,, the spectral
function F(x) is identical with

fn(é) = (= 1)"codé) = @n(), (A7)

where

N
¢n(8) =2 acodwié+ B+ nay). (A8)

i=1
(iv) Because ofi) we have sgrF(v,)=(-1)". We use this
fact to show: signF(v,)F(vp.y)=(-1)?""1=-1. SinceF is
continuous, this proves that there is at least one ro®t iof
everyl,.
(v) According to(iii) and Eq.(A7) the roots ofF in I,
satisfy (-1)"cog§) = ¢,(é), or

£=hn(8), (A9)

whereh,(é§)=arccof(-1)"p,(&)]. Therefore, roots ofF are
fixed points ofh,.
(vi) In 1,, because of EqA3):

(A5)

i=1

[hy(§]?= N 5<1
1- {E a cofwié+ B + nmvi)‘
i-1

(A10)

N 2
[E g Sin(wi§+ B + nﬂ'wi)]

From Eg.(A10) we obtain

h(©<1inl,. (A11)

Because of Eq(All) it now follows immediately that Eq.
(A9) has only a single fixed point. This is so sin@e) guar-
antees the existence of at least one fixed p@inbf Eq.
(A9). But because of EqA11) there cannot be any other,
since Eq.(A11) guarantees thd¢—h,(&)| increases mono-
tonically to both sides of*. Consequently, EQLA9) has one
and only one fixed point. Since, because (of, the fixed
points of Eq.(A9) are the roots of EqA2) in I,,, we showed
that Eq.(A2) has precisely one root in each root interyjal

APPENDIX B: CONVERGENCE OF PERIODIC ORBIT
EXPANSIONS FOR INDIVIDUAL SPECTRAL
POINTS

Here we show that our explicit spectral formulas con-

verge, and converge to the correct spectral eigenvalues. For

the zeros of Eq(19) we define the spectral staircase

N(k) = 2 6k - k),

i=1

(B1)

where 6(x) is Heaviside’sd function (7). Based on the scat-
tering quantization approach it was shown elsewljigf¢hat
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N(K) = N(k) + —Im TrZ g (B2)
=1
where
— k
N = = (a4 1459), ®3)

and S(k) is the unitary scattering matrix of the quantum

graph. Since, according to our assumptio®%) is a finite,
unitary matrix, existence and convergence of Hg2) is
guaranteed since in the eigenangle representation H&).
involves nothing but the Fourier sums,Z;sin(lo(k))/I,

which according to Ref[26], formula 1.4411, converge to

[7=0o(k)]/2 mod 27. Therefore,N(k) is well-defined for all

k. SinceS(k) can easily be constructed for any given quan-

tum graph[1,10], Eq. (B2) provides an explicit formula for

PHYSICAL REVIEW E 70, 046206(2004)

> D,

J1--0)

= > AdllexpliL [k},

meP[l]

I —
TrS(k) Jlll i 1212U1213"Dj|vi|ul‘|vl‘1

(B8)

whereP[1] is the index set of all possible periodic orbits of
lengthl of the graphA,[1] is the weight of orbit numbem

of lengthl, computable from the matrix elements Gf and
Lfg)[l] is the reduced action of periodic orbit numberof
length |. Using this result we obtain the explicit periodic
orbit formula for the spectrum in the form

L(o)[l]k
sin —L(O)[I]

Ky = ki —7—Tlm2 S A o 5 25

=1 | mepp
(B9)

the staircase functiotB1). This expression now enables us Since the derivation of EqQB9) involves only a resumma-

to explicitly compute the zeros of E@L9).

In Appendix A we proved that exactly one zétpof Eq.
(19) is located inln:(ﬁn_l,kn). IntegratingN(k) from &n_l to
Rn and taking into account th&(k) jumps by one unit ak
=k,, we obtain

ﬂ” N(K)dk = N(Kn-1)[Kn = Ky-1] + N(k)[ K = ko]
k

n-1

(B4)

Solving for k, and usingN(kn_l):n—l and N(Rn):n, we
obtain

kn

ko= %(ZH +pty) - f N(k)dk. (B5)
Since we knowN(k) explicitly, Eq. (B5) allows us to com-
pute every zero of Eq(19) explicitly and individually for
any choice ofn. The representatio(B5) requires no further
proof since, as mentioned abowk) is well-defined every-
where, and is integrable over any finite intervalkof

Another useful representation kf is obtained by substi-
tuting Eq. (B2) with Eq. (B3) into Eq. (B5) and usingk,
=aln+u+1/2+y]/Sy:

k,= ——ImTrf 2 IS(k)dk (B6)
ko1 1=1

In the eigenangle representation of Benatrix it is trivial to

show by direct calculation that integration and summation

can be interchanged in E¢B6) and we arrive at

K, =k, ——ImTrZ I
=1

S(k)dk

knl

(B7)

In many cases the integral ov8i(k) can be performed ex-
plicitly, which yields explicit representations fdy,.

Finally we discuss explicit representationslqfin terms
of periodic orbits. Based on the product form of Benatrix
[10] the trace ofS(k) is of the form

tion of TrS (which involves only a finite number of terms
the convergence properties of H&7) are unaffected, and
Eg. (B9) converges.

Reviewing our logic that took us from E@B5) to Eq.
(B9) it is important to stress that E¢B9) converges to the
correct result fork,. This is so because starting from Eq.
(B5), we arrive at Eq(B9) performing only allowed equiva-
lence transformations. This is an important result. It means
that even though EGB9) may only be conditionally conver-
gent, it still converges to the correct result, provided the se-
ries is summed exactly as specified in E89). The summa-
tion scheme specified in EB9) means that periodic orbits
have to be summed according to their symbolic lengths
[39,4Q and not, e.g., according to their action lengths. If this
proviso is properly taken into account, E@9) is an ex-
plicit, convergent periodic orbit representation fiy that
converges to the exact value lof

It is possible to rewrite Eq(B9) into the more familiar
form of summation over prime periodic orbits and their rep-
etitions. Any periodic orbitm of lengthl in Eq. (B9) consists
of an irreducible, prime periodic orbity of lengthl, which
is repeatedv times, such that

(B10)

| = le.

Of courser may be equal to 1 if orbit numben is already a
prime periodic orbit. Let us now focus on the amplitude
Aqll] in Eqg. (B9). If we denote byAn,, the amplitude of the
prime periodic orbit, then

Adl]= 1oAY,

This is so because the prime periodic oijt is repeatedv
times, which by itself results in the amplitu@énp. The fac-
tor I» is explained in the following way: because of the trace
in Eq. (B8), every vertex visited by the prime periodic orbit
mp contributes an amplitud% to the total amplitude

A [l]. Since the prime periodic orbit is of length, i.e., it
visits |, vertices, the total contribution |b,>AV Finally, if
we denote by_fg; the reduced action of the prime periodic
orbit mp, then

(B11)
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)1 = ., 0 A A .
L [1]= v, (B12) f(k,) = nf(k,) = (n— 1) f(k, ;) - J i f (KN(K)dk.
Kn-1

Collecting the result§B10)—<B12) and inserting them into

Eq. (B9) yields (B14)
. According to the same logic that led to H&9), we obtain
— 2 1 1 O vIr A -
k =k.——=| = T AV eIVL /kn . _L(O) , - _ _
n=ka = mmEP L%El 5P sm[ oot flk) =nflke) = (1= Dl
2 1
(B13) -SImY T Y AJIG(LYND,  (B1)
T =1 ' meP[l]
where the summation is over all prime periodic orloits of h
the graph and all their repetitions It is important to note where A
here that the summation in E¢B13) still has to be per- Koo ik
formed according to the symbolic lengthwsl, of the orbits. Gn(x) = . f’ (k)e*dk. (B16)
n-1

In conclusion we note that our methods generalize and
can be used to obtain any differentiable functitfk,) di-  This amounts to a resummation since one can also obtain the
rectly and explicitly. Integrating ovefr’ (k)N(k) we obtain series fork, first, and then fornf(k,).
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