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Numerical simulations of two-dimensional magnetic domain patterns
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I show that a model for the interaction of magnetic domains that includes a short range ferromagnetic and a
long range dipolar antiferromagnetic interaction reproduces very well many characteristic features of two-
dimensional magnetic domain patterns. In particular bubble and stripe phases are obtained, along with polygo-
nal and labyrinthine morphologies. In addition, two puzzling phenomena, namely, the so called “memory
effect” and the “topological melting” observed experimentally, are also qualitatively described. Very similar
phenomenology is found in the case in which the model is changed to be represented by the Swift-Hohenberg
equation driven by an external orienting field.
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I. INTRODUCTION and have remained largely as puzzles, namely, the so called
There is a surprisingly large number of systems that ex-memory effect’[9] of some magnetic patterns, and the “to-

hibit macroscopic textures arising from microscopic interac-Pological melting”[10] of an ordered lattice of bubbles.
tions[1]. To be concrete, | will take as a case of study that of

patterns in magnetic systerimagnetic garnetf2] or ferro- || DETAILS OF THE MODEL AND THE NUMERICAL
fluids [3]), but many of the conclusions obtained can be di- TECHNIQUE

rectly applied to other systems, as for instance, the mixed _ _

state of type | superconductors of slab geomd#y; and The model I will use is not at all newsee[1,1]] and

Langmuir monolayer$5]. The phenomenology of these sys- references therejnl will consider a scalar field:(r) defined
tems is qualitatively understood as appearing from the comever thex-y plane. This variable will represent the magneti-
petition of two effects: a short range rigidity, and a long zation in the system, which in experiments is typically con-
range(dipolarn interaction between the local magnetization strained(because of structural propertje® point perpen-
at different spatial positions. Calculations sugdésthat the dicularly to the x-y plane. Then, experimentally, the
ground state of the system consists(igfa state of uniform magnetizationg has a preference to take two different val-
magnetization(ii) a hexagonal lattice of bubbles in a back- ues, which without loss of generality | will assume to be 1.
ground with opposite magnetization, @ii) a phase with It will be convenient for the simulations to considgras a
alternating, parallel stripes of opposite magnetization. Theontinuum variable and include in the Hamiltonian a local
parameter controlling which of these three is actually theterm H, that favors the valueg=+1. This term will be of
ground state is the external magnetic field. However, in exthe form

periments, upon variation o_f the_ external field, diffgr(_ant HO2 ()

(typically metastableflux configurations develop that origi- H, = aof dr(— bt S _) _ hoj dr ¢(r) (1)
nate in instabilities of the bubbles or the stripes. Most notice- 2 4

able, these_ metastable_ conf|gur_at|0ns include Iaby_rmthmgnd represents the simplest continuum field description of an
phases of interpenetrating domains, and polygonal-like pa

tI"sing variable. Note that a term describing the effect of an
terns[1].

I . external magnetic fielth; has already been included.

Model Hamiltonians that take into account the two rel- The other terms tha?will be included in the Hamiltonian
evant energy scgl_e_s have been _used to _reprodupe most of t_QFe the following. First, there is a rigidity terid,, of the
elemental instabilities observed in experiments, in part|cularforrn 9
the elongation and “fingering” instability of bubblgg|, and
the undulation instability of stripeg8]. However, the much |V o(r)|?
richer behavior of the full system, appearing from complex Hrig:ﬂoJ dFT- 2
interaction effects in rather large spatial regions, has not been
studied in detail with this kind of models. In fact, it is not This term(with positive 8y) discourages spatial variations of
known if these simple models contain all necessary ingredi¢p, and can be called “attractive,” in the sense that two re-
ents to produce realistic magnetization patterns over larggions with a value of¢ of plus (or minug one, in a back-
spatial scales. ground of the opposite sign, tend to merge into a single one

The main motivation of the present work is to presentto reduce the value of this ter@n fact, in a description in
large scale simulations using a model Hamiltonian to sederms of an Ising variable on a lattice, this term maps onto a
whether it can account for the full phenomenology and theferromagnetic interaction between nearest neighbor )sites
variety of morphologies observed. | claim that the answer isThe fact that our fundamental variahfeis continuous rather
positive. The simulations are able to reproduce, in particulathan discrete, and the existence of the gradient term, imply in
two phenomena that have been observed in these systerparticular the existence of a natural widtbf the order of
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VBl ap) for the interface between domains with positive and d(r) S(H+Hyg+ Hgpp)

negative magnetization. Choosing the parameters in such a at SH(r)

way that this width is a few times the discretization distance

in the simulation allows us to obtain a smooth interface be-

tween domains, which turns out to be very weakly pinned by =T }‘{a‘)(_ ¢+ %) ~ho= BoAd

the underlying numerical mesh, and whose energy is almost

independent of its spatial orientation. These two facts are + 7’0[ dr’ (r YG(Ir —r'|)} (8)
crucial for a realistic simulation, and cannot be easily '

achieved using an Ising variable that takes only two values

[13] (see, for instance, the attempts]i2]). which represents an overdamped dynamics in which the sys-
Second, there is a teriy;, that models the dipolar inter- tem reduces its energy by a steepest descent evolution. To
actions, of the form efficiently implement these equations on the computer, and

in order to avoid the direct evaluation of the integral in the
last term of Eq(8), a pseudospectral meth¢d5] is used. |
Haip = 70J dr dr’é(r)e(r')G(r,r') (3)  write the previous equation in Fourier space, namely,

where G(r,r')~1/|r jr’|3 at long distances. At short dis- I __ Mag (= p+ )|, = hod(K) + (Bok? + voGi) i |
tances, however, the® behavior has to be cut off to avoid J

divergences(in experiments, the cutoff distance is given (9)
roughly by the thickness of the filmnHowever, we can see . ) . o
that the way in which the cutoff is done is not crucial for the In this way, the last term is now algebraic. The complication
results. In fact, we will take advantage of the fact that thehas been translated to the first term, which involves the

two terms(2) and (3) can be compactly written in Fourier €valuation of the Fourier transform df. However, this can
space as be done very efficiently by the use of standard fast-Fourier-

transform techniques.
. = 2 2 In the simulations below, the functida is defined in real
g * i % [AUOFBok"+ 76Ci) @ space to beG(r,r’)=1/r—r'[? for any two points of the
numerical mesh such that#r’, whereasG(r,r)=0. Then
whereGy is the Fourier transform of(r,0). Thus, itis the  the cutoff distance is the lattice discretization. The Fourier
combination(Bok?+ 4Gy that will mostly determine the be- transform of this expression on the square lattice gives for
havior of the system. Note that the short distance behavior ahe relevant terms of, the form of Eq.(5) with a;=9.05,
G in real space is masked in Fourier space at l&ggy the  a,=27. Once the value o4, is fixed (and since the value of
k? term, and then is irrelevant. On the other hand, the  a, is universa), there are four independent coefficients in Eq.
behavior at long distances transforms intk dependence of (9). Two of them can be fixed by rescaling the spatial and
the form temporal coordinates. In fact, if we define a new field
_ #(r . t)=A"1¢(r/C,t/B) [and theng (t) = AL (t/B)], and
G—o=20~arlKl. ©) i case we choosa to be

The constants can be exactly evaluated to be
_ 2Y(C-1)
. A=\/1+—", (10
@o

a0:27-rf rdr G(r), (6)
0 the new field satisfies equations of motion that in Fourier
space can be written gthe tilde in the new field has been
a, = 2. (7)  eliminated for simplicity
The finite valuea, of Gy at k=0 reflects the fact that the I _ — ). +hsk) = (BK2 + 11
interaction in real space is integralgle spite of being some- at (6= &) ()-8 Yol (11

times called “long rangg” Also note thata; is independent .
of the short distance behavior 6fr). The main features of With
the interaction in Fourier space are the maximum with finite

2
derivative akk— 0, and the minimum at a finite wave number a= AaA ; (12
Kmin~ Yo/ Bo- This minimum exists for any nonzerg, indi- B

cating that the effect of the dipolar interactions on large dis-

tances can never be neglected. A\h

>0

We have defined the energy function of the system, and =AB’ (13
now the dynamics has to be introduced. Since in magnetic
systems the magnetization is a nonconserved order param- 5
eter, | will use the Allen-Cahr{14] dynamical equation, B ABoC (14)
namely, B '’

046204-2



NUMERICAL SIMULATIONS OF TWO-DIMENSIONAL... PHYSICAL REVIEW E 70, 046204(2004

)\’}/OC
Y=g (15
and whereG, is (up to the linear terms that are relevant for
our analysis the same function as before, nameB =a,
—a4|k| with the sameny anda,. This renormalization can be
used to fix two parameters in the new nondimensional equa-
tions (11). In the simulation presented below | fixedl
=2.0,y=0.19 and took the spatial discretization to be the
unit of length(this choice was convenient when implement-
ing the equations on the numerical mesh, and has no other
particular meaning Therefore, we see that in addition to the
external control parametér a single internal control param-

eter @ remains. This parameter regulates the possibility of = g
the field ¢ to take values other than the most convenient y // =
ones, namelygp=+1. We will see below the different mor- L ——
phologies that appear for different valuesasfFrom now on m STCT{\J
I will always refer to the nondimensional foriidl) of the ':‘._IITF“\“‘“

equations of motion.

Starting from an arbitrary initial condition, Eqll) de-
scribes an evolution in which the total energy of the system FIG. 1. Evolution of the magnetization distribution upon reduc-
H,+H,g+Hgi, is steadily reduced until it reaches a minimum, tion of the magnetic fieldh, for =1.6. Other parameters atg,
in which ¢,/ ét is identically zero. We will see that typically =3000, hg,=0.01, dh/dt=-5Xx 107" (see text Here and in the
the true minimum of the system is not reached, but insteaébllowing figures black (white) indicates regions with positive
one of many possible metastable states is obtained. Th@egative magnetization, all parameters are in the nondimensional
simulations presented below were done on aX$522 mesh  form corresponding to Eq11), and the system size is 5¥512.
using periodic boundary conditions. The time integration of
the equations is done using a semi-implicit first order A. Almost reversible interconversion of bubbles and stripes
method, in which thé? term in Eq.(11) is evaluated in the
new time value. Concretely, | use an iteration scheme baseﬁjo
on the following discretized form of Eq11):

h=-0.008 h=-0.0125

For a=1.6, the result obtained is shown in Fig. 1. Starting
m the initial bubble phase, upon reduction of the fibe/d
neighbor bubbles coalesce, forming a striped pattern. When
L+5t_ ¢L ot . . the field becomes negative, the stripes destabilize, and sepa-
T a a(¢— )|, +hdlk) - yGy i — B2 rate in a chain of bubbles, which have opposite magnetiza-
tion with respect to the original ones. The sequence of
(16) bubble and stripe patterns is found to be reversible upon

This treatment of the diffusive term is standard to improve?ycIing of the field. There is however a noticeable hysteresis

the stability of the algorithnfil6]. In all cases below the time in the field_ vglu_e at which the bubble-stripe inte_rgonversion
interval used isst=0.5 occurs. This is just the consequence of the transition between

bubbles and stripes being first ordéi.

. RESULTS B. From bubbles to rather isolated and wandering stripes

The initial condition for the variablep is taken to be For a slightly larger value of, namely,a=1.8 (Fig. 2),
locally random in the interval =& ¢ <1, and the system is the bubbles may become unstable and elongate individually,
evolved during an equilibration timig,in the presence of a without merging with their neighbors at the beginning. When
fixed applied external fielhg,, If hgye is too large, the they finally merge(for h=-0.025, regions with positive
configuration obtained turns out to be a state of uniformmagnetization generate wavy stripes of well defined thick-
magnetization. However, for lowehg,, a structure of ness. Contrary to the previous case, these regions do not
bubbles of the minority phasevith magnetization antiparal- separate into “beads” when the field is made more negative,
lel to the field within a background of the opposite magne- but eventually retract back to a single spot of positive mag-
tization may be favored. netization that eventually disappears.

After the timetg,, the field is decreased as a function of
time with a finite ratedh/dt. This value is taken to be as
small as possibléwithin reasonable computing timén or-
der that the field change can be considered to be adiabatic For larger values ofy, the bubbles are seen to remain
(we will see that this cannot always be guaranteed due to th@netgstable down to a field where they start to merge with
existence in some cases of field driven instabiljti&@uring  their neighbors, but now in a sort of two-dimensional way, as
the evolution, different morphologies are observed for differ-seen in Fig. 3 forw=2.2. This has to be compared with the
ent values ofx in Eq. (11), which will be described now. previous case where the initial collapse of bubbles was

C. Collapse of the bubbles to a polygonal pattern
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h=-0.0105 t=R350 t=6750

P ~

[ T /LN
- ?
h=-0.033 t=_7000 t=110000
. FIG. 4. The final configuration if Fig. 3 evolved at constant field
. h=-0.0465 as a function of time, as indicatgg 0 corresponds to
. the last panel in Fig. )3 Arrows in the last panel highlight some

small pentagonal bubbles, a structure that appears ubiquitous both
in experiments and in the simulations.

h=-0.04 h=-0.045

This case suggests the following interesting result: If a
perfect original pattern of bubbles is constructed by hand, it
can remain stable for values of the field at which the disor-
) _ _ ) ) dered bubble system would have already collapsed. Now, if
mainly one dimensional, generating strigese the casels  n, this ordered, metastable structure, a defect is introduced, it
=-0.029 anch=-0.033 in Fig. 2. In the present case, the can completely disorder the lattice. In fact, we see in Fig. 5
collapse of neighbor bubbles seems to occur as a cascafigyy the presence of the defect produces a sequence of insta-
process, where some initial coalescences trigger the full trarsjjities that destroy many of the walls between neighbor
sition of the lattice. In fact, in Fig. 4 the field was kept pypples, generating a rather well defined disordering front
constant at the value=-0.0465(corresponding to the last that |leaves behind a disordered structure with much lower
panelin Fig. 3, and the evolution was followed as a function magnetization. This effect has been experimentally observed
of time. A coarsening process is occurring here. Actually, theyng calledtopological melting[10] of the bubble lattice. It
last pattern in Fig. 4 is not totally relaxed yet. Incidentally, has been observed to occalthough in a less dramatic

note in the last panel of Fig. 4 the existence of small penform) also for systems in which the long range interaction is
tagonal bubbles, highlighted by the arrows. This structurgyf coulomb type[17].

has been observed experimentally to be ubiquitous, and very
stable[10].

FIG. 2. Same as Fig. 1 fora=1.8(tgs=1500, gz
=0.03, dh/dt=-3x10"%).

h=0.0075
t-5500
h=-0.024 h=-0.0375
t=13000 t=25000
h=—0.042 h=—0.0465 FIG. 5. Topological melting of an order array of bubbles for

=2.2, upon thead hocinclusion of a defect in the middle of the
FIG. 3. Same as Fig. 1 fora=2.2(tgs=4500, hgiart sample. The evolution occurs at a fixed value of the fiald
=0.03, dh/dt=-1x1079). =-0.05, as a function of the simulation time, as indicated.

046204-4



NUMERICAL SIMULATIONS OF TWO-DIMENSIONAL... PHYSICAL REVIEW E 70, 046204(2004)

383
Z

1=3200 h=-.0465 h=-0.0285
g L

S

X

]

-

2,

¢
J

%%g

S
G
)
P
=,
27

U N LDV
1=5500 t=25000 h="0015 o b=0

FIG. 6. Time evolution of the pattern shown in the first panel
upon the application of a constant figli=-0.018 slightly beyond
the critical field at which those bubbles destabilize. Times of the
snapshots are indicated.

Nn N -
D. Labyrinthine patterns and the memory effect h=-0.0315 h=-0.0465

!f from the.laSt papels in Fig. 2 or 4 t.he field is slowly_ FIG. 8. Reducing the field from the final configuration in Fig. 4
switched off, interesting results are obtained. In the case iRon to h=0 and back to its original valugdh/dt=1x 10°).

which we start from the configuration of the last panel in Fig. note the “memory” of the pattern in comparing first and last panels.
2, which contains threémetgstable spots of positive mag-

netization, they remain stablencreasing only slightly in If we reduce the absolute value of the field from a con-

Siz8 up toh~-0.02. At this field an instability occurs, the {iguration in which stripes are already present, we observe an

bubbles becoming unstable. If we maintain the field fixed aundulation transition8] at a field with larger absolute value
a value slightly lowerin absolute valugthan the instability an before. But contrary to what happened in Figs. 6 and 7,

value, we obtain the results presented in Fig. 6, which show the field is ch d slowlv th A | i
shapshots as a function of time, for a fixed value of the field "€ T€ld IS changed slowly the System evolves smoothly

h=-0.018. The bubbles elongate and successively brancl(ino instability appeajs and stripes do not branch. Positive

forming labyrinthine patterns that invade the whole sample.m""gm:"t'z‘f’Itlon regions invade the system through wandering
f the stripes, but new branches do not appear or are very

On the other hand, if the field that we apply is much beyonaO
the instability valugFig. 7) the evolution is more rapid, and rare. . . . . i

with a larger degree of branching of the magnetic domains. In_ particular, in the case n Wh_'Ch we r_ed”“_’ the .ﬂeld
Note the difference in the degree of branching in the finalstartlng from the last configuration in Fig. 4 in which st_npes
patterns of Figs. 6 and 7. The greater tendency to branchin e abgndant.as walls between polygons, the un(_julatlon oc-
when the applied field is more and more beyond the instabil- rs mildly, with almost no breaking or reconnection of the

ity value is well known experimentally and theoreticalF). ::ell \I/val_ls, l?nd th_enl th?tf'rf[al Iab_yrlntrlne F’?L‘_em*‘ﬁ? IS
This kind of instability is also similar to that observed in ;poggx:a_y equivaient to efotrr;gln_a t?]net. hls 'Sﬂ? (?‘W?dm
some reaction-diffusion systenisg]. ig. 8. A nice consequence of this is that, when the field is

switched on agaiiilast panels in Fig. 8 the original pattern

is almost recovered. This effect, called timemory effecf9]

has been observed experimentally, and the typical evolution
of the patterns over many cycles of the field has been ana-
lyzed. We see that this effect is contained in the simple
model Hamiltonian we are using.

Fp

t=R50

IV. DISCUSSION AND CONCLUSIONS

Summarizing, in the preceding section | have shown how
the model equationgll) can be efficiently simulated in sys-
tems of reasonably large size. In this way, we have seen
emerging most of the phenomenology of two-dimensional
magnetic patterns and other similar systems. The success of
the present numerical simulations is due to a combination of

FIG. 7. Same as Fig. 6 fdr=0, i.e., here the system is brought reasons, mainly, the use of a continuum variable instead of a
deeply inside the instability region. Note the much larger amount ofdiscrete one to obtain smooth domain walls between regions
stripe branching in the finglstablg pattern, and the shorter time Wwith opposite values ok, and the use of pseudospectral
scale as compared with the previous figure. techniques to evaluate efficiently the “long range” dipolar

e

t=1750 t=3250

046204-5



E. A. JAGLA PHYSICAL REVIEW E 70, 046204(2004

force. These facts combine to allow a realistic simulation ofto other possibilities. One is the case in which the figlds
domain patterns that show many of the features observed iconsidered to be charged, instead of carrying a dipole. Two
experimental realizations. In particular, the memory effectcases can be considered. One is that of true three-
[9] and the topological meltingl0] of the system are very dimensional charges(r) ~r~*] and the other is the case of
well reproduced. two-dimensional charggss(r) ~=In(r)]. In both cases, the

| want to emphasize that in all cases | have studied, thénteraction ink space gets a divergence at |&wThis model
evaluation of the total energy of the system is compatibléhas been studied in detail ja7] (see the references there for
with the fact that the only patterns truly corresponding to therealizations of this cage There, instabilities of a single
ground state of the system a(® a pattern with uniform bubble have been found which are similar to those | find in
magnetization if the field is strong enougtii) a regular the dipolar system. It remains to be seen if the other effects
bubble phase for intermediate fields, giit) a regular stripe  described here are also present in Coulombic systems.
phase for low(including zer9 field. Although this is not a Another case to compare with is that of interactions de-
demonstration that they are the only possible ground states,¢gying in real space more rapidly thar?. In this case, &
points in this direction, and it is in agreement with the resultsspace interaction with a quadratic maximumkatO is ob-
of theoretical studie§6]. The other patterns observddby-  tained. If this maximum dominates over the quadratic mini-
rinthine, polygonal, etg.are seen to be metastable, and theymum coming from the\ ¢ term in Eq.(8), then the effective
are originated in the particular cycling of the figlshd in the  interaction has a quadratic maximum at the origin and a
initial conditiong to which the sample is subjected. A recent minimum at some finité,,. This case corresponds qualita-
experimental study19] has shown in fact how the labyrin- tively to the interaction considered in the Swift-Hohenberg
thine patterns converge to parallel stripes upon relaxation. equation[21]. For this interaction, and controlling the same

Very different morphologies have been observed when th@arameterx as | did here, | have obtained basically all the
parameter in Eq. (11) is changed. Figures 3, 4, and@&r-  effects and morphologies described in the previous section.
responding to the largest values af compare very well On one hand this tells us that the singularitykatO of the
with the patterns observed in magnetic garnets and ferrofludipolar interaction is not crucial in obtaining these effects, a
ids (see[1,10,11). The results for lowere (in particular, quadratic maximum suffices. On the other hand it is a bit
Figs. 1 and 2are more akin to Langmuir monolaygfs and  surprising that in the wide literature related to the Swift-
flux structures in type | superconductdd. This suggests Hohenberg equation these effects have not been described
that in real systems the possibility of the order parameter t@reviously. This might be due to the fact that the Swift-
take values different from the two preferred ones can noticeHohenberg equation is usually considered in the absence of a
ably influence the physical properties. “magnetic-field-like” term that favors one of the two orien-

| want to mention here that the present model can also btations, and this term is crucial to obtain the metastable pat-
efficiently used to study the effect of quenched disorder irterns. It is then likely that the much studied relaxation to
the system, and the effect of thermal fluctuations. Prelimi€equilibrium properties of the patterns seen in the Swift-
nary results indicate that the model generates hysterestdohenberg equation and the coarsening properties of the
curves and magnetization patterns that, as a function of theagnetic patterngstudied, for instance, ifi9]) can be put
amount of disorder, compare very well with experimentalunder the same framework. | hope the present work encour-
ones[20]. These results will be published separately. ages some studies in this direction.

We have seen that in the present model the dynamics is
controlled by an interaction function ik space that has a
maximum with finite derivative ét— 0 and a minimum at a | thank J. R. Iglesias for useful comments on an early
finite ki, value. It is worth comparing this case with respectversion of the manuscript.
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