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A systematic and rigorous method to construct symplectic maps near separatrix of generic Hamiltonian
systems subjected to time-periodic perturbations is developed. It is based on the method of canonical trans-
formation of variables to construct Hamiltonian mdgs S. Abdullaev, J. Phys. 85, 2811(2002]. Using
canonical transformation of variables and the first-order approximation for the generating function, the general
form of mapping in terms of time and energy variables is obtained. Different limiting cases of the mapping are
considered. The method is illustrated for simple Hamiltonian systems with one and a large number of saddle
points. It is also applied to derive mappings for the periodic-driven Morse oscillator describing the process of
stochastic excitation and dissociation of diatomic molecules. The so-called canonical Kepler map is derived for
the one-dimensional hydrogen atom in a microwave field.
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I. INTRODUCTION of Hamiltonian systems near saddle points and the chaotic

Separatrices are curves in the phase space of dynamicté1"‘”Sp0rtfinhthe St_OChr?StiC layesee I?elfjs[41—4ﬂ). . .
systems connecting their saddle fixed points and separating One of the main shortcomings of the separatrix mapping
different types of motion. A motion near separatrices of dy-> that itis not a canonical mapping since, as was noticed by
namical systems, especially Hamiltonian systems, has fundad 7 the mapping variables—time and energy—are defined
mental generic features. As was first shown by Poingzié 2t different sections of the phase space. Therefore, it does not
any small time-periodic perturbation splits separatrices cor€0incide with the Poincaré map. In principle, it makes it

responding to stable and unstable manifolds, which leads tdiTficult to compare the phase-space structure of the system

the onset of chaotic motion due to the exponential diver-With that of the separatrix mapping. Therefore, the properties

. . . o . of separatrix mapping may not coincide with the properties
gence of orbits with close initial cond|t|or[§,3].. This phg- of th(foriginal syF;FtJen?. Asywas shown in RefA] th% rZS—
lnome.nor;] cree}tehsbthﬁ zc()jnefof phasebsg()jace, |satoc_:inast|ch caling invariance property of Hamiltonian systems near hy-
ayerin the neighborhood of unperturbed separatrices w erﬁerbolic saddle points cannot be directly recovered from the
the motion of the system is chaotic.

, . conventional separatrix mapping.
The study of the structure of chaotic motion in the sto- \we should also note an inconsistency which appears in

chastic layer and transport associated with this motion byne guantization problem of classical systems using nonca-
simple numerical integrations of the equations of motion renonical mappings. For instance, in several wofkse Ref.
quires long computational times. To study a motion near thg2g]), attempts have been made to quantize the conventional
separatrix, an iterative mapping, known as separatrix (or  (noncanonicgl Kepler map to study quantum effects in the
whisker) mappinghas been proposdgdee Refs[3-5]) and  process of ionization of highly excited hydrogen atoms in a
its different modifications have been widely used in variousmicrowave. However, such a procedure of quantization of
problems of physics and astronomy. Particularly, in Refsthe Kepler map by presenting energy and time variables as a
[6-12, the separatrix mapping has been applied to study aanonical pair of operators is not consistent with the funda-
chaotic transport of passive particles in structured fluids, angnental principles of quantum mechanics, since the energy
in Refs.[13-14 to study magnetic-field lines in tokamaks. A and time variables in this map are not canonically conju-
particle-wave interaction in plasmas has been studied usingated.

the separatrix mapping in Reff5,17,1§. In Refs.[19-21], The conventional method to derive separatrix mappings is
the separatrix map has been used to study the dynamics ofainly based on the calculations of the increments of time
asteroids in the Solar System and the rotational motion of and energy variables over phase rotation in phase gsaee
satellite. The so-called Kepler map proposed to study théor instance, Ref[3]). This method does not allow us to
classical ionization of hydrogen atoms in a microwave fielddirectly obtain canonical separatrix mappings. On the other
[22-27 and the motion of comets in the Solar Systemhand, this method does not allow us to estimate the accuracy
[28-31] belongs also to the class of separatrix mappings. of the separatrix mapping.

References[32—-34 were devoted to the rigorous de-  There were several studies to construct canonical separa-
rivation of the separatrix mapping. Particularly, a multi- trix mappings with variables defined at the same sections of
dimensional analog of the separatrix mapping has been comphase space. Particularly, iii4,15 the so-called shifted
structed in Ref[34]. The different forms of the separatrix separatrix mapping has been proposed in which both time
mapping or its generalizations have been discussed in Refand energy variables are defined at the sections near the
[14,15,35-4] Separatrix mappings played an instrumentalsaddle points. A separatrix mapping to a section located in
role in the establishment of the rescaling invariant propertieshe middle of two successive saddle points for the periodi-
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cally driven pendulum has been also obtained in Refs.
[19,38. These mappings have been obtained from the con-
ventional form of the separatrix mapping by a calculation of
the increment of the energy to the corresponding sections.
However, the mapping derived in Ref49,38 is implicit in
both time and energy variables, which makes it difficult for
practical calculations.

In Refs.[48,49, the implicit symplectic mapping for ca-
nonical variables has been constructed for the perturbed Ke-
pler problem. However the method which was employed for
calculations of increments in time and energy over one phase
rotation in phase space is not general and uses the specific (@)
features of the Kepler problem. Moreover, it requires us to
impose additional assumptions on the dependence of these \/\/
increments on time and energy variablasorder to obtain ;
area-preserving mappings

In the present work, we develop a systematic and rigorous
method to derive canonical symplectic mappings near the
separatrix using the Hamilton-Jacobi method to construct
mappings developed recently in Ref33,50. The method is
based on canonical transformations of variables in the

Hamiltonian equations of motion. It allows one to derive

directly a mapping near separatrix in canonical variables. A

traditional separatrix mapping is obtained as a particular case ()

of more general maps. FIG. 1. Phase-space structure of system with separatriags:

The content of the paper is as fO”(.)WS' In Sec. I, We1 omoclinic orbits(curve 2 and(b) heteroclinic orbitgcurves 2 and
formulate the problem, recall a conventional method to CONy/ connecting different saddles points.

struct separatrix mappings due to Chirikf8], and discuss

the main shortcomings of these mappings. The method of

canonical transformations of variables to derive mappings

near separatrices is presented in Sec. Ill. Particularly, we

construct mappings along a single saddle-saddle connection

in terms of time and energy variables defined at sections of . o .
ereHy(x, p) is the unperturbed Hamiltoniaki,(x,p,t) is

the phase space near the saddle points. Corresponding mit.‘fe i -
pings at arbitrary sections of the phase space are constructee time-dependent perturbation.

in Sec. IV. Methods to construct separatrix mappings are Suppose that an unperturbed system given by Hamil-
illustrated in Secs. V-IX for specific examples of Hamil- tonian Ho(x,p) has one or more saddle points,ps) (s
tonian systems. Particularly, separatrix mappings describing1,2,..) at the same energetic levE| i.e., E=Hy(Xs, Ps)-
a motion near the separatrices of a perturbed double-welfthese saddle points are connected by phase curves known as
potential and a periodically driven pendulum are constructedeparatrices. These curves separate regions of phase space
in Secs. V and VI, respectively. Separatrix mappings forwith different types of motion. Two examples of such saddle-
Hamiltonian systems with a saddle point located at infinitysadd|e connections are shown in F|g(a) a saddle point is
are derived in Secs. VIl and VIII. In Sec. V”, we constructed connected by itself by a so-callddbmoclinic Orbit (b) dif-
a mapping for the periodically driven Morse oscillator de-ferent saddle points are connected by a so-caeroclinic
scribing the process of stochastic excitation and dissociatiogpjt.
of molecules in a microwave field. The Kepler map describ- | typjcal Hamiltonian systems, separatrices are unstable
ing the process of chaotic ionization of highly excited hydro-tg any small perturbations. In particular, a time-periodic per-
gen atoms in a microwave field is derived in Sec. VIII. Sum-yrpation destroys the separatrix, and the motion near the
mary and conclusions are given in Sec. IX. unperturbed separatrix becomes chaff@]. The domain of

Il. CONVENTIONAL SEPARATRIX MAPPINGS c_hz_io_tic motionthe stochastic Iayen's formed in the small

vicinity of unperturbed separatrices.

For the sake of simplicity, we consider generic one degree Description of chaotic motion near separatrices by map-
of freedom Hamiltonian systems subjected to time-periodigings was first considered in Reff3,53. Particularly, in
perturbation. It is governed by the Hamilton equations Ref. [53] a symplectic map for the periodically driven pen-
dx oH dp oH dulum was introducgd i_n terms of action-angle va_riables

= .= 1) (0,1), while a mapping in terms of time-energy variables

(t,H) was introduced in Ref3]. The last mapping is known
where (x,p) are the canonical coordinate and momentum.as aseparatrix mappingWe recall this map for the periodi-
The HamiltonianH(x, p,t) can be presented in the form cally driven pendulum described by the Hamiltonian

H(x,p,t) = Ho(x,p) + eH;(X,p,1), (2

dt op’ dt  ox’
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FIG. 2. Poincaré section of the systé®). One sees a stochastic
layer near the unperturbed separatrix.

2
H(x,p,t) = % - wS COSX + Zewﬁ cosx cos(t,

3

wherewy is the frequency of small oscillations, aacnd()

represent the amplitude and the frequency of perturbation?

respectively. The unperturbed systéear 0) has elliptic fixed
points at(x=2mn,p=0) and hyperbolic fixed points &ix
=2m(s+1/2),ps=0) (n,s=0,%+1,£2,..). The separatrices
(curve 2 connecting the saddle pointg, ps With Qg1 Ps1
separate the trapped orb(ts<u§< H< wg) (curve ) from the
untrapped ones(H>H,=wj) (curve 3. The period of
trapped orbitd' (H) =27/ w(H) has the following asymptotics
near the separatrild =H:
2
T(H) = 2 | 2290
@o

+O(JH - wd|) for H— w2- 0.

[H - o
(4)
The orbits on the separatricéld =w?) are
exd+wy(t—tp)] -1
XH(t) = 4 arctan HEao(t~t)] ,
eXF[i wo(t - to)] +1
. 2w
pe() =+ . (5

" cothlwg(t - tg)]’

where the signg=) correspond to the uppécurve 2 and
lower branchegcurve 2) of the separatrix, respectively, and

ty is a time instant when the orbit crosses a midpoint betwee

two sequential saddle points.

The perturbation(e# 0) destroys the separatrix for any
small amplitude of perturbatior forming the stochastic
layer near the unperturbed separatrix, as is shown in Fig.

In Ref. [3], the separatrix mapping,H,) — (1, Hks1)

is constructed calculating the increment of the time,

PHYSICAL REVIEW E 70, 046202(2004)

The energy incrementAH, is found using the equation
for the evolution of energy,
dH _dH

= — = - 2eQwj cosx sin M,
dat  at

which is reduced to the Melnikov integrédee Ref[3]),

AH=- ZeQwSJ cosxg(t)sin Qtdt = — w2W sin Qty,

_ Y A @)
" € 2 sinh(mQ/2wg)
taken along the unperturbed separatrix okit) (5). The
increment of timeAt is equal to half of the period of oscil-
lation T(H) (4).

Identifying t, in EqQ. (6) with ty and introducing the nor-
malized variablesh=(H-w3)/wj and ¢=0Qt,, the area-
reserving mag6) is then presented in the form

N1 =he = Wsin gy,

(8)

@1 = ot —In——, mod2r.
o |hk+l|
which is known aghe separatrix (or whisker) map

The geometrical interpretation of the separatrix mapping
was given by[17] as a return map of time and energy vari-
ables defined at the different sections in the phase space
(x,p) of the system. As we will see in Sec. lll, the energy
variable, H, is taken at the section near the saddle point,
while the time variablet, is in the section located in the
middle between two consecutive saddle poiitite sections
3 and . in Fig. 9, respectively Therefore, the separatrix
mapping (8) does not coincide with the definition of the
Poincaré return map where all variables are defined at the
same cross section of phase space. This means thaatie
ables in the separatrix mapping are not canonichhis fact
should be kept in mind when one compares the properties of
the original continuous Hamiltonian system with those of the
corresponding separatrix mapping.

As an example, one can recall the rescaling invariant
Rroperty of the separatrix mappin@) [41,42. Since the
second equation in EqE) is determined by module7?, it is
easy to see that the separatrix mapping is invariant with re-
spect to the following transformation of perturbation param-

éatere:

9)

€ — € =\e,

At(t,,Hy), and energyAH(t,,H,), over half of the phase ro- where the parametar=exp2mwwy/ Q) depending only on the

tation in phase space,
Hira = Hi+ AH(t, Hy,

tiey = e+ ALt Hy). (6)

It is required that the mappin®) should be area-preserving:
|0(His1, s I(Hy 1) [= 1.

perturbation frequency) and the frequencyw, of small-
amplitude oscillations. This interesting property of the sepa-
ratrix mapping, however, is not revealed in the phase space
(x,p) of the Hamiltonian systen®). As was shown in Refs.
[14,15, it does not exactly coincide with the rescaling in-
variance property of the Hamiltonian system near the hyper-
bolic saddle point.
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If the system has only one saddle point, then the points

(X5, ps) and (Xg41,Ps+1) coincide and a saddle-saddle connec-

tion is a homoclinic orbit. The phase-space curves 1 and 3

/ located on both sides of the separatrix describe different
types of motion. We puH=H =0 on the separatrix.

In the phase planéx,p) we introduce cross sectior¥;
andX, as shown in Fig. &). The sectior, consists of a
segment perpendicular to the separatrix at the midpoint be-
tween saddle points. The sectidn is located near saddle
(Xs41:Ps41) (Xs43:Ps43) points (x,ps) and consists of two perpendicular segments
with the crossing point afx,, ps). Both segments ok are
also perpendicular to unperturbed phase curves.

We define action-angle variabled,, ), for the unper-
turbed motion in the following way. They are introduced as

FIG. 3. Phase space of the system with several saddle point§ltegrals,

Dotted curves describe the unperturbed orbit. A perturbed orbit is 1

X
displayed by a solid curve. | = _f p(x;H)dx, 9= EJ p(x':H)dx',  (10)

(Xs:Ps) (Xg14:Ps44)

lll. THE HAMILTON-JACOBI METHOD TO CONSTRUCT

whereC is the segment of the phase-space curve of constant
MAPS NEAR A SEPARATRIX

H=Hy(x, p) located between two consecutive crossing points
with the sections, and3.,;. Introduced in such a way, the
action variablel(H) is a continuous function of energy
MXhile it crosses the separatrix. We will s@£0 (mod 27) at

the sectior®,., andd= ¥ = (mod 2r) at the section&. and

Below, we present a rigorous derivation of symplectic
mappings near the separatrix of general Hamiltonian syste
using the Hamilton-Jacobi method developed in RB&M].
Furthermore, we refer to separatrix mappings in a broad ;
sense as mappings near separatrices of arbitrary Hamiltoniarf*’ respectively.

systems. The idea of using this method to construct separa- In typ|§:al Hamiltonian systems, any small t|m¢-per|od|c
trix mappings was first mentioned in Ré83] perturbation destroys the separatrix, and orbits wobble

Suppose that the unperturbed systey (2) (e=0) at a around the unperturbed separatigee Fig. 4b)]. Lett, and

certain energy leveHq(x,p)=const has a finitéor count- h, be a time instant and an energy of the system when the

able number of saddle points and a corresponding numbeorb't crosses the sectiah,. Indexk stands for the iteration

of saddle-saddle connections in phase space, as illustrated '?Hmber' We intend to construct the map
Fig. 3. Lgt(xs,ps) and(_xs_ﬂ,psﬂ) be_ two consecutiye s_addle (tees Neey) = Ms+1,s(tkvhk)1 (11)
points with a heteroclinic connection, as shown in Fi@)4
connecting the crossing poift,, h,) at the sectior® with
the corresponding poirtt,, s, 1) at 2., Whereh, stands
for the value of energyd at the sectiork,. The geometrical
scheme of the mapping is shown in Figby The change of
the angular variablé) over one step of the majl) is equal
to Ad= ﬁk+l_ﬁk:2ﬂ--

Suppose that the system hak, independent saddle-
saddle connections. Then there exigt, independent map-
pings (11) which completely determine the dynamics of a

Hamiltonian system. The sequence of mappiMg, s de-
pends on the topology of saddle-saddle connections in phase
space and the trajectory of motion. Below, we develop a
general method to construct the full set of mappings. Specific
examples will be illustrated in the next sections.

(Xs, Ps) (Xs+1) Ps+1)

\ A. Mapping along a single separatrix

Z, Below, we construct the mappin@ll) along a single
saddle-saddle connection. For this purpose one could use the
FIG. 4. (a) Phase curve in the neighborhood of the separatrix:formmation of Hamiltonian equations with the angle vari-
curves 1 and 3 describe orbits up and down the separatrix, curve 301€, 9, as an independent timelike variable. However, this
is the separatrixh) Schematic view of the separatrix mapping. The approach fails near the separatrix where the frequency of
solid curve describes the perturbed orbit, and the dotted curve is th@otion w(H) =dHy/dl — 0 (or dI/dHy— ). This singularity
unperturbed separatrix. does not allow us to invert Hamiltoniad(l, J,t) with re-
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spect to the action variablenear the separatrix. To avoid

this difficulty, we will use another approach.

PHYSICAL REVIEW E 70, 046202(2004)

?k= T+ W Hi Ik € (a1 = 1)

We use the formulation of Hamiltonian equations in the

extended phase spatex, pg, p), which includes also time
and “energy”pp,=-H conjugated to time. The equations of

motion in the space of action-angle and time-energy vari-

ables(t, 9, pg,1) are
dt _JdH  dp IH

dT_&_po’ dr at

do M

dr '’

a__dH
dr 99’
with the Hamiltonian function

H(t,ﬁ, pO,I) = HO(I) + p0+ 8H1(t,1(}, pO) = 01

as(k+1)
hk+l = Hk — € ,
k+1
_ agkﬂ)
V1 =2t e , (16)
k+1 k aHk

for the time-energy variabled,h=-py). Here

(12) gk) = S(tk, ﬁk’JkYHk’ Tk 70 E),

S(k+l) = Stk+la ﬂk+laJk1 Hk1 Tk+]_1 TOI 6) )

(13
whereH,(t, 9, pg) =H4(I(=pp), ¥,t) is the perturbed part of

are values of the generating functi&t,¥,J,H, 7, 79,€) at

the Hamiltonian. Herer is an independent timelike variable. (12), (13) it obeys the Hamilton-Jacobi equation
Note that in Eq.(13), the perturbatiori{, is chosen as the ’

=1, and =74, respectively. For the Hamiltonian system

function of energyH=-—p.
Suppose that the orbit crosses the seclgmt 7=, and

the next sectiort,, at 7=7,,4. First, we construct the map-

ping in the extended phase space, i.e.,

(tes 1 Fies 1M1 1es 1) = Mt By Do 1), (14)

where (ty, 9y, hy, 1) = (t(7) , A7), —Po(7i) , 1 (7). From the
geometry of mapping illustrated in Fig(l¥) it follows that

we should impose constraints on the angle variabite

ﬁk: —a and ﬁk+1: Ir.
B. Mappings
According to the results of Ref50], the map(14) for the

arbitrary time stepA7=7,1— 7 can be presented in the fol-

lowing symplectic form:

9S¥
J=l—e—,
k= Tk Eaﬁk
9S9
®k:7~9k+6_1
AN

Oy = O+ W(H,o Iy, ) (T = 7).

5S(k+l)
Ik = ‘Jk +e—,
" V1
o oSk+D)
Y (C) , 15
k+1 kt1~ € PYy (15
for action-angle variable&d, 1), and
oS¥
Hy=he+e—,
dty
oSk
Ti=t—e—,
k= E&Hk

H(tﬁP AN ‘9—5>+ B HPyde (17
0T T ) T Car T T 0E

in the time intervalr, <7< 7,4 satisfying the initial condi-
tion 37:70:0 at the time instant=7,. The timer, is a free
parameter lying in the interval<ry<7..;. The new
HamiltonianH(Py,J, €) depends only on new “action” vari-
ables (Py,J). In Egs. (15 and (16), w(H,J,e)
=0H(Pgy,J,e)/ 3 and w(H,J,e)=dH(Py,J,€)/ P, are the
frequencies of perturbed motio(Recall thatH=-P,.)

C. Perturbation series for the generating function

The symplectic formg15), (16) of the mapping14) are
general, and they are independent of assumptions of small-
ness of perturbation parameterSolutions of Eq(17) in a
finite time interval n,<7<r7,, satisfying the condition
S,:TO:O can be found using a perturbation method by ex-

panding Eq.17), the new Hamiltonian:(PO,J,e), and the
generating functior® in series of powers of small perturba-
tion parameteg,

H(Pg,J,€) = Ho(J,Pg) + eHy(J,Pg) + €H(J,Pg) + -+ ,

(18
whereHy(J, Pg) =Hq(J) + Py, and
Sit, 9,3, H,7,79;€) = Si(t, 9, H, 7, 7)
+eSy(t, I, H,7,79) + . (19
The equations for the expansion coefficient§

=S(t,9,J,H,7,7) are

JS,  dHedS, HydS, —
—t+—— -+t —— =Hi(J,Py) —Hi(t,,'H),
ar 93 99 9Py ot 13 Po) = Ha(t, 3, 71)
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0 Iy _ oS (ty, Hy)
§+0Hoﬁ+aHo§_ T_ - ke K
— —— =H;(J,Py) - Fi(t,9,J,H,7,19), Shme———,
or o a0 Tapy ot Hi P~ Rt 93, 7. 70) Ko THy
j=2, 20 = 2w
‘ (20 =Tt nes= = Tt o,
whereF(t,9,J,H, 7, 7) is the polynomial functions of de- @tk
rivatives dS,/ t, 9S,/99, ..., 0S4/, IS_1/39.
; Ty ; P : ¥ D (b1, H)
The leading terniHy(J, Py) in the new Hamiltoniari18) is Ay = Hy— PR S
e_qual to the old unperturbed Hamiltonikdg(l, Py) (13, ie., AMysq '
Ho(J,Pg)=Hq(l)+Po. The perturbative correctiortd;(J, Pg) D)
in Eg. (18) can be chosen equal to values of functions = S D (e 1, Hi)
ey = 7y + e K (23

Hq(t,0,H), Fit,9,J,H,7,7) as averaged over “angle” THy
variablest, 9, i.e.,

- where
H1(J,Po) = (Ha(t, 9, H))r 0 SOt H) = Sy(te O = = mH, 7=t 70),

) 2w 27/Q o
= _(277)2]0 dﬂfo dt'H]_(t,ﬁ,H)Hj(J, PO) S<k+l)(tk+1,H) - S_l(tk+l1 = H, 7= tie s TO)Y (24)

= (Fj(t, 8,9, 1,7, 7))o and () = w(Jy.
o i) Equations(23) present the general form of the mapping
_ QO f dﬁf AtF (t, 9,1, 7. 70) (11) of time (t) and energyH) variables in the first order of
(2m?J, 0 P T i B 0h perturbation parametee. The corresponding generating

function S of this map is determined by E¢R1). The sepa-
where() is a perturbation frequency. ratrix mapping can be obtained from Eq&3) and (21) in
Further, for the sake of simplicity we will suppose that the some limiting cases. By appropriately choosing the time pa-
averaged quantitid,(J, Py) is equal to zero. Then in the first rameterr, in Eq. (21), one can obtain different forms of the
order of perturbatiore, the generating functiol$ is deter- mapping.

mined by the integralsee Ref[50]) In the mapping(23) we have neglected the second- and
. higher-order terms;(j =2) in the expansion of the generat-
Lo H I )=~ | Hi(t(r), ().~ H)dr ing functions(19). These neglected terms are small in com-
S 7 ) L) 1t () ydr parison to the first-order teri®; and have an orde#! <1(j
(21) =2).
taken along the unperturbed orlii{7') = w(J)(7' = 7) + H(7), ) _ )
t(~')=7'. In this case the corresponding frequencied, e) D. The first-order generating function

and.+(J,€) can be replaced by the unperturbed frequencies Consider a multifrequency perturbation with frequencies

o(J)=dHo(J,p)/ 43 and «~4(J)=dHo(J,Py)/dPy=1, where Q, and present the perturbed Hamiltonizgf(#, 3(t),t) in

Ho(J,Pg)=Hy(J) +Py. Eq. (21) taken along unperturbed trajectory as a Fourier se-
Taking into account that the first-order generating func-ries,

tion S; (21) does not depend on the action varialileand

choosing the times;, and 7,; at the section&, and 3.1, Ha(7,9(7), = H) = 2 Ho(H, 9()cog Qt(7) + xol,
the mapping15) can be reduced to the simplified form n
gsv (9
J= Eﬁ_ﬁk' where y, are the phases of perturbation. Suppose the orbit

crosses the sectiod. at the time instantr=t, when the
phased=0, and present the Fourier coefficients as

Vo(H,7=to) = H(H, (7).
k+1)
S ) (22) Taking into account that the unperturbed orbit is given by
V1 t=7, H7')=0+w(H)(7 -7, we find thatt.=t- 9/ w(H).
Recalling thatd,,, - 9,= 2, and using the second equation NN the generating functio&(t)=S,(t, 3, H, 7, 7o) in the

in Eq. (22), we obtainm,—n.=2m/ »(J,). Then the mapping tiMe intervalt, <t,t <t can be reduced to
(12) for time-energy(t,H) variables is reduced to

Derr = O+ 0(I) (e — 7

1 =Jdct €

t
st=-| > VH(H,t’ —-t+ )cos(Qnt’ + yydt’,

S0 (t,, Hy) _— w(H)

H, = hy +
k=R (26)
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0
=Re, Rn(H,a,t)exp{iQn<t - ) + ixn} ,
n w(H)
where
ot w(H)-t )
Ry(H,0,t) = Vo(H, nendr, (27)
Ho(H)
At the limits t—t+0, J—-7 and t—t,—-0=t

+27/ w(H), O— 7 we have

SNt H) = X [Ki(H)cosd! (t, H) — LE(H)sin @} (t,, H)],

S*D (g, H) = 2 [KH(H)coSD] (tr 1, H)

~ Ly(H)sin®(te.1, H)], (28)

where
+ _ o
(I)n(taH) _‘Qn<ti w(H)) +Xn| (29)

and K3 (H), L:(H) are real and imaginary parts of the inte-
gralsR(H)=K*(H)+iL:(H), respectively, defined as

Ry(H) =Ry(H,9=-mt=ty)

f‘ro—’[k—ﬂ'/w(H)
—7lw(H)

R,(H) = R\(H, 0 =mt =ty

j‘ 1otk 1t w(H)
7lw(H)

E. Symmetric mappings

V,(H, 7)eMdr,

V,(H,7)eNdr. (30)

PHYSICAL REVIEW E 70, 046202(2004)

It is easy to see that the symmetric map conserves an
invariance of the Hamiltonian system with respect to time
reversingt— —t,H——H, which is manifested in the invari-
ance of mapping with respect to reversing the mapping se-
quencek« k+1.

F. Nonsymmetric mappings

Another form of mappings can be obtained by setting the
free time parameter, in Eq. (30) equal tor, or 7.,,. Con-
sider first the case whefy=7,4, the integraIst]_) and LE]_)
in Eq. (30) vanish, and therefor&§ V=0, h,,;=H,. Then
the mapping23) is reduced to the mapping
é’gk) (tk1 hk+l)

hey=he+e
k+1 k O'Vtk

b4 21T
k+1 — tk -
. o(hiry)

determined by only one generating functis®(t,, hy.1),

gk)(tkyhk+1) = E [Kn(hk+1)cos(b;(tk' hk+1)
n

)
&hk+1

: (33

= Ly(hd)Sin @y (ty, hya )1, (34
whereK(h) andL(h) are the integrals,
7lw(h) )
K, (h) +iL,(h) = V,(h,7)€dr. (35)
=l w(h)

On the other hand, putting,=7, we haveS¥=0 and
he="H, since the integral&*'=0 andL'"’ =0, and the map-
ping (23) is reduced to

0S¥ D(ty,q,h
hk+1:hk_€ ( k+1 k),
Mir1

We call the mapping23) a symmetric mapvhen the free ~ 27 0S¥V (t.q,hy)
parameterr, is taken exactly in the middle betweep and b Zhet o St e ' (36)
. . w(hy) k
Trts 1€, To= (71 T 1) 2=t + 7w/ w(H). Then the integrals o
(30) take the form whereS¥(t,,,,h,) is given by
0 , k1) h) =- 2, [Kn(h D h
RE(H) = KE(H) +ILE(H) = Vi(H, Dedr. S Mt = = 2 [Kn(hcosPy(ties B
Falw(H)
= Ln(hysin®; (ty,q,h) ] (37)

(31)
The Fourier integral§31) are taken along the unperturbed In Eqs.(34) an(?ﬂ)’ the phase;,(t, h) are defined by Eq.
orbits of the system. In a particular case, when the orbits [i§29)- At the limith—0, we have
on the separatrixh=0) they coincide with the Melnikov-
Arnold-type integrals of typg7) (see[3]). Indeed, at the
limit h— 0 the frequencyw(h) — 0 and the integralé31) are
reduced to

Kn(0) +iL,(0) = f i V,(0,7€Ndr, (38)

We call the mapping$33), (36) nonsymmetric mappings
0 . since they are not invariant with respect to reversing the
R;(O):f V,(0,7edr, mapping sequencé— k+1.

G. Simplified forms of mappings

R(0) :_f V,(0,7)edr. (32) The symmetric mapping23) with the generating func-
0 tions (28) have a rather complicated form. It can be simpli-
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fied using the smallness of perturbation parameteflimi- T T
nating the intermediate variablés, 7, we transform a set of by =t t+ ) + o)’ (42)
Egs.(23) into K ktl
a5k D gl whereK, andL, are the integrals defined by E8).
ey = e — E( - _) The r_napplng_(42) was first mtrod_uced |r[|14315 to study
Myer oty magnetic-field lines in plasmas. It is callecshifted separa-

trix mapping since it was obtained from the conventional

27 oSk 55k separatrix mapping by shifting the phasBs, (see Sec.
G =+ +te - . (39 A
w(Hy) IHi  IH » . : , -

_ This mapping was instrumental in explaining the rescal-
Using Egs.(23) and(28), one can show that ing invariance property of Hamiltonian systems near saddle
2 oSk 55l - - points (see Ref[46] and references therginThis property

+ e( - ) = + consists of the fact that the phase space of the Hamiltonian
w(Hy) My THe) o) olh) systems near the hyperbolic saddle points subjected to a
+ Gt hea g, hy) + O(ED), small time-periodic perturbation is invariant with respect to

the following transformations of the perturbation parameter
oSk agk) €, its phasey, and the phase-space coordinategs:
6(— - _> = eF (ti, hyer, hy) + O(€7),

Myar My e—€ =\, x—x =x+m,
where
X — X = )\1/2X, p— pr — )\I/Zp, (43)
Ft Phra, i) = % QK1) sin @t ) where \ is a universal parameter determined by the fre-
quency of perturbatioil and the expansion coefficieptof
+ Ly(he)cos®™(t, ho ], unperturbed HamiltonianHy(x,p) near saddle points:

Ho(x,p) = yxp (in an appropriate coordinate systgme., A
=exp2my/ Q). [For the pendulum it coincides with the pa-
rameterA in Eq. (9).]
The mapping42) describes this property of Hamiltonian
_dLn(hk+1) sind(t h)) (40) systems. Indeed, in Hamiltonian systems with hyperbolic
dhy,q W) saddle points the frequency of motiaith) has the following
. . : universal asymptotics near the separatiigh) = y/In(A/|h|),
\ll\lvggIetzznzotifgifrﬁssKgg‘hg;ggzh)oﬂiti:ag?:sd by Eq(39). where A is a constant parameter. When the perturbation
' H,(x,p,t) in Egs.(2) and (25) is periodic in time with the
hisq = he = eF(t, hieen, ) frequency (), i.e., Q,=n(), the mapping(42) is invariant
with respect to the following transformations:

dK,(hgsq) .
Gty e, i) = > (n—kl cosd, (ty, hy)

n d hk+1

teer =t + + eG(ty, hye1,hy). (41 €— € =N€  Xn— Xh=Xn* N,

T, T
w(h)  o(hg)
A straightforward calculation shows thag(hy,q,teq)/ h— h’ =\h, (44)
ah,t|=1, i.e., the mapping4l) is a symplectic. The map-

ping (41) is also invariant with respect to the time-reversingWhICh Is equivalent to transformationds).

transformationk« k+1.

The mapping41) can also be obtained from the nonsym- IV. MAPPING AT ARBITRARY SECTIONS
metric forms of the mapping83), (36) using a similar pro- OF THE PHASE SPACE
cedure.

In some applications it is necessary to construct mappings
H. A case of a thin stochastic layer with variables defined at arbitrary sections of the phase
Suppose that the stochastic layer formed near the unpefPace- These mappings can also be constructed similar to the
turbed separatrix is sufficiently thin that the variation of en-Ones presented _above. Howeyer, in general, a construction of
ergy H about the separatrix energy,=0 is small. Then the SUCh mappings is not as straightforward as the mappings to
integrals (31) in the generating function€28) can be re- the seg:tlonsES along the single saddle—sgddle_connectlon
placed by the Melnikov-Amold-type integral82). Then the  (S€€ Fig. 4 In the latter case, the mappindl) is deter-
mapping(41) can be further simplified to mined only by orbits between sectiokg andX,4. In order
to obtain a mappingl1l) where the variable¢t,H) are de-
L . ™ fined, for instance, at the sectiols (see Fig. 4, one needs
M1 = i Eg Q”{ Kn Sm[Q”<t"+ w hk)) ¥ X”} to know the topology of all saddle-saddle connections.
Figure 5 illustrates the example of the mapping to the

™ sections>;. Suppose the orbit crosses the sectidn at
+L,coq Q| t+ +xnl (> o ,
w(hy) (tx,hy). Because of a sensitive dependence of orbits near the
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P I N X S¥(tHi) = - 2 [Kn(Hi)cos Qutic+ xn)

i 1 \\\ /’/ 2 i + .
— : — Ly(H)sin(Qut + xn) ],
(et hevt) (et Bt S4B t1, H) = 2 (K (H1)COL Dpfirs * X0

n
A e - Ly (HOSINQutier + Xl (45)
(tg, hid)
whereK:(H), L:(H) are the integrals of Eq31).

Equations(23) with the generating function&5) deter-
FIG. 5. Geometrical illustration of the mapping to the sectionsmine the corresponding map. The first set of this mapping is
2. Solid curves 1 and 2 describe the perturbed orbits, and dotteinplicit in energy variableH, and the last set is implicit in
curves are the unperturbed separatrices. time t, ;.

The mapping can be significantly simplified if the sto-
separatrix on their initial condition, the next crossing pointchastic layer is sufficiently thin. In this case, one can replace
(tee1,hrr) May lie on the sectiol, either on the left side for the integralg31) by their values at{=0,
the orbits of type 1 or on the right side for the orbits of type .

2. The direction of orbits is determined by the value of en- + o 07

ergy variableH at the crossing point of tr):e orbit with,. Kn(0) +iL;(0) = fo Vi(0, 7)€" dr. (46)
Depending on the conditiod >H,=0 or H<H¢=0, the or-

bit may cross the sectiol, on the left-hand side or on the |n this approximation the generating functié#5) does not

right-hand side. In this sense the mapping, in general, shouldepend on energy variabé, and the mapping23) takes the
be constructed in an algorithmic way. Below, we constructsimplified form
corresponding mapping for the system with a single saddle

point and only one saddle-saddle connection. The case of a oSk
system with more than one saddle-saddle connection will be Hie=hy+ fT’
considered in Sec. VI B for the periodically driven pendu- k
lum.
t - t + 2—7T
k+1 k w(Hk) ’

A. A symmetric mapping to the section

The phase space of such a system is shown in Fig. 6. The

hyperbolic saddle point is located @t=0,p;=0). The dot- hy.s = Ho — gsky
. . . k1= Mk~ € ' (47)

ted curve describes the unperturbed separatrix. The orbit re- Mys1
flects from the rigid bordek=0 changing the sign of mo-
mentum p. Then the mappindt,,hy) — (ter1, 1) defines O
the Poincaré return map to the sectibp It has a general
form (23) with the generating functio(26), (27). We should He=h— €2, QK] sin(Quti + xn) + Ly cogQutic+ xn)1,
put =0 (mod 2m) at both time instants=t, andt=t,,. For n
the generating functionS® and S¥*? of the mapping23), (48)
we have

2

feer = et ——,

hirs = Hic+ €2 QK] Sin(Qptier + xn)
n

+ L; Coqﬂntk+l + Xn)]-

This map determines the Poincaré return map of enétgy
and time(t) variables to the sectioh..

The map(48) can also be written in the form of mapping
(tis Hi1) — (G, Hiod

FIG. 6. Geometry of the mapping to the sectidjsand. 4 in Hye=Hyr + 62 QK sin(Qut + xn) + L, coQt + xn) 1,
the system with the single saddle point. n
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2

—w(Hk) , (49

G =t +

where the coefficient&, =K} -K_ andL,=L;-L are deter-

mined by the Melnikov-Arnold-type integra(88).

Equationg49) coincide with the conventional form of the
separatrix map in which the energid) and time(t) are

PHYSICAL REVIEW E70, 046202(2004

defined at different sections of the phase space. Indeed, the

intermediate variablé{ coincides with the energy taken at

the section, while t is on the sectior,..

One should also note that the mappid@) at the section
3 can be formally derived from the mappiiig9) by shift-

ing the time variable, from the sectior®, to the sectior...

Since the phase difference between these sections tkke

ISt s 1)
M1 =hy+ 6%,
2m ISt Nyt 1)
teeg =t + -€ , (53)
T () INyra
with the generating function
Sit,h) = X [Ky(0)cos®y(t,h) = L(0)sin ®y(t,h)].
n
(54)

Similarly, for 0<9<m we obtain R;=0 and R;(0)
=-K,(0)=iL,(0). The mapping becomes

time difference along the unperturbed orbit is equal to

27/ w(H). Taking into account that the energy variabigin

the map(49) coincides with the one at the sectid and
replacing Hy_;— hy, tq—t.+ 7/ w(h,), we obtain the map-

ping (42).

B. Mapping to the section

Now we consider the mapping to the arbitrary section
34 on phase space. The schematic view of the seclign
is shown in Fig. 6. It is specified by the phase=const
(-m<9<), and consists of the segment of a straight line

that can be reached from the sectidn in time At(h)

=|9|/ w(h) along unperturbed phase curves about the separa-
trix. The return magt,, hy) — (te1,hee1), where the variables
(t,,hy) are at the sectioB g, is given by Egs(23). According

to Eqgs.(26), (27), the generating functionS®, Sk are

SH =D [KH(H, 9)cosD(t, H) — LE(H, 9)sin ®p(t, H)],

Sk = D [KH(H, 9)cos®p(te 1, H)

= Lo(H, 9)sin®p(ti.1, H) ], (50)
where
@(tH)‘Q(t—i>+ (51)
=T oy ) A
and K (H) +iL;(H) =R (H),
7lo(H) _
Ry(H,9) = Ri(H,9,t=t) = Vo (H,7)eNdr,
Ho(H)
7lo(H) _
Ry(H, ) = R(H, $,t=ty.1) = Vo(H, edr.
Ho(H)

(52

IS(tys1,h
Moy =+ € S(tys1 k),
K+l

2w IS(tgg, )
w(hk) € ahk '

The mapping(53) is implicit with respect to the variable
h.1, while the mapping55) is implicit in the variablet,, ;.
One should note that only the phaskg(t,h) of the gener-
ating functionS(t,h) depend on the energy.

beep = Gt (55

V. MOTION IN A PERTURBED DOUBLE-WELL
POTENTIAL

As an example, we consider a motion of a particle in a
double-well potential under external time-periodic perturba-
tion. The system is described by the Hamiltonian

H= HO(er) + eHl(vavt)y

2 2 A
p> X X
M= 5 5 g
eH (x,p,t) = ex cogQt + y). (56)

The potential functionU(x)=-x?/2+x*/4 and the phase
space of unperturbed motide=0) are in Fig. 7. The un-
perturbed system has a single hyperbolic fixed pointxat
=0,p=0) and two elliptic fixed points atx=+1,p=0) [see
Fig. 7(b)].

For —1/4<H=Hg(x,p) <0, a motion is trapped in poten-
tial wells (curves 3, and forH>0 a motion is untrapped
(curve 3, and the separatrifH=0) is described by the curve
2. We introduce action-angle variables according to the defi-
nition given in Sec. lll[Eg. (10)]. The action variablé for
the trapped motioitH <0) is given by

| = %_jg p(x;H)dx

Consider the case of the thin stochastic layer taking the lim-

iting caseH — 0. Then the integralé52) have the following
limits. For the value of the phas& in the interval
-7<9<0, we haveR’(0)=K,(0)+iL,(0) determined by the
integral (38) and R,=0. Therefore, the generating function

SkD=0 and the mapping23) is reduced to

1™
== f V2(H + X212 = x*14)dx

TJ-a

= 2215 (1 - 2K ()], (57)
3
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(b)

FIG. 7. (a) Double-well potential potential(x)=-x2/2+x*/4;
(b) phase space of motion.

where(a,b)=y1+y1+4H, andK(k) and E(k) are the com-

plete elliptic integrals of the first kind and the second kind,

respectively, with a modulk,
_ 24t
(1+ V1 + 4H)1/2'

For the untrapped motiofH>0) we introduce the action
variable| according to the definition given aboysee Eq.

(10,

1 0
| = —f V2(H + x%/2 = x*14)dx
™ a

= 2212 - )E®) + DK (K], (59
3

where
V144144
V2(1 + 4H)ve

The actionl(H) is a continuous function of enerdy at the
separatrixH=0.

The unperturbed trajector(t), p(t) can be determined by
the second relation in Eq10). For the trapped motion we
have

x(t) = xadn(u;k),
u_i;i_104+/%)
RoH) T \20 0 w(H))

where driu;k) is the Jacobi elliptic function. The solution
(59) is chosen in order to have the orbit at the secfiQfx
=+a) when9=0. The quantityd, is the initial phase at the

(59)

PHYSICAL REVIEW E 70, 046202(2004)

Yy

(teats Pes 1)

(fis20 Pis2)

FIG. 8. Geometry of the separatrix mapping. The solid curve
describes the perturbed orbit, and the dotted curve is the unper-
turbed separatrix.

time instant t,, The unperturbed frequency,w(H)
=dHy(1)/dl, of this motion is
VL +\1+4H
oH)=—F=—"— (60)
V2K (k)

Outside the potential welléH > 0), the frequency is

_ a1+ 4H)t
T KK

Near the separatrikH — 0) the periods(60) and (61) have
the following asymptotics:

w(H) (61)

16

w(H)=1/In
[H|

+O(H). (62
The trajectory on the unperturbed separatiik=0) is de-

scribed by

\’E
(+) )= + __Ye
M=+ cosht-ty)’

V2 sint - t,)

cost(t-ty) '’ (63)

M= F
wheret, is a time instant when the orbit crosses the section
3. The signg*) correspond to orbits in the rigliteft) half
phase spacdéx>0) (x<0).

The geometry of the separatrix mapping for the Hamil-
tonian system56) is shown in Fig. 8. The cross secti@n
consists of the segment of tleaxis located near the farthest
crossing points of the unperturbed separatrix withxltais.
The sectionX; is located near the saddle poifx,ps) and
consists of two perpendicular segments of xhend p axes
with the center at(x;=0,ps=0). There are two types of
saddle-saddle connections.

According to Eq.56), the perturbation functioW,(*, 7)
is x(7). According to the definition(38), the integralsK
=K, are equal to K, respectively, for the rightx>0) and
left (x<0) halves of the phase space, where
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K= f x(H)cog Q7)dr

—00

P

\ (k1> Mee )

5 f codf2r)dr s
_» coshr

;
| X

~ cosimQ/2)’
while L,=0. Using the asymptotics of the frequeneyH)
(62) near the separatrix, one can write the two mappings,
(tee1, Na) =M@ (L, hy) (42), corresponding to the two differ- FIG. 9. Geometry of the separatrix mapping to the sectigfor

(tr42) Mgy 2) ; Zc

ent saddle-saddle connections, the periodically driven pendulum.
hisr = hy 7 €QK sin( o+ Qmﬁ + X>, The geqmetry of the separatrix' mappiné, h,)
2 |hy — (tes1, hie) is shown in Fig. 9. The sectioi®s, on the(x, p)

plane consist of two perpendicular segmentg ahdp axes

16 with the center at the hyperbolic fixed poiriks=27(s

”m) (64) +1/2),ps=0) (s=0,+1,%2,..). Sections> consist of seg-
ments perpendicular to the unperturbed separatrices

where the phase variable=(t is introduced. The map with  (x(t), p4(t)) at the midpoint between two consecutive saddle
the (—) sign describes the right side of the phase spac@oints, x,= 27rs.
(x>0), while the one with the(+) sign corresponds to ~ The system is described by the Hamiltoni®3). Chang-
(x<0). ing the Hamiltonian toH —h=(H-w})/wj, wot—t, p/wy

The map(64) is an example of thelgorithmic separatrix ., p we write the Hamiltonian in the form
mapping a term which is introduced if20]. The dynamics 2
of the system near the separatrix is described by the sequence H=P —cosx—1+ A cogx—At-y)

of iterations of the maps7l<i). This sequence is determined
by a certain rule. Le§* andS™ be domains of phase space +Bcogx+At+y)], (66)

(x,p) in the right (x>0) and the left(x<0) half planes, ] )
respectively. Then where A=Q/w,. The unperturbed motiofe=0) is trapped
p

for H<<0 and untrapped fad >0 (curves 1 and 3 in Fig.)1
M® if z e SP andh, <0, The action-angle variablg$, 9) for the unperturbed Hamil-
tonian (66) (e=0) should be introduced in such a way that
they should be continuous at the separattix0. For this we
M® if z e S7 andh, >0, define the action variablé for the trapped motion as an
integral taken along the segment of the orbit on the upper,
p>0 (lower, p<0) half of the phase spade,p),

=@+ Q(In— +1
Pr+1 = Pk 2 |hk|

. MO if z e SP andh,> 0,
Mk+1:<

\|\7|(-) if z e S” andh, <0,

wherez,=(x., py). The separatrix mappin@4) has been ap- 1 (2
plied in Ref.[46] to study the rescaling properties of Hamil- I= er p(x,H)dx
tonian systems near the saddle points and the statistics of a b

1

residence time and a Poincaré recurrence. T —
=—2(H + 1 + cosx)dx
VI. MAPPING FOR THE PERIODICALLY 2m
DRIVEN PENDULUM 4
. . . . = —[E(k) - (1 -K)K(K)], (67)
Consider the periodically driven pendulum given the fol- T

lowing Hamiltonian: where K(k),E(k) are the complete elliptic integrals with a

H(q,p,t) = Ho(q,p) + eH4(q,p,1), modulek=y1+H/2, anda,b are the roots of the equation
p(x,H)=0 (2w(s—-1/2)<a,b<2w(s+1/2). The corre-
p? ) sponding angle variablé is introduced as

Ho(a,p) = 5 @0 C0sq,

X

J
d=— p(x,H)dx

. AN J oy
eH1(q,p,t) = ewg[A codg— Qt — x) + Bcodq+ Qt + x)].

(65) _ w(H)J*x dx

The quantitiesA andB describe amplitudes of waves propa- 0 V2 cosx)
gating in positive and negative directions of theaxis. = w(H)F(K tarcsir(x/2):K), (68)
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with the conditions thaty=0 at the section& (x=27s) and A. Mapping to sectionsX

d(mod 2m) =+ at 2 {x=2m(s+1/2)]. From Eq.(68) it fol- First we construct the separatrix mapping at the sections

lows that 3. using the general formulé2). Using Eq.(38), one ob-
x(9;H) = 2arcsifiksn(9/w(H); K)]. tains thatk,=1,=0 and

cogAndt  27A(A+B)
costr  sinhwA/2)’

The frequency of motiom(H)=dH(l)/dl=27/K(k) has the
following asymptotics near the separatrix:

K1:2(A+B)fw

2
w(H) = In(32/H)) forH—-0. (69) L= (A B)r sinh7sin(Andt _  27A(A-B)
. . _ 27 . cosit 7 ~ cosimAl2)
For the untrapped motiofH >0), the action-angle vari-
ables are introduced as (71)
1 (2712 4 _ Inserting these coefficients into the separatrix mapp#g)
= et p(x,H)dx= Bk ), and using the asymptotics af(H) (69), we obtain
+ A 32
9 (* hieq = h— €K™ sin| ¢y + Elnh—+)( ,
9=2 ] p H)dX = w(HKFX2, K, I
N Jors
=@+ é(In— + Ing) (72
sin(x/2) = sk w(H); k™) = sn(k(t — to); k™). Prr1= PT 5 Neeal I/’
The frequencyw(H)=27k/K(k™) has the same asymptotics whereg=At, and
(69) atH— +0. ,
The orbits on the uppédtower) branches of the separatrix +_ __AmA + A2 < 7AI2
(H=0) are K*=A(Ky+Ly) _—sinl"(wA)[Aer +Be*™2]. (73)
sinxt(t) = + sinh(t - t;) The sign(=*) corresponds to the integral taken along the
T cost(t—t.)’ separatrix on the uppeflower) half phase spacep>0
(p<0), respectively. The dynamics of the system is fully
. 2 determined by two mapping§?2).

cosx*(t) = cosft-1) 1, (70) Let (¢, hy) be the phase and the energy at Kile map-

_ _ ping step. Suppose also the,p,) are the corresponding
where the sigr(+) corresponds to the orbit along the upper phase-space coordinates. The sequence of the mapping itera-
separatrix(p>0), and the sign—) to the one on the lower tion Mk: (‘Pk+1:hk+l):|\7|k+1(¢krhk) and the coordinates

separatrix(p<0). o _ (X1, Pce1) after one map iteration are determined by the
The perturbed Hamiltoniaf4(t, d,pg) in Eq. (13), following algorithm:
Hi(t,9,po) = €{A cogdx(9,po) = At = x] + B cogx(13, po) ( M® i Moo= M andh. > 0
k_ k 1
+At+ ]},

. MO if M=M andh, >0,
can be presented in the for(@5) with Mie1 =9 (74)

MO if M,=M® andh, <0,
Vi(H,t-t.) = (A+ B)cosx(d9;H), . . .
(M®if M=M andh, <0,

M=A xa=x where M® are mappingg72) along the upper and lower

branches, respectively.

The separatrix mappin@2) has been used in R4#6] to
analyze the rescaling properties of the Hamiltonian system
Q= A, o= x- T near the hyperbolic saddle point and to study a chaotic trans-

2T A2 2 port along the stochastic layer.

Vo(H,t=t) = (A-B)sinx(%;H),

Remember thaV/,(H,t—t.) =H,(H,9). Using Eq.(70), we

have on the separatrix B. Mapping to sectionsX

ent types of section., namely2; andX_, corresponding to
the upper and lower branches of the separatrix. The geometry
_ of the separatrix mapping to the cross sectidiisis sche-
Vo(0 7) = oy Sinh7 matically shown in Fig. 10. In general, there are four inde-
2(0,7) = +(A-B) : - - £
cosit 7 pendent mappings of the sectiol$ to X which fully de-

) For the problem under consideration, there are two differ-

2
Vi0.n) =(A+ B)( cosit 7
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,h P A~
, (te ) pg /(t/k*”h"”) (tke 1, i) = M(ty, hy) (77)

of 37 to X7 is presented by two consecutive mappiﬁ'@s
T3, given by the following rules:
4

X :I\-E:I\-I if (tk! hk) S Eg ande> 0,
T,T; if (t.hy) e 3¢ andH, <O,

>
1

(78)

St Tﬁ[ if  (t.hy) e 3. andH, <0,
(ka2 1k42) ~ o~

T,T; if (th) e 2c andH, > 0.

FIG. 10. Geometry of the separatrix mapping to the sectﬁ:ﬁw . .
for the periodically driven pendulum. Consider a particular cage=B=1 when the problem co-

incides with the one considered in Sec. Il. Then the coeffi-
cd:ient KE=W/e€ [see Eq(7)], L*=L=AS. The mapping77)

an be written in the following simplified form as a mapping
ty, Hy-1) — (ter1, Hy) for the noncanonical variablds, ),

termine the dynamics of the system. These mapping shoul
be constructed in two steps: in the first step, one should fin
the map from the sectiol? to 3¢ along a certain saddle-
sad?le connection, and in the second step one sh_ouIdSr;\ap Hi=Hier =~ Wsin(ge + x),
to % along another saddle-saddle connection which depends
on the sign energy on the sectidg Therefore, the dynamics 32
of the system is then jully detgrmined, inAgeneraI, by four 1=+ AIn—, (79
independent mappingd,"’ and T3, where T} stands for M
the mapping of variablegy,h,) € 2 to (7, H,) e s along  with the energyH, defined at the sectiol and time (or
upper(+) or lower (—) branches of the separatrix, aiif’ ~ Phasg, and ¢y defined at the sectior. The mapping79)
stands for the mapping of variable€Z,,H,) e to  formally coincides with the conventional separatrix mapping
(tes1,hir1) € 27 along upper(+) or lower (—) branches of 8) (suppogingX:O). The latter can also be obtained from
the separatrix, respectively. the mapping (72) by replace_ment of _the phasepy
These mappings can be constructed using a generdiM/2 IN(32/[h) — @y. The mapping79) clarifies the mean-
method described in Sec. IIl. Below, we present nonsymmeting of variables(t, h) in the conventional separatrix mapping
ric forms of these mappings similar to on€d3), (36) ob-  (8).
tained in Sec. Ill F. Using Eq$16) and(26), one can show In spite of this coincidence, however, there is a fundamen-
. _a(®) P tal difference between these mappings. The canonical map-
that the mapping7y, Hi) =T; (&, hw) is given by pings (72), (77) are supplemented with the corresponding
1, . . rules(74), (78) of their application which fully determine the
Hic=he= Sl K sin(gy+ x) + L* codgc+ )1, evolution of the system in phase space. The formal deriva-
tion of the conventional separatrix mappi(®) by calculat-
ing the increments does not give any rules to apply this map-
In—:/, &, =07, (75)  Ping to study the dynamics of the system. For this reason, it
M has been mostly employed to estimate the width of the sto-
chastic layer.

A
b = +—
k= Pk 2

and (ti1, 1) =%(21)(7T<,Hk) is

32 VIl. MAPPING FOR THE PERIODICALLY DRIVEN

A
Pre1 = Py + Elnm, MORSE OSCILLATOR
k

Consider the example of a Hamiltonian system with the

1 saddle point located at infinity, namely the classical Morse
hk+1=7‘fk‘§€[Ki sin(@e1 + x) = LF cog ey + X)]- oscillator driven by time-periodic force. This system has
been widely used as the main model in the studies of sto-

(76) chastic excitation and dissociation of diatomic molecules in a

In Egs.(75) and(76) the coefficieniK* is determined by Eq. giecfgc.’\['éi\/g;;?ﬁhznﬁgjzfgaéigcﬁgzt;h;y?ﬂzeﬁgrn?l:(:rﬁgn

(73), and
2
L*=2A[A(SF C) +B(S% C)], H= Zp—m +D(1-e™a2+xEd cogOt+y),  (80)
S=2 “ sin(At)dt C- “ cogAt)sinhtdt whereD is the depth of the potential well, is a molecule’s
%), cosht ’ ~J, costt dipole moment() and E, are the frequency and the ampli-

tude of a microwave field, and the parameteris the
According to the scheme shown in Fig. 10, the mapping effective width of the unperturbed potential functidh(x)
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H=D[1-(1-1/1)],

1.5 —
wherely=ay2mD, andx;,X, are two turning points of mo-
tion,
o 1
’333 X p=aln[(1+ V1- T, % < Xo.
05 | The frequency of oscillations(h)=dH(l)/dl is
w(h) = o|h|Y2. (82
0 According to quasiclassical quantization rulész(m
(a) +1/2) (m=0,1,2,..), wheref; is Planck’s constant, one can

obtain the discrete energetic levels of the Morse oscillator,
Hm=D{1-[1-A(m+ 1/2)/1,]?.

For the lowest energetic levelsyi <14, we have the energy
levels of the harmonic oscillatoH ;= fiwg(m+1/2).
The motion on the separatrix=0 is given by the formula

1+ wh(t—ty)?
x(t)=aln %,

®) AL ou(t) = 2p,— 20— 83)
T et

FIG. 11. (a) Morse potentialJ(x) =D(1-e™%2)2; (b) phase space — . .
of the unperturbed Hamiltoniaf80) (E,=0): curve 1 corresponds Where Po=Mawe=y2Dm. The orbits of unbounded motion,
to the trapped motiofH < 1), curve 2 to the separatrii=1), and  ">0, are given by

curve 3 to the unbounded motighl > 1). explx/a) = h"l{— 1+ \9”1 +h cosliwh)(t-t)]}
J ol

=D(1-e™?)2, shown in Fig. 11. The latter has a minimum at
x=0.

The phase-space structure of unperturbed mdiigy 0) A. Mappings
is shown in Fig. 1db). The unperturbed motion is trapped  We formulate the Hamiltonian systeii80) in the ex-
when H<D (curve ), and it is unbounded whehl>D  tended phase space of the action-arglé)) and the time-
(curve 3. There are two fixed points of unperturbed motion: energy(t, po) variables in the forng12) with the Hamiltonian
the elliptic fixed point a(x=0,p=0) and the nonhyperbolic (13),
saddle point afx=«,p=0). The oscillation frequency near
the fixed point(x=0,p=0) is wy=(2D/m)*2a™1, Ho(D) = = (1 =1/19)?,

Introducing the normalized energg=H/D-1, one can
show that the unperturbed orbit of trapped motibr; O, is
described by

it om0 = cogatey, (89

_ where e=Ejad/D is the dimensionless perturbation param-
exp(x/a) = |h| ™1 - V1 - |h[cos 9], eter. We intend to construct the Poincaré return rfigh,)
— (tys1, hir1) Near the separatrix to the cross sectidgand
2. on the phase space. The geometry of this mapping is
maw(h)\ 1—|hlsin® plotted in Fig. 12. The cross sectioBs andX consist of the
-1 - |hlcos® (81) segments on the axis covering the_ leftx;, and t_he rightx,,
turning points of unperturbed motion, respectively. The gen-
] ) ] ) eral form of the corresponding mapping in the first ordee of
where 9=9o+w(h)(t-t,) is the angle variablet; is a time s given by Eq.(23) with the generating functiot21). Non-
instant when the orbit crosses the pdixt, p=0), andx; isa  symmetric forms of the mappings are given by E8g) or
left turning point of motior{p(x;)=0]. We setd,=0 in order  Eq. (36) with the generating functio(34).
to haved(t,)=0. The relation between the action varialle The stochastic layer formed near the separatrix of the
and the energ¥ is given by Morse oscillator is sufficiently large even for small perturba-
tions. The variation of energy in the stochastic layer may be
1 1 (% - large enough that deviation of the generating funcgds, t)
| = —3@ pdx= —f pdx=ay2mD(1 —|h|*?), (34), (31) from its valueS(H=0,t) at the unperturbed sepa-
2m TJx ratrix H=0 would not be negligible. In this case, the depen-
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(k1 Paa )

(T hy)

1.0
0.5
0.0
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-1.0
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xla

FIG. 12. Geometry of the separatrix mapping to the seclign
for the periodically driven Morse oscillator. A dashed curve de-
scribes unperturbed separatrix.

dence of the generating functi@H,t) on the energy vari-
ableH becomes important.

1. The symmetric mapping
According to the relationg84), (81) , the perturbation
function V,(H, 7) is equal toV,=x(9,H)/a. Using Eq.(82)
for the frequencyw(h), the integralg31) can be reduced to

1 0 _ 1 Falw(h) _
Ré(h) =~ f X(r,n)e%dr= f 2 dr
aJ = alw(h) Qal, dt
~ \’1 _ |h| J+ﬂ' eiA|h| 127] sin i (85)
iQ Jo 1-V1-|n cosy ”

where A=Q/wy. Then according to Eq28), the generating
function takes the form

St 0,H) = KX(H)Q * cod Ot + wA|H| 2+ x)
- LY(H)Q L sin(Qty + wA[H[ Y2+ y),

(86)
whereK*(h)=-K~(h)=-K(h), L*(h)=L"(h)=-L(h), and
sin 7 sin(A 7/|h|Y/
K(h) =1 - |h|f rsiA7NT |

1-+1-|h|cost
S|nrcos(AT/|h|1’2

L(h) =1- |h\ dr. (87)
1-+1-|h| cost

The asymptotic estimation of the integidl(h) is given in
Appendix. A. The dependence of the integkgh) on h is
shown in Fig. 13 at a fixed value of the parameter2.

Using the generating functio(86), the symmetric map-
ping (23) can be written as

H =h+ K(H)sin gy + L(H)cosay],

K(H)
dH

dL(H)

ao )

o, =0t +
k=S4l 6( dH

CoSay —

2[K(?’()SIn apt+ L(H)//u ak] (88)

2|H|3/

PHYSICAL REVIEW E70, 046202(2004

0.5

041
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02}

01t

0.4 0.6 0.8
hl

0.2
(@)

0.42 ¢

0.41 ¢

04

0.39 r

0.04 006 0.08

[hl

0.02 0.1

(b)

FIG. 13. Dependence of the integrilh) on |h|: (a) in the
whole interval ofh; (b) in the interval of smalh. Parameteh =2.

i1 =H + e K(H)SIN g1 =

e LGS e

L(H)cosay,4],

dL(H)

aH sin a'k+1)

27A
|H|l/2

dK(H)
dH

Oty =Py + COSay4q +

L(H)cosay.1], (89)

2|H|3/2

where

ay = th

aA wA
‘1/2+X, A1 = Wiy = |H|1/2+X

'H

The first set of equation&8) is implicit with respect to
the energy variablé{, and the second s¢89) is implicit
with respect to the timg,, .

The mapping(88), (89) can be simplified using a small-
ness of the perturbation parameteiCarrying out the trans-
formations similar to ones made in Sec. Il G and neglecting
the terms of orde#?, one obtains

. mA
her = he— ZEK(hk+l)Sm< ot |hk|1/2 + X) ’

. mA . aA
Oxr1= Ok T T 12 T T 12
RO ECRTEE

A
co (Pk+W+X . (90)

can show tha(hy,1,t1)/ (b, t)|=1, i.e., the map-

IK(hy)
dhk+1

One
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ping (90) is area-preserving. It is also invariant with respect 0
to the time reversingk« k+1. v
. . -0.02E
2. Nonsymmetric mappings
We present also the nonsymmetric form of the separatrix
mapping. Particularly, we consider the mapping in the form -0.04
(33). Putting9=- in Eq. (31), one can show thdt(h)=0
and K(h) is determined by Eq(87). Then the generating
function (34) becomes

-0.06

_ A : : :
Sltioier) = = 2K (N ) Q 1cos(mk+ TP +x). @ of2n

Then the separatrix mappir@3) takes the following form:

. A -0.02
Nier1 = hy = 2eK (M )sin @+ ———15 + x|,
el -
-0.04
2wA dK(hy.1) A
Prr1= Pkt 12" 2e h Ccoy ¢y + 2t X
|hk+l| d k+1 |hk+1| -0.06 o
A . A . . . .
Tk Nedsin et Tap ). (9 0 02 04 06 08 1
. K (b) o2n
This map can also be transformed into the fo(@®) by _
eliminating the last term in the second E81) using the first FIG. 14. (a) Phase space of the separatrix mappia@; (b) a
equation, and neglecting the terms of oreér corresponding section obtained by a direct numerical integration of

We have compared the obtained mapping with the nu.Hamiltonian systen(80). Perturbation parameter=0.01, normal-
merical integration of continuous syste(80). The phase zed frequency\=4.
space of the separatrix mappi@t4) near the separatrix re-
gion is plotted in Fig. 1¢a) for the perturbation parameter describes the classical motion of an electron in a one-
€=0.01 and the normalized frequendy=Q/wy=4. Itis sup-  dimensional model of the hydrogen atom in a monochro-
posed that the orbit leaves the system when the enkrgy matic electromagnetic field.
exceeds zeroh>0, which corresponds to the unbounded In atomic units(m.=#=e=1), this model is described by
motion. The phase space of the separatrix mapping has be#re Hamiltonian
compared with the ones obtained by the direct numerical

integration of system80) using the symplectic integrator 2
scheme proposed in Rg68]. The results are shown in Fig. H=H(x,p,t) = 1 +xFcodQt+y), x=0, (92
14(b). As seen from Figs. 14) and 14b), the separatrix 2 X

mapping reproduces quantitatively well all features of the

regular and chaotic motion of the system, namely the loca- , .
tions of KAM islands and their widths. where() andF are the microwave frequency and amplitude,

respectively. In the absence of a microwave figtd-0), the
classical orbitx(t—ty,H) of a bounded electrofH <0) is
VIII. THE KEPLER MAP given by

In this section, we construct a mapping for another Hamil-
tonian system with a saddle point located at infinity, namely o x X X
for a one-dimensional hydrogen atom in the field of a mono- = w(H)(t-to) = arcsm\/g— \ X_(l - x_) (93

. H C C

chromatic electromagnetic wave. The latter problem has
been the subject of numerous studies related to the chaotic
ionization of a highly excited hydrogen atom in a microwavewheret, is the moment of time when an electron reflects
field (see the review56]). This problem is similar to the from the boundaryx=0 (perihelion), and x.=1/|H| is the
above-mentioned problem of dissociation of molecules in durning point of classical motiogaphelion. The frequency
microwave field. In several publicatiori82—25,27, the so-  of motion w(H) is determined by the relation between the
calledKepler maphas been introduced to study this problem.action(l) and energyH),
However, the variables of this map are not canonical. Below,
we derive the Kepler map in canonical variables using the
method described in the previous sections. It has a form w(H) = dHo(l) =£=(2|H|)3’2
similar to the map(90) for the driven Morse oscillator, and dl 13 ’
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Ho(l) = - % (94)

From the perturbed HamiltoniaegH,=xF cos(Qt+y) in Eq.
(92) it follows that V,(H, 7 =x(7,H), and using the relation
(93) the integralK,(H) (35) can be reduced to

lw(H)

Kn(H) = X(r,H)cosQrdr
=1l w(H)

1 [
:—Zafo sin Q r(x)dx

2T
=-——J/(v), 95
TR (95
L,(H)=0, wherev=Q/w(H), and J,(20=dJ (2)/dz is the
derivative of the Auger function

1 am
J, (2= —f cogvx —zsinx)dx.
m™Jo

For v>1 (or [H| <Q%72/2), it has the following asymptotics
[57]:

, a b sinvmr
) = V2_/3 ER 4mA’
where
22/3 21/3

a= , b= .
33r(1/3) 3281(2/3)

The simplified form of the map can be written as
Q
hice1 = hi - FQK(hk+1>sin( O T X) ,
ki

O] dK(Nyey)
=t + -FQ
LT AT 02T [ dhes

)
XCo (,Dk+W+)( . (96)

The corresponding generating function is

()
Sty hyen) = = K(hk+1)C05<th + e + X) .

The map(96) is a general form of the Kepler map written in
terms of canonical variables. Both variableg=Qt,,h,
=H(t,) are defined at the same sectidg of phase space
(x,p) located at the maximum distance from the center
=0 (aphelion. The Kepler map obtained i1f23,27] can be
recovered from Eqg96) shifting the timet (or the phasep)
by the half-period of unperturbed motions/w(H) [or
7Qlw(H)], i.e.,

Q)
(Pk"'W:(Pk_’ Pk

PHYSICAL REVIEW E70, 046202(2004

energyH and phasep over one phase rotation in phase
space. It has the following forrtin our notation

hk+l = hk - FQKO Sinak,

_ _ 270
Ore1= et W. (97)

whereKj is the asymptotics of the integréd5) at the high-

frequency limitv— o: Ko=—2a72%3/ Q%3 The Kepler map
in noncanonical variablg®7) can be formally obtained from
the general form of the symplectic mappidp) replacing

K(H) by its asymptotics oK, puttingL(0)=0, and shifting

the phasep,— ¢y.

In Refs.[22-25, the Kepler map in the forni97) has
been employed to study the classical chaotic ionization of
hydrogen atoms in a microwave field which has been inves-
tigated experimentallysee[56] and references therginrhe
map obtained if23,27, which is equivalent to the mg96),
allowed us to analyze the frequency dependence of the ion-
ization process and to study the adiabatic and chaotic re-
gimes of ionization.

The Kepler map of typg97) was also proposed in Refs.
[28—31]] to study the chaotic motion of comets near parabolic
orbits in the Solar System. Particularly, in R¢81] using
this map it has been shown that the motion of Halley's comet
is chaotic.

We should emphasize that the variables in the map ob-
tained in Refs[23,27 as well as in the Kepler ma97) are
defined at different sections of the phase space: the etergy
is at the maximum distance from the centaphelion, and
the phasep (or timet) at the minimum distanc@erihelion).
Because of this, the variablé$ and ¢ are not canonically
conjugated. The Kepler map in canonical variables has also
been constructed in Refg8,49 by integrating Hamiltonian
equations in extended phase space. However, the map ob-
tained in such a way has a complicated form, although itis in
good agreement with direct numerical integrations.

IX. CONCLUSIONS

In summary, we have developed a systematic and rigorous
method to construct canonical mappings near the separatrix
of generic Hamiltonian systems subjected to time-dependent
perturbations. The method is based on canonical transforma-
tions of variables in Hamiltonian equations of motion, unlike
a conventional method to derive separatrix mappings via cal-
culations of increments of energy and time. An important
advantage of this method is that it constructs mappings in
canonical variables while the conventional method yields
separatrix mappings in terms of noncanonical variables,
namely, energy and time defined at the different sections of
phase space. This feature of conventional separatrix mapping
makes it difficult to make a direct comparison of the original
Hamiltonian system with the mapping, and therefore, in gen-
eral, this separatrix mapping may not describe some specific
properties of the system.

The Kepler map in terms of noncanonical variables has been Canonical separatrix mappings with variablgsh) de-

derived in Refs.[22—-23 by calculating the increments of

fined in the neighborhood of saddle points are important to
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study the dynamics and statistical properties of chaotic mo- 0.0008
tion in a stochastic layer formed near separatrices of the sys-
tem. This is because of the fact that trajectories spend most 0.0006 |

of the time near saddle points, and therefore the whole dy-

namics is mainly determined by the phase-space structure of E@ 0.0004 |
the system in the neighborhood of saddle poifstse Ref. x
[46] and references thergin 0.0002

The method of canonical transformations for constructing
mappings near separatrices also sheds light on attempts made
in several works(see Refs[19,32,38) to construct a so- 0
called exact separatrix mappindor large perturbation pa-
rametere. Although one can formally write down exact map-
ping, similar to Eqs(16), it is impossible to find an exact FIG. 15. Deviation of the asymptotic formulgd4) for K(h)
solution for the generating function. Usually one retains onlyfrom the numerically integrated one. Parameter2.
the generating function in the first order of perturbation pa-
rametere. In this sense, the attempsee Refs[19,38) to f,r

0 0.2 0.4 0.6 0.8 1
Ihl

obtain the exact map from the conventional separatrix map-
ping (79) by replacing the asymptotics of frequency of mo-
tion w(H) by its exact value, while keeping the same Melni-
kov integrals, is not correct.

N
. ) 1
f(x)e7dx= 77, — 6D, +O(5 N,
0 ko1 (i)
where f®(x) is thekth derivative of the functiorf(x). One
can show thatf®(0)=f®(7)=0 (s=0,1,2,..). For the
odd k=2s+1, the derivative$®*9(0) have nonzero values.

ACKNOWLEDGMENTS For the first two nonzero derivatives, we obtain
The author gratefully acknowledges discussions with Pro- a, = f(0) = 1 a,=f3(0) = - 1+a+2a’
fessor G. Eilenberger. This work has been partially supported 1 1-a 7 (1-a)? ’

by the project SFB 591 of Deutsche Forschungsgemeinschaft

(DFG). 1 1-a-2a?
b, = f =—— b, = f® - - ==

1 (m==-T2 0 () (1+a)

APPENDIX A: ASYMPTOTIC ESTIMATIONS (A2)

OF THE INTEGRAL K(h . . .
M Therefore, the expansion déth) in a series of power of

We write the integral$87) asK(h)+iL(h)=R(h), 1/# up to fourth terms is given by
T sinx Kosd 1) = 2777 %(by = bpy ?)sin(m) + O(77°).  (A3)
R(p)=2a| f(x)e?dx, f(x)=———, (Al . JEE— .
0 1-acosx Puttinga=y1-|h| and »=\/|h|*?, we have obtained the fol-

T _inl lowing asymptotic formula fowv(h):
where a=1-|h|, »=\/|h|*2. For the integer values of g asymp (h)

=n, the integral(A1) may be reduced to an integral of the 1 —|h[Y2\ A2
type Kadh) =27 ——=
Vi-|h|
T _J1 — a2\ L IFEl
f cof(n ] 2(1 Vi-a ) | , 2hV1-]n Sm( ™ )(b i @) +O(m)
o Jl-—acosx V1l-a a A2 |n|2/2 17732 A6/
Then the integra{Al) can be presented as a sum, (A4)
(1—\’1—a2)” At the limit |h|— 0, we have
R(p) = 2m + Rosd ), K(h) — K = 27 expl- \).

where Ry 7) is the oscillatory corrections to the integral The asymptotics of the integr&(h) given by Eq.(A4) is

due to the noninteger values af In order to find these plotted in Fig. 13 at a fixed value of the parameter2. The

corrections, consider large values % 1. Then the oscilla- asymptotic formula(A4) is in sufficiently good agreement

tory correction can be found by asymptotic expansion of thevith the values oK(h) obtained by numerical integration of

integral in a series of power of;l. We will find the the integralAl). The deviation of Eq(A4) from the numeri-

asymptotic expansion by integration by part. cal K(h) is shown in Fig. 15. The maximal deviation
Integrating Eq(A1) by partN times, one can obtain maxK(h)-K,{h)| is less than & 1074,
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