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We present an exact analytical solution of the spectral problem of quasi-one-dimensional scaling quantum
graphs. Strongly stochastic in the classical limit, these systems are frequently employed as models of quantum
chaos. We show that despite their classical stochasticity all scaling quantum graphs are explicitly solvable in
the formEn= fsnd, wheren is the sequence number of the energy level of the quantum graph andf is a known
function, which depends only on the physical and geometrical properties of the quantum graph. Our method of
solution motivates a new classification scheme for quantum graphs: we show that each quantum graph can be
uniquely assigned an integerm reflecting its level of complexity. We show that a network of taut strings with
piecewise constant mass density provides an experimentally realizable analogue system of scaling quantum
graphs.
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I. INTRODUCTION

Quantum graphs[1–3] are the “harmonic oscillators” of
quantum chaos. Due to their structural simplicity they pro-
vide a test bed for a large number of properties and hypoth-
eses of quantum chaotic systems. Many theoretical investi-
gations, which are difficult to conduct for more familiar
quantum chaotic systems[4–6], can be carried out explicitly
for quantum graphs, both in the classical and in the quantum
regimes. An example are recently obtained spectral formulas
[7–10], which provide explicit analytical expressions for the
individual quantum energy eigenvalues of a subset of scaling
quantum graphs.

Recently we were able to generalize our methods to the
set of all scaling quantum graphs[11]. The purpose of this
paper is to provide a more detailed discussion and to present
new results on the spectral statistics and the convergence of
our explicit solution formulas. We also present a new classi-
fication scheme of scaling quantum graphs. We show that it
is possible to label each scaling quantum graph with an in-
tegerm which reflects the degree of complexity of its spec-
trum. We also suggest an experimentally realizable analogue
system of scaling quantum graphs. This shows that scaling
quantum graphs are more than academic constructs, and that
physical systems can be found which can be analyzed on the
basis of the theory of scaling quantum graphs. This view is
corroborated by a recently published microwave realization
of quantum graphs[12].

Our paper is organized in the following way. In Sec. II we
introduce scaling quantum graphs and review briefly explicit
spectral formulas obtained for a sub-class of scaling quantum
graphs. In Sec. III we examine the spectral equation of scal-
ing quantum graphs. In Sec. IV we define spectral separators
whose knowledge enables the construction of explicit spec-
tral formulas for scaling quantum graphs. We also define a
new spectral hierarchy of scaling quantum graphs which is
based on the complexity of their spectra. In Sec. V we inves-
tigate the spectral statistics of quantum graphs. We show that
because of the existence of a spectral cutoff the spectral sta-

tistics of finite quantum graphs are never exactly Wignerian.
We investigate the spectral statistics of a four-vertex scaling
quantum graph in detail. Comparing its spectral statistics
with the spectral statistics of more highly connected quantum
graphs we show that the indexm, although indicative of the
complexity of the spectrum of a quantum graph, does not
uniquely characterize its spectral statistics. In Sec. VI we
present Lagrange’s inversion formula as a new and alterna-
tive method for obtaining explicit spectral formulas. In Sec.
VII we discuss our results. In Sec. VIII we summarize our
results and conclude the paper. The paper has two appendi-
ces. In Appendix A we provide a simple proof for the state-
ment that the spectral equation of them=0 complexity sub-
class of scaling quantum graphs has one and only one root
per root cell. This is important since our theory of explicit
spectral formulas of scaling quantum graphs crucially hinges
on this statement. In Appendix B we show that our spectral
formulas are indeed convergent, and in addition that they
converge to the correct spectral points.

II. SCALING QUANTUM GRAPHS

As illustrated in Fig. 1, quantum graphs consist of a quan-
tum particle moving on a one-dimensional network of bonds
and vertices.

The bondsBij of the graph may be equipped with poten-
tials Uij . We refer to these potentials as bond potentials or the
dressingof the graph bonds. The parameters determining the
strength and the shape of the bond potentials are referred to
asdressing parameters.In what follows the bond potentials
are considered to bescaling potentials,Uij =li jE, li j =l ji
=const. The physical meaning and the reason for introducing
the scaling assumption are discussed in[7–10]. In addition,
in Sec. VII, we present a physical analogue system of scaling
quantum graphs, a network of taut strings, which has the
same spectral equation as scaling quantum graphs. The string
system is an example of a naturally scaling system. In a more
general context one can consider the scaling assumption as a
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tool which allows avoidance of unnecessary mathematical
complications. For most physical systems scaling can be
achieved, even experimentally[13], by an appropriate choice
of parameters. We also defineE=k2 since for the discussion
below it is frequently more convenient to work withk than to
work with E.

For "=0 quantum graphs produce strongly stochastic
(mixing) classical counterparts—aclassicalparticle moving
on the same one-dimensional network, scattering randomly
on its vertices[1,2,14–16]. We use the wordstochasticto
characterize the classical dynamics of the particle on the
graph since classically the scattering at the vertices is not a
deterministic process as required for deterministic chaos
[17], but a random, stochastic process, where the classical
scattering probabilities are determined directly from the
quantum dynamics in the limit"→0 [18].

Despite the apparent simplicity of quantum graphs, their
behavior exhibits many familiar features of classically cha-
otic systems. Examples are the exponential proliferation of
classical periodic orbits and the approximate Wignerian sta-
tistics of nearest-neighbor spacings[1,2] (see also Sec. V).
As a result quantum graphs arequantum stochasticsystems,
which mimic closely the behavior of quantum chaotic sys-
tems. It is therefore very interesting that despite their classi-
cal stochasticity and despite many familiar phenomenologi-
cal features of quantum chaos exhibited in the quantum
regime, the spectral problem for scaling quantum graphs
turns out to be explicitly solvable[11,19].

Let us first outline the solution for a particular class of
scaling quantum graphs, calledregular in [7–10]. We note
that the term “regular” as used here refers to the regular
behavior of the spectrum of the corresponding quantum
graphs and has nothing to do with regular graphs as defined
in graph theory[20], e.g., graphs with a fixed coordination
number. A case in point is the recent paper by Severini and
Tanner[21] where the term “regular quantum graphs” refers
to quantum graphs with a special graph topology.

For regular quantum graphs there exists a set of
k-intervalsIn, each of which contains precisely one momen-

tum eigenvaluekn (see Appendix A). The end pointsk̂n of

these intervals,In=fk̂n−1, k̂ng, form a periodic set,

k̂n = k1n + k2, s1d

where the constantsk1,k2 are determined explicitly in terms
of the parameters of the quantum graph. Clearly, the points

k̂n separate the eigenvalueskn from each other, and are there-
fore calledseparators(see Sec. IV).

As soon as the separatorsk̂n and the density of statesrskd
are known, an explicit expression for the energy eigenvalues
of a given quantum graph is obtained either by first comput-
ing the momentum eigenvalues

kn =E
k̂n−1

k̂n
rskdk dk, s2d

and then usingEn=kn
2, or by computingEn directly as

En =E
Ên−1

Ên
rsEdE dE, s3d

whereÊn= k̂n
2, rsEddE=rskddk. An explicit periodic-orbit ex-

pansion of the density of statesrskd is given by[7,8]

rskd ; o
n

dsk − knd =
S0

p
+ Re

1

p
o
p

Sp
0o

n=1

`

Ap
neinSp

0k, s4d

where Sp
0, and Ap are correspondingly the reduced action

lengths and the weight factors of the prime periodic orbits
labeled byp,n is the multiple traversal index, andS0 is the
total reduced action length of the graph[9]. The constant
term in the expansion(4) of r shows thatk1 in Eq. (1) is
given byk1=p /S0. In order to illustrate the construction of
explicit spectral formulas we assume, for simplicity, thatk2
=1/2 and allAp are real. Both assumptions hold for a large
class of regular quantum graphs. If we now use the expan-
sion (4) in Eq. (3) we arrive at the following exact, explicit
periodic-orbit expansion of the individual energy levels of
the corresponding regular quantum graphs:

En =
p2

S0
2Sn2 +

1
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D −

4pn
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2 Imo
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Ap
n

vpn2sinSvpn

2
Deinvpn

−
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n
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2
D − Svpn

2
DcosSvpn

2
DGeinvpn,

s5d

wherevp=pSp
0/S0. Therefore, according to Eq.(5), the index

n that counts the separatorsk̂n of the regular quantum graph
is a quantum numberin the sense that it explicitly enumer-
ates the physical eigenstates. In this respect, the explicit for-
mulas for the quantum energy levelsEn of these systems are
analogous to the well-known Einstein-Brillouin-Keller
(EBK) quantization formulas for integrable systems[4–6].
This is a very interesting fact from the point of view of the
semiclassical periodic-orbit quantization theory. In this re-
spect, the regular quantum graphs represent curious hybrids
of classical stochasticity and quantum spectral solvability.

However, the systems for which the expansion(5) is valid
represent a very special class of quantum graphs. Just how
special such “spectral regularity” is can be illustrated in

FIG. 1. Quantum graph: a quantum particle moves along the
bonds of a generic graph and scatters at its vertices.
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terms of the behavior of the corresponding spectral staircase
function,

NsEd = o
n

usE − End, s6d

whereu is the unit step function defined as

usxd = 50, for x , 0,

1/2, for x = 0,

1, for x . 0.
6 s7d

It was shown in[7,10], that for the regular systems, the av-
erage spectral staircase(Weyl’s average),

N̄sEd =
S0

p
ÎE + N̄s0d, s8d

has thepiercing property,i.e., it intersects every stair step of
the spectral staircase functionNsEd, as illustrated in Fig. 2.

If a quantum system has the piercing property, there exists

exactly one intersection pointÊn−1, between every two
neighboring energy levelsEn−1,En,

NsÊn−1d = N̄sÊn−1d, En−1 , Ên−1 , En, n = 1,2,….

s9d

The Ên thus defined may serve as separators for the quantum
energy spectrum. As shown in Fig. 2 the piercing-average
requirement(9) is indeed quite restrictive. Consequently,
regular quantum graphs form a relatively small subset of
quantum graphs. As demonstrated in[10,22], only a few
graph topologies(for instance linear chains) admit a regular
regime for an appropriate choice of network parameters. As
an example, a four-vertex linear-chain quantum graph(see
inset of Fig. 3), which is characterized by the values of the
two reflection coefficientsr2 and r3 at the two middle verti-
cesV2 and V3, is in the regular regime if these parameters
fall into the shaded region shown in Fig. 3.

The majority of scaling quantum graphs do not admit
regular regimes. Hence it is intriguing to understand the
spectral behavior of irregular quantum graphs, i.e., those for
which the piercing-average condition(9) is violated.

III. SPECTRAL EQUATION

In order to set the stage for the following discussion, let
us recall some general definitions and properties of quantum
graphs. As mentioned in the introduction, a quantum graph
[1–3] consists of a quantum particle moving on a one-
dimensional network ofNB bonds connectingNV vertices
(Fig. 1). Every bondBij which connects the verticesVi and

Vj, carries a solution of the Schrödinger equation,Ĥcn
=Encn. The length of the bonds is denoted byLij . With the
constantscaledpotentialsUij =li jE defined on the bonds of
the graph, the Schrödinger equation is

d2

dxij
2 ci jsxd + bi j

2Eci jsxd = 0, s10d

wherebi j = ±Î1−li j .
Below we shall assume for simplicity that the energyE is

kept above the maximal scaled potential height, i.e.,
li j ,1,i , j =1,… ,NV, so that tunneling solutions are ex-
cluded and the general solution of Eq.(10) on the bondBij is

FIG. 2. Piercing property of the regular quan-
tum graphs. The spectral staircase function of a
regular quantum graph is pierced by its average

N̄sEd.

FIG. 3. The parameter space of the four-vertex linear graph. The
shaded region corresponds to the regular regime.
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ci jsxd = aije
−ikbi j xij + bije

ikbi j xij . s11d

The quantization conditions for quantum graphs are the re-
sult of the requirement that the solutions(11) must satisfy the
continuity and the current conservation conditions at every
vertex Vi. The procedure of imposing the boundary condi-
tions can be reformulated in terms of an auxiliary problem of
quantum scattering on the vertices of the graph[2,10,14],
which provides an elegant solution of the graph quantization
problem. As shown in[2,10,14] the consistency of the com-
plete set of boundary conditions at all vertices yields the
spectral equation

Dskd = detf1 − Sskdg = 0, s12d

where Sskd is a 2NB32NB unitary (scattering) matrix
[2,10,14],

SIJskd = tIJe
ibILIk. s13d

Here the capital indicesI ,J are used to denote the directed
bonds,I ,J=1,2,… ,2NB. We denote byI8 the time-reversed
bond ofI. The elementstIJ (discussed in detail in[10]) have
the meaning of transmission(reflection) amplitudes for tran-
sitions between the(directed) bondsI and J. Transmission
occurs if I andJ are connected andJÞ I8. If I andJ are not
connected, we havetIJ=0. An example here istII =0 for all I.
For J= I8 the matrix elementtIJ has the meaning of a reflec-
tion amplitude[2,9,10,14]. Due to the scaling condition, the
tIJ’s are constant(k-independent) parameters.

For conventional quantum graphs without potential dress-
ing the connection between the coefficientstIJ and the expan-
sion coefficientsAp in Eqs.(4) and(5) was established early
on in the seminal literature on quantum graphs, e.g., in Refs.
[1,2]. Later it was shown to hold also in the case of dressed,
scaling quantum graphs[15]. Each transition of an orbitp
from a bondI to J contributes the factortIJ to the weightAp
of the orbit, so that

Ap = p
hpj

tIJ, s14d

where the product is taken over the sequence of bonds
traced.

Note that the phases of the exponentials in Eq.(13) coin-
cide with the classical actions associated with the particle
path traversing the bondBI,

SIskd = bILIk. s15d

The spectral determinant(12) can be written in the form

Dskd = eiQ0skdDRskd, s16d

whereDRskd is the (real) modulus ofDskd and Q0skd is its
phase. The phase is given by[9]

Q0skd = 1
2ln detS= S0k − pg0, s17d

whereS0, the total reduced action length as introduced in Eq.
(4), is given explicitly by

S0 =
1

2o
I=1

2NB

LIbI s18d

andg0 is a constant phase. The modulus is given by[9]

DRskd = cossS0k − pg0d − o
i=1

NG

aicossSik − pgid, s19d

whereai are constant coefficients,gi are constant phases,NG

is the number of harmonic terms in the sum of Eq.(19) and
the frequenciesSi are linear combinations of the reduced
classical bond action lengthsSI

0=bILI. S0 is the largest fre-
quency in Eq.(19), i.e.,Si ,S0, i =1…NG. This fact will be of
crucial importance below.

The spectrum of the quantum graph is obtained from the
equation

DRskd = 0. s20d

In Appendix A we prove that if the coefficients of thechar-
acteristic functionFskd of the graph,

Fskd ; o
i=1

NG

aicossSik − pgid, s21d

satisfy the condition

o
i=1

NG

uaiu ; a , 1, s22d

precisely one solutionkn of Eq. (20) can be found between
each two sequential separators

k̂n =
p

S0
sn + g0 + m + 1d, s23d

wherem, an integer, is to be adjusted such thatk1, k̂1,k2.
This is the case, e.g. for a two-bond graph(Fig. 4) with the
bond lengthsL1 andL2, for which the spectral equation is

FIG. 4. The three-vertex linear graph(inset) and the correspond-

ing staircase function. The intersections betweenN̄skd and Nskd
correspond to the separating pointsk̂n.
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sinsS0kd − r sinsS1kd = 0. s24d

Here S0=L1b1+L2b2,S1=L1b1−L2b2, and r is a constant
positive reflection coefficient at the vertexV2 between the
two bonds. Sinceur u,1, the condition(22) is satisfied and
hence this graph is always regular.

In this case every step of the spectral staircase function
(6) is pierced by its average(Fig. 4), or equivalently, every

interval In=fk̂n−1, k̂ng contains precisely one quantum eigen-
value of the momentum. This spectral regularity is the key
for obtaining the explicit harmonic expansion for each indi-
vidual root of the spectral determinant(12). In general, how-
ever, the regularity condition(22) does not hold and hence
the principle “one root per intervalIn” (see Appendix A) is
violated. This is illustrated in Fig. 5, which shows the behav-
ior of the spectral staircase for the four-vertex linear chain in
two different dynamical regimes. The spectral staircase on
the right corresponds to a case in which the parametersr2
and r3 fall outside of the shaded regularity region in Fig. 3.

Hence, in order to proceed with an analysis similar to the
one for regular quantum graphs, one needs to find a set of
separating points that “bootstrap” the spectrum, and allow us
to integrate around each delta-peak ofrskd, as in Eq.(2).

IV. SEPARATORS

What is the set of points that can be used as separators for
a generic quantum graph? Since the pointskn that need to be
separated, are the zeros of the spectral determinantDRskd,
one can invoke an elementary, classic theorem[23], which
states that between every two roots of a real, continuous,
differentiable function there exists an extremum point. More-
over, extendingDRskd into the complex plane,DRskd→Dszd,
and using the Hadamard representation of the resulting entire
function Dszd,

Dszd = eisS0z−pg0dzqp
n
S1 −

z

kn
Dez/kn, s25d

whereqù0 is the multiplicity of the rootkn=0, and all the
roots kn are assumed to be real as required, sinceDRskd is
derived from a Hermitian eigenvalue problem, one can show
[24,25] that there is exactly one zero between every two

neighboring extrema ofDRskd, i.e. that the zeros and the
extrema interlace and “extra wiggles” such as, e.g., illus-
trated by the dashed line in Fig. 6, arenot possible. Hence
the locations of extrema may be used as the separating points
for bootstrapping the physical spectrum.

Strictly speaking, all this works only for simple roots of
Dszd, which is the generic case. Multiple roots may, and in
special cases do, occur. But as explained in Refs.[11,19],
these cases are trivial to deal with. In such a case the sepa-
rators and the spectral points are degenerate and no further
computation is necessary.

Is it any easier to obtain the extrema ofDRskd than to
obtain its roots? Interestingly, looking for the answer to this
question provides us with a complete scheme for establishing
a hierarchy of quantum graphs according to their spectral
irregularity. Let us examine this question more closely.

The equationDR8skd=0 that defines the extrema ofDRskd is

sinsS0k − pg0d − o
i=1

NG

aieisinsSik − pgid = 0, s26d

where

FIG. 5. The staircase and the averageN̄skd for the four-vertex linear graph in a regular(left) and in an irregular(right) regime.

FIG. 6. The interlacing sequence of roots and extrema of the
spectral determinant. The dashed line represents the forbidden “ex-
tra wiggles.”
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ei =
Si

S0
, 1. s27d

Note that this is the same type of trigonometric polynomial
as the original spectral equation(20) (with a shifted phase
g0), with the new characteristic function

Fs1dskd ; o
i=1

NG

aieisinsSik − pgid. s28d

However, compared to the originalFskd of Eq. (21), this
function has certainly a better chance of satisfying the regu-
larity condition (22), because the absolute values of the co-
efficientsai have been decreased by the factorsei ,1, i.e.,

ai → aiei . s29d

Let us assume that for a certain irregular graph with
oi=1

NG uaiu.1, the new characteristic functionFs1dskd actually
does satisfy the regularity condition(22), i.e.,

o
i=1

NG

uaieiu , 1. s30d

According to the results of Secs. II and III this means that the
zeros ofDR8skd [the extremal points ofDRskd] can be sepa-
rated from each other by the periodic sequence of separators
(23), i.e., that there exists exactly one extremum ofDRskd
between every two pointsk̂n. For functions of the type(25)
the converse statement is also true[24,25], i.e., there exists a
root of DRskd between every two extrema ofDRskd. This
suggests a direct strategy for obtaining the roots of Eq.(20).
First, as mentioned above, we note that the spectral equation
for DR8skd can be written in the form

DR8skd = o
j=0

NG

CjcossSjk + w jd = 0, s31d

whereCj andw j are constants. From this we obtain the fol-
lowing explicit formula for thedensity-of-extremasfunc-
tional rs1dskd

rs1dskd = uDR9skdud„DR8skd… = uDR9skdu
1

2p
E

−`

`

eiyDR8skddy

= uDR9skdu
1

2p
o

n0=−`

`

¯ o
nNG

=−`

` FE
−`

`

p
j=0

NG

Jnj
syCjddyG

3expHio
l=0

NG

nlfSlk + wlgJ , s32d

where theJn are Bessel functions of the first kind[26], and
the integrals in Eq.(32) converge forCj Þ0. Now, using the
expansion(32) together with the periodic separators(23),
one obtains the separating pointsk̂n

s0d for the rootskn of
DRskd, via

k̂n
s0d =E

k̂n−1
s1d

k̂n
s1d

rs1dskdk dk. s33d

Here we used the notationk̂n
s1d for the periodic separators

(23), for future convenience. Following this step, using the

separatorsk̂n
s0d obtained in Eq.(33), we find the rootskn of

the spectral equation via

kn =E
k̂n−1

s0d

k̂n
s0d

rs0dskdk dk, s34d

where the notationrs0dskd was used for the density of states
rskd.

For the case of the four-vertex linear graph, this situation
is again illustrated in Fig. 3, in which it is now assumed that
the differentiated equation(26) satisfies the regularity condi-
tion all through the domain −1ø r2,r3ø1. This would be the
case, e.g., if the bond action lengths are chosen to beS1

0

=0.25,S2
0=0.45, andS3

0=1−S1
0−S2

0. For this case one can
immediately verify that the spectral equation of the four-
vertex linear chain,

sinsS0kd = r3sinsS1
0k + S2

0k − S3
0kd − r2r3sinsS1

0k − S2
0k + S3

0kd

+ r2sinsS1
0k − S2

0k − S3
0kd, s35d

is irregular outside of the regionur3u+ ur2r3u+ ur2u,1, but the
coefficients of the differentiated equation satisfy the regular-
ity condition (22).

Clearly this strategy can be applied in the general case. If
the differentiated equation(26) is not of the regular type, one
can differentiate the spectral equation(20) as many times as
it is necessary to obtain an equation ofregular typeat the
mth step. Indeed, thelth derivative of the spectral equation is

DR
sldskd = cosSS0k − pg0 +

pl

2
D − o

i=1

NG

aiei
lcosSSik − pgi +

pl

2
D .

s36d

Obviously, since allei’s are smaller than 1, we eventually
(after a finite numberm of steps) arrive at an equation that
satisfies the regularity condition(22),

o
i=1

NG

uaiei
mu , 1. s37d

An upper bound form is easily established. We havem
ø−lnsoi=1

NG uaiud / lnsmaxieid. Then, once the condition(37) for
them-th derivative of its spectral determinant is satisfied, its
zeros are separated from each other by a periodic sequence
of points,

k̂n
smd =

p

S0
sn + g0 + m + 1d s38d

as in Eq.(23). Using the densityrsmdskd of zeros ofDR
smdskd,

which is obtained explicitly in complete analogy with Eq.
(32), we can evaluate the zeros themselves as
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k̂n
sm−1d =E

k̂n−1
smd

k̂n
smd

rsmdskdk dk. s39d

Obviously, these points are now the extrema ofDR
sm−1dskd,

and moreover, since there is exactly one root ofDR
smdskd be-

tween any two neighboring pointsk̂n
smd , DR

sm−1dskd has no ex-
trema other than the ones obtained in Eq.(39).

The newly obtained extrema ofDR
sm−1dskd separate its ze-

ros from each other, and hence serve as the separators for the
roots ofDR

sm−1dskd. As a consequence, we can now findall the
roots of DR

sm−1dskd by using Eq.(39) recursively until we
arrive at the 0-th level to obtain the rootskn of the original
spectral determinant. This solves the problem of obtaining
the energy spectrum of any scaling quantum graph.

It is important to realize that a quantum graph of a certain
topology can still have different degrees of irregularity de-
pending on the network’s bond lengths and dressing param-
eters(for instance the values of the bond potentials). This
point is easily illustrated by once more using the example of
the four-vertex linear chain. Although the regularity region
for this graph is always the same, the surrounding blank
region in Fig. 3, which corresponds to the irregular regime,
now acquires structure. Figure 7 shows the spectral diagram
for the four-vertex linear-chain graph for two different sets of
graph parameters, corresponding to two different irregularity
regimes.

The central diamond-shaped regionssm=0d in Fig. 7 are
the same as in Fig. 3 and correspond to the same regularity
region as in Fig. 3. The outer layers of the regular region in
Fig. 7 correspond to parameter values that guarantee first
sm=1d, secondsm=2d, …, degree of irregularity.

V. SPECTRAL STATISTICS

It is well known that the statistical properties of the spec-
tra of generic quantum graphs are well described by random
matrix theory(RMT) [1,2]. In particular, the numerically ob-
tained nearest-neighbor distributionPssd of the normalized
spacingss [5] of the eigenvalues of highly connected quan-
tum graphs follows closely the profile of the Gaussian ran-

dom matrix ensembles, both in the presence of the time re-
versal symmetry (GOE), where the nearest-neighbor
distribution is given by[5]

PGOEssd =
p

2
sexps− s2p/4d s40d

and in the absence of it(GUE), where the nearest-neighbor
distribution is given by

PGUEssd =
32

p2s2exps− 4s2/pd. s41d

This circumstance is one of the most important motivations
for studying quantum graphs in the context of quantum chaos
theory. In particular it is hoped to gain more insight into the
connection between chaos and random matrix theory and, if
possible, to prove the Bohigas-Giannoni-Schmit conjecture
[27,28], which states that, generically, the spectrum of quan-
tum Hamiltonian systems chaotic in the classical limit should
conform with the spectral properties of the random matrix
ensembles.

However, the exact results presented above show that for
quantum graphs with a finite number of bonds and vertices
(finite quantum graphs) the correspondence with the nearest-
neighbor distributions(40) and (41), respectively, can only
be approximate. Indeed, the existence of root separators im-
plies that the eigenvalues of the momentum,kn, will always

be confined within the root cells,knP fk̂n−1, k̂ng. Hence, for
finite quantum graphs, even though they may be highly con-
nected, the statistical distributionPssd of the nearest neigh-
bor separations,sn=kn−kn−1, will be restricted to the finite
domain 0,s,smax, and will not have the characteristic long
tail of the nearest-neighbor distributions(40) and (41), re-
spectively. This general property of the spectra of scaling
quantum graphs also follows from the fact that their spectral
function, DRskd, is an almost periodic function of the mo-
mentum, and hence its zeros form an almost periodic set
[29]. It is clear, therefore, that the distances between neigh-
boring points of this set are bounded, i.e.,s,smax, andPssd
is zero for s.smax. These observations, of course, do not

FIG. 7. The spectral regime diagram of the four-vertex linear-chain quantum graph. The bond-action lengths are chosen to beS1
0

=0.2, S2
0=0.6565,S3

0=1−S1
0−S2

0 (left panel), andS1
0=0.1, S2

0=0.8565,S3
0=1−S1

0−S2
0 (right panel) resulting in a maximum degree of irregu-

larity of m=2 (left panel) andm=6 (right panel).
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preclude the possibility that certain finite, highly connected
quantum graphs are well, or indeed even exactly described
by the finite matrix ensembles[5].

However, the higher the degree of irregularity of a quan-
tum graph, the largersmax. Going upwards in the “hierarchy
of separators” leads to an increase in the allowed nearest
neighbor spacings, since the maximal possible distance be-
tween neighboring separators grows by one unit of mean
spacing when going from complexity levelm−1 to complex-
ity level m. The mechanism for the increase of the allowed
maximal nearest-neighbors spacing as a function ofm is il-
lustrated in Fig. 8.

Figure 8 also shows that the roots of a spectral equation
DRskd=0 with irregularity degreem, may be no more than
sm+1dp /S0 apart. This provides a simple rule for finding an
upper limit for smax,

smax
smd ø dmax

smd =
p

S0
sm+ 1d. s42d

Clearly, the possibility of having large separations between
the nearest neighbors is necessary for producing a statistical
distribution forsn=kn−kn−1 that resembles a Wignerian dis-
tribution profile, similar to the ones which were numerically
obtained in Ref.[2].

On the other hand, it is essential to realize that a high
irregularity degreem is not enough to guarantee Wignerian-
like statistics of the nearest neighbor spacings. A simple nu-
merical experiment with the spectral equation(35) shows
that the separations between nearest neighbors do not neces-
sarily assume the largest possible values(42). Hence the de-
gree of irregularity indeed provides only an upper limit for
the nearest-neighbor separations, and does not determine by
itself their actual values.

For example, the dressing parameters of a quantum net-
work can be changed continuously so that the system under-
goes a transition from an irregularitym regime to an irregu-
larity m+1 regime. As this transition happens, the roots of
the spectral equation do not respond to produce an abrupt
increase of the nearest-neighbor separations byp /S0. In-
stead, the maximal nearest-neighbor separation increases
smoothly as a function of the dressing parameters.

There is a convenient way to illustrate this increase for the
four-vertex chain network, using the structure of its spectral
regime diagram(Fig. 7). As shown in Fig. 7, the parameter
regions that correspond to different irregularity degrees for
this graph form a system of nested diamond shapes, with
high irregularity regimes concentrating toward the corners of
the diagram. A specific set of the action length values,
S1

0, S2
0, S3

0, defines the frequencies in Eq.(35) and hence the
maximal irregularity degreemmax, i.e., the total number of
diamond-shaped regions, while a choice of the reflection co-
efficients,r2 andr3, puts the system onto a particular point in
the diagram. Hence, one can study the effect of increasing
irregularity by traversing the spectral regime diagram from
its centersr2=r3=0d to one of the corners(say, r2=r3=1)
along the liner2=r3=r , 0ø r ø1. For each value ofr =r2
=r3 that corresponds to a particular irregularity degree,m,
one can obtain numerically the maximal separation distance,
smax, between the nearest neighbors, and then follow its
change asm increases.

In addition to the maximal separationsmax there also ex-
ists a minimal separationsmin. The vertical bars in Fig. 9
represent the possible range of nearest-neighbor spacings
sminøsøsmax for givenm. Clearly, the maximal root separa-
tion is increasing with growingm. However the increase is
slower than the one given by the linear estimatedmax

smd in Eq.
(42).

Since the spectral equation(35) is an almost periodic
function, the maximal root separation found on a sufficiently
large finite interval of the momenta[large compared to the
smallest almost-period of the function(35)] is indeed the
maximal root separation produced by this function on arbi-
trary intervals.

FIG. 8. Increase of the maximally allowed nearest-neighbor
separation as a function ofm, generated by the hierarchy of the
separators. At the regular levelsDsmdd, the periodically spaced sepa-

rators k̂n
smd (marked by3) separate the roots ofDR

smdskn
smdd=0 (full

circles). Their maximally allowed distance is 2sp /S0d. The second
order separators[the roots ofDR

sm−1dskn
sm−1dd=0], may be maximally

as far as 3sp /S0d apart, etc. The higher the hierarchy of the sepa-
rator, the larger the maximally allowed spacing of nearest
neighbors.

FIG. 9. Range of nearest-neighbor spacingss/p as a function of
the irregularity degreem for the four-vertex chain. The maximal
separation was obtained based on the roots found in the interval 0
økø10 000p, in eachm regime. The bond action lengths areS1

0

=0.1, S2
0=0.8999,S3

0=0.0001, which produce a maximal irregular-
ity degree ofmmax=27.
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It is also important to notice that the maximal nearest-
neighbor separationssmax can be different for two graphs
with the same degree of irregularity. Moreover, two quantum
graphs with the same irregularity degree may have com-
pletely different spectral statistics. This can be seen from
comparing the cases of the topologically simple four-vertex
chain graph with the fully connected four-vertex quadrangle.
The spectral statistics provided by the latter example were
previously discussed in Ref.[2]. It was shown that the
nearest-neighbor distribution follows quite closely the antici-
pated Wignerian shape(both in the GOE and in the GUE
cases).

The analysis of the spectral equation of a four-vertex
quadrangle with no bond potentials and comparable bond
lengths(the case considered in Ref.[2]) produces an irregu-
larity degree that usually does not exceedm<25. This level
of irregularity can be easily achieved by the four-vertex
chain, which, unlike the quadrangle, does not produce the
characteristic Wignerian distribution profile. The distribution
produced by a four-vertex chain in different irregularity re-
gimes is shown in Fig. 10.

Some general features of these distribution curves can be
easily explained with the help of elementary quantum-
mechanical arguments applied to the four-vertex chain. In-
deed, it is clear from Fig. 7, that high irregularity degree for
a four-vertex chain can be achieved by selecting both reflec-
tion coefficientsur2u and ur3u close to 1. Physically, such a
choice implies that the bonds of the chain are essentially
isolated, since the particle almost never transmits from one
bond to another. This “bond decoupling” also manifests itself
in the spectral properties of the system by the emergence of
three apparent sub-sequences of eigenvalues, each associated
with one of the “isolated-bond spectra,”pn/Si. Hence, one
would expect that in the caseur2u , ur3u<1 the nearest-
neighbor separations will mostly concentrate around the val-
ues determined by the inverse bond lengths,s<uspni /Sid
−spnj /Sjdu, whereni ,nj are independent integers, rather than

around a peak defined by the Wignerian distribution.
Overall, the results of the statistical analysis of the four-

vertex chain spectrum show that both the small-s and the
large-s ends of thePssd distribution profile change slowly
with increasing irregularity degree. Even in the case of high
irregularity degree, the behavior of the roots of Eq.(35) is
too restricted by the simple analytical nature of Eq.(35) to
exploit the possibility of getting as close to, or as far from,
one another as is allowed by the hierarchy of the separators.

Since the irregularity hierarchy presented in previous sec-
tions is a completely general structure, the irregularity degree
m produced by this scheme is a very general index. However
it does not, by itself, determine the spectral characteristics of
a given quantum graph. While a small irregularity degree can
be provided only by a few classes of graphs with relatively
simple geometry, a large degree of irregularity can be shared
by a wide variety of graphs, which include both the topologi-
cally simple ones(with appropriate dressings) and the topo-
logically elaborate networks. It is natural, therefore, to ex-
pect that the statistical spectral properties produced by
topologically simple graphs can differ from the ones pro-
duced by topologically complex networks, even if they are
characterized by the same degree of irregularitym in the
sense of the bootstrapping scheme presented above.

The four-vertex chain graph, whose spectral equation(35)
contains only four oscillating terms, is certainly too simple to
produce random-matrix-like behavior, whereas a four-
quadrangle, whose spectral equation written in the form(35)
contains about 830 terms, is already sufficiently complex.
This situation emphasizes the fact that the general phenom-
enological statement “classical chaos implies Wignerian sta-
tistics,” implicitly assumes sufficient complexity of the un-
derlying classical system.

From the opposite perspective, it may be considered a
curiosity that simple networks, such as the four-vertex chain,
are capable of producing highly irregular spectra. It is inter-
esting in this context to look for a more refined scheme that
could distinguish between the complexity of the spectra pro-
vided by simple graphs(e.g. linear chains) and the spectra of
more complicated networks, which are capable of producing
random-matrix-like spectral statistics.

In this section we studied spectral properties of quantum
graphs only as far as relevant in connection with our new
“m-scheme.” Much more is known about the spectral prop-
erties of quantum graphs in general(see, e.g.,
[1–3,21,30–36]). In particular the thrust in the investigation
of spectral properties nowadays is on understanding spectral
correlation functions[1–3,33,34,36] and even deriving ex-
plicit formuls for them[30,35].

VI. LAGRANGE’S INVERSION FORMULA

The periodic orbit expansions presented in Sec. IV are not
the only way to obtain the spectrum of regular quantum
graphs explicitly. Lagrange’s inversion formula[37] offers
an alternative route. Given an implicit equation of the form

x = a + wwsxd, s43d

Lagrange’s inversion formula determines a rootx* of Eq.
(43) according to the explicit series expansion

FIG. 10. Nearest-neighbor spacing probability distributions for
the eigenvalues of the four-vertex linear-chain quantum graph with
bond action lengthsS1

0=0.1, S2
0=0.8999,S3

0=0.0001, in different
regimes of irregularitym as a function of spacings (in units of p).
The distribution profile is not Wignerian. The higher the irregularity
index m, the higher the peak of the distribution arounds/p
<1/S2

0.
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x * = a + o
n=1

` Uwn

n!

dn−1

dxn−1wnsxdU
a

, s44d

providedwsxd is analytic in an open intervalI containingx*
and

uwu , Ux − a

wsxd
U ∀ x P I . s45d

Since the regularity condition(22) ensures that the condition
(45) is satisfied, we can use Lagrange’s inversion formula
(44) to compute explicit solutions of regular quantum graphs.

In order to illustrate Lagrange’s inversion formula we will
now apply it to the solution of Eq.(24). Definingx=S0k, the
nth root of Eq.(24) satisfies the implicit equation

xn = pn + s− 1dnarcsinfr sinsrxndg, s46d

where r=S1/S0 and uru,1. ChoosingS0=0.3+0.7/Î2, S1

=0.3−0.7/Î2 and r =sÎ2−1d / sÎ2+1d, we obtain x1
sexactd

=3.26507… , x10
sexactd=31.24664… and x100

sexactd=313.98697….
We now recompute these values using the first two terms in
the expansion(44). For our example they are given by

xn
s2d = pn + arcsinfrsinsrpndgHs− 1dn +

rr cossrpnd
Î1 − r2 sin2srpndJ .

s47d

We obtain x1
s2d=3.26502… , x10

s2d=31.24650… and x100
s2d

=313.98681…, in very good agreement withx1
sexactd , x10

sexactd

andx100
sexactd.

Although both Eq.(5) and Eq.(44) are exact, and, judging
from our example, Eq.(44) appears to converge very
quickly, the main difference between Eq.(5) and Eq.(44) is
that no physical insight is gained from Eq.(44), whereas Eq.
(5) is tightly connected with the classical mechanics of the
graph system providing, in the spirit of Feynman’s path in-
tegrals, an intuitively clear picture of the physical processes
in terms of a superposition of amplitudes associated with
classical periodic orbits.

VII. DISCUSSION

The first announcement of explicit periodic-orbit expan-
sions of the spectrum of regular quantum graphs[8] was
universally met with disbelief and puzzlement. It seemed im-
possible to obtain explicit solutions for a quantum system
that had been shown to be an excellent model of quantum
chaos[38] and, moreover, is completely stochastic in its clas-
sical limit [1]. However, we found that the rejection of our
results was almost always based on the common misconcep-
tion of the “unsolvability” of chaotic systems. We point out

here that it is not true that classically chaotic systems are
necessarily unsolvable. We hope that this insight will elimi-
nate much of the reservations commonly expressed toward
our results.

Examples of explicitly solvable chaotic systems are
readily available. The shift map[39,40],

xn+1 = s2xnd mod 1, xn P R, n = 0,1,2,…, s48d

for instance, is “Bernoulli”[40], the strongest form of chaos.
Nevertheless the shift map is readily solved explicitly,

xn = s2nx0d mod 1, xn P R, n = 0,1,2,… . s49d

Another example is provided by the logistic mapping

xn+1 = mxns1 − xnd, xn P f0,1g, 0 ø m ø 4,

n = 0,1,2,…, s50d

widely used in population dynamics[39–41]. For m=4 this
mapping is equivalent with the shift map[42] and therefore
completely chaotic. Yet an explicit solution, valid atm=4, is
given by [42]

xn = sin2s2narcsinÎx0d, x0 P f0,1g. s51d

Therefore, as far as classical chaos is concerned, there is no
basis for the belief that classically chaotic systems do not
allow for explicit analytical solutions. Our contribution in
this paper is to show that scaling quantum graphs provide the
first examples of explicitly solvable quantum stochastic sys-
tems.

In this paper we focused on scaling quantum graphs
mainly because of their mathematical simplicity. However,
we will show now that for some physical systems the scaling
property arises naturally as a consequence of the underlying
physics.

Consider a taut string of lengthL, clamped at both ends,
with a piecewise constant mass densitymsxd=esxdm0, esxd
=ei , xi−1,x,ai , i =1,… ,4 , a0=0, a4=L, where m0 is the
average mass density of the string. This system contains the
same physics as a four-vertex linear scaling quantum graph
since the transverse acoustic excitations of the string satisfy
the same spectral equation as a four-vertex linear scaling
quantum graph. The reason is the following. For small trans-
verse oscillations the string obeys the wave equation

F d2

dx2 + v2msxd
T

Gjsxd = 0, s52d

wherejsxd is the amplitude of the transverse acoustic field of
the string at pointx andT is the tension in the string.
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Equation(52), supplemented with the boundary condition
js0d=jsLd=0, can be written in the form(10) of a four-
vertex scaling quantum graph. DefiningE=v2m0/T, we
obtain

H d2

dxi
2 + bi

2EJcisxid = 0, s53d

wherebi =Îei , xi P fai−1,aig , cisxid;jsxd , ai−1,x,ai. It is
obvious that a web of taut strings with more complex con-
nectivity as in our example is capable of simulating any scal-
ing quantum graph.

Although the string model has not yet been realized ex-
perimentally, a different model has been implemented re-
cently in the laboratory[12]. This experiment models a quan-
tum graph with the help of interconnected microwave wave
guides. The experimental conditions are arranged such that
only the TEM mode[43] can propagate in a frequency range
from about 100 kHz to 16 GHz. This allows the authors of
Ref. [12] to study the spectral properties of these microwave
graphs in great detail. Even the time-reversal violating case
is realized with the help of Faraday isolators[44,45]. We
suggest here that the authors of Ref.[12] could easily modify
their experimental set-up to include the case of scaling quan-
tum graphs in their measurements. This is done by filling the
coaxial cables representing the edges of the quantum graphs
with dielectrics of different dielectric constantse, respec-
tively. This simple modification would allow the authors of
Ref. [12] to extend the set of experimentally accessible wave
graphs enormously. In addition to the analogues of “conven-
tional” quantum graphs(quantum graphs without additional
potentials on the graph edges), they would also be able to
study the spectral characteristics and periodic-orbit structure
of general scaling microwave graphs, which are the ana-
logues of scaling quantum graphs.

The paper by Berkolaiko and Keating[30] is relevant in
the context of arriving at explicit formulas for physical and
mathematical characteristics of quantum graphs. Berkolaiko
and Keating’s result[30], however, pertains to arriving at an
explicit formula for the spectral form factorKstd [2,30],
whereas the central result of our paper is to present explicit
formulas for the spectrum itself. In addition the results of
Berkolaiko and Keating are derived for the special case of
conventional, undressed star graphs, whereas our formulas
hold for a more general class of dressed quantum graphs
without restriction of the graph topology. Therefore the
methods and the physical quantities computed in Ref.[30]
are fundamentally different from the methods and physical
quantities computed in our paper. This also gives us the op-
portunity to clarify a common confusion. It has been sug-
gested to us that our method of separators is the same as the
method of partitions used in the paper by Berkolaiko and
Keating [30], when in fact these two methods have nothing
in common. Our separators are real numbers which isolate
spectral points. The partitions used by Berkolaiko and Keat-
ing are combinatorial entities related to the number of ways
one can represent an integer as a sum of other integers. Par-
titions are a highly interesting mathematical subject, and the
greatest mathematicians, including the famous Indian math-

ematician Ramanujan[46] have proved deep theorems about
them. However, it is clear that both methods are completely
different, since even from the outset the mathematical cat-
egories of the quantities involved are different.

Of particular importance for our investigations is the pa-
per by Barra and Gaspard[35]. These authors arrive at an
explicit formula for the nearest-neighbor spacing distribution
Pssd of quantum graphs. Even more. Since the methods of
Barra and Gaspard are only based on the quasi-periodicity of
the spectral equation, their results apply to all quantum sys-
tems with a quasi-periodic spectrum, for instance to the
dressed quantum graphs discussed in this paper. Since our
methods yield explicit formulas for the spectral eigenvalues
themselves, we hope to be able, in future work, to present
alternative explicit representations ofPssd based on our ex-
plicit periodic-orbit expansions of the spectrum.

The standard tool of the semiclassical theory used for
studying quantum chaotic spectra is the periodic orbit expan-
sion for the density of states. Using the density of states
approach, the individual energy levels are obtained indi-
rectly, typically with semiclassical accuracy, as the singulari-
ties of the periodic orbit sum. For quantum graphs, however,
it turns out that one can go one step further, and express the
individual quantum energy levelsEn in terms of exact, ex-
plicit formulas. Moreover, energy levels can be targeted and
labeled individually and computed individually without the
necessity of knowing any of the preceding energy levels. In
addition we showed that we can assign a unique degreem to
any given quantum graph, wherem defines the minimum
number of differentiations of the spectral determinant neces-
sary to reach the regular level, which bootstraps the spec-
trum. Thus quantum graphs appear to have a certain intrinsic
degree of complexity which is characterized bym.

As discussed in Ref.[10], in order to obtain the expansion
(5) for a generic quantum graph, one needs to obtain the
piercing average of the spectral staircase, which, in general,
is a complicated task. The proposed scheme for bootstrap-
ping the spectrum represents a convenient way to circumvent
this problem, and in addition it provides a new and unex-
pected perspective on the spectra of quantum graphs by al-
lowing to compare their complexities.

The expansion(5) is similar in spirit to the well-known
EBK semiclassical quantization formula[4–6]. Given the
quantum numbern, Eq. (5) provides anindividual expansion
of the corresponding energy eigenvalueEn. In the same spirit
EBK theory provides individual energy eigenvalues for a
given set of quantum numbers by quantizing action integrals
on tori. Thus the two methods are similar in the sense that
both provide explicit values for the eigenenergies simply by
plugging an integer(or a set of integers) into a known for-
mula. This superficial similarity notwithstanding the under-
lying physics of the two methods is completely different.
EBK relies on a simple, integrable structure of the underly-
ing classical dynamics based on(dynamical) symmetries
whereas our method of explicitly solving for the spectrum of
quantum graphs relies on the construction of a network of
spectral separators.

The complexity of the expansion(5) compared to the
EBK quantization formula reflects the complexity of the
classical periodic orbit structure of quantum graphs. More-
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over, the solution scheme shown above demonstrates that the
spectral complexity of quantum graphs can bequalitatively
different for different quantum graphs. According to this
scheme, resolving the irregular spectra may not amount to
something as simple as redefining the expansion coefficients
and the frequencies in Eq.(5). Hence, further generalization
and simplification of the individual quantum eigenvalue
quantization scheme outlined above will most likely prove to
be highly nontrivial. Apparently, one encounters a whole hi-
erarchy of complexities of the quantum spectra, even for
such simple systems as the quasi one-dimensional quantum
graphs.

Concluding this section we would like to make a few
comments on the comparison between our analytical meth-
ods and standard numerical methods for computing eigenval-
ues of quantum graphs. In Ref.[11] we argued that there is
an important conceptual difference between analytical and
numerical methods. For instance analytical methods, such as
ours, provide the solution of a whole class of objects simul-
taneously, whereas numerical methods address specific solu-
tions of specific cases, one by one. In this sense analytical
solutions are much more powerful than numerical solutions.
In addition, our explicit analytical solutions of scaling quan-
tum graphs are exact, whereas the accuracy of a numerical
solution is bound by the word length of the computational
device used, or, in case of “infinite-accuracy” algorithms, by
the time one is willing to wait for the solution. Even if one is
content with the numerical computation of finite accuracy,
finite stretches of spectral eigenvalues, there are at least two
situations, that require auxiliary analytical input:(i) the com-
putation of spectral points for very large root numbern and
(ii ) the computation of complete spectra. A discussion of
both cases can be found in Ref.[11]. To this discussion we
would like to add the following recent development concern-
ing the topic of complete spectra, which were required for
the experimental and theoretical investigations of Ref.[47].
It was argued in Ref.[47] that even a single missing state
would have invalidated the experimental results reported in
Ref. [47]. Certifying completeness of the experimental spec-
trum was only possible with the help of numerical support,
which itself used auxiliary analytical input to certify the
completeness of the numerical spectra. This example illus-
trates clearly that the requirement of complete spectra is not
some idle academic pursuit, but that the need for complete
spectra, and thus for analytical spectral methods, occurs in
real-life situations, including experimental physics.

VIII. SUMMARY AND CONCLUSIONS

In summary, we solved the spectral problem of scaling
quantum graphs by deriving explicit, exact expressions for
each individual energy eigenvalueEn of the graph. On the
level of the spectral equation our procedure for determining
the energy eigenvalues also defines a method for solving
analytically and explicitly a class of transcendental equa-
tions. This in itself is surprising and may have applications in
pure mathematics, in particular in the theory of almost peri-
odic functions[29].
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APPENDIX A: PROOF OF
“ONE ROOT PER ROOT CELL”

Here we provide a proof for the statement(see Sec. II)
that one and only one rootkn of Eq. (19) is found in the root

interval k̂n−1,k, k̂n, wherek̂n are the root separators defined
in Eq. (23). In order to simplify our task we scale and shift
the argumentk in Eq. (19),

k → 1

S0
sk + pg0d, sA1d

and prove without loss of generality that

Fsxd = cossxd − Fsxd = 0, Fsxd = o
i=1

N

aicossvix + bid,

uviu , 1, sA2d

has precisely one zerokn in each intervalIn=snn−1,nnd , n
PZ , nn=np, if the regularity condition(22) is fulfilled.

We start by showing that

gsxdª

Fo
i=1

N

aivisinsvix + bidG2

1 −Fo
i=1

N

aicossvix + bidG2
, 1 sA3d

for all x. The proof is straightforward. DefiningQi =vix+bi
we have

1 −Fo
i=1

N

aicossQidG2

ù 1 −Fo
i=1

N

uaicossQiduG2

ù 1 −Fo
i=1

N

uaiuG2

ù 1 − a2

. 0, sA4d

and, with Eq.(A4),
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gsxd ø

Fo
i=1

N

uai sinsQiduG2

1 −Fo
i=1

N

uai cossQiduG2

ø 1 +

− 1 +o
i=1

N

uaiu2 + o
iÞ j

uaiajuhucossQidcossQ jdu + usinsQidsinsQ jduj

1 −Fo
i=1

N

uai cossQiduG2

ø 1 −
1 − a2

1 −Fo
i=1

N

uai cossQiduG2

, 1. sA5d

We now complete the proof in six steps.
(i) We observe thatuFsxduøoi=1

N uaiu,1 for all x.
(ii ) We use(i) to show that the end pointsnn of In are not

roots of Eq.(A2): uFsnndu= us−1dn−Fsnnduù1−uFsnndu.0.
(iii ) In In we define a new variablej according to

x = nn + j, 0 , j , p. sA6d

Inserting Eq.sA6d into Eq.sA2d we see that inIn the spectral
function Fsxd is identical with

fnsjd = s− 1dncossjd − wnsjd, sA7d

where

wnsjd = o
i=1

N

aicossvij + bi + npvid. sA8d

(iv) Because of(i) we have sgnFsnnd=s−1dn. We use this
fact to show: signFsnndFsnn+1d=s−1d2n+1=−1. SinceF is
continuous, this proves that there is at least one root ofF in
every In.

(v) According to (iii ) and Eq.(A7) the roots ofF in In
satisfy s−1dncossjd=wnsjd, or

j = hnsjd, sA9d

wherehnsjd=arccosfs−1dnwnsjdg. Therefore, roots ofF are
fixed points ofhn.

(vi) In In, because of Eq.(A3):

fhn8sjdg2 =

Fo
i=1

N

aivi sinsvij + bi + npvidG2

1 −Fo
i=1

N

ai cossvij + bi + npvidG2 , 1.

sA10d

From Eq.sA10d we obtain

hn8sjd , 1 in In. sA11d

Because of Eq.sA11d it now follows immediately that Eq.
sA9d has only a single fixed point. This is so sincesivd guar-
antees the existence of at least one fixed pointj* of Eq.
sA9d. But because of Eq.sA11d there cannot be any other,
since Eq.sA11d guarantees thatuj−hnsjdu increases mono-
tonically to both sides ofj*. Consequently, Eq.sA9d has one
and only one fixed point. Since, because ofsvd, the fixed
points of Eq.sA9d are the roots of Eq.sA2d in In, we showed
that Eq.sA2d has precisely one root in each root intervalIn.

APPENDIX B: CONVERGENCE OF PERIODIC ORBIT
EXPANSIONS FOR INDIVIDUAL SPECTRAL

POINTS

Here we show that our explicit spectral formulas con-
verge, and converge to the correct spectral eigenvalues. For
the zeros of Eq.(19) we define the spectral staircase

Nskd = o
i=1

`

usk − kid, sB1d

whereusxd is Heaviside’su function (7). Based on the scat-
tering quantization approach it was shown elsewhere[1] that

EXPLICIT SPECTRAL FORMULAS FOR SCALING… PHYSICAL REVIEW E 70, 046206(2004)

046206-13



Nskd = N̄skd +
1

p
Im Tro

l=1

`
1

l
Slskd, sB2d

where

N̄skd =
S0k

p
− sm + 1 +g0d, sB3d

and Sskd is the unitary scattering matrix of the quantum
graph. Since, according to our assumptions,Sskd is a finite,
unitary matrix, existence and convergence of Eq.(B2) is
guaranteed since in the eigenangle representation Eq.(B2)
involves nothing but the Fourier sumsol=1

` sin(lsskd) / l,
which according to Ref.[26], formula 1.4411, converge to
fp−sskdg /2 mod 2p. Therefore,Nskd is well-defined for all
k. SinceSskd can easily be constructed for any given quan-
tum graph[1,10], Eq. (B2) provides an explicit formula for
the staircase function(B1). This expression now enables us
to explicitly compute the zeros of Eq.(19).

In Appendix A we proved that exactly one zerokn of Eq.

(19) is located inIn=sk̂n−1, k̂nd. IntegratingNskd from k̂n−1 to

k̂n and taking into account thatNskd jumps by one unit atk
=kn, we obtain

E
k̂n−1

k̂n
Nskddk= Nsk̂n−1dfkn − k̂n−1g + Nsk̂ndfk̂n − kng.

sB4d

Solving for kn and usingNsk̂n−1d=n−1 and Nsk̂nd=n, we
obtain

kn =
p

S0
s2n + m + g0d −E

k̂n−1

k̂n
Nskddk. sB5d

Since we knowNskd explicitly, Eq. (B5) allows us to com-
pute every zero of Eq.(19) explicitly and individually for
any choice ofn. The representation(B5) requires no further
proof since, as mentioned above,Nskd is well-defined every-
where, and is integrable over any finite interval ofk.

Another useful representation ofkn is obtained by substi-

tuting Eq. (B2) with Eq. (B3) into Eq. (B5) and usingk̄n
=pfn+m+1/2+g0g /S0:

kn = k̄n −
1

p
Im TrE

k̂n−1

k̂n o
l=1

`
1

l
Slskddk. sB6d

In the eigenangle representation of theS-matrix it is trivial to
show by direct calculation that integration and summation
can be interchanged in Eq.(B6) and we arrive at

kn = k̄n −
1

p
Im Tro

l=1

`
1

l
E

k̂n−1

k̂n
Slskddk. sB7d

In many cases the integral overSlskd can be performed ex-
plicitly, which yields explicit representations forkn.

Finally we discuss explicit representations ofkn in terms
of periodic orbits. Based on the product form of theSmatrix
[10] the trace ofSlskd is of the form

Tr Sskdl = o
j1… j l

Dj1,j1
Uj1,j2

Dj2,j2
Uj2,j3

…Djl,j l
Ujl,j1

= o
mPPflg

AmflgexphiLm
s0dflgkj, sB8d

wherePflg is the index set of all possible periodic orbits of
length l of the graph,Amflg is the weight of orbit numberm
of length l, computable from the matrix elements ofU, and
Lm

s0dflg is the reduced action of periodic orbit numberm of
length l. Using this result we obtain the explicit periodic
orbit formula for the spectrum in the form

kn = k̄n −
2

p
Imo

l=1

`
1

l o
mPPflg

Amflg
eiLm

s0dflgk̄n

Lm
s0dflg

sinF p

2S0
Lm

s0dflgG .

sB9d

Since the derivation of Eq.(B9) involves only a resumma-
tion of Tr Sl (which involves only a finite number of terms),
the convergence properties of Eq.(B7) are unaffected, and
Eq. (B9) converges.

Reviewing our logic that took us from Eq.(B5) to Eq.
(B9) it is important to stress that Eq.(B9) converges to the
correct result forkn. This is so because starting from Eq.
(B5), we arrive at Eq.(B9) performing only allowed equiva-
lence transformations. This is an important result. It means
that even though Eq.(B9) may only be conditionally conver-
gent, it still converges to the correct result, provided the se-
ries is summed exactly as specified in Eq.(B9). The summa-
tion scheme specified in Eq.(B9) means that periodic orbits
have to be summed according to their symbolic lengths
[39,40] and not, e.g., according to their action lengths. If this
proviso is properly taken into account, Eq.(B9) is an ex-
plicit, convergent periodic orbit representation forkn that
converges to the exact value ofkn.

It is possible to rewrite Eq.(B9) into the more familiar
form of summation over prime periodic orbits and their rep-
etitions. Any periodic orbitm of lengthl in Eq. (B9) consists
of an irreducible, prime periodic orbitmP of length lP which
is repeatedn times, such that

l = nlP. sB10d

Of coursen may be equal to 1 if orbit numberm is already a
prime periodic orbit. Let us now focus on the amplitude
Amflg in Eq. (B9). If we denote byAmP the amplitude of the
prime periodic orbit, then

Amflg = lPAmP
n . sB11d

This is so because the prime periodic orbitmP is repeatedn
times, which by itself results in the amplitudeAmP

n . The fac-
tor lP is explained in the following way: because of the trace
in Eq. (B8), every vertex visited by the prime periodic orbit
mP contributes an amplitudeAmP

n to the total amplitude
Amflg. Since the prime periodic orbit is of lengthlP, i.e., it
visits lP vertices, the total contribution islPAmP

n . Finally, if

we denote byLmP
s0d the reduced action of the prime periodic

orbit mP, then
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Lm
s0dflg = nLmP

s0d . sB12d

Collecting the results(B10)–(B12) and inserting them into
Eq. (B9) yields

kn = k̄n −
2

p
Imo

mP

1

LmP
s0d o

n=1

`
1

n2AmP
n einLmP

s0d k̄nsinF np

2S0
LmP

s0dG ,

sB13d

where the summation is over all prime periodic orbitsmP of
the graph and all their repetitionsn. It is important to note
here that the summation in Eq.(B13) still has to be per-
formed according to the symbolic lengthsl =nlP of the orbits.

In conclusion we note that our methods generalize and
can be used to obtain any differentiable functionfsknd di-
rectly and explicitly. Integrating overf8skdNskd we obtain

fsknd = nfsk̂nd − sn − 1dfsk̂n−1d −E
k̂n−1

k̂n
f8skdNskddk.

sB14d

According to the same logic that led to Eq.(B9), we obtain

fsknd = nfsk̂nd − sn − 1dfsk̂n−1d

−
2

p
Imo

l=1

`
1

l o
mPPflg

AmflgGnsLm
s0dflgd, sB15d

where

Gnsxd =E
k̂n−1

k̂n
f8skdeixkdk. sB16d

This amounts to a resummation since one can also obtain the
series forkn first, and then formfsknd.
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