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The thermal equilibrium of many-body systems subject to finite range interactions is investigated numeri-
cally, by means of a multipurpose 3D cellular automaton dynamic model developed by the authors. The
numerical experiments, carried out at fixed number of bodies, volume and energy, demonstrate the formation
of an equilibrium among 3D aggregates of bodies. The distribution of the aggregates against size obeys a
power law of(negativg exponentr= 2.2 (against 1.3 in 22 Our experiments, indicating that the exponent is
insensitive to the precise parameter values and the precise parametrization of the interactions, are consistent
with the idea of the existence of a universality class corresponding to the thermal equilibrium. The numerical
value for the exponent is in agreement with the theoretical thermal equilibrium analyses based on various
other approaches, numerical and semianalytical, indicating that the cellular automaton approach provides an
adequate methodology to investigate thermal equilibria. In this paper, as an illustration of this method, we refer
to the problem of formation of clusters of nucleons in heavy ion collisions of nuclei leading on to fragmen-
tation. The theoreticat value, however, corresponding to the thermal equilibrium among the aggregation
clusters, is 15 percent lower than the empirical vdk#2.6), as measured in laboratory nuclear fragmentation
experiments induced by collision. There is then only a very approximate correspondence between the experi-
mental and the thermal equilibrium value. On the basis of the results of this paper and of a previous paper of
this series, we conjecture that the approximate agreement is due to a partial establishment of a thermodynamic
equilibrium during the collision of the nuclei. The thermal equilibrium gives the main contribution to the
observedr value; the deviation from this possibly universal value is largely the consequence of the lack of full
thermal equilibrium in actual laboratory experiments. This conjecture is extended to interpret the observed
ubiquity of power laws of exponents exceeding 2.2, which refer to the distribution of various types of matter

in 3D space.
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[. INTRODUCTION macroscopic-scale particles. More generally, one may ask

. . whether the thermal equilibrium approach remains appli-
In two previous paperkl,Z] (hereinafter papers | and)ll cable, at least qualitgtively, to F:;1pny type of cIus?eE)r-

we have developed a Cellular Automat@A) approach for  .,gmentation proceséncluding the fragmentation of clus-

simulating the dynamics and thermodynamics of real interigrs of ions and moleculef9—15), and of macroscopic

acting N-body systems supj_ect to short-range forces. Th'saggregates of mattetballs of gypsum, soap balls, frozen

technique may be competitive with the currently standard,statoeq16]). Experimentally the following main regulari-

methods in this field, namely Monte Carlo simulatidMC)  ties are observed.

[3-9], and classical molecular dynami@SMD) [6-8.  (j) The statistical distribution of the fragmensumber
In the present paper we are concerned with the statisticgj¢ fragments,N(a), against sizea] is characterized by a

equilibrium of a confined three-dimensioné8D) N-body power law,N(a) <a".

system, and more particularly with the statistical distribution (ii) For’ microscopic aggregates of mattemlusters of

of aggregates of various sizes which form under thermahucleons ions or moleculgghe numerical value of the ex-
quilibrium cqnditions. With the parametrizatior! of the inter- ponent is’of the order of 2.6. For macroscopic aggregates it is
action potential we havg adopted, our fgrmallsm IS €SSeNgmaller. In particular, in the case of cosmic aggregates of
tlaIIy_ capa_b_le .Of simulating a bro_ad variety of_th_ermody- matter(the Salpeter mass law of the distribution of stars in
namic equilibrium processes, ranging from equilibria amongy o <olar neighborhoodr~ 2.35[17]. This suggest that the
particles on a.nuclear, atomic, or molecula.r. S‘?‘“"‘”"'GO”S’ power law is a universal characteristic of fragmentation pro-
clusters of ions or moleculpsto equilibria among cesses. The exact value of the exponent seems to be depen-
dent on the precise conditions under which the fragmentation
is taking place.
*Electronic address: a.lejeune@ulg.ac.be The CA method we adopt here may be viewed as a sche-
"Electronic address: jperdang@solar.stanford.edu matized version of CMD, based on a fully discretized repre-
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sentation of the original continuous real dynamical system Sthe compound clustet.,,. Only if the latter exceeds the
It operates with(1) a discrete time(2) it is defined in a finite  average collision time between particlésy,
cellular space, of cubic cells in our cag) the cellstates are

discrete. tconf> tcolla (2)
The evolution of the cellstates follows a set of rules which
mimic the continuous CMD dynamics. can efficient energy sharing take place. The attractive feature

_ The cellular spacez?, has a finite volume/. It contains a o a thermodynamic calculation is that it is not predicated on
f!mte numberA of bodle_s, heremafter referred to as_the “par- 3 specific and unique physical process responsible for pro-
ticles.” The numberA is fixed in all of our experiments, qycing the energy and particle exchange among the assembly
while the volumeV of the cellspace is an adjustable param-of aggregates. It is irrelevant whether this mechanism is a
eter. The location of a partiC|e is SpeCified by the cell itcomsion among twqand possib|y m0m|arge initial aggre-
belongs_ to. .Accordingly'a particle has an.intrinsic positionalgates, or a collision of one large aggregate with some ob-
uncertainty in the coordinateax=Ay=Az, fixed by the cell-  stacle, or any other mechanism capable of transferring mac-
Size\. roscopic energy to the many microscopic degrees of
Acell is identified by a triplet of integers playing the parts freedom, which is then shared among the individual degrees
of coordinatesy. The state of cell at timet (integey is  of freedom. The final outcome is a thermal equilibrium state
defined by an integer state varialsi¢,r) which in our case hich is independent of the precise origin of the input of the
encodes the dynamic propertigglocity statepof the par-  energy involved in the exchange processes, and which
ticles contained in cell. The state of the CAattimg X(t),  thereby acquires a certain “universality.” Certain broad fea-

is the collection of all state variables at time tures of the equilibrium state are shared by any sySaha
“universality class” of systems, in our case the 3D many-
S(0) ={s(t.r)r e 2. (1) particle systems with finite range interactions.

In view of these observations it seems to us that a ther-
. , . modynamic treatment should be an attractive approach to be
The global state at timg 3(t), encodes the full information attempted when dealing with as-body systent in which
on the systenB und_er investigation that is accessible from anymechanism consistent with energy and particle exchange
our CA representation. _ is operating. In general, though, we do not know a priori
The state variable of cefl changes frons(t,r) at timet,  \yhether inequality2), which ultimately legitimizes the ther-
tos(t+1,r) attimet+1, in response to the interactions of the modynamic treatment, is satisfied for the particular sysgem
particles in cellr with the remaining particles in the system we are investigating. This lack of information should not
at time steg. We assume that the particle interactions have ajeter us from applying thermodynamics. We are indeed en-
finite range. Accordingly we associate with any cellan titled to conceive of an ideal syste§ which is our theoret-
“interaction neighborhood,N;,(r), which is understood as jcal equilibrium simulation of a given real laboratdxybody
the collection of cells” surrounding and containing cell  systemS. If a discrepancy is detected between the ideal
such that a particle in the center celinteracts exclusively model results ofS' (simulated thermodynamic equilibrium
with the particles of this neighborhood. The evolution ruleand the actual observed laboratory results on the real system
for cellstates(t,r) then becomes a function of the cellstatesS (observed features of an experiment dealing with aggre-
s(t,r’) of the interaction neighborhood, € N;(r). gates, then it is imputable to a failure of the idealizati6h
In paper Il the initial state for our numerical experimentsi.e., a failure in the establishment of statistical equilibrium
was prepared to simulate faithfully the precollision state ofconditions[a violation of inequality(2)]. A variety of labo-
two clusters of actual laboratory experiments. In the illustratatory systems in which physically distinct aggregationlike
tive 2D paper | the initial state was a statistically uniform phenomena manifest themselves, spanning a broad spectrum
high density cluster of particles. The numerical investigationof linear scales, being characterized by a similar behavior
of the present paper differs from our previous approaches ifcf. (i) and(ii) abovd, we have reasons to surmise that all of
so far that our initial state is generated by distributing a colthese systems can be simulated, at least approximatively, by
lection of A particles with uniform probability density over an idealization of types'.
the cells of the finite available lattice space. The initial total As in paper II, we select the parameters of our modeliza-
kinetic energy is statistically uniformly distributed over the tion S' to conform to the particular situation of a nuclear
particles; the velocity distribution of the individual particles fragmentation problem. Our particles are nucleons; the com-
is statistically isotropic. It seems likely that the initial state pound cluster is a compound nucleus.
defined by this protocol is close to a statistical equilibrium  Our CA model remains essentially classi¢iite the tra-
state. ditional CMD treatment it does incorporate though several
In a collision contexicollision of two nuclei, or clusters quantum effects.
of ions; collision of a macroscopic aggregate of matter with (1@ The CA lattice imposes an uncertainty in the posi-
an obstacle, ety.this initial state may be roughly compared tions, \, and in the velocitiegor the momentp v (computa-
with the state of a compound cluster which is formed subsetional Heisenberg principle of the CA treatmgnt
quently to the impact of the colliding bodies. Whether effi-  (1b) The CA particles are indiscernible and treated as fer-
cient energy sharing and eventual equipartition of the energgnions (computational Pauli exclusion principle of the CA
can be achieved is a matter of the period of confinement ofreatment.
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(o) Particle-particle scattering is dealt with quantum-(x,y,z)=r, measured along the three mutually orthogonal
mechanically. These effects were included in the treatment dhttice directionsg; (unit vector along lattice axig=1, 2, 3.
papers | and II. The cellular space is assumed to have toroidal topology. This

(2) In the evaluation of the energy of a configuration of latter assumption means that our CA context actually consti-
nucleons, the quantum-mechanical zero-point energy of theutes a geometric frame for an analysis of infinitely extended
system is schematically taken into account. The latter effeainatter (infinite nuclear matter in the specific case to be ex-
was not considered in papers | and II. amined by our numerical experimeptsn this geometric

We understand by a “cluster of siz& essentially a geo- contextZ® appears as a crystal cell which is repeated indefi-
metrically connected collection of nonempty cells containingnitely by translation in the three lattice directiogs
a particles. The connection of the cells may be achieved In the setup of paper Il we followed the collisional energy
facewise, edgewise or vertexwise. With this convention, theharing, and therefore the lattice space was chosen much
geometric connection is in line with the energy connectionlarger than the size of the colliding clusters. In the present
adopted in this paper. For the precise definition we adopt foanalysis the lattice univers& reduces to the space occupied
a cluster on a cubic lattice space we refer to paper II. by the compound cluster. The physical orders of magnitude

The present paper is a direct extension to 3D of the ficti-of the size of an individual lattice cel), and of the time
tious 2D thermodynamic equilibrium treatment of a gas ofstep,Ar, are chosen to conform to the specific nuclear frag-
nucleons of paper I. Our objective is to inquire whether thementation problem:
thermodynamic context is pertinent for analyzing real labo-
ratory fragmentation processes of intermediate-size nuclei. A=1.80fm, Ar~10%s.

To this end we construct from our numerical simulat®n

(a) the frequency of the fragments of siaeN(a), at various  This value for\ (slightly lower than in paper )Jlhas been
densitiesn and temperatureE (or energies per particleand ~ chosen to be consistent under conditions of close packing,
(b) the caloric curve. both with the radius-mass relation for stable nuclei, and with

Our main conclusion is that a complete thermodynamidhe average energy per nucleon in stable nugteibe dis-
equilibrium is not realized in actual nuclear fragmentationcussed beloyv The volume of the ceIIspaﬂ is V=(LN)3.
problems(or other fragmentation problems resulting from An optimal value for the computational paramefer is re-
collisions, such as molecular cluster fragmentation)€ftie  estimated at every time step within our CA dynamics. It is
fully satisfying treatment of those processes requires a diredbund to depend on the density and energy. As an instance,
dynamical simulation of the details of the collision itself. A consider the traditional nuclear density=0.15 nucleons
CA translation of the latter requirement was worked out byfm™3, which is realized in our CA setup when we distribute
the modelization of paper Il, in which a numerical agreementhe 300 nucleons over the smallest square lattice, in a way as
of the theoretical and experimental slope values of the freto have at most one nucleon per c@dttice sizeL=7; 43
guency of the fragments was achieved. A brief comparison oémpty cell3. We then find an average time stépr)=4.88,
the thermodynamic approach with the dynamic approach of.51x 102%s at the energies 16.8, 21.7 MeV per nucleon;
paper |l clarifies the reasons of the partial failure of the equithe corresponding standard deviation are 0.979, 0.665
librium assumption. At the same time it also makes it clearx 10723s.
that the thermodynamic treatment is due to be successful at An instance of the time behavior of the instantaneous step
least to some extent. We do find, indeed, that the thermodyA 7 is given by Fig. 1a), while Fig. 1(b) exhibits the system-
namic treatment has the virtue of exhibiting the following atic trend in the energy dependence of the average step. In all
features of the distribution of fragments: cases we have examined, the average step is larger, and ex-

(i) Inthe thermodynamic equilibrium the distribution can hibits higher fluctuations at the lower energies, while at high
be approximated by a power law, in the range of smallekenergies we have a lower and more stable step.
sizes @, at higher sizes a curvature is observed in a An individual CA particlea is allowed to exist in one
log N—log a plot (together with a cutoff, resulting from the among 7 dynamic stateguantum effect Da (i) in a rest
finite number of particles state, with velocity,=0; (i) in a moving statey,= +ve; or

(i) Ata given density, the slope of the Id¢-loga plot  -ve;, j=1,2,3. Theallowed nonzero speed obeys\/Ar.
is relatively insensitive to the precise value of the energyThe state of celr at time stept, s(t,r), incorporating the
over an intermediate density range from 1/5 to 1/2 the stanstandard CA exclusion principlgquantum effect(1b)], is
dard nuclear density. directly encoded in a 7-bit binary integer. With this choice

(iii) Numerical evidence suggests that there is a criticathe highest local density we can simulate is 7 particles per
densityn, close to 1/3 the standard nuclear density, at whicrcell, n,,,,~0.944 nucleons fi¥. This value is over 6 times
a percolation or aggregationlike phase transition takes places large as the standard density of nuclear maite#,0.15
nucleons fri3.

As in paper I, to treat the interactions among the nucle-
ons, we associate an interaction neighborhood with any cell

The CA representation we adopt is similar to the repre+, Ni(r), which is made of the “central” cell, the ¢=6
sentation of the 3D paper Il. The lattice spazé,, is cubic, cells having common faces with the central cell; #wel2
of dimensionless linear size, containingL® cells. A cell is  cells having common edges, but no common faces; and the
referred to by a triplet of integer dimensionless coordinatesy=8 cells having common vertices with cell but no com-

I. COMMENTS ON THE 3D CA MODEL
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= In our numerical experiments we have set the parameters
- @ of the interaction potential equal to the following values:
E/A = 217 (MeV) Vo=V,=-15 MeV; AV=+6 MeV; and V.=V,=-1 MeV.
n= 0150 (fm-3) With these choices, together with the above choicexfore

reproduce the following.

(1) The right order of the average energy per nucleon in a
nucleus, in the case of a compact packing of the nucleons
(one nucleon per cell at the same time we duplicate the
realistic sizes of nuclei. A high enough value of the param-
eter AV has been selected to prevent an unrealistic accumu-
lation of nucleons in a single cell; we thereby avoid an actual
realization of very high densities in an equilibrium state, and
hence nuclear sizes smaller than the empirical sizes of the
stable nuclei.

(2) We also model the qualitative and quantitative fea-
<AT>= 4.51 o= 0.665 tures of the caloric curvgSec. Ill), temperaturel against
energy per nucleorit/A. Our numerical experiments have
0 ' 1000 ' 2000 indeed established that the pattern of the caloric curve is

TIME quite sensitive to the values of the parametrization of the
potential energy.

Schematically, over the energy range over which our ex-
(o) periments are performed, 0.3 MeV per nucleon
<E/A<30 MeV per nucleon, the caloric curve we generate
for various parameter values of the potential energy can be
interpolated by a simple algebraic expressioh paper ).

For our purposes the following representation appears as
convenient

0.0

6.0

n = 0.150 ( fm—3)
Eb

—— (3

E° + E,(n)° ®

4.0

KT=KTL) + [SFE))S,  FoE) =

<At (1078 sec )

(k, Boltzmann constaint This representation is found to ac-
commodate the empirical data as we@lf. Fig. 5. Equation
(3) involves, in principle, four free functions of the density.

(i) The functionT.(n), which plays the part of a critical
temperature, depends strongly on the main potential energy
T ' ' ' parameterV,(<0). The higher|V,| is, the higherT.(n) be-

E/A (MeV) comes. We anticipate thdt, is constrained by the empirical
data(Fig. 5).

FIG. 1. (a) Evolution of A7(t) for a high-density configuration (i) The asymptotic slopes(n), of the temperature at high
(no=0.15 nucleons ff¥), at energy per nucleoB/A=21.7 MeV,  enough energyE/A> E(n)/A], turns out to be independent
over 2000 time stepgb) Dependence ofA7) on energyE/A. of the parametrization of the potential, and independent of

the density as well. In the asymptotic regink# A reduces to
mon faces or edges. When listing these neighbor cells, duée classical kinetic energy per particle, so tia)=2/3.
account is to be taken of the toroidal topology. We point out (i) The transition energ§,(n) depends on all param-
that our interactions are short-range interactions only; theters of the potential. This coefficient separates two tempera-
Coulomb interaction is not explicitly dealt with. ture regimes, a high-energy regime in which the temperature

In principle, the interaction potential between pairs of par-increases linearly with energ¥>E,(n), and a regime in
ticles in cellsr andr’ is parametrized by 5 coefficient¥,, = which the temperature is practically independent of the en-

2.0

AV, Vy, Vg, V,,. ergy, E<Ey(n).

(i) If r'=r (pair of particles in same cegllthen the inter- (iv) The exponenb is found to be insensitive to the pa-
action potential is set equal g, (first pair in same celj rameters of the potential and of density. The simplest choice,
V,+AV (second pai; V,+2AV (third pain; etc. b=1, gives a reasonable fit for all of our data points.

(i) If r’ #r andr’ e Nj,(r), then the interaction potential With the interaction potential being specified, the thermo-
is Vg, Ve, o1V, respectively, depending on whether the cellsdynamic equilibrium of our idealized syste® depends on

are face-, edge-, or vertex-joined. three extensive thermodynamic variables:
(i) If r"#r andr’ ¢ Ni(r), then the interaction poten- The total number of particlegy; this variable is fixed and
tial is zero. set equal to 300 in all of our experiments.
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The volumeV of the lattice space, or, equivalently, the Planck’s non-normalized constantcontains g quantum

particle densityn. states, which are all occupied in the case of highest density.
The total energyE of the system, or, equivalently, the Hence, in the traditional elementary treatment the total num-
energy per particlez/A. ber of occupied statedotal number of available particles,

Each experimental run is fully specified by the latter twoA), is given by
thermodynamic magnitudes.

(1) Given the particle density, in principle, the size pa- A:f g dx dy dz dpdp, dp, 6)
rameterL of the lattice spacéand the volume of the con- h? '
figuration), is fixed by

Carrying out the integration frompy to +py in each mo-
1/ A\L3 mentum component, and from 0 & in each position com-
L= X( ) (4) ponent, and introducing the volumé and then the density,
n, identified with the standard nuclear density we finally
But in a CA contexL is an integer by definition. Relation find for the quantum-mechanical zero-point energy per par-
(4) then plays the part of a constraining relation on the adticle
missible discrete collection of densities. In order to generate 5
a systemS' required to have an approximate density,, E = N s
we proceed in practice as follows. A g?*8m

(@ We compute a corresponding formal size param_Since our treatment deals with a single species of nucleons
eter Lo from Eq. (4); generically the latter is noninteger, g'e sp

and hence nonadmissible (no isotopic spin degeneragyand since it does not explicitly

. . : ake account of a spin of the nucleons either, we set the
(b) We introduce as a new admissible size parametehegeneracy factorg equal to 1. We then have,/A

the integerL higher than, and closest o,y (ceiling func- =9.33 10° ergs=58 MeV. The moredetailed calculation

tion of Lapp)- - . . leads to the value 5BleV. The binding energy per
(c) Inserting the new size parameter into the equanonnucleon estimated in_ this fashion becom&=W/A

1A +E,/A=-10 MeV per nucleon, which is the correct order

= N33’ (5) of magnitude. By treating all nucleons as indiscernible—all
nucleons are of a single electrically neutral species—we

we obtain a corresponding admissible density which is closélisregard one further energy contribution. As in papers |
to Nappe @nd which we adopt in our computations. Hor and Il, electrostatic effects are not taken into consider-

ranging from 5 to 20, we obtain admissible densities in theation. The inclusion of the isospin effect would lead to a

n

(7

n

interval 0.41 t00.006 nucleons/frh decrease in the zero-point energy.

(2) The energyE is the sum of the following compo- The energy per nucleon in our nuclear matter then be-
nents. (i) The potential energy of the interacting pairs of comesW/A+(A,/A)AK+E,/A.
particles,W. (ii) The classical kinetic energiK, of the indi- (iv) In the above representation of the interactions, the

vidual particles. Andiii ) the quantum-mechanical zero-point total potential energy vanishe®/=0, when the particles of
energy of the systent,,. Moreover,(iv) in order to be con- the system cease to interact. This happens if the density is
sistent with the empirical caloric curve, we redefine the zerdow enough, so that statistically the interaction neighborhood
of the potential energy as corresponding to the minimum ofontains less than one particle. The maximum density con-
the potential energyat the given densityn). We discuss sistent with this situation is then 1/27 particle per cell, or
these energy contributions separately. Niree=0.00635 nucleon fi¥. At densities less than., the

(i) Our program computes the potential enektyyfrom  CA model describes an essentially interaction-free ideal gas.
the individual pair-interactions. For instance, for a sample of At densities exceedinggee the potential energy is nega-
30 randomly generated compact configurations we obtain ative, so that in principle the total energy of the system can
average ofW/A=-63.6 MeV per nucleon. become negative as well. To conform to the convention

(i) The total kinetic energ¥ is equal to the elementary adopted in the representation of the empirical caloric curve
kinetic energy of a single particle in a state of motidi of nuclear fragmentatio(cf. Fig. 5) in which the zero of the
=1/2mw?, times the total number of moving particles,,  energy is chosen such that the energy is non-negésing
(integed. We observe that the elementary kinetic enefdyy  vanishes aff=0), we redefine here the zero of our energy
is proportional to(A7)™2, so that it is quite sensitive to the scale in the following way.
precise value of this computational parameter. In our specific For a given densityn, denote byW,,(n) the statistical
nuclear problenim, mass of nucleopif we set the time step average of the potential energy of the system of particles in
equal to 2.5, 5.0, or 7.8102%s, thenAK is 27.0, 6.8, or the stable thermal equilibrium state, irrespectively of the
3.0 MeV, respectively. temperature of the system. If we then shift the potential en-

(i) With the quantum-mechanical zero-point kinetic en-ergy, settingW* = W-W,;,(n), we secure that the latter ex-
ergy, E,, resulting from the fermion nature of the nucleons, pression is statistically non-negative. The numerical calcula-
we associate a corresponding maximum momenggby  tion of W,,i,(n) is straighforward.
E,/A=pZ/(2m). If g is the degeneracy parameter of a quan-  Taking account ofi), (ii), (i), (iv), we adopt as our final
tum state, then a cell in the phase space, of “voluieth,  expression for the average energy per nucleon
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E_An W E; Wpin(n) (3) For all initial configurations(0) generated according
AT AR e ®) to the above procedure, we observe that the CA system re-
A A A A A '
laxes towards a stable statistical equilibrium after a short
The assignment of an energy value for our experimentalransient timet,,,s In all cases investigated we have
runs proceeds along the following lines. We first observe that, . <1000 steps.
the number of moving particles obeys In contrast with the methodology of paper I, in which
E_E — W macroscopic magnitudes were computed with respect to
= (9)  single global configuration&(t) (with t>ty,,), we adopt
AK here a procedure which enables us to obtain these magni-
which is required to be an integer. Equati@ plays the role  tudes with a higher precision. Any thermodynamic magni-
of a constraining relation for the allowed discrete energthdeQ. associated with the statistical egwhbnum_ is obtained
spectrum of our CA model. by a t|me_—avera_ge _01_‘ the corresp_ondmg magnitqde at-
In practice, we compute an admissible energy value clostched with the individual fluctuating global stat¢t), at a
enough to a trial total energ,, in the following straight- ~ time stept, over the equilibrium phase,
forward way. Assume that théadmissiblg¢ density n, and

Am

tmaxtrans

: : . 1
he_nce the required size parametehave already been ob Q=(g) = — > Altyanct 0). (11)
tained. thax— trans =1
(a) Distribute theA particles over the available lattice . ) ] ] ]
spaceZ?, in a statistically uniform way. Since two successive configuratiost) and>(t+1), differ
(b) Compute the potential energy corresponding to  litle, we single out, in practicey different times in the equi-

(c) Derive a formal number of moving particles, figuration has changed significantly; we then average over
An appr from Eq. (7). Generically, this number is not an in- those preselected steps:
teger. 17
(d) Substitute to the formal valu8, 4, the integer ()= ;’2 (at)). (12
=1

A, closest toA;, 4ppr

In this paper all total energids are evaluated by Eq8). For instance, adopting for the temperature the usual classical

kinetic definition(energy per kinetic degree of freedom equal

. NUMERICAL EXPERIMENTS AND RESULTS 1. . I
to ;KT in the statistical equilibrium statewe have

A. Computation of thermal equilibria

tmaxttrans
Our experimental investigation has been conducted ac- §kT:AK<h> EAK; > Am(tyans* 0)
2 tI’T‘Ic?,lX

cording to the following protocol. A ~trans =1 A '
(1) Suppose that an admissible densityand an admis- (13)

sible total energyE corresponding to our initial tentative

valuesn,,, and E,,p, have been obtained by the procedureor

discussed in the previous section. In the processAtpar-

ticles have been distributed randomly and uniformly over the =AK1277 (Am(t-)) (14)
cellular spacif (of size parametelr determined byn). The 7.1\ A '

positional coordinates of all particles are then known. To
generate the velocity states of this collection of particles, we
choose a subset &, particles[cf. Eqg. (9)] among the full

collection of A particles, taking care that this subset is again )
uniformly distributed over the cellular space. We then assign Several tests were made to assess the establishment of the

the 6 nonzero velocity states randomly and isotropicallyStatistical equilibrium. Figure(®) illustrates one of our tests,
among the subset ¢, particles. The remaining-A,, par- Whlch dlsplay_s the _fluctuat|ons of the time step for a high
ticles are at rest. This computational step then specifies triensity configuration(n=n,) and a high energy(E/A
initial spatial distribution and the velocity states of the indi- =21.7 Me\), overt;,,=2000 time steps. In our CA dynam-
vidual particles. Thereby the individual initial cellstates ics the computational parameter is readjusted at each time
s(0,r), r e Z2 are known, and hence so is the global initial Step to secure rigorous conservation of total enéodypa-
state,(0) of the CA. pers | and 1). During the transient phase this parameter is
(2) Given the initial CA state3(0), the CA dynamical €XPected to change systematically, with superimposed statis-

program as described in papers | and Il successively genep_cal fluctuations. Once thermal equilibrium is established,

B. Equilibrium tests

ates a finite sequence tf,, global states the statistical fluctuations alone survive. The occurrence of
o these fluctuations is essentially due to the discrete nature of
{2(0),2(2), ... 2(tyans— D, 2 (trand, 2 tyanst D), -+ - the energy spectrum. If the CA equations of motion require
_ the state of one particle to change from rest to motion with
> (tmax= 1), 2 (tma}- (10 the particle being shifted into a neighbor cell, then the
For most of our runs we hawug,,,=2000 timesteps. change in total potential energ&W, typically differs from
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the change in total kinetic energgK (elementary kinetic
energy of a moving particje Generically, if AA particles
change their state of motion and their position, the sum of
changes in the kinetic and potential energies of the particles To4
cannot be compensated exactly. To guarantee strict conserva-
tion of the energy, the time stefpr is rescaled.

Initially we set the stephr equal to X 107%3s. As is seen
on Fig. Xa), Ar(t) jumps up, to stabilize around 4.5
X 10°%s, practically in less than 200 steps. We observe that
A7(t) keeps fluctuating in the statistical equilibrium state,
around the mean, 4610 2%s, with a standard deviation of Tea
0.67X10%s.

In comparison with traditional statistical mechanics, the
number of particles involved in our specific nuclear simula-
tions, A=300, is extremely small, so that large relative sta-
tistical fluctuations in any extensive magnitu@ 6G/G _8
~AY2(~0.06), are to be expected in the thermal equilib-
rium state. These fluctuations are in fact observed in a sec-
ond test, which is based on the computation of(ihstanta-
neou$ temperatureT(t) of our system of nucleons, in a
single global state.(t) of the equilibrium phasé>t,,,s If
we compute the average temperatirever the whole ac-
cessible equilibrium rangé,e [tyanst 1 tmad, EQ. (11), to-
gether with the standard deviatiéi computed by a similar
expression, then our experiments g&e/ T~ 0.05. This re-
sult is in line with the elementary estimate

ST oA, 1
T A, AR

T=14.4

(15)

FIG. 2. Stereoscopic views of the spatial configuratigrias-
o ] . ters of nucleonsya) high densityn=0.15 nucleons ¥, low tem-
C. The equilibrium configurations perature T=4 MeV; (b) intermediate  density n

Plate 2 exhibits several stereoscopic views of instanta=0-051 nucleons fii, (i) low temperaturéT=4 MeV, and higher
neous particle configuratio®(t) at several densities, fara ~ emperature 8 Mev(c) very low densityn=0.007 nucleons fa,
randomly chosen instant of time of the equilibrium phase. V€™ Nigh temperaturé=14.4 MeV.

The pair of Fig. 2a) represent a global high-density CA ter and recondense again. This process causes the large clus-
state, n=n,=0.15 nucleon fi¥, at low temperature,T  ter to have a more fragmented dynamic surface structure than
=4 MeV. With a kinetic energy per nucleon lower than thethe clusters of the high density regirfieig. 2a)].
binding energy, we expect that this system is in a configura- (ii) In the higher temperature stafE=8 MeV, the aver-
tion essentially similar to the configuration of a standardage kinetic energy per nucleon is of the order of, and slightly
stable nucleus. In fact, the figure demonstrates that a singleigher than the average binding energy, so that the large
cluster, or compact configuration, is observed, whassian-  condensed object dt=4 MeV loses its stability. Thereby an
taneous surface assumes an irregular shape. It should bequilibrium is established between clusters of different sizes;
obvious that the surface irregularities are caused by the extthe configuration is made of clusters of all size@up to the
kinetic energy available; these irregularities undergo fluctuamaximum sizg

tions in the course of time. A plot of the global staié’), Finally, the pair of Fig. &) illustrate a global state of
with t’ #t, exhibits a different surface, while the compactvery low density, close tonge, n=0.007 nucleons fi?
configuration remains essentially the safnet shown. Fig-  =1/21n,, and of very high temperaturé=14.4 MeV. The

ure Za) makes it obvious that we are dealing here with akinetic energy substantially exceeds the binding energy. It is
condensed phase, which has properties reminiscent of a lighen manifest that the formation of clusters is energetically
uid. not favored. In fact, the configuration we observe is mainly
The two pairs of Fig. &) refer to global instantaneous made of clusters of smallest sizes. Under these low density
CA states of low densityy=0.051 nucleons fat~1/3n,, at  conditions the equilibrium phase is comparable to a gas

two different temperatures. phase.

(i) In the lower temperature regimé=4 MeV, we ob- To summarize, the plots demonstrate the occurence of a
serve a configuration made of one large central cluster sucondensed, liquidlike phase at high dendiand low tem-
rounded by clusters of small sizear1, 2, 3,.... As is perature¢ manifesting itself as an essentially single cluster

made clear from a plot of a succession of global staées [Fig. 2@)] and a statistically nearly uniform gaslike phase at
shown), the smaller clusters evaporate from the central clustow density(and high temperatuygresenting itself as a col-
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lection of essentially free particlg¢Eig. 2(c)]. Therefore, one (@ n =003
expects a transition between the liquid and the gas phase at
some intermediate density. Figurébpis indicative that such

a transition manifests itself at some critical density at which 24
clusters of all sizes are simultaneously present.

log N(a)

D. The cluster distribution 0 1 ; .

On plate 3 we display the number of clustdli&®) against -1 M
cluster sizea=1, 2, 3,...(number of particles in a cluster u
under statistical equilibrium conditions. The plots are shown
as usual in log-log form, for a variety of different combina-
tions of densitiesr and energies per nucled A.

In the first place, it is clear from our results on the spatial
equilibrium configurationgplate 2 that two extreme pat-
terns of the cluster distribution are due to occur. (b) n = 0.071

(a) At high densities and low energies, the configura-
tion consists of a single large cluster, generally surrounded 27
by a few clusters of small size; the number of the small
clusters decreases rapidly with si#g. 2(a)]. Accordingly, vy
the cluster distribution, lodN(a)—log a, consists of(i) a
single point at some large value, the absolute maximum of log N(a) o
a, a,max [Single cluster, lodN(ayma) =0]; (i) an empty inter-
mediate a range; and(iii) a populated lowa end, a 1T
=1, 2, 3,... qmax With the property thailN(a) is rapidly
decaying witha over the latter interval. -2~
(c) At low densities and high energies, clusters of all log a
sizes up to an absolute maximum sizss1, 2, ... Axmax

ngﬁ?;)lgézfezggglgréiﬁ ?:;Ir:j?;t\lla[t?%l éfzj].i;-gipne%r'pe- d measgred in the equilibrium state, at fixed density, and at different

. . energies(a) n=0.030 nucleons fi¥; E/A=0.3, 0.7, 1.3, 1.7, 4.3,
to decrease the more rapidly the higher the energyTise 4,7 5770 93, 9.7, 15.3, 15.7 Mel$) n=0.071 nucleons fr:
representative points of the cluster d!str|but|0n are then Calz/a=1.0 1.3, 5.3, 5.6, 7.6, 8.0, 10.3, 10.6, 16.3, 16.6 MeV.
ried by a curve with a locally negative slogef absolute
value expected to increase with energy

For these two extreme physical conditions the general na-
ture of the logN(a)]-log (a) distributions is obvious. The e
corresponding plots are not shown. We only observe that the
representative points are nearly linearly distributed over the
lower-a range,a=1, 2, 3,... . The slopes we find atg_, 12
~2.1, under alternativda) (n=ny, T=4 MeV); and 7_,
~2.9 [alternative(c): n=1/21n,, T=14.4 MeV].

In spite of the qualitative difference in the two extreme 10
spatial configurations, the quantitative slopes of the clustel
distribution at the lowa end, r,_,, remain relatively stable.

We should add that a slope ceases to existUnder the 8
extreme alternativéa), in the formal limit of zero kinetic
energy at high density. We then have just one single clustel
left. And (ii) under the extreme alternative), in the formal
limit of an infinite kinetic energy, at low density. All particles
are then free; all clusters are of siae 1. (Under the latter 4
alternative we disregard any complications relating to the
materialization of other particles, such as pions in the nucleai
fragmentation illustration. 2

(b) The physically interesting alternative arises in the
intermediate densityand energy range. We have explored
more systematically the range=1/5 to 1/4,. °0 = 5 T T S o

Figures 3 and 4 refer to the distributions of clusters ob- ' ) ’ ’
tained as averages ovey=49 equilibrium configurations FIG. 4. Size of largest clustes,, shown as a contour plot over
(1), t=ty, to, ..., t, [EQ. (12)]. Figure 3 exhibits superposed the (n, e) plane,e=E/A(MeV), n (nucleons fm?).

\

FIG. 3. Superposition of cluster distributions Id-loga as
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log N(a)-log a plots for equilibrium configurations at dif- curve cannot be determined with high precision. There is
ferent energiesE/A ranging from 0.3 to 16 MeV per little doubt, however, that the critical line over which the
nucleon. The densities are 0.0Bfanel(a), 12 different en- breaks(and hence the clusters of maximum $izeccur,
ergie§ and 0.071[panel(b), 10 different energigsnucleon obeys an equation

fm~3. The perhaps unexpected conclusion we are led to draw

is that within the precision of our calculations, the curves at Nor = N(E/A), (18

fixed densit_y corresponding to different energied the  \yhich is only slightly dependent oE/A (or temperaturg
range considergdare practically superposable. In other Therefore, if a true maximum with respectEgA exists, the
words, at each density level the cluster distribution is onlycyitical value of E/A cannot be ascertained with any confi-
slightly dependent on the energy. The representative poini§ence. These conclusions are also supported by an interpola-
of the logN(a)—log a plot trace out a fairly straight line, up o with a polynomial of degre&=2, which locates the

to a=5. One can notice a clearcut breakoff in the approxi-critical curve atn,,~0.052 nucleon fir#; there is no maxi-
mate linear distribution aa=ayn,« (= to the absolute maxi-  mum with respect t@&/A.

mum, 8,9, in the range 28-54 for the lower density Our numerical results are consistent with three alterna-
=0.030 nucleon . And there is a breakoff as well @  jyes.

=Amax N the range 43-—103 a,n,~268-285, for the In the thermodynamic limit(V,A)—c, with A/V—n,
higher densityn=0.071 nucleon e, More generally, we finjte, the critical line given by Eq:17) may correspond to a
have estimated a breakoff for each pair of varialpieE/A), line of maximimum-size aggregation clusteey which are

for which the thermodynamic equilibrium has been investi-y|| of infinite size;(b) which remain of finite size except at
gated, by identifying the characteristic size of the clusters afg pointny,, E,/A; or (c) which remain all finite.
the b_reakoff,abr, with ajmax The latter mag'nitude is the larg- Under both alternativega) and (b) we have to conclude
est size of the sequence of clusters of sizes 1,.2whose  that the idealized particle systesh (extrapolated to the ther-
frequenciesN(a) decrease on average widh and such that  ogynamic limiy undergoes an aggregation-type phase tran-
amax is the highest value preceding a gap in the distribution sjtion. Under alternativec) the system continuously and
of N(a). This leads to an unambiguous specificatioragf  smoothly passes from the gas phase to the liquid phase and
We are fully aware, though, that the cluster-size at the breayice versa, without suffering a phase transition. Our experi-
koff, &y, cannot be determined with high precision. In fact, ments provide a numerical clue suggesting that alternative
this parameter is derived from the small number statistics Otc) is to be ruled out. Name|y' the |argest cluster we encoun-
N(a) (=1 whena=a,), and therefore necessarily subject to ter atn,,, E,/A, extends from one limiting plane of the cel-
large statistical errors. The quantitative conclusions one caplar space to the opposite limiting plane, i.e., it does indeed
draw from the numerical values found for this parameterdefine an infinite cluster in the crystallographic interpretation
under different physical conditions are then expected to bef our lattice. Such an experimental property is adopted as
subject to large fluctuations as well. Our CA equilibrium the standard computational criterion for an aggregation or
calculations are indicative that, is a well-defined function  percolation phase transition.
of densityn and energy per particle/A, The same numerical criterion also suggests that alterna-
tive (b) is unlikely to hold. The most probable alternative is
2y = F(n,E/A). (16) then(a). Equation(18) appears as defining a thermodynamic
More precisely, our results indicate thag, is strongly de- goexistence curve separating a liquidlike phase from a gas-
pendent on the density, and only slightly on the energy. Thidke phase. _ _
conclusion is consistent with an observation made above.  AS @ complementary question, we attempt to characterize
To filter out the statistical fluctuations i, we have ap- anaIyncajIy the cluster dlstr|but[qn in the neighborhood of
proximated the functioi(n,E/A) by a polynomial interpo- ~ the coexistence curve, for densities in the rang®.030 to
lation, P(n, E/A), of degreek. Figure 4 is the contour plot of 0-071 nucleon fi’. Our purpose is to represent the
this representation fdk=3, in the(n, E/A) plane. The locus 109 N(@)—loga curve by an algebraically simple interpola-
of maxima is seen to lie on a nearly vertical critical densityion formula which(i) is capable of allowing us to estimate a

line, n,,~0.058 nucleon i, or roughly. stable(negative slope valuer (which can then be compared
o ' ’ with laboratory slopes of nuclear fragmentation experi-
Ny, = 1/3n,. (17 menty; and which(ii) is capable of duplicating the curvature

_ ) effect, clearly visible in Fig. 3.
Due to the small numbers of representative clusters involved The following parabolic representation:

in the estimate ofy, for a given CA experiment, the prob-

able error in the position of the critical density line is of the a a\?

order of 25%. We can be confident, however, that statement 109 N(8) = 1(are) = T(afef)logar_ef * K(Iog;ef) . (19

(17) does hold. The absolute maximum of the polynomial

interpolation is an=0.059 nucleon i, E,,/A=4.24 MeV  complies with these requirements. In this expressigpis

per nucleon. We should mention that the interpolation prothe reference cluster size in the neighborhood of which we
duces a surface which is much flatter than the original surwish to estimate a linear slopga.). In particular, if we set
face of the direct CA model results, a property which sup-a=1, then the coefficient(1) gives the best estimate of the
ports our observation that the position of this critical densitylogarithm of the number of free particlgsarticles of size },

046201-9



A. LEJEUNE AND J. PERDANG PHYSICAL REVIEW EO, 046201(2004)

log N(1). The coefficient provides a measure of the curva-
ture of the representation; this coefficient is independent of
the reference size. To switch from reference size 1 to an
arbitray reference siza.;, we have the relations

T(@rer) = T(1) = 2k 109 Aper,

Uarer) = (1) — H(1)log(arey) + «(log aref)z- (20)

Our results indicate that with the choiegs=4 (average of
the a-range considered aboyethe estimate for the slope
7(4), becomes practically independent of the dengitithin
the 0.030 to 0,071 nucleon fihrange and the energy per
nucleon(in the interval 0.3 to 16 MeYy

7=1(4)=2.23+0.15, (21)

where the error is here the maximum deviation we have ob-
served over all of our numerical results.

The curvature parametar depends on the densityand
the energy per nucleda/A. We have approximated the latter ~ FIG. 5. CA caloric curvesT —e [T, kinetic temperature of nucle-
functional dependence by a polynomial of degke®ur nu-  ons(MeV), e=E/A(MeV)] at densities1=0.15, 0.10, 0.071, 0.051,
merical experiments indicate that the linear interpolation re0.039, 0.030 nucleon fi. Experimental caloric curve Au-Au frag-
lation, k=1, which we conveniently write in dimensionless mentation(shown at fictitious density 0.2 nucleon 1.
variables

for the collection of decreasing densities=0.15, 0.10,

k(N EIA) = ko + %ﬂ + SEE/A_ B, Ko=—1.365, 0.071, 0.051, 0.039, and 0.030 nucleor ¥mnstead of es-
No B timating the temperature over states of the thermodynamic
equilibrium phaseEq. (14)], we have computed here the
S, = +4.67, sg=-0.19, (22 average temperature overdifferent runs.

In a preliminary experiment, all parameters of the inter-
Bolation formula, Eq(3), were regarded as adjustable pa-
ity coefficient to energyse, is small in absolute value as rameters. Our curve _fitting program indicated that for all

' densities the best estimates ®andb were close to 0.667

compared to the sensitivity to densit, it is clear thatx and 1 respectively. The asymptotically linear rising branch

depends.only marginally on _the energy. An i.nterpolation by %orresponds to a perfect gas behavior, so that we should in-
polynomial of degree 3, which has been tried as well, doe%ieed find a slope valus(n) equal to 2/3, independent of

no%ﬂ?”&ﬂfﬁ;&ﬁemvﬁght:se h?bove results. density. At the highest densities of the series,O.lS.and
0.10 nucleon fii, the reconstructed curve, E@®), deviates
n n EA-B n qualitatively from the CA result in the low-energy region, in
ST te g T 0.292, €=0.040. (23) o far as the plateau occurs at a lower temperature level and
° e © is shorter. We have therefore not taken account of the CA
Since the coefficiente is small, the curvature vanishes data at these latter densities in the remaining calculations.
essentially at a critical density n.,=~0.292n, In a second experiment, we set2/3, andb=1 by hand,
=0.044 nucleon fi*~1/3n,. The latter result is indicative so that only the two parametefs and E,/A remain to be
that the critical curve in thén,E/A) plane at whichk van-  adjusted. These parameters are found to be well approxi-
ishes is to be identified with the critical curve of maxima of mated by linear relations in the density, which we can write

gives already an adequate approximation to our CA result
(B=8 MeV, binding energy per nuclearSince the sensitiv-

a,, Eq.(17), within the precision of our results. in dimensionless form
Since the curvature vanishes on the critical curve, an ‘T
n

exactpower law holds Ec -0+ o 6=0.148, o,=0.194,

N(a) =N(Da™", (24 ©
wherer= 7(4)=2.23. The exact power law is regarded as the EJA n ) )
fingerprint of an aggregation-type phase transition. g —€ton -, €=0026 0,=218 (25

(0]

Practically the coefficient’ is seen to be negligible, so that

that the transition energl,, is just proportional to the den-
The CA caloric curve,T against E/A, computed for sity in the lower density range.

E/A>0.3 MeV, and with the temperature understood as the Qualitatively the thermodynamic caloric curves we obtain

kinetic temperature of the nucleons, is displayed in Fig. 5for the 3D nuclear matter are comparable with the caloric

E. The caloric curve
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curves of the 2D simulations of paper |. Due to computa-The size of the latter increases with the density. For instance,
tional difficulties in the low-energy range in the 2D case, itat the density of=1/3n,, the specific heat exceeds 7 times
was not manifest how the slope pattern would continue tothe ideal gas value, at any temperatsté MeV. At higher
wards the lower energies. In the present 3D simulations oudensities the curves of high constant specific heat in the
results indicate unambiguously that f&<E;, the curve n—E/A plane become approximately normal to the density
tends to becomhborizontal In particular, for the higher den- axis (cf. the curves of maxima d,,, or of vanishing curva-
sities of 0.15 and 0.10 nucleon fithe CA results show the ture ). At low densities the specific heat remains equal to
existence of an approximately horizontal extended plateau ithe ideal gas value for nearly any enefgyA, except close
the caloric curve at the lower energies. We recall that thdo the limit E/A=0. Qualitatively, the existence of a critical
caloric curve we construct is a curve at constant availabléemperature at which the specific heat becomes large is thus
volumeV, rather than the traditional caloric curve at constantconsistent with the indicators of a phase transition discussed
pressure. Under constant volume, the observed plateau &ove.
only approximately horizontal.

In the case of the highest density, this plateau seems to
terminate with a bend towards a zero temperature for a small F. A brief comparison with empirical data

enough energyFig. 5). The low energy branch of the curve  The Jaboratory caloric curve in Fig. 5 drawn at a fictitious
has not been computed. The high discretization involved irdensityxo.z nucleon fm3, corresponds to the NUPECC in-
the current version of the CA method does not allow Us taerpretation of the fragmentation results of an Au-Au colli-
handle the particle dynamics at very low kinetic energiession experimenf8]. The curve exhibits a plateau at the tem-
The presence of a plateau is consistent with the occurrence Qferature levelT,~4.5 MeV, extending from an energy of
a phase transition. _ _ ~6 MeV per nucleon down te=2 MeV per nucleon. In the
This becomes transparent if we regard the caloric curve agmit of low enough energies the temperature is theoretically
an energy-temperature curyat constant densify and we  required to vanish. This trend is indeed indicated by the ex-
adopt the analytic approximatigiqg. (3), with b=1]. Close  perimental data points in the ran§¢A<2 MeV (and sug-
enough to the temperatuiig we have, keeping the dominant gested by our CA results for the case of the highest density

order in[T-Tc(n)] only We wish to insist that the conditions of our CA model
12 calculations are not identical with those of the laboratory
EM _ (Etr_(r‘)§k[-|—_ T (n)]) and experiment, so that a quantitative comparison of the CA ca-

A A 2 ¢ ’ loric curves with the laboratory data is not meaningful. The

small number of model parameters involved in the interac-
cy (T o (T=-TY, a=1/2, (26)  tion potential has been adjusted to obtain theoretical curves
which are consistent with the general behavior of the experi-
the functionc,(T) representing the specific heat at constantmental datafor E/A>3 MeV per nucleon The laboratory
density. The latter magnitude exhibits therefore a singulaplateau is approximately duplicated for the highest density
behavior at the temperatuie(n). We observe that the nu- we investigatedn=n, (standard nuclear densjtyQuantita-
merical value of the critical exponentdepends only on the tively the theoretical plateau occurs at a temperature of
value of the exponent describing the transition in the ca- 4 MeV, which is 11 percent lower than the temperature of
loric curve of our interpolation formulgEq. (3)]. the experimental plateau. This difference may be due, at least
It is intuitively clear, and it is manifest from our plots of in part, to the fact that in th&’Au-1°"Au fragmentation 394
the spatial configurationglate 2, that the singularity relates nucleons are involved, against 300 in our numerical setup.
to the formation, or the disruption, of clusters of laiGei- Besides, it is manifest that the differences are due, in part
nite) size, as the temperature is decreased or increasedlso, to the incompleteness of the physics included in our
ST<or>0, respectively. Both steps involve indeed hugetreatment. We recall in particular that the electrostatic inter-
changes in the energy of the systefi=c,6T —« nearT.. actions, disregarded in our treatment, lead to a contribution
And conversely, near the critical temperature, any amount odéf 10 percent to the binding energy. The effect of the Cou-
energySE we introduce into the system is used to break thdomb interaction has been discussed[25]. Finally, as al-
bonds among the nucleons which are bound in the clusterseady pointed out, the thermodynamic equilibrium conditions
or any energy we extract from the system leads to the mergeannot be fully applicable to the nuclear fragmentation ex-
of clusters with other clusters of bound nucleons. There iperiments. We come back to this point at the end of this
then no change of temperature accompanying the change séction.
energy 6sT=1/c,6E—0 nearT.. Such features leave little Qualitative similarity and quantitative lack of exact agree-
doubt that at the temperatufie the system of particles un- ment, as observed between the theoretical and the empirical
dergoes a genuine phase transition. Quantitatively, the spealoric curves, also apply to the theoretical and empirical
cific heat diverges for a temperature exactly equalTgp  cluster-size distributions. The CA results indicate that a
which is realized forE/A=0 only (within the range of va- power law, Eq.(24), holds close to a critical density, Eq.
lidity of our interpolation formula Practically however, the (17), over a broad range of energies per nucleon. The best
temperatureT,, is realized, and the specific heat becomesestimate for thgnegativg exponent of the distribution we
very large, over the full approximately horizontal branch ofderive from our CA thermodynamic equilibrium configura-
the caloric curve, i.e., over an extended energy inteigd.  tions is 7,,=2.2. This value is consistent with the value
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derived by other authors adopting different statistical equiiments then do not contribute to energy sharing; they are not
librium models([21] for a review. Our results indicate that in thermal equilibrium with the rest of the system.

this value is insensitive not only to the precise energy of the (iii) At later time steps successively deeper layers of in-
many-body configuration, but also to the details of the interdividual particles, and clusters of particles, are ejected from
actions(the parameter values of the potential engrgihis  the collision site. The particles involved have remained con-
pI’OVideS numerical eViqence 'fOI‘ a Universality Of the Ob'fined |0ng enough to exchange energy with the rest of the
servedr value. The universality class depends on the  system. In other words these particles have reached a state of
dimensionalityd of space(in 2D, 7=1.35, paper ); this approximate thermal equilibrium.

dimensionality (_effect is welllknown in critical phenomena. ~ \wjithin this interpretation suggested by the CA dynamics
We further conjecture that it may depend al&) on the of the collision, the global fragment distribution resulting

g;zc(lks))e Oﬂﬂif;ﬁgxgg?&’) dnsrgfeg)nggczroen ((:)?"th%eggl]lit%hefrom laboratory collision experiments cannot be identified
' ith a fragment distribution in a strict thermodynamic equi-

latter point needs to be substantiated by further experiment ibrium state realized under exchanges of energy and par-

Qualitatively the laboratory distribution curve of the frag- .. :
ments against size is consistent with a power lef. ticles among the clusterdo be ejected as fragment#ic-

[18—2( for details on the empirical distribution of the frag- cordingly, in real laboratory experiments we observe a
ments resulting from collisions of different nugleQuanti-  distribution which globally deviates from a statistical equi-
tatively, the experimentalnegative exponent is7e,~2.6. librium distribution, but which, on the other hand, is not
We thus have a relative discrepancy with respect to the entinrelated to the equmbrlum d|str|but|o_n_. For all those frag-.
pirical value, (Texy=Teq)/ Texp Of 15 percent. Although not ments which are ejected from the collision site under condi-
totally different from the CA thermodynamic model result, ions (iii), a sufficient number of time steps following the
this value is sufficiently higher than the theoretical value, sg®nset of the collision, have achieved a thermal equilibrium.
that the difference is to be regarded as physically significant. We are then led to conclude that the observed fragment
We believe that the approximate agreement, on the on@istribution is to be viewed as a superposition of a thermo-
hand, and the relatively minor numerical discrepancies bedynamic equilibrium distribution distorted by nonequilib-
tween the statistical models and simulatigireluding our ~ flum eﬁectg S|gn|f|c§1nt' Q|st0rtlon is nat'urally expecteq on
own CA simulation and the nuclear fragmentation labora- the small-size endindividual free particles, two-particle
tory experiments on the other hand, are due to an inadequa&USters, - ). of the distribution, effecti), and on the large-
in the thermodynamic assumptions on which this class ofiz€ end[effect (i)]. Since a surplus of smallest clusters is
models rely. As we argued already in paper Il in a Iaborator;PrOdUC?d durmg the initial stages following the collision, the
collision between two nuclei there is no evidence of an ocSmall-size end is due to be overpopulated with respect to the
currence of an intermediate phase of long enough duratiorgguilibrium distribution. This mechanism necessarily gener-
following the actual collision and preceding the onset of thedt€S an increase of thevalue characterizing collision ex-
fragmentation processes, during which an efficient energf@riments, with respect to the equilibrium exponent, or
sharing among all of the nucleons of the two colliding nuclei
is taking place(via the formation of a compound nuclgus
There is no experimental basis for postulating a phase ofhe equilibrium distributions of the present pag€ig. 3)
thermal equilibrium. On the contrary, the CA simulation of and the nonequilibrium distribution&ig. 4 of paper I) are
the dynamics of the collisions of paper I, which produce aindeed consistent with this inequality. To summarize, in a
fragment distribution of slopey,, consistent with the slope schematic treatment of the interactions, the thermodynamic
of the laboratory distribution7gy,= 7ey, Supports the view (i.e., equilibrium) CA analysis of the fragmentation process
that there is no formation of a proper compound nucleus ofeads to an exponente,~=2.2. The dynamignonequilib-
long enough lifetime. rium) treatment of the fragmentation mechanigatl other
The dynamic experiments of paper |l rather indicate thaparameters of the formulation of the problem being held con-
the fragment distribution appears as the outcome of the folstanj of paper Il leads to an exponenmg,,=2.6. The latter

Tequ< Tdyn = Texp- (27)

lowing. value is close to the canonical exponent of nuclear fragmen-
(i) Peripheral groups of particles of the collision site, tation as reported in the literature.
which acquire a same outward velocity, one, two, ..., time

steps after the onset of the collision. These groups, or frag-
ments, then leave the collision site, virtually unimpeded by
the remainder of the particles. It is then manifest that the first In this paper we have analyzed the statistical equilibrium
particles being ejected from the collision site cannot be inconfigurations of a many-body system, following the evolu-
thermal equilibrium with the remainder of the particles. tionary dynamics of the individual particles on a simple 3D
(i) The dynamic collision experiments of paper Il also CA model, from an initial randomly prepared state to a final
indicate that already at the earliest time steps following thestate of thermodynamic equilibrium. Although our flexible
onset of the collision, two fragments, which may be of aCA dynamical program is applicable to classical many-body
larger size, may be ejected along the collision directionproblems of arbitrary nature, the concrete application we
these fragments correspond to two groups of particles behave treated in this paper is dealing with a collectionfof
longing to the original two colliding bodies; they have essen-nteracting nucleongcf. papers | and )l The initial state, a
tially suffered no deflection. By definition, these larger frag- statistically spatially uniform configuration, is specified by

IV. OUTLOOK
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(i) a number of particle®=300 (fixed in all of our experi- many-particles, interacting according to a two-body potential
ments; (ii) the total(conserveglenergyE of the system; and given in parametrized forntand whose parametrization is
(iii ) the volumeV accessible to the particles. flexible enough to approximate a broad spectrum of interac-
The energy and density ranges investigated&fé& from  tion potentials exhibiting a finite lower boupdestablish un-

0.3 to 30 MeV per nucleom from 0.006 nucleon per fito  ambiguously that these systems develop energetically bound
the standard nuclear density. Plots of the instantaneous aggregates of particles. The distribution law of the latter fol-
spatial configurations of the individual particles in the ther-|gws an approximate power law with a seemingly universal
modynamic equilibrium phase,_ such as _those exhibited OBxponentr= 2.2 [cf. Eq.(24), ata,e=4] over a broad range
plate 2, show that at low particle densitigs=1/5n, we ot physical conditions. As discussed in this paper, the fact

ha_ve a gas of essentially free particles. At high particle. denfhat for many observed distributions of aggregates the expo-
sities,n>1/2n,, we observe a condensed state, essentially flent is different from the thermodynamic equilibrium value,

single compact cluster, or a liquid drop. These observatlongmd in fact highet~2.6 in nuclear fragmentation problems

hold for the the full energy range investigated. can be interpreted as an off-equilibrium effect. In the case of

In the intermediate density range, clusters of all siaes . . S
occur, with frequencies regularly decreasing vathup to a n'uclear. fragmentation, this ppmt IS suppprted by our CA
' simulations of the nuclear collision dynamics.

maximumay,. The cluster distribution obeys an approxima- i .
Bor y PP We conjecture therefore that among the variety of ob-

tion power law up toa,. The maximum size parameter is .
strongly dependent on, and slightly modulated byE/A. seryed power Iayvs referring to 3D aggregates of matter, and
' hich are described by exponents

Numerical evidence suggests that at a critical densit)yv

zl/_Sno a perc_olation c_Iust_er _is forme(dlormally, Aoy tend_s T= Tequt |07,  0<[87 < Teq, (28)
to divergg. This behavior is indicative of an aggregation- ) ) ) o
type phase transition. there is a large subset that can be interpreted in a similar

The conclusion of an occurrence of an aggregation-typénanner. Namely, in a first approximation a thermodynamic
phase transition is strengthened by a second result. THeguilibrium is responsible for the overall power law, and the
log N(a)—log a plot of the cluster-distributioN(a) exhibits ~ contribution 7eq, to the exponent. The correctiofir then
an exact straight line, characterized by a glopmgative ~ Measures the departure from the equilibrium.
slope, 7, which is found to be close to 2.2, at the critical In pa}rtlcular, on the basis of the d|lscu53|on outlined in _thls
density of the order of 148, In turn, we notice that if we Paper, in any collision problem leading on to fragmentation,
estimate an overall slopga,e) for the cluster distributions ON€ €xpects an overabundance of _small cluster_s._ The extra
at arbitrary densities, nea.=4 [cf. Egs.(19) and (20)], s_maII-S|ze clusters are then respo_n3|_ble _for a positive correc-
then we recover the critical slope value 2.2. In that sense, t§on o7 For some power lawgdistribution law of ava-

measure the critical slope value, the precise critical density i2nches, earthquakes, e)trrylore specific paradigms are avail-
not required to be realized. able (for instance, Bak's sandpile model, and related

As a third indicator pointing towards a phase transitionnonequilibrium model§22-24) which are capable of pro-
we have noticed that the specific heat at constant volum&iding good approximations to the observed exponents. It
diverges at a critical temperature, E86), with an exponent  '€mains to be seen whether these specmc approaches can be
a~1/2. This temperature corresponds in fact to a broad ersUPsumed under the umbrella of disturbed thermodynamic
ergy range at densities of the order of h43 equilibria.

The interpretation of the occurence of an exact approxi-
mate power law of thg fragments, arlq, in particular,'the uni- ACKNOWLEDGMENTS
versality of the latter in nuclear collision-fragmentation and
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