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A systematic and rigorous method to construct symplectic maps near separatrix of generic Hamiltonian
systems subjected to time-periodic perturbations is developed. It is based on the method of canonical trans-
formation of variables to construct Hamiltonian maps[S. S. Abdullaev, J. Phys. A35, 2811 (2002)]. Using
canonical transformation of variables and the first-order approximation for the generating function, the general
form of mapping in terms of time and energy variables is obtained. Different limiting cases of the mapping are
considered. The method is illustrated for simple Hamiltonian systems with one and a large number of saddle
points. It is also applied to derive mappings for the periodic-driven Morse oscillator describing the process of
stochastic excitation and dissociation of diatomic molecules. The so-called canonical Kepler map is derived for
the one-dimensional hydrogen atom in a microwave field.
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I. INTRODUCTION

Separatrices are curves in the phase space of dynamical
systems connecting their saddle fixed points and separating
different types of motion. A motion near separatrices of dy-
namical systems, especially Hamiltonian systems, has funda-
mental generic features. As was first shown by Poincaré[1],
any small time-periodic perturbation splits separatrices cor-
responding to stable and unstable manifolds, which leads to
the onset of chaotic motion due to the exponential diver-
gence of orbits with close initial conditions[2,3]. This phe-
nomenon creates the zone of phase space, i.e., astochastic
layer in the neighborhood of unperturbed separatrices where
the motion of the system is chaotic.

The study of the structure of chaotic motion in the sto-
chastic layer and transport associated with this motion by
simple numerical integrations of the equations of motion re-
quires long computational times. To study a motion near the
separatrix, an iterative mapping, known as theseparatrix (or
whisker) mapping, has been proposed(see Refs.[3–5]) and
its different modifications have been widely used in various
problems of physics and astronomy. Particularly, in Refs.
[6–12], the separatrix mapping has been applied to study a
chaotic transport of passive particles in structured fluids, and
in Refs.[13–16] to study magnetic-field lines in tokamaks. A
particle-wave interaction in plasmas has been studied using
the separatrix mapping in Refs.[5,17,18]. In Refs.[19–21],
the separatrix map has been used to study the dynamics of
asteroids in the Solar System and the rotational motion of a
satellite. The so-called Kepler map proposed to study the
classical ionization of hydrogen atoms in a microwave field
[22–27] and the motion of comets in the Solar System
[28–31] belongs also to the class of separatrix mappings.

References[32–34] were devoted to the rigorous de-
rivation of the separatrix mapping. Particularly, a multi-
dimensional analog of the separatrix mapping has been con-
structed in Ref.[34]. The different forms of the separatrix
mapping or its generalizations have been discussed in Refs.
[14,15,35–40]. Separatrix mappings played an instrumental
role in the establishment of the rescaling invariant properties

of Hamiltonian systems near saddle points and the chaotic
transport in the stochastic layer(see Refs.[41–47]).

One of the main shortcomings of the separatrix mapping
is that it is not a canonical mapping since, as was noticed by
[17], the mapping variables—time and energy—are defined
at different sections of the phase space. Therefore, it does not
coincide with the Poincaré map. In principle, it makes it
difficult to compare the phase-space structure of the system
with that of the separatrix mapping. Therefore, the properties
of separatrix mapping may not coincide with the properties
of the original system. As was shown in Ref.[14], the res-
caling invariance property of Hamiltonian systems near hy-
perbolic saddle points cannot be directly recovered from the
conventional separatrix mapping.

We should also note an inconsistency which appears in
the quantization problem of classical systems using nonca-
nonical mappings. For instance, in several works(see Ref.
[26]), attempts have been made to quantize the conventional
(noncanonical) Kepler map to study quantum effects in the
process of ionization of highly excited hydrogen atoms in a
microwave. However, such a procedure of quantization of
the Kepler map by presenting energy and time variables as a
canonical pair of operators is not consistent with the funda-
mental principles of quantum mechanics, since the energy
and time variables in this map are not canonically conju-
gated.

The conventional method to derive separatrix mappings is
mainly based on the calculations of the increments of time
and energy variables over phase rotation in phase space(see,
for instance, Ref.[3]). This method does not allow us to
directly obtain canonical separatrix mappings. On the other
hand, this method does not allow us to estimate the accuracy
of the separatrix mapping.

There were several studies to construct canonical separa-
trix mappings with variables defined at the same sections of
phase space. Particularly, in[14,15] the so-called shifted
separatrix mapping has been proposed in which both time
and energy variables are defined at the sections near the
saddle points. A separatrix mapping to a section located in
the middle of two successive saddle points for the periodi-
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cally driven pendulum has been also obtained in Refs.
[19,38]. These mappings have been obtained from the con-
ventional form of the separatrix mapping by a calculation of
the increment of the energy to the corresponding sections.
However, the mapping derived in Refs.[19,38] is implicit in
both time and energy variables, which makes it difficult for
practical calculations.

In Refs.[48,49], the implicit symplectic mapping for ca-
nonical variables has been constructed for the perturbed Ke-
pler problem. However the method which was employed for
calculations of increments in time and energy over one phase
rotation in phase space is not general and uses the specific
features of the Kepler problem. Moreover, it requires us to
impose additional assumptions on the dependence of these
increments on time and energy variablesin order to obtain
area-preserving mappings.

In the present work, we develop a systematic and rigorous
method to derive canonical symplectic mappings near the
separatrix using the Hamilton-Jacobi method to construct
mappings developed recently in Refs.[33,50]. The method is
based on canonical transformations of variables in the
Hamiltonian equations of motion. It allows one to derive
directly a mapping near separatrix in canonical variables. A
traditional separatrix mapping is obtained as a particular case
of more general maps.

The content of the paper is as follows. In Sec. II, we
formulate the problem, recall a conventional method to con-
struct separatrix mappings due to Chirikov[3], and discuss
the main shortcomings of these mappings. The method of
canonical transformations of variables to derive mappings
near separatrices is presented in Sec. III. Particularly, we
construct mappings along a single saddle-saddle connection
in terms of time and energy variables defined at sections of
the phase space near the saddle points. Corresponding map-
pings at arbitrary sections of the phase space are constructed
in Sec. IV. Methods to construct separatrix mappings are
illustrated in Secs. V–IX for specific examples of Hamil-
tonian systems. Particularly, separatrix mappings describing
a motion near the separatrices of a perturbed double-well
potential and a periodically driven pendulum are constructed
in Secs. V and VI, respectively. Separatrix mappings for
Hamiltonian systems with a saddle point located at infinity
are derived in Secs. VII and VIII. In Sec. VII, we constructed
a mapping for the periodically driven Morse oscillator de-
scribing the process of stochastic excitation and dissociation
of molecules in a microwave field. The Kepler map describ-
ing the process of chaotic ionization of highly excited hydro-
gen atoms in a microwave field is derived in Sec. VIII. Sum-
mary and conclusions are given in Sec. IX.

II. CONVENTIONAL SEPARATRIX MAPPINGS

For the sake of simplicity, we consider generic one degree
of freedom Hamiltonian systems subjected to time-periodic
perturbation. It is governed by the Hamilton equations

dx

dt
=

]H

]p
,

dp

dt
= −

]H

]x
, s1d

where sx,pd are the canonical coordinate and momentum.
The HamiltonianHsx,p,td can be presented in the form

Hsx,p,td = H0sx,pd + eH1sx,p,td, s2d

whereH0sx,pd is the unperturbed Hamiltonian,H1sx,p,td is
the time-dependent perturbation.

Suppose that an unperturbed system given by Hamil-
tonian H0sx,pd has one or more saddle pointssxs,psd ss
=1,2, . . .d at the same energetic levelE, i.e., E=H0sxs,psd.
These saddle points are connected by phase curves known as
separatrices. These curves separate regions of phase space
with different types of motion. Two examples of such saddle-
saddle connections are shown in Fig. 1:(a) a saddle point is
connected by itself by a so-calledhomoclinic orbit; (b) dif-
ferent saddle points are connected by a so-calledheteroclinic
orbit.

In typical Hamiltonian systems, separatrices are unstable
to any small perturbations. In particular, a time-periodic per-
turbation destroys the separatrix, and the motion near the
unperturbed separatrix becomes chaotic[59]. The domain of
chaotic motion,the stochastic layer, is formed in the small
vicinity of unperturbed separatrices.

Description of chaotic motion near separatrices by map-
pings was first considered in Refs.[3,53]. Particularly, in
Ref. [53] a symplectic map for the periodically driven pen-
dulum was introduced in terms of action-angle variables
sq ,Id, while a mapping in terms of time-energy variables
st ,Hd was introduced in Ref.[3]. The last mapping is known
as aseparatrix mapping. We recall this map for the periodi-
cally driven pendulum described by the Hamiltonian

FIG. 1. Phase-space structure of system with separatrices:(a)
homoclinic orbits(curve 2) and(b) heteroclinic orbits(curves 2 and
28) connecting different saddles points.
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Hsx,p,td =
p2

2
− v0

2 cosx + 2ev0
2 cosx cosVt, s3d

wherev0 is the frequency of small oscillations, ande andV
represent the amplitude and the frequency of perturbation,
respectively. The unperturbed systemse=0d has elliptic fixed
points at sx=2pn,p=0d and hyperbolic fixed points at(xs

=2pss+1/2d ,ps=0) sn,s=0, ±1, ±2, . . .d. The separatrices
(curve 2) connecting the saddle pointsxs,ps with qs±1,ps±1
separate the trapped orbitss−v0

2,H,v0
2d (curve 1) from the

untrapped onessH.Hs=v0
2d (curve 3). The period of

trapped orbitsTsHd=2p /vsHd has the following asymptotics
near the separatrixH=Hs:

TsHd =
1

v0
ln

32v0
2

uH − v0
2u

+ OsuH − v0
2ud for H → v0

2 − 0.

s4d

The orbits on the separatricessH=v0
2d are

xs
s±dstd = 4 arctan

expf±v0st − t0dg − 1

expf±v0st − t0dg + 1
,

ps
s±dstd = ±

2v0

coshfv0st − t0dg
, s5d

where the signs(6) correspond to the upper(curve 2) and
lower branches(curve 28) of the separatrix, respectively, and
t0 is a time instant when the orbit crosses a midpoint between
two sequential saddle points.

The perturbationseÞ0d destroys the separatrix for any
small amplitude of perturbatione forming the stochastic
layer near the unperturbed separatrix, as is shown in Fig. 2.

In Ref. [3], the separatrix mappingstk,Hkd→ stk+1,Hk+1d)
is constructed calculating the increment of the time,
Dtstk,Hkd, and energy,DHstk,Hkd, over half of the phase ro-
tation in phase space,

Hk+1 = Hk + DHstk, Hkd,

tk+1 = tk + Dtstk, Hkd. s6d

It is required that the mapping(6) should be area-preserving:
u]sHk+1,tk+1d /]sHk,tkdu=1.

The energy increment,DH, is found using the equation
for the evolution of energyH,

dH

dt
=

]H

]t
= − 2eVv0

2 cosx sinVt,

which is reduced to the Melnikov integral(see Ref.[3]),

DH = − 2eVv0
2E

−`

`

cosxsstdsinVtdt = − v0
2WsinVt0,

W= e
V2

v0
2

4p

sinhspV/2v0d
, s7d

taken along the unperturbed separatrix orbitxsstd (5). The
increment of timeDt is equal to half of the period of oscil-
lation TsHd (4).

Identifying tk in Eq. (6) with t0 and introducing the nor-
malized variablesh=sH−v0

2d /v0
2 and w=Vt0, the area-

preserving map(6) is then presented in the form

hk+1 = hk − Wsinwk,

wk+1 = wk +
V

v0
ln

32

uhk+1u
, mod2p. s8d

which is known asthe separatrix (or whisker) map.
The geometrical interpretation of the separatrix mapping

was given by[17] as a return map of time and energy vari-
ables defined at the different sections in the phase space
sx,pd of the system. As we will see in Sec. III, the energy
variable, H, is taken at the section near the saddle point,
while the time variable,t, is in the section located in the
middle between two consecutive saddle points(the sections
Ss and Sc in Fig. 9, respectively). Therefore, the separatrix
mapping (8) does not coincide with the definition of the
Poincaré return map where all variables are defined at the
same cross section of phase space. This means that thevari-
ables in the separatrix mapping are not canonical. This fact
should be kept in mind when one compares the properties of
the original continuous Hamiltonian system with those of the
corresponding separatrix mapping.

As an example, one can recall the rescaling invariant
property of the separatrix mapping(8) [41,42]. Since the
second equation in Eqs.(8) is determined by module 2p, it is
easy to see that the separatrix mapping is invariant with re-
spect to the following transformation of perturbation param-
etere:

e → e8 = le, s9d

where the parameterl=exps2pv0/Vd depending only on the
perturbation frequencyV and the frequencyv0 of small-
amplitude oscillations. This interesting property of the sepa-
ratrix mapping, however, is not revealed in the phase space
sx,pd of the Hamiltonian system(3). As was shown in Refs.
[14,15], it does not exactly coincide with the rescaling in-
variance property of the Hamiltonian system near the hyper-
bolic saddle point.

FIG. 2. Poincaré section of the system(3). One sees a stochastic
layer near the unperturbed separatrix.
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III. THE HAMILTON-JACOBI METHOD TO CONSTRUCT
MAPS NEAR A SEPARATRIX

Below, we present a rigorous derivation of symplectic
mappings near the separatrix of general Hamiltonian systems
using the Hamilton-Jacobi method developed in Ref.[50].
Furthermore, we refer to separatrix mappings in a broader
sense as mappings near separatrices of arbitrary Hamiltonian
systems. The idea of using this method to construct separa-
trix mappings was first mentioned in Ref.[33].

Suppose that the unperturbed system(1), (2) se=0d at a
certain energy levelH0sx,pd=const has a finite(or count-
able) number of saddle points and a corresponding number
of saddle-saddle connections in phase space, as illustrated in
Fig. 3. Letsxs,psd andsxs+1,ps+1d be two consecutive saddle
points with a heteroclinic connection, as shown in Fig. 4(a).

If the system has only one saddle point, then the points
sxs,psd andsxs+1,ps+1d coincide and a saddle-saddle connec-
tion is a homoclinic orbit. The phase-space curves 1 and 3
located on both sides of the separatrix describe different
types of motion. We putH=Hs=0 on the separatrix.

In the phase planesx,pd we introduce cross sectionsSc

and Ss, as shown in Fig. 4(a). The sectionSc consists of a
segment perpendicular to the separatrix at the midpoint be-
tween saddle points. The sectionSs is located near saddle
points sxs,psd and consists of two perpendicular segments
with the crossing point atsxs,psd. Both segments ofSs are
also perpendicular to unperturbed phase curves.

We define action-angle variables,sI ,qd, for the unper-
turbed motion in the following way. They are introduced as
integrals,

I =
1

2p
E

C

psx;Hddx, q =
]

]I
Ex

psx8;Hddx8, s10d

whereC is the segment of the phase-space curve of constant
H=H0sx,pd located between two consecutive crossing points
with the sectionsSs andSs+1. Introduced in such a way, the
action variableIsHd is a continuous function of energyH
while it crosses the separatrix. We will setq=0 smod 2pd at
the sectionSc, andq= 7p smod 2pd at the sectionsSs and
Ss+1, respectively.

In typical Hamiltonian systems, any small time-periodic
perturbation destroys the separatrix, and orbits wobble
around the unperturbed separatrix[see Fig. 4(b)]. Let tk and
hk be a time instant and an energy of the system when the
orbit crosses the sectionSs. Index k stands for the iteration
number. We intend to construct the map

stk+1,hk+1d = M̂s+1,sstk,hkd, s11d

connecting the crossing pointstk,hkd at the sectionSs with
the corresponding pointstk+1,hk+1d at Ss+1, wherehk stands
for the value of energyH at the sectionSs. The geometrical
scheme of the mapping is shown in Fig. 4(b). The change of
the angular variableq over one step of the map(11) is equal
to Dq;qk+1−qk=2p.

Suppose that the system hasNsep independent saddle-
saddle connections. Then there existNsep independent map-
pings (11) which completely determine the dynamics of a

Hamiltonian system. The sequence of mappingsM̂s+1,s de-
pends on the topology of saddle-saddle connections in phase
space and the trajectory of motion. Below, we develop a
general method to construct the full set of mappings. Specific
examples will be illustrated in the next sections.

A. Mapping along a single separatrix

Below, we construct the mapping(11) along a single
saddle-saddle connection. For this purpose one could use the
formulation of Hamiltonian equations with the angle vari-
able,q, as an independent timelike variable. However, this
approach fails near the separatrix where the frequency of
motion vsHd=dH0/dI→0 (or dI /dH0→`). This singularity
does not allow us to invert HamiltonianHsI ,q ,td with re-

FIG. 3. Phase space of the system with several saddle points.
Dotted curves describe the unperturbed orbit. A perturbed orbit is
displayed by a solid curve.

FIG. 4. (a) Phase curve in the neighborhood of the separatrix:
curves 1 and 3 describe orbits up and down the separatrix, curve 2
is the separatrix.(b) Schematic view of the separatrix mapping. The
solid curve describes the perturbed orbit, and the dotted curve is the
unperturbed separatrix.
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spect to the action variableI near the separatrix. To avoid
this difficulty, we will use another approach.

We use the formulation of Hamiltonian equations in the
extended phase spacest ,x,p0,pd, which includes also timet
and “energy”p0=−H conjugated to time. The equations of
motion in the space of action-angle and time-energy vari-
ablesst ,q ,p0,Id are

dt

dt
=

]H
]p0

,
dp0

dt
= −

]H
]t

,

dq

dt
=

]H
]I

,
dI

dt
= −

]H
]q

, s12d

with the Hamiltonian function

Hst,q,p0,Id = H0sId + p0 + «H1st,q,p0d = 0, s13d

whereH1st ,q ,p0d;H1(Is−p0d ,q ,t) is the perturbed part of
the Hamiltonian. Heret is an independent timelike variable.
Note that in Eq.(13), the perturbationH1 is chosen as the
function of energyH=−p0.

Suppose that the orbit crosses the sectionSs at t=tk and
the next sectionSs+1 at t=tk+1. First, we construct the map-
ping in the extended phase space, i.e.,

stk+1,qk+1,hk+1,Ik+1d = M̂stk,qk,hk,Ikd, s14d

where stk,qk,hk,Ikd; (tstkd ,qstkd ,−p0stkd ,Istkd). From the
geometry of mapping illustrated in Fig. 4(b) it follows that
we should impose constraints on the angle variableq:
qk=−p andqk+1=p.

B. Mappings

According to the results of Ref.[50], the map(14) for the
arbitrary time stepDt=tk+1−tk can be presented in the fol-
lowing symplectic form:

Jk = Ik − e
]Sskd

]qk
,

Qk = qk + e
]Sskd

]Jk
,

Q̄k = Qk + wsHk,Jk,edstk+1 − tkd,

Ik+1 = Jk + e
]Ssk+1d

]qk+1
,

qk+1 = Q̄k+1 − e
]Ssk+1d

]Jk
, s15d

for action-angle variablessq ,Id, and

Hk = hk + e
]Sskd

]tk
,

Tk = tk − e
]Sskd

]Hk
,

T̄k = Tk + wtsHk,Jk,edstk+1 − tkd,

hk+1 = Hk − e
]Ssk+1d

]tk+1
,

qk+1 = T̄k + e
]Ssk+1d

]Hk
, s16d

for the time-energy variablesst ,h=−p0d. Here

Sskd ; Sstk,qk,Jk,Hk,tk,t0,ed,

Ssk+1d ; Sstk+1,qk+1,Jk,Hk,tk+1,t0,ed,

are values of the generating functionSst ,q ,J,H ,t ,t0,ed at
t=tk and t=tk+1, respectively. For the Hamiltonian system
(12), (13) it obeys the Hamilton-Jacobi equation

HSt,q,P0 + e
]S

]t
,J + e

]S

]q
D + e

]S

]t
= H̄sP0,J,ed s17d

in the time intervaltk,t,tk+1 satisfying the initial condi-
tion Sut=t0

=0 at the time instantt=t0. The timet0 is a free
parameter lying in the intervaltk,t0,tk+1. The new

HamiltonianH̄sP0,J,ed depends only on new “action” vari-
ables sP0,Jd. In Eqs. (15) and (16), wsH ,J,ed
=]H̄sP0,J,ed /]J and wtsH ,J,ed=]H̄sP0,J,ed /]P0 are the
frequencies of perturbed motion.(Recall thatH=−P0.)

C. Perturbation series for the generating function

The symplectic forms(15), (16) of the mapping(14) are
general, and they are independent of assumptions of small-
ness of perturbation parametere. Solutions of Eq.(17) in a
finite time interval tk,t,tk+1 satisfying the condition
Sut=t0

=0 can be found using a perturbation method by ex-

panding Eq.(17), the new HamiltonianH̄sP0,J,ed, and the
generating functionS in series of powers of small perturba-
tion parametere,

H̄sP0,J,ed = H̄0sJ,P0d + eH̄1sJ,P0d + e2H̄2sJ,P0d + ¯ ,

s18d

whereH̄0sJ,P0d=H0sJd+P0, and

Sst,q,J,H,t,t0;ed = S1st,q,J,H,t,t0d

+ eS2st,q,J,H,t,t0d + ¯ . s19d

The equations for the expansion coefficientsSi
;Sist ,q ,J,H ,t ,t0d are

]S1

]t
+

]H̄0

]J

]S1

]q
+

]H̄0

]P0

]S1

]t
= H̄1sJ,P0d − H1st,q,Hd,
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]Sj

]t
+

]H̄0

]J

]Sj

]q
+

]H̄0

]P0

]Sj

]t
= H̄jsJ,P0d − Fjst,q,J,H,t,t0d,

j ù 2, s20d

whereFjst ,q ,J,H ,t ,t0d is the polynomial functions of de-
rivatives]S1/]t, ]S1/]q, …, ]Sj−1/]t, ]Sj−1/]q.

The leading termH̄0sJ,P0d in the new Hamiltonian(18) is
equal to the old unperturbed HamiltonianH0sI ,P0d (13), i.e.,

H̄0sJ,P0d=H0sId+P0. The perturbative correctionsH̄jsJ,P0d
in Eq. (18) can be chosen equal to values of functions
H1st ,q ,Hd, F jst ,q ,J,H ,t ,t0d as averaged over “angle”
variablest ,q, i.e.,

H̄1sJ,P0d = kH1st,q,Hdlt,q

=
V

s2pd2E
0

2p

dqE
0

2p/V

dtH1st,q,HdH̄jsJ,P0d

= kFjst,q,J,H,t,t0dlt,q

=
V

s2pd2E
0

2p

dqE
0

2p/V

dtFjst,q,J,H,t,t0d,

whereV is a perturbation frequency.
Further, for the sake of simplicity we will suppose that the

averaged quantityH̄1sJ,P0d is equal to zero. Then in the first
order of perturbatione, the generating functionS is deter-
mined by the integral(see Ref.[50])

S1st,q,H,J,t,t0d = −E
t0

t

H1„tst8d,qst8d,− H…dt8,

s21d

taken along the unperturbed orbitqst8d=vsJdst8−td+qstd,
tst8d=t8. In this case the corresponding frequencieswsJ,ed
andwtsJ,ed can be replaced by the unperturbed frequencies
vsJd=]H0sJ,p0d /]J and wtsJd=]H0sJ,P0d /]P0=1, where
H0sJ,P0d=H0sJd+P0.

Taking into account that the first-order generating func-
tion S1 (21) does not depend on the action variableJ, and
choosing the timestk and tk+1 at the sectionsSk and Sk+1,
the mapping(15) can be reduced to the simplified form

Jk = Ik − e
]Sskd

]qk
,

qk+1 = qk + vsJkdstk+1 − tkd,

Ik+1 = Jk + e
]Ssk+1d

]qk+1
. s22d

Recalling thatqk+1−qk=2p, and using the second equation
in Eq. (22), we obtaintk+1−tk=2p /vsJkd. Then the mapping
(11) for time-energyst ,Hd variables is reduced to

Hk = hk + e
]Sskdstk,Hkd

]tk
,

Tk = tk − e
]Sskdstk,Hkd

]Hk
,

T̄k = Tk + tk+1 − tk = Tk +
2p

vsHkd
,

hk+1 = Hk − e
]Ssk+1dstk+1,Hkd

]tk+1
,

tk+1 = T̄k + e
]Ssk+1dstk+1,Hkd

]Hk
, s23d

where

Sskdstk,Hd = S1stk,q = − p,H,t = tk,t0d,

Ssk+1dstk+1,Hd = S1stk+1,q = p,H,t = tk+1,t0d, s24d

andvsHkd;vsJkd.
Equations(23) present the general form of the mapping

(11) of time std and energysHd variables in the first order of
perturbation parametere. The corresponding generating
function S of this map is determined by Eq.(21). The sepa-
ratrix mapping can be obtained from Eqs.(23) and (21) in
some limiting cases. By appropriately choosing the time pa-
rametert0 in Eq. (21), one can obtain different forms of the
mapping.

In the mapping(23) we have neglected the second- and
higher-order termsSjs j ù2d in the expansion of the generat-
ing functions(19). These neglected terms are small in com-
parison to the first-order termS1 and have an ordere j !1s j
ù2d.

D. The first-order generating function

Consider a multifrequency perturbation with frequencies
Vn and present the perturbed HamiltonianH1(H ,qstd ,t) in
Eq. (21) taken along unperturbed trajectory as a Fourier se-
ries,

H1„t,qstd,− H… = o
n

Hn„H,qstd…cosfVntstd + xng,

s25d

wherexn are the phases of perturbation. Suppose the orbit
crosses the sectionSc at the time instantt= tc when the
phaseq=0, and present the Fourier coefficients as

VnsH,t − tcd ; Hn„H,qstd….

Taking into account that the unperturbed orbit is given by
t=t, qst8d=q+vsHdst8−td, we find that tc= t−q /vsHd.
Then the generating functionSstd;S1st ,q ,H ,t ,t0d in the
time intervaltk, t ,tc, tk+1 can be reduced to

Sstd = −E
t0

t

o
n

VnSH,t8 − t +
q

vsHdDcossVnt8 + xnddt8,

s26d
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=Reo
n

RnsH,q,tdexpFiVnSt −
q

vsHdD + ixnG ,

where

RnsH,q,td =E
q/vsHd

t0+q/vsHd−t

VnsH,tdeiVntdt. s27d

At the limits t→ tk+0, q→−p and t→ tk+1−0=tk
+2p /vsHd, q→p we have

Sskdstk,Hd = o
n

fKn
+sHdcosFn

+stk,Hd − Ln
+sHdsinFn

+stk,Hdg,

Ssk+1dstk+1,Hd = o
n

fKn
−sHdcosFn

−stk+1,Hd

− Ln
−sHdsinFn

−stk+1,Hdg, s28d

where

Fn
±st,Hd = VnSt ±

p

vsHdD + xn, s29d

and Kn
±sHd, Ln

±sHd are real and imaginary parts of the inte-
gralsRn

±sHd=Kn
±sHd+ iLn

±sHd, respectively, defined as

Rn
+sHd ; RnsH,q = − p,t = tkd

=E
−p/vsHd

t0−tk−p/vsHd

VnsH,tdeiVntdt,

Rn
−sHd ; RnsH,q = p,t = tk+1d

=E
p/vsHd

t0−tk+1+p/vsHd

VnsH,tdeiVntdt. s30d

E. Symmetric mappings

We call the mapping(23) a symmetric mapwhen the free
parametert0 is taken exactly in the middle betweentk and
tk+1, i.e., t0=stk+1+tkd /2=tk+p /vsHd. Then the integrals
(30) take the form

Rn
±sHd = Kn

±sHd + iLn
±sHd =E

7p/vsHd

0

VnsH,tdeiVntdt.

s31d

The Fourier integrals(31) are taken along the unperturbed
orbits of the system. In a particular case, when the orbits lie
on the separatrixsh=0d they coincide with the Melnikov-
Arnold-type integrals of type(7) (see [3]). Indeed, at the
limit h→0 the frequencyvshd→0 and the integrals(31) are
reduced to

Rn
+s0d =E

−`

0

Vns0,tdeiVntdt,

Rn
−s0d = −E

0

`

Vns0,tdeiVntdt. s32d

It is easy to see that the symmetric map conserves an
invariance of the Hamiltonian system with respect to time
reversing,t→−t ,H→−H, which is manifested in the invari-
ance of mapping with respect to reversing the mapping se-
quence,k↔k+1.

F. Nonsymmetric mappings

Another form of mappings can be obtained by setting the
free time parametert0 in Eq. (30) equal totk or tk+1. Con-
sider first the case whent0=tk+1, the integralsKn

s−d andLn
s−d

in Eq. (30) vanish, and thereforeSsk+1d;0, hk+1=Hk. Then
the mapping(23) is reduced to the mapping

hk+1 = hk + e
]Sskdstk,hk+1d

]tk
,

tk+1 = tk +
2p

vshk+1d
− e

]Sskdstk,hk+1d
]hk+1

, s33d

determined by only one generating functionSskdstk,hk+1d,

Sskdstk,hk+1d = o
n

fKnshk+1dcosFn
+stk,hk+1d

− Lnshk+1dsinFn
+stk,hk+1dg, s34d

whereKshd andLshd are the integrals,

Knshd + iLnshd =E
−p/vshd

p/vshd

Vnsh,tdeiVntdt. s35d

On the other hand, puttingt0=tk we haveSskd;0 and
hk=Hk since the integralsKn

s+d;0 andLn
s+d;0, and the map-

ping (23) is reduced to

hk+1 = hk − e
]Ssk+1dstk+1,hkd

]tk+1
,

tk+1 = tk +
2p

vshkd
+ e

]Ssk+1dstk+1,hkd
]hk

, s36d

whereSsk+1dstk+1,hkd is given by

Ssk+1dstk+1,hkd = − o
n

fKnshkdcosFn
−stk+1,hkd

− LnshkdsinFn
−stk+1,hkdg. s37d

In Eqs.(34) and(37), the phasesFn
±st ,hd are defined by Eq.

(29). At the limit h→0, we have

Kns0d + iLns0d =E
−`

`

Vns0,tdeiVntdt. s38d

We call the mappings(33), (36) nonsymmetric mappings
since they are not invariant with respect to reversing the
mapping sequence,k↔k+1.

G. Simplified forms of mappings

The symmetric mapping(23) with the generating func-
tions (28) have a rather complicated form. It can be simpli-
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fied using the smallness of perturbation parametere. Elimi-
nating the intermediate variablesH ,T, we transform a set of
Eqs.(23) into

hk+1 = hk − eS ]Ssk+1d

]tk+1
−

]Sskd

]tk
D ,

tk+1 = tk +
2p

vsHkd
+ eS ]Ssk+1d

]Hk
−

]Sskd

]Hk
D . s39d

Using Eqs.(23) and (28), one can show that

2p

vsHkd
+ eS ]Ssk+1d

]Hk
−

]Sskd

]Hk
D =

p

vshkd
+

p

vshk+1d

+ Gstk,hk+1,hkd + Ose2d,

eS ]Ssk+1d

]tk+1
−

]Sskd

]tk
D = eFstk,hk+1,hkd + Ose2d,

where

Fstk,hk+1,hkd = o
n

VnfKnshk+1dsinFn
+stk,hkd

+ Lnshk+1dcosF+stk,hkdg,

Gstk,hk+1,hkd = o
n
SdKnshk+1d

dhk+1
cosFn

+stk,hkd

−
dLnshk+1d

dhk+1
sinF+stk,hkdD . s40d

with the coefficientsKnshd ,Lnshd determined by Eq.(35).
Neglecting the terms of ordere2, one obtains

hk+1 = hk − eFstk,hk+1,hkd,

tk+1 = tk +
p

vshkd
+

p

vshk+1d
+ eGstk,hk+1,hkd. s41d

A straightforward calculation shows thatu]shk+1,tk+1d /
]shk,tkdu=1, i.e., the mapping(41) is a symplectic. The map-
ping (41) is also invariant with respect to the time-reversing
transformation,k↔k+1.

The mapping(41) can also be obtained from the nonsym-
metric forms of the mappings(33), (36) using a similar pro-
cedure.

H. A case of a thin stochastic layer

Suppose that the stochastic layer formed near the unper-
turbed separatrix is sufficiently thin that the variation of en-
ergy H about the separatrix energyHs=0 is small. Then the
integrals (31) in the generating functions(28) can be re-
placed by the Melnikov-Arnold-type integrals(32). Then the
mapping(41) can be further simplified to

hk+1 = hk − eo
n

VnHKn sinFVnStk +
p

vshkd
D + xnG

+ Ln cosFVnStk +
p

vshkd
D + xnGJ ,

tk+1 = tk +
p

vshkd
+

p

vshk+1d
, s42d

whereKn andLn are the integrals defined by Eq.(38).
The mapping(42) was first introduced in[14,15] to study

magnetic-field lines in plasmas. It is called ashifted separa-
trix mapping since it was obtained from the conventional
separatrix mapping by shifting the phasesVtk (see Sec.
IV A.

This mapping was instrumental in explaining the rescal-
ing invariance property of Hamiltonian systems near saddle
points (see Ref.[46] and references therein). This property
consists of the fact that the phase space of the Hamiltonian
systems near the hyperbolic saddle points subjected to a
small time-periodic perturbation is invariant with respect to
the following transformations of the perturbation parameter
e, its phasex, and the phase-space coordinatesx,p:

e → e8 = le, x → x8 = x + p,

x → x8 = l1/2x, p → p8 = l1/2p, s43d

where l is a universal parameter determined by the fre-
quency of perturbationV and the expansion coefficientg of
unperturbed HamiltonianH0sx,pd near saddle points:
H0sx,pd<gxp (in an appropriate coordinate system), i.e., l
=exps2pg /Vd. [For the pendulum it coincides with the pa-
rameterl in Eq. (9).]

The mapping(42) describes this property of Hamiltonian
systems. Indeed, in Hamiltonian systems with hyperbolic
saddle points the frequency of motionvshd has the following
universal asymptotics near the separatrix:vshd=g / lnsA/ uhud,
where A is a constant parameter. When the perturbation
H1sx,p,td in Eqs. (2) and (25) is periodic in time with the
frequencyV, i.e., Vn=nV, the mapping(42) is invariant
with respect to the following transformations:

e → e8 = le, xn → xn8 = xn + np,

h → h8 = lh, s44d

which is equivalent to transformations(43).

IV. MAPPING AT ARBITRARY SECTIONS
OF THE PHASE SPACE

In some applications it is necessary to construct mappings
with variables defined at arbitrary sections of the phase
space. These mappings can also be constructed similar to the
ones presented above. However, in general, a construction of
such mappings is not as straightforward as the mappings to
the sectionsos along the single saddle-saddle connection
(see Fig. 4). In the latter case, the mapping(11) is deter-
mined only by orbits between sectionsos andos+1. In order
to obtain a mapping(11) where the variablesst ,Hd are de-
fined, for instance, at the sectionsoc (see Fig. 4), one needs
to know the topology of all saddle-saddle connections.

Figure 5 illustrates the example of the mapping to the
sectionsoc. Suppose the orbit crosses the sectionoc at
stk,hkd. Because of a sensitive dependence of orbits near the
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separatrix on their initial condition, the next crossing point
stk+1,hk+1d may lie on the sectionSc either on the left side for
the orbits of type 1 or on the right side for the orbits of type
2. The direction of orbits is determined by the value of en-
ergy variableH at the crossing point of the orbit withSs.
Depending on the conditionH.Hs=0 or H,Hs=0, the or-
bit may cross the sectionSc on the left-hand side or on the
right-hand side. In this sense the mapping, in general, should
be constructed in an algorithmic way. Below, we construct
corresponding mapping for the system with a single saddle
point and only one saddle-saddle connection. The case of a
system with more than one saddle-saddle connection will be
considered in Sec. VI B for the periodically driven pendu-
lum.

A. A symmetric mapping to the sectionSc

The phase space of such a system is shown in Fig. 6. The
hyperbolic saddle point is located atsxs=0,ps=0d. The dot-
ted curve describes the unperturbed separatrix. The orbit re-
flects from the rigid borderx=0 changing the sign of mo-
mentum p. Then the mappingstk,hkd→ stk+1,hk+1d defines
the Poincaré return map to the sectionSc. It has a general
form (23) with the generating function(26), (27). We should
put q=0 (mod 2p) at both time instantst= tk andt= tk+1. For
the generating functionsSskd andSsk+1d of the mapping(23),
we have

Sskdstk,Hkd = − o
n

fKn
+sHkdcossVntk + xnd

− Ln
+sHkdsinsVntk + xndg,

Ssk+1dstk+1,Hkd = o
n

fKn
−sHkdcossVntk+1 + xnd

− Ln
−sHkdsinsVntk+1 + xndg, s45d

whereKn
±sHd, Ln

±sHd are the integrals of Eq.(31).
Equations(23) with the generating functions(45) deter-

mine the corresponding map. The first set of this mapping is
implicit in energy variableH, and the last set is implicit in
time tk+1.

The mapping can be significantly simplified if the sto-
chastic layer is sufficiently thin. In this case, one can replace
the integrals(31) by their values atH=0,

Kn
±s0d + iLn

±s0d =E
0

±`

Vns0,tdeiVntdt. s46d

In this approximation the generating function(45) does not
depend on energy variableH, and the mapping(23) takes the
simplified form

Hk = hk + e
]Sskd

]tk
,

tk+1 = tk +
2p

vsHkd
,

hk+1 = Hk − e
]Ssk+1d

]tk+1
, s47d

or

Hk = hk − eo
n

VnfKn
+ sinsVntk + xnd + Ln

+ cossVntk + xndg,

s48d

tk+1 = tk +
2p

vsHkd
,

hk+1 = Hk + eo
n

VnfKn
− sinsVntk+1 + xnd

+ Ln
− cossVntk+1 + xndg.

This map determines the Poincaré return map of energysHd
and timestd variables to the sectionSc.

The map(48) can also be written in the form of mapping
stk,Hk−1d→ stk+1,Hkd,

Hk = Hk−1 + eo
n

VnfKn sinsVntk + xnd + Ln cossVntk + xndg,

FIG. 5. Geometrical illustration of the mapping to the sections
oc. Solid curves 1 and 2 describe the perturbed orbits, and dotted
curves are the unperturbed separatrices.

FIG. 6. Geometry of the mapping to the sectionsSc andSq in
the system with the single saddle point.
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tk+1 = tk +
2p

vsHkd
, s49d

where the coefficientsKn=Kn
+−Kn

− andLn=Ln
+−Ln

− are deter-
mined by the Melnikov-Arnold-type integrals(38).

Equations(49) coincide with the conventional form of the
separatrix map in which the energysHd and time std are
defined at different sections of the phase space. Indeed, the
intermediate variableH coincides with the energy taken at
the sectionSs, while t is on the sectionSc.

One should also note that the mapping(42) at the section
Ss can be formally derived from the mapping(49) by shift-
ing the time variabletk from the sectionSc to the sectionSs.
Since the phase difference between these sections isp, the
time difference along the unperturbed orbit is equal to
2p /vsHd. Taking into account that the energy variableHk in
the map(49) coincides with the one at the sectionSs and
replacingHk−1→hk, tk→ tk+p /vshkd, we obtain the map-
ping (42).

B. Mapping to the sectionSq

Now we consider the mapping to the arbitrary section
Sq on phase space. The schematic view of the sectionSq

is shown in Fig. 6. It is specified by the phaseq=const
s−p,q,pd, and consists of the segment of a straight line
that can be reached from the sectionSc in time Dtshd
= uqu /vshd along unperturbed phase curves about the separa-
trix. The return mapstk,hkd→ stk+1,hk+1d, where the variables
stk,hkd are at the sectionSq, is given by Eqs.(23). According
to Eqs.(26), (27), the generating functionsSskd, Ssk+1d are

Sskd = o
n

fKn
+sH,qdcosFnstk,Hd − Ln

+sH,qdsinFnstk,Hdg,

Ssk+1d = o
n

fKn
−sH,qdcosFnstk+1,Hd

− Ln
−sH,qdsinFnstk+1,Hdg, s50d

where

Fnst,Hd = VnSt −
q

vsHd
D + xn, s51d

andKn
±sHd+ iLn

±sHd=Rn
±sHd,

Rn
+sH,qd ; Rn

+sH,q,t = tkd =E
q/vsHd

p/vsHd

VnsH,tdeiVntdt,

Rn
−sH,qd ; Rn

−sH,q,t = tk+1d =E
q/vsHd

p/vsHd

VnsH,tdeiVntdt.

s52d

Consider the case of the thin stochastic layer taking the lim-
iting caseH→0. Then the integrals(52) have the following
limits. For the value of the phaseq in the interval
−p,q,0, we haveRn

+s0d=Kns0d+ iLns0d determined by the
integral (38) and Rn

−=0. Therefore, the generating function
Ssk+1d=0 and the mapping(23) is reduced to

hk+1 = hk + e
]Sstk,hk+1d

]tk
,

tk+1 = tk +
2p

vshk+1d
− e

]Sstk,hk+1d
]hk+1

, s53d

with the generating function

Sst,hd = o
n

fKns0dcosFnst,hd − Lns0dsinFnst,hdg.

s54d

Similarly, for 0,q,p we obtain Rn
+=0 and Rn

−s0d
=−Kns0d− iLns0d. The mapping becomes

hk+1 = hk + e
]Sstk+1,hkd

]tk+1
,

tk+1 = tk +
2p

vshkd
− e

]Sstk+1,hkd
]hk

. s55d

The mapping(53) is implicit with respect to the variable
hk+1, while the mapping(55) is implicit in the variabletk+1.
One should note that only the phasesFnst ,hd of the gener-
ating functionSst ,hd depend on the energyh.

V. MOTION IN A PERTURBED DOUBLE-WELL
POTENTIAL

As an example, we consider a motion of a particle in a
double-well potential under external time-periodic perturba-
tion. The system is described by the Hamiltonian

H = H0sx,pd + eH1sx,p,td,

H0sx,pd =
p2

2
−

x2

2
+

x4

4
,

eH1sx,p,td = ex cossVt + xd. s56d

The potential functionUsxd=−x2/2+x4/4 and the phase
space of unperturbed motionse;0d are in Fig. 7. The un-
perturbed system has a single hyperbolic fixed point atsx
=0,p=0d and two elliptic fixed points atsx= ±1,p=0d [see
Fig. 7(b)].

For −1/4,H=H0sx,pd,0, a motion is trapped in poten-
tial wells (curves 1), and for H.0 a motion is untrapped
(curve 3), and the separatrixsH=0d is described by the curve
2. We introduce action-angle variables according to the defi-
nition given in Sec. III[Eq. (10)]. The action variableI for
the trapped motionsH,0d is given by

I =
1

2p
R psx;Hddx

=
1

p
E

−a

−b

Î2sH + x2/2 − x4/4ddx

=
2a

3p
fEskd − b2Kskdg, s57d
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wheresa,bd=Î1±Î1+4H, andKskd and Eskd are the com-
plete elliptic integrals of the first kind and the second kind,
respectively, with a modulek,

k =
Î2s1 + 4Hd1/4

s1 +Î1 + 4Hd1/2
.

For the untrapped motionsH.0d we introduce the action
variable I according to the definition given above[see Eq.
(10)],

I =
1

p
E

−a

0

Î2sH + x2/2 − x4/4ddx

=
Î2

3p
fsa2 − b2dEskd + b2Kskdg, s58d

where

k =
Î1 +Î1 + 4H

Î2s1 + 4Hd1/4
.

The actionIsHd is a continuous function of energyH at the
separatrixH=0.

The unperturbed trajectoryxstd, pstd can be determined by
the second relation in Eq.(10). For the trapped motion we
have

xstd = ± adnsu;kd,

u =
a
Î2

q

vsHd
=

a
Î2

St − t0 +
q0

vsHd
D , s59d

where dnsu;kd is the Jacobi elliptic function. The solution
(59) is chosen in order to have the orbit at the sectionScsx
= ±ad whenq=0. The quantityq0 is the initial phase at the

time instant t0. The unperturbed frequency,vsHd
=dH0sId /dI, of this motion is

vsHd =
pÎ1 +Î1 + 4H

Î2Kskd
. s60d

Outside the potential wellssH.0d, the frequency is

vsHd =
ps1 + 4Hd1/4

Kskd
. s61d

Near the separatrixsH→0d the periods(60) and (61) have
the following asymptotics:

vsHd = 1/ln
16

uHu
+ OsHd. s62d

The trajectory on the unperturbed separatrixsH=0d is de-
scribed by

xs
s±dstd = ±

Î2

coshst − tcd
,

ps
s±dstd = 7

Î2 sinhst − tcd
cosh2st − tcd

, s63d

wheretc is a time instant when the orbit crosses the section
Sc. The signs(6) correspond to orbits in the right(left) half
phase space,sx.0d sx,0d.

The geometry of the separatrix mapping for the Hamil-
tonian system(56) is shown in Fig. 8. The cross sectionSc
consists of the segment of thex axis located near the farthest
crossing points of the unperturbed separatrix with thex axis.
The sectionSs is located near the saddle pointsxs,psd and
consists of two perpendicular segments of thex and p axes
with the center atsxs=0,ps=0d. There are two types of
saddle-saddle connections.

According to Eq.(56), the perturbation functionVnsH ,td
is xstd. According to the definition(38), the integralsK
;Kn are equal to ±K, respectively, for the rightsx.0d and
left sx,0d halves of the phase space, where

FIG. 7. (a) Double-well potential potentialUsxd=−x2/2+x4/4;
(b) phase space of motion.

FIG. 8. Geometry of the separatrix mapping. The solid curve
describes the perturbed orbit, and the dotted curve is the unper-
turbed separatrix.
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K =E
−`

`

xs
s+dstdcossVtddt

= Î2E
−`

` cossVtddt

cosht

=
Î2

coshspV/2d
,

while Ln=0. Using the asymptotics of the frequencyvsHd
(62) near the separatrix, one can write the two mappings,

stk+1,hk+1d=M̂s±dstk,hkd (42), corresponding to the two differ-
ent saddle-saddle connections,

hk+1 = hk 7 eVK sinSwk +
V

2
ln

16

uhku
+ xD ,

wk+1 = wk +
V

2
Sln

16

uhku
+ ln

16

uhk+1u
D , s64d

where the phase variablew=Vt is introduced. The map with
the (2) sign describes the right side of the phase space
sx.0d, while the one with the(1) sign corresponds to
sx,0d.

The map(64) is an example of thealgorithmic separatrix
mapping, a term which is introduced in[20]. The dynamics
of the system near the separatrix is described by the sequence

of iterations of the mapsM̂s±d. This sequence is determined
by a certain rule. LetSs+d andSs−d be domains of phase space
sx,pd in the right sx.0d and the leftsx,0d half planes,
respectively. Then

M̂k+1 =5
M̂s+d if zk P Ss+d andhk , 0,

M̂s−d if zk P Ss+d andhk . 0,

M̂s+d if zk P Ss−d andhk . 0,

M̂s−d if zk P Ss−d andhk , 0,
6

wherezk=sxk,pkd. The separatrix mapping(64) has been ap-
plied in Ref.[46] to study the rescaling properties of Hamil-
tonian systems near the saddle points and the statistics of a
residence time and a Poincaré recurrence.

VI. MAPPING FOR THE PERIODICALLY
DRIVEN PENDULUM

Consider the periodically driven pendulum given the fol-
lowing Hamiltonian:

Hsq,p,td = H0sq,pd + eH1sq,p,td,

H0sq,pd =
p2

2
− v0

2 cosq,

eH1sq,p,td = ev0
2fA cossq − Vt − xd + B cossq + Vt + xdg.

s65d

The quantitiesA andB describe amplitudes of waves propa-
gating in positive and negative directions of theq axis.

The geometry of the separatrix mappingstk,hkd
→ stk+1,hk+1d is shown in Fig. 9. The sectionsSs on thesx,pd
plane consist of two perpendicular segments ofx andp axes
with the center at the hyperbolic fixed point(xs=2pss
+1/2d ,ps=0) ss=0, ±1, ±2, . . .d. SectionsSc consist of seg-
ments perpendicular to the unperturbed separatrices
(xsstd ,psstd) at the midpoint between two consecutive saddle
points,xc=2ps.

The system is described by the Hamiltonian(65). Chang-
ing the Hamiltonian toH→h=sH−v0

2d /v0
2, v0t→ t, p/v0

→p we write the Hamiltonian in the form

H =
p2

2
− cosx − 1 +efA cossx − Lt − xd

+ B cossx + Lt + xdg, s66d

whereL=V /v0. The unperturbed motionse=0d is trapped
for H,0 and untrapped forH.0 (curves 1 and 3 in Fig. 1).
The action-angle variablessI ,qd for the unperturbed Hamil-
tonian (66) se=0d should be introduced in such a way that
they should be continuous at the separatrixH=0. For this we
define the action variableI for the trapped motion as an
integral taken along the segment of the orbit on the upper,
p.0 (lower, p,0) half of the phase spacesx,pd,

I =
1

2p
E

b

a

psx,Hddx

=
1

2p
Î2sH + 1 + cosxddx

=
4

p
fEskd − s1 − k2dKskdg, s67d

where Kskd ,Eskd are the complete elliptic integrals with a
modulek=Î1+H /2, anda,b are the roots of the equation
psx,Hd=0 (2pss−1/2d,a,b,2pss+1/2d). The corre-
sponding angle variableq is introduced as

q =
]

]I
E

2ps

x

psx,Hddx

= vsHdE
0

x dx
Î2sH + 1 + cosxd

= vsHdF„k−1arcsinsx/2d;k…, s68d

FIG. 9. Geometry of the separatrix mapping to the sectionSs for
the periodically driven pendulum.
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with the conditions thatq=0 at the sectionsScsx=2psd and
qsmod 2pd= ±p at Ssfx=2pss+1/2dg. From Eq.(68) it fol-
lows that

xsq;Hd = 2arcsinfksn„q/vsHd;k…g.

The frequency of motionvsHd=dHsId /dI=2p /Kskd has the
following asymptotics near the separatrix:

vsHd =
2p

lns32/uHud
for H → − 0. s69d

For the untrapped motionsH.0d, the action-angle vari-
ables are introduced as

I =
1

2p
E

−2pss−1/2d

2pss+1/2d

psx,Hddx=
4

pk
Esk−1d,

q =
]

]I
E

2ps

x

psx8,Hddx8 = vsHdk−1Fsx/2, k−1d,

sinsx/2d = sn„kq/vsHd;k−1
… = sn„kst − t0d;k−1

….

The frequencyvsHd=2pk/Ksk−1d has the same asymptotics
(69) at H→ +0.

The orbits on the upper(lower) branches of the separatrix
sH=0d are

sinx±std = ±
sinhst − tcd
cosh2st − tcd

,

cosx±std =
2

cosh2st − tcd
− 1, s70d

where the sign(1) corresponds to the orbit along the upper
separatrixsp.0d, and the sign(2) to the one on the lower
separatrixsp,0d.

The perturbed HamiltonianH1st ,q ,p0d in Eq. (13),

H1st,q,p0d = ehA cosfxsq,p0d − Lt − xg + B cosfxsq,p0d

+ Lt + xgj,

can be presented in the form(25) with

V1sH,t − tcd = sA + Bdcosxsq;Hd,

V1 = L, x1 = x,

V2sH,t − tcd = sA − Bdsinxsq;Hd,

V2 = L, x2 = x −
p

2
.

Remember thatVnsH ,t− tcd;HnsH ,qd. Using Eq.(70), we
have on the separatrix

V1s0,td = sA + BdS 2

cosh2 t
− 1D ,

V2s0,td = ± sA − Bd
sinht

cosh2 t
.

A. Mapping to sectionsSs

First we construct the separatrix mapping at the sections
Ss using the general formula(42). Using Eq.(38), one ob-
tains thatK2=L1=0 and

K1 = 2sA + BdE
−`

` cossLtddt

cosh2 t
=

2pLsA + Bd
sinhspL/2d

,

L2 = ± sA − BdE
−`

` sinht sinsLtddt

cosh2 t
= ±

2pLsA − Bd
coshspL/2d

.

s71d

Inserting these coefficients into the separatrix mapping(42)
and using the asymptotics ofvsHd (69), we obtain

hk+1 = hk − eK± sinSwk +
L

2
ln

32

uhku
+ xD ,

wk+1 = wk +
L

2
Sln

32

uhk+1u
+ ln

32

uhku
D , s72d

wherew=Lt, and

K± = LsK1 + L2d =
4pL2

sinhspLd
fAe±pL/2 + Be7pL/2g. s73d

The sign (6) corresponds to the integral taken along the
separatrix on the upper(lower) half phase space,p.0
sp,0d, respectively. The dynamics of the system is fully
determined by two mappings(72).

Let swk,hkd be the phase and the energy at thekth map-
ping step. Suppose also thatsxk,pkd are the corresponding
phase-space coordinates. The sequence of the mapping itera-

tion M̂k: swk+1,hk+1d=M̂k+1swk,hkd and the coordinates
sxk+1,pk+1d after one map iteration are determined by the
following algorithm:

M̂k+1 =5
M̂s+d if M̂k = M̂s+d andhk . 0,

M̂s−d if M̂k = M̂s−d andhk . 0,

M̂s−d if M̂k = M̂s+d andhk , 0,

M̂s+d if M̂k = M̂s−d andhk , 0,
6 s74d

where M̂s±d are mappings(72) along the upper and lower
branches, respectively.

The separatrix mapping(72) has been used in Ref.[46] to
analyze the rescaling properties of the Hamiltonian system
near the hyperbolic saddle point and to study a chaotic trans-
port along the stochastic layer.

B. Mapping to sectionsSc

For the problem under consideration, there are two differ-
ent types of sectionsSc, namelySc

+ andSc
−, corresponding to

the upper and lower branches of the separatrix. The geometry
of the separatrix mapping to the cross sectionsSc

± is sche-
matically shown in Fig. 10. In general, there are four inde-
pendent mappings of the sectionsSc

± to Sc
± which fully de-
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termine the dynamics of the system. These mapping should
be constructed in two steps: in the first step, one should find
the map from the sectionSc

± to Ss along a certain saddle-
saddle connection, and in the second step one should mapSs
to Sc

± along another saddle-saddle connection which depends
on the sign energy on the sectionSs. Therefore, the dynamics
of the system is then fully determined, in general, by four

independent mappings,T̂1
s±d and T̂2

s±d, where T̂1
s±d stands for

the mapping of variablesstk,hkdPSc
± to sTk,HkdPSs along

upper(1) or lower (2) branches of the separatrix, andT̂2
s±d

stands for the mapping of variablessTk,HkdPSs to
stk+1,hk+1dPSc

± along upper(1) or lower (2) branches of
the separatrix, respectively.

These mappings can be constructed using a general
method described in Sec. III. Below, we present nonsymmet-
ric forms of these mappings similar to ones(33), (36) ob-
tained in Sec. III F. Using Eqs.(16) and(26), one can show

that the mappingsTk,Hkd=T̂1
s±dstk,hkd is given by

Hk = hk −
1

2
efK± sinswk + xd + L± cosswk + xdg,

Fk = wk +
L

2
ln

32

uHku
, Fk = VTk, s75d

and stk+1,hk+1d=T̂2
s±dsTk,Hkd is

wk+1 = Fk +
L

2
ln

32

uHku
,

hk+1 = Hk −
1

2
efK± sinswk+1 + xd − L± cosswk+1 + xdg.

s76d

In Eqs.(75) and(76) the coefficientK± is determined by Eq.
(73), and

L± = 2LfAsS7 Cd + BsS± Cdg,

S= 2E
0

` sinsLtddt

cosh2t
, C =E

0

` cossLtdsinhtdt

cosh2t
.

According to the scheme shown in Fig. 10, the mapping

stk+1,hk+1d = M̂stk,hkd s77d

of Sc
± to Sc

± is presented by two consecutive mappingsT̂1
±,

T̂2
±, given by the following rules:

M̂ =5
T̂2

+T̂1
+ if stk,hkd P Sc

+ andHk . 0,

T̂2
−T̂1

+ if stk,hkd P Sc
+ andHk , 0,

T̂2
+T̂1

− if stk,hkd P Sc
− andHk , 0,

T̂2
−T̂1

− if stk,hkd P Sc
− andHk . 0.

6 s78d

Consider a particular caseA=B=1 when the problem co-
incides with the one considered in Sec. II. Then the coeffi-
cient K±=W/e [see Eq.(7)], L±=L=LS. The mapping(77)
can be written in the following simplified form as a mapping
stk,Hk−1d→ stk+1,Hkd for the noncanonical variablesst ,Hd,

Hk = Hk−1 − Wsinswk + xd,

wk+1 = wk + L ln
32

uHku
, s79d

with the energyHk defined at the sectionSs and time(or
phase), andwk defined at the sectionsSc

±. The mapping(79)
formally coincides with the conventional separatrix mapping
(8) (supposingx=0). The latter can also be obtained from
the mapping (72) by replacement of the phase,wk
+L /2 lns32/uhkud→wk. The mapping(79) clarifies the mean-
ing of variablesst ,hd in the conventional separatrix mapping
(8).

In spite of this coincidence, however, there is a fundamen-
tal difference between these mappings. The canonical map-
pings (72), (77) are supplemented with the corresponding
rules(74), (78) of their application which fully determine the
evolution of the system in phase space. The formal deriva-
tion of the conventional separatrix mapping(8) by calculat-
ing the increments does not give any rules to apply this map-
ping to study the dynamics of the system. For this reason, it
has been mostly employed to estimate the width of the sto-
chastic layer.

VII. MAPPING FOR THE PERIODICALLY DRIVEN
MORSE OSCILLATOR

Consider the example of a Hamiltonian system with the
saddle point located at infinity, namely the classical Morse
oscillator driven by time-periodic force. This system has
been widely used as the main model in the studies of sto-
chastic excitation and dissociation of diatomic molecules in a
microwave field and associated with the onset of chaos(see
Refs.[54,55]). The model is described by the Hamiltonian

H =
p2

2m
+ Ds1 − e−x/ad2 + xE0d cossVt + xd, s80d

whereD is the depth of the potential well,d is a molecule’s
dipole moment,V andE0 are the frequency and the ampli-
tude of a microwave field, and the parametera is the
effective width of the unperturbed potential functionUsxd

FIG. 10. Geometry of the separatrix mapping to the sectionsSc
±

for the periodically driven pendulum.
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=Ds1−e−x/ad2, shown in Fig. 11. The latter has a minimum at
x=0.

The phase-space structure of unperturbed motionsE0=0d
is shown in Fig. 11(b). The unperturbed motion is trapped
when H,D (curve 1), and it is unbounded whenH.D
(curve 3). There are two fixed points of unperturbed motion:
the elliptic fixed point atsx=0,p=0d and the nonhyperbolic
saddle point atsx=` ,p=0d. The oscillation frequency near
the fixed pointsx=0,p=0d is v0=s2D /md1/2a−1.

Introducing the normalized energy,h=H /D−1, one can
show that the unperturbed orbit of trapped motion,h,0, is
described by

expsx/ad = uhu−1f1 −Î1 − uhucosqg,

p =
mavshdÎ1 − uhusinq

1 −Î1 − uhucosq
, s81d

whereq=q0+vshdst− tcd is the angle variable,tc is a time
instant when the orbit crosses the pointsx1,p=0d, andx1 is a
left turning point of motionfpsx1d=0g. We setq0=0 in order
to haveqstcd=0. The relation between the action variablesId
and the energyh is given by

I =
1

2p
R pdx=

1

p
E

x1

x2

pdx= aÎ2mDs1 − uhu1/2d,

H = Df1 − s1 − I/I0d2g,

where I0=aÎ2mD, andx1,x2 are two turning points of mo-
tion,

x1,2= a lnfs1 7 Î1 − uhud/uhug, x1 , x2.

The frequency of oscillationsvshd=dHsId /dI is

vshd = vouhu1/2. s82d

According to quasiclassical quantization rulesI ="sm
+1/2d sm=0,1,2, . . .d, where" is Planck’s constant, one can
obtain the discrete energetic levels of the Morse oscillator,

Hm = Dh1 − f1 − "sm+ 1/2d/I0g2j.

For the lowest energetic levels,m"! I0, we have the energy
levels of the harmonic oscillator:Hm<"v0sm+1/2d.

The motion on the separatrixh=0 is given by the formula

xsstd = a ln
1 + v0

2st − tcd2

2
,

psstd = 2p0
v0st − tcd

1 + v0
2st − tcd2 , s83d

where p0=mav0=Î2Dm. The orbits of unbounded motion,
h.0, are given by

expsx/ad = h−1h− 1 +Î1 + h coshfvshdst − tcdgj.

A. Mappings

We formulate the Hamiltonian system(80) in the ex-
tended phase space of the action-anglesI ,qd and the time-
energyst ,p0d variables in the form(12) with the Hamiltonian
(13),

H0sId = − s1 − I/I0d2,

eH1st,q,p0d = e
xsq,p0d

a
cossVt + xd, s84d

wheree=E0ad/D is the dimensionless perturbation param-
eter. We intend to construct the Poincaré return mapstk,hkd
→ stk+1,hk+1d near the separatrix to the cross sectionsos and
oc on the phase space. The geometry of this mapping is
plotted in Fig. 12. The cross sectionsoc andos consist of the
segments on thex axis covering the left,x1, and the right,x2,
turning points of unperturbed motion, respectively. The gen-
eral form of the corresponding mapping in the first order ofe
is given by Eq.(23) with the generating function(21). Non-
symmetric forms of the mappings are given by Eq.(33) or
Eq. (36) with the generating function(34).

The stochastic layer formed near the separatrix of the
Morse oscillator is sufficiently large even for small perturba-
tions. The variation of energy in the stochastic layer may be
large enough that deviation of the generating functionSsH ,td
(34), (31) from its valueSsH=0,td at the unperturbed sepa-
ratrix H=0 would not be negligible. In this case, the depen-

FIG. 11. (a) Morse potentialUsxd=Ds1−e−x/ad2; (b) phase space
of the unperturbed Hamiltonian(80) sE0=0d: curve 1 corresponds
to the trapped motionsH,1d, curve 2 to the separatrixsH=1d, and
curve 3 to the unbounded motionsH.1d.
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dence of the generating functionSsH ,td on the energy vari-
ableH becomes important.

1. The symmetric mapping

According to the relations(84), (81) , the perturbation
function VnsH ,td is equal toVn=xsq ,Hd /a. Using Eq.(82)
for the frequencyvshd, the integrals(31) can be reduced to

R±shd =
1

a
E

7p/vshd

0

xst,hdeiVtdt =
1

iVa
E

0

7p/vshd

eiVtdx

dt
dt

=
Î1 − uhu

iV
E

0

7p eiLuhu−1/2h sinh

1 −Î1 − uhu cosh
dh, s85d

whereL=V /v0. Then according to Eq.(28), the generating
function takes the form

Sstk ± 0,Hd = K±sHdV−1 cossVtk ± pLuHu−1/2 + xd

− L±sHdV−1 sinsVtk ± pLuHu−1/2 + xd,

s86d

whereK+shd=−K−shd=−Kshd, L+shd=L−shd=−Lshd, and

Kshd = Î1 − uhuE
0

p sint sinsLt/uhu1/2d

1 −Î1 − uhu cost
dt,

Lshd = Î1 − uhuE
0

p sint cossLt/uhu1/2d

1 −Î1 − uhu cost
dt. s87d

The asymptotic estimation of the integralKshd is given in
Appendix. A. The dependence of the integralKshd on h is
shown in Fig. 13 at a fixed value of the parameterl=2.

Using the generating function(86), the symmetric map-
ping (23) can be written as

H = hk + efKsHdsinak + LsHdcosakg,

Fk = Vtk + eSdKsHd
dH cosak −

dLsHd
dH sinakD

+ e
pL

2uHu3/2fKsHdsinak + LsHdcos akg, s88d

hk+1 = H + efKsHdsinak+1 − LsHdcosak+1g,

Vtk+1 = Fk +
2pL

uHu1/2 + eSdKsHd
dH cosak+1 +

dLsHd
dH sinak+1D

− e
pL

2uHu3/2fKsHdsinak+1 − LsHdcosak+1g, s89d

where

ak = Vtk +
pL

uHu1/2 + x, ak+1 = Vtk+1 −
pL

uHu1/2 + x.

The first set of equations(88) is implicit with respect to
the energy variableH, and the second set(89) is implicit
with respect to the timetk+1.

The mapping(88), (89) can be simplified using a small-
ness of the perturbation parametere. Carrying out the trans-
formations similar to ones made in Sec. III G and neglecting
the terms of ordere2, one obtains

hk+1 = hk − 2eKshk+1dsinSwk +
pL

uhku1/2 + xD ,

wk+1 = wk +
pL

uhku1/2 +
pL

uhk+1u1/2

− 2e
dKshk+1d

dhk+1
cosSwk +

pL

uhku1/2 + xD . s90d

One can show thatu]shk+1,tk+1d /]shk,tkdu=1, i.e., the map-

FIG. 12. Geometry of the separatrix mapping to the sectionSs

for the periodically driven Morse oscillator. A dashed curve de-
scribes unperturbed separatrix.

FIG. 13. Dependence of the integralKshd on uhu: (a) in the
whole interval ofh; (b) in the interval of smallh. Parameterl=2.
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ping (90) is area-preserving. It is also invariant with respect
to the time reversing:k↔k+1.

2. Nonsymmetric mappings

We present also the nonsymmetric form of the separatrix
mapping. Particularly, we consider the mapping in the form
(33). Puttingq=−p in Eq. (31), one can show thatLshd=0
and Kshd is determined by Eq.(87). Then the generating
function (34) becomes

Sstk,hk+1d = − 2Kshk+1dV−1 cosSVtk +
pL

uhk+1u1/2 + xD .

Then the separatrix mapping(33) takes the following form:

hk+1 = hk − 2eKshk+1dsinSwk +
pL

uhk+1u1/2 + xD ,

wk+1 = wk +
2pL

uhk+1u1/2 − 2e
dKshk+1d

dhk+1
cosSwk +

pL

uhk+1u1/2 + xD
−

pL

uhk+1u3/2eKshk+1dsinSwk +
pL

uhk+1u1/2 + xD . s91d

This map can also be transformed into the form(90) by
eliminating the last term in the second Eq.(91) using the first
equation, and neglecting the terms of ordere2.

We have compared the obtained mapping with the nu-
merical integration of continuous system(80). The phase
space of the separatrix mapping(14) near the separatrix re-
gion is plotted in Fig. 14(a) for the perturbation parameter
e=0.01 and the normalized frequencyL=V /v0=4. It is sup-
posed that the orbit leaves the system when the energyh
exceeds zero,h.0, which corresponds to the unbounded
motion. The phase space of the separatrix mapping has been
compared with the ones obtained by the direct numerical
integration of system(80) using the symplectic integrator
scheme proposed in Ref.[58]. The results are shown in Fig.
14(b). As seen from Figs. 14(a) and 14(b), the separatrix
mapping reproduces quantitatively well all features of the
regular and chaotic motion of the system, namely the loca-
tions of KAM islands and their widths.

VIII. THE KEPLER MAP

In this section, we construct a mapping for another Hamil-
tonian system with a saddle point located at infinity, namely
for a one-dimensional hydrogen atom in the field of a mono-
chromatic electromagnetic wave. The latter problem has
been the subject of numerous studies related to the chaotic
ionization of a highly excited hydrogen atom in a microwave
field (see the review[56]). This problem is similar to the
above-mentioned problem of dissociation of molecules in a
microwave field. In several publications[22–25,27], the so-
calledKepler maphas been introduced to study this problem.
However, the variables of this map are not canonical. Below,
we derive the Kepler map in canonical variables using the
method described in the previous sections. It has a form
similar to the map(90) for the driven Morse oscillator, and

describes the classical motion of an electron in a one-
dimensional model of the hydrogen atom in a monochro-
matic electromagnetic field.

In atomic unitssme="=e=1d, this model is described by
the Hamiltonian

H = Hsx,p,td =
p2

2
−

1

x
+ xF cossVt + xd, x ù 0, s92d

whereV andF are the microwave frequency and amplitude,
respectively. In the absence of a microwave fieldsF=0d, the
classical orbitxst− t0,Hd of a bounded electronsH,0d is
given by

q = vsHdst − t0d = arcsinÎ x

xc
−Î x

xc
S1 −

x

xc
D , s93d

where t0 is the moment of time when an electron reflects
from the boundaryx=0 (perihelion), and xc=1/uHu is the
turning point of classical motion(aphelion). The frequency
of motion vsHd is determined by the relation between the
action sId and energysHd,

vsHd =
dH0sId

dI
=

1

I3 = s2uHud3/2,

FIG. 14. (a) Phase space of the separatrix mapping(90); (b) a
corresponding section obtained by a direct numerical integration of
Hamiltonian system(80). Perturbation parametere=0.01, normal-
ized frequencyL=4.
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H0sId = −
1

2I2 . s94d

From the perturbed HamiltonianeH1=xF cossVt+xd in Eq.
(92) it follows that VnsH ,td=xst ,Hd, and using the relation
(93) the integralKnsHd (35) can be reduced to

KnsHd =E
−p/vsHd

p/vsHd

xst,HdcosVtdt

= − 2
1

V
E

0

xc

sinVtsxddx

= −
2p

uHuV
Jn8snd, s95d

LnsHd=0, wheren=V /vsHd, and Jn8szd;dJnszd /dz is the
derivative of the Auger function

Jnszd =
1

p
E

0

p

cossnx − zsinxddx.

For n@1 (or uH u !V3/2/2), it has the following asymptotics
[57]:

Jn8snd <
a

n2/3 −
b

n4/3 −
sinnp

4pn2 ,

where

a =
22/3

31/3Gs1/3d
, b =

21/3

32/3Gs2/3d
.

The simplified form of the map can be written as

hk+1 = hk − FVKshk+1dsinSwk +
pV

uhku3/2 + xD ,

wk+1 = wk +
pV

uhku3/2 +
pV

uhk+1u3/2 − FV
dKshk+1d

dhk+1

3cosSwk +
pV

uhku3/2 + xD . s96d

The corresponding generating function is

Sstk,hk+1d = − Kshk+1dcosSVtk +
pV

uhk+1u3/2 + xD .

The map(96) is a general form of the Kepler map written in
terms of canonical variables. Both variableswk=Vtk,hk
=Hstkd are defined at the same sectionos of phase space
sx,pd located at the maximum distance from the centerx
=0 (aphelion). The Kepler map obtained im[23,27] can be
recovered from Eqs.(96) shifting the timet (or the phasew)
by the half-period of unperturbed motion,p /vsHd [or
pV /vsHd], i.e.,

wk +
pV

uhku3/2 = w̄k → wk.

The Kepler map in terms of noncanonical variables has been
derived in Refs.[22–25] by calculating the increments of

energy H and phasew over one phase rotation in phase
space. It has the following form(in our notations):

hk+1 = hk − FVK0 sin w̄k,

w̄k+1 = w̄k +
2pV

uhku3/2, s97d

whereK0 is the asymptotics of the integral(95) at the high-
frequency limitn→` :K0=−2ap22/3/V5/3. The Kepler map
in noncanonical variables(97) can be formally obtained from
the general form of the symplectic mapping(42) replacing
KsHd by its asymptotics ofK0, puttingLs0d=0, and shifting
the phasewk→ w̄k.

In Refs. [22–25], the Kepler map in the form(97) has
been employed to study the classical chaotic ionization of
hydrogen atoms in a microwave field which has been inves-
tigated experimentally(see[56] and references therein). The
map obtained in[23,27], which is equivalent to the map(96),
allowed us to analyze the frequency dependence of the ion-
ization process and to study the adiabatic and chaotic re-
gimes of ionization.

The Kepler map of type(97) was also proposed in Refs.
[28–31] to study the chaotic motion of comets near parabolic
orbits in the Solar System. Particularly, in Ref.[31] using
this map it has been shown that the motion of Halley’s comet
is chaotic.

We should emphasize that the variables in the map ob-
tained in Refs.[23,27] as well as in the Kepler map(97) are
defined at different sections of the phase space: the energyH
is at the maximum distance from the center(aphelion), and
the phasew̄ (or time t) at the minimum distance(perihelion).
Because of this, the variablesH and w are not canonically
conjugated. The Kepler map in canonical variables has also
been constructed in Refs.[48,49] by integrating Hamiltonian
equations in extended phase space. However, the map ob-
tained in such a way has a complicated form, although it is in
good agreement with direct numerical integrations.

IX. CONCLUSIONS

In summary, we have developed a systematic and rigorous
method to construct canonical mappings near the separatrix
of generic Hamiltonian systems subjected to time-dependent
perturbations. The method is based on canonical transforma-
tions of variables in Hamiltonian equations of motion, unlike
a conventional method to derive separatrix mappings via cal-
culations of increments of energy and time. An important
advantage of this method is that it constructs mappings in
canonical variables while the conventional method yields
separatrix mappings in terms of noncanonical variables,
namely, energy and time defined at the different sections of
phase space. This feature of conventional separatrix mapping
makes it difficult to make a direct comparison of the original
Hamiltonian system with the mapping, and therefore, in gen-
eral, this separatrix mapping may not describe some specific
properties of the system.

Canonical separatrix mappings with variablesst ,hd de-
fined in the neighborhood of saddle points are important to
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study the dynamics and statistical properties of chaotic mo-
tion in a stochastic layer formed near separatrices of the sys-
tem. This is because of the fact that trajectories spend most
of the time near saddle points, and therefore the whole dy-
namics is mainly determined by the phase-space structure of
the system in the neighborhood of saddle points(see Ref.
[46] and references therein).

The method of canonical transformations for constructing
mappings near separatrices also sheds light on attempts made
in several works(see Refs.[19,32,38]) to construct a so-
called exact separatrix mappingfor large perturbation pa-
rametere. Although one can formally write down exact map-
ping, similar to Eqs.(16), it is impossible to find an exact
solution for the generating function. Usually one retains only
the generating function in the first order of perturbation pa-
rametere. In this sense, the attempt(see Refs.[19,38]) to
obtain the exact map from the conventional separatrix map-
ping (79) by replacing the asymptotics of frequency of mo-
tion vsHd by its exact value, while keeping the same Melni-
kov integrals, is not correct.
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APPENDIX A: ASYMPTOTIC ESTIMATIONS
OF THE INTEGRAL K„h…

We write the integrals(87) asKshd+ iLshd=Rshd,

Rshd = 2aE
0

p

fsxdeihxdx, fsxd =
sinx

1 − a cosx
, sA1d

where a=Î1−uhu, h=l / uhu1/2. For the integer values ofh
=n, the integral(A1) may be reduced to an integral of the
type

E
0

p cosfsh ± 1dxg
1 − a cosx

dx=
p

Î1 − a2
S1 −Î1 − a2

a
Dh±1

.

Then the integral(A1) can be presented as a sum,

Rshd = 2pS1 −Î1 − a2

a
Dh

+ Roscshd,

where Roscshd is the oscillatory corrections to the integral
due to the noninteger values ofh. In order to find these
corrections, consider large values ofh@1. Then the oscilla-
tory correction can be found by asymptotic expansion of the
integral in a series of power ofh−1. We will find the
asymptotic expansion by integration by part.

Integrating Eq.(A1) by partN times, one can obtain

E
0

p

fsxdeihxdx= eihpo
k=1

N
1

sihdku f
sk−1dsxdux=p + Osh−N−1d,

where f skdsxd is the kth derivative of the functionfsxd. One
can show thatf s2sds0d= f s2sdspd=0 ss=0,1,2, . . .d. For the
odd k=2s+1, the derivativesf s2k+1ds0d have nonzero values.
For the first two nonzero derivatives, we obtain

a1 ; f s1ds0d =
1

1 − a
, a2 ; f s3ds0d = −

1 + a + 2a2

s1 − ad3 ,

b1 ; f s1dspd = −
1

1 + a
, b2 ; f s3dspd =

1 − a − 2a2

s1 + ad3 .

sA2d

Therefore, the expansion offshd in a series of power of
1/h up to fourth terms is given by

Koscshd = 2ah−2sb1 − b2h−2dsinsphd + Osh−6d. sA3d

Puttinga=Î1−uhu andh=l / uhu1/2, we have obtained the fol-
lowing asymptotic formula forwshd:

Kasshd = 2pS1 − uhu1/2

Î1 − uhu
Dl/uhu1/2

+
2uhuÎ1 − uhu

l2 sinS pl

uhu1/2DSb1 − b3
uhu
l2D + OS uhu3

l6 D .

sA4d

At the limit uhu→0, we have

Kshd → K = 2p exps− ld.

The asymptotics of the integralKshd given by Eq.(A4) is
plotted in Fig. 13 at a fixed value of the parameterl=2. The
asymptotic formula(A4) is in sufficiently good agreement
with the values ofKshd obtained by numerical integration of
the integral(A1). The deviation of Eq.(A4) from the numeri-
cal Kshd is shown in Fig. 15. The maximal deviation
maxuKshd−Kasshdu is less than 8310−4.

FIG. 15. Deviation of the asymptotic formula(A4) for Kshd
from the numerically integrated one. Parameterl=2.
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