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The thermal equilibrium of many-body systems subject to finite range interactions is investigated numeri-
cally, by means of a multipurpose 3D cellular automaton dynamic model developed by the authors. The
numerical experiments, carried out at fixed number of bodies, volume and energy, demonstrate the formation
of an equilibrium among 3D aggregates of bodies. The distribution of the aggregates against size obeys a
power law of(negative) exponentt<2.2 (against 1.3 in 2D). Our experiments, indicating that the exponent is
insensitive to the precise parameter values and the precise parametrization of the interactions, are consistent
with the idea of the existence of a universality class corresponding to the thermal equilibrium. The numerical
value for the exponentt is in agreement with the theoretical thermal equilibrium analyses based on various
other approaches, numerical and semianalytical, indicating that the cellular automaton approach provides an
adequate methodology to investigate thermal equilibria. In this paper, as an illustration of this method, we refer
to the problem of formation of clusters of nucleons in heavy ion collisions of nuclei leading on to fragmen-
tation. The theoreticalt value, however, corresponding to the thermal equilibrium among the aggregation
clusters, is 15 percent lower than the empirical values<2.6d, as measured in laboratory nuclear fragmentation
experiments induced by collision. There is then only a very approximate correspondence between the experi-
mental and the thermal equilibrium value. On the basis of the results of this paper and of a previous paper of
this series, we conjecture that the approximate agreement is due to a partial establishment of a thermodynamic
equilibrium during the collision of the nuclei. The thermal equilibrium gives the main contribution to the
observedt value; the deviation from this possibly universal value is largely the consequence of the lack of full
thermal equilibrium in actual laboratory experiments. This conjecture is extended to interpret the observed
ubiquity of power laws of exponents exceeding 2.2, which refer to the distribution of various types of matter
in 3D space.
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I. INTRODUCTION

In two previous papers[1,2] (hereinafter papers I and II)
we have developed a Cellular Automaton(CA) approach for
simulating the dynamics and thermodynamics of real inter-
acting N-body systems subject to short-range forces. This
technique may be competitive with the currently standard
methods in this field, namely Monte Carlo simulations(MC)
[3–5], and classical molecular dynamics(CMD) [6–8].

In the present paper we are concerned with the statistical
equilibrium of a confined three-dimensional(3D) N-body
system, and more particularly with the statistical distribution
of aggregates of various sizes which form under thermal
equilibrium conditions. With the parametrization of the inter-
action potential we have adopted, our formalism is essen-
tially capable of simulating a broad variety of thermody-
namic equilibrium processes, ranging from equilibria among
particles on a nuclear, atomic, or molecular scale(nucleons,
clusters of ions or molecules) to equilibria among

macroscopic-scale particles. More generally, one may ask
whether the thermal equilibrium approach remains appli-
cable, at least qualitatively, to any type of cluster-
fragmentation process(including the fragmentation of clus-
ters of ions and molecules[9–15]), and of macroscopic
aggregates of matter(balls of gypsum, soap balls, frozen
potatoes[16]). Experimentally the following main regulari-
ties are observed.

(i) The statistical distribution of the fragments[number
of fragments,Nsad, against sizea] is characterized by a
power law,Nsad~a−t.

(ii ) For microscopic aggregates of matter(clusters of
nucleons, ions or molecules) the numerical value of the ex-
ponent is of the order of 2.6. For macroscopic aggregates it is
smaller. In particular, in the case of cosmic aggregates of
matter(the Salpeter mass law of the distribution of stars in
the solar neighborhood), t<2.35 [17]. This suggest that the
power law is a universal characteristic of fragmentation pro-
cesses. The exact value of the exponent seems to be depen-
dent on the precise conditions under which the fragmentation
is taking place.

The CA method we adopt here may be viewed as a sche-
matized version of CMD, based on a fully discretized repre-

*Electronic address: a.lejeune@ulg.ac.be
†Electronic address: jperdang@solar.stanford.edu

PHYSICAL REVIEW E 70, 046201(2004)

1539-3755/2004/70(4)/046201(14)/$22.50 ©2004 The American Physical Society70 046201-1



sentation of the original continuous real dynamical system S.
It operates with(1) a discrete time;(2) it is defined in a finite
cellular space, of cubic cells in our case;(3) the cellstates are
discrete.

The evolution of the cellstates follows a set of rules which
mimic the continuous CMD dynamics.

The cellular space,ZL
3, has a finite volumeV. It contains a

finite numberA of bodies, hereinafter referred to as the “par-
ticles.” The numberA is fixed in all of our experiments,
while the volumeV of the cellspace is an adjustable param-
eter. The location of a particle is specified by the cell it
belongs to. Accordingly a particle has an intrinsic positional
uncertainty in the coordinates,Dx=Dy=Dz, fixed by the cell-
sizel.

A cell is identified by a triplet of integers playing the parts
of coordinates,r . The state of cellr at time t (integer) is
defined by an integer state variablesst ,r d which in our case
encodes the dynamic properties(velocity states) of the par-
ticles contained in cellr . The state of the CA at timet, Sstd,
is the collection of all state variables at timet,

Sstd = hsst,r dur P ZL
3j. s1d

The global state at timet, Sstd, encodes the full information
on the systemS under investigation that is accessible from
our CA representation.

The state variable of cellr changes fromsst ,r d at time t,
to sst+1,r d at timet+1, in response to the interactions of the
particles in cellr with the remaining particles in the system
at time stept. We assume that the particle interactions have a
finite range. Accordingly we associate with any cellr an
“interaction neighborhood,”Nintsr d, which is understood as
the collection of cellsr 8 surrounding and containing cellr ,
such that a particle in the center cellr interacts exclusively
with the particles of this neighborhood. The evolution rule
for cellstatesst ,r d then becomes a function of the cellstates
sst ,r 8d of the interaction neighborhood,r 8PNintsr d.

In paper II the initial state for our numerical experiments
was prepared to simulate faithfully the precollision state of
two clusters of actual laboratory experiments. In the illustra-
tive 2D paper I the initial state was a statistically uniform
high density cluster of particles. The numerical investigation
of the present paper differs from our previous approaches in
so far that our initial state is generated by distributing a col-
lection of A particles with uniform probability density over
the cells of the finite available lattice space. The initial total
kinetic energy is statistically uniformly distributed over the
particles; the velocity distribution of the individual particles
is statistically isotropic. It seems likely that the initial state
defined by this protocol is close to a statistical equilibrium
state.

In a collision context(collision of two nuclei, or clusters
of ions; collision of a macroscopic aggregate of matter with
an obstacle, etc.), this initial state may be roughly compared
with the state of a compound cluster which is formed subse-
quently to the impact of the colliding bodies. Whether effi-
cient energy sharing and eventual equipartition of the energy
can be achieved is a matter of the period of confinement of

the compound cluster,tconf. Only if the latter exceeds the
average collision time between particles,tcoll,

tconf @ tcoll, s2d

can efficient energy sharing take place. The attractive feature
of a thermodynamic calculation is that it is not predicated on
a specific and unique physical process responsible for pro-
ducing the energy and particle exchange among the assembly
of aggregates. It is irrelevant whether this mechanism is a
collision among two(and possibly more) large initial aggre-
gates, or a collision of one large aggregate with some ob-
stacle, or any other mechanism capable of transferring mac-
roscopic energy to the many microscopic degrees of
freedom, which is then shared among the individual degrees
of freedom. The final outcome is a thermal equilibrium state
which is independent of the precise origin of the input of the
energy involved in the exchange processes, and which
thereby acquires a certain “universality.” Certain broad fea-
tures of the equilibrium state are shared by any systemSof a
“universality class” of systems, in our case the 3D many-
particle systems with finite range interactions.

In view of these observations it seems to us that a ther-
modynamic treatment should be an attractive approach to be
attempted when dealing with anN-body systemS in which
anymechanism consistent with energy and particle exchange
is operating. In general, though, we do not know a priori
whether inequality(2), which ultimately legitimizes the ther-
modynamic treatment, is satisfied for the particular systemS
we are investigating. This lack of information should not
deter us from applying thermodynamics. We are indeed en-
titled to conceive of an ideal systemS* which is our theoret-
ical equilibrium simulation of a given real laboratoryN-body
systemS. If a discrepancy is detected between the ideal
model results ofS* (simulated thermodynamic equilibrium)
and the actual observed laboratory results on the real system
S (observed features of an experiment dealing with aggre-
gates), then it is imputable to a failure of the idealizationS* ,
i.e., a failure in the establishment of statistical equilibrium
conditions[a violation of inequality(2)]. A variety of labo-
ratory systemsS in which physically distinct aggregationlike
phenomena manifest themselves, spanning a broad spectrum
of linear scales, being characterized by a similar behavior
[cf. (i) and(ii ) above], we have reasons to surmise that all of
these systems can be simulated, at least approximatively, by
an idealization of typeS* .

As in paper II, we select the parameters of our modeliza-
tion S* to conform to the particular situation of a nuclear
fragmentation problem. Our particles are nucleons; the com-
pound cluster is a compound nucleus.

Our CA model remains essentially classical(like the tra-
ditional CMD treatment); it does incorporate though several
quantum effects.

(1a) The CA lattice imposes an uncertainty in the posi-
tions,l, and in the velocities(or the momenta), v (computa-
tional Heisenberg principle of the CA treatment).

(1b) The CA particles are indiscernible and treated as fer-
mions (computational Pauli exclusion principle of the CA
treatment).
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(1c) Particle-particle scattering is dealt with quantum-
mechanically. These effects were included in the treatment of
papers I and II.

(2) In the evaluation of the energy of a configuration of
nucleons, the quantum-mechanical zero-point energy of the
system is schematically taken into account. The latter effect
was not considered in papers I and II.

We understand by a “cluster of sizea” essentially a geo-
metrically connected collection of nonempty cells containing
a particles. The connection of the cells may be achieved
facewise, edgewise or vertexwise. With this convention, the
geometric connection is in line with the energy connection
adopted in this paper. For the precise definition we adopt for
a cluster on a cubic lattice space we refer to paper II.

The present paper is a direct extension to 3D of the ficti-
tious 2D thermodynamic equilibrium treatment of a gas of
nucleons of paper I. Our objective is to inquire whether the
thermodynamic context is pertinent for analyzing real labo-
ratory fragmentation processes of intermediate-size nuclei.
To this end we construct from our numerical simulationS*

(a) the frequency of the fragments of sizea, Nsad, at various
densitiesn and temperaturesT (or energies per particle); and
(b) the caloric curve.

Our main conclusion is that a complete thermodynamic
equilibrium is not realized in actual nuclear fragmentation
problems(or other fragmentation problems resulting from
collisions, such as molecular cluster fragmentation, etc.). The
fully satisfying treatment of those processes requires a direct
dynamical simulation of the details of the collision itself. A
CA translation of the latter requirement was worked out by
the modelization of paper II, in which a numerical agreement
of the theoretical and experimental slope values of the fre-
quency of the fragments was achieved. A brief comparison of
the thermodynamic approach with the dynamic approach of
paper II clarifies the reasons of the partial failure of the equi-
librium assumption. At the same time it also makes it clear
that the thermodynamic treatment is due to be successful at
least to some extent. We do find, indeed, that the thermody-
namic treatment has the virtue of exhibiting the following
features of the distribution of fragments:

(i) In the thermodynamic equilibrium the distribution can
be approximated by a power law, in the range of smaller
sizes a; at higher sizes a curvature is observed in a
log N–log a plot (together with a cutoff, resulting from the
finite number of particles).

(ii ) At a given density, the slope of the logN–log a plot
is relatively insensitive to the precise value of the energy,
over an intermediate density range from 1/5 to 1/2 the stan-
dard nuclear density.

(iii ) Numerical evidence suggests that there is a critical
densitync close to 1/3 the standard nuclear density, at which
a percolation or aggregationlike phase transition takes place.

II. COMMENTS ON THE 3D CA MODEL

The CA representation we adopt is similar to the repre-
sentation of the 3D paper II. The lattice space,ZL

3, is cubic,
of dimensionless linear sizeL, containingL3 cells. A cell is
referred to by a triplet of integer dimensionless coordinates,

sx,y,zd=r , measured along the three mutually orthogonal
lattice directionsej (unit vector along lattice axisj =1, 2, 3).
The cellular space is assumed to have toroidal topology. This
latter assumption means that our CA context actually consti-
tutes a geometric frame for an analysis of infinitely extended
matter(infinite nuclear matter in the specific case to be ex-
amined by our numerical experiments). In this geometric
contextZL

3 appears as a crystal cell which is repeated indefi-
nitely by translation in the three lattice directionsej.

In the setup of paper II we followed the collisional energy
sharing, and therefore the lattice space was chosen much
larger than the size of the colliding clusters. In the present
analysis the lattice universeZL

3 reduces to the space occupied
by the compound cluster. The physical orders of magnitude
of the size of an individual lattice cell,l, and of the time
step,Dt, are chosen to conform to the specific nuclear frag-
mentation problem:

l = 1.80 fm, Dt , 10−23 s.

This value forl (slightly lower than in paper II) has been
chosen to be consistent under conditions of close packing,
both with the radius-mass relation for stable nuclei, and with
the average energy per nucleon in stable nuclei(to be dis-
cussed below). The volume of the cellspaceZL

3 is V=sLld3.
An optimal value for the computational parameterDt is re-
estimated at every time step within our CA dynamics. It is
found to depend on the density and energy. As an instance,
consider the traditional nuclear densityno=0.15 nucleons
fm−3, which is realized in our CA setup when we distribute
the 300 nucleons over the smallest square lattice, in a way as
to have at most one nucleon per cell(lattice sizeL=7; 43
empty cells). We then find an average time stepkDtl=4.88,
4.51310−23 s at the energies 16.8, 21.7 MeV per nucleon;
the corresponding standard deviation are 0.979, 0.665
310−23 s.

An instance of the time behavior of the instantaneous step
Dt is given by Fig. 1(a), while Fig. 1(b) exhibits the system-
atic trend in the energy dependence of the average step. In all
cases we have examined, the average step is larger, and ex-
hibits higher fluctuations at the lower energies, while at high
energies we have a lower and more stable step.

An individual CA particlea is allowed to exist in one
among 7 dynamic states(quantum effect 1a): (i) in a rest
state, with velocityva=0; (ii ) in a moving state,va= +vej or
−vej, j =1,2,3. Theallowed nonzero speed obeysv=l /Dt.
The state of cellr at time stept, sst ,r d, incorporating the
standard CA exclusion principle[quantum effect(1b)], is
directly encoded in a 7-bit binary integer. With this choice
the highest local density we can simulate is 7 particles per
cell, nmax<0.944 nucleons fm−3. This value is over 6 times
as large as the standard density of nuclear matter,no<0.15
nucleons fm−3.

As in paper II, to treat the interactions among the nucle-
ons, we associate an interaction neighborhood with any cell
r , Nintsr d, which is made of the “central” cellr , the w=6
cells having common faces with the central cell; thee=12
cells having common edges, but no common faces; and the
n=8 cells having common vertices with cellr , but no com-

THERMODYNAMICS FROM THREE-DIMENSIONAL MANY-… PHYSICAL REVIEW E 70, 046201(2004)

046201-3



mon faces or edges. When listing these neighbor cells, due
account is to be taken of the toroidal topology. We point out
that our interactions are short-range interactions only; the
Coulomb interaction is not explicitly dealt with.

In principle, the interaction potential between pairs of par-
ticles in cellsr and r 8 is parametrized by 5 coefficients:Vo,
DV, Vf, Ve, Vv.

(i) If r 8=r (pair of particles in same cell), then the inter-
action potential is set equal toVo (first pair in same cell);
Vo+DV (second pair); Vo+2DV (third pair); etc.

(ii ) If r 8Þ r andr 8PNintsr d, then the interaction potential
is Vf, Ve, or Vv respectively, depending on whether the cells
are face-, edge-, or vertex-joined.

(iii ) If r 8Þ r and r 8¹Nintsr d, then the interaction poten-
tial is zero.

In our numerical experiments we have set the parameters
of the interaction potential equal to the following values:
Vo=Vf=−15 MeV; DV= +6 MeV; and Ve=Vv=−1 MeV.
With these choices, together with the above choice forl, we
reproduce the following.

(1) The right order of the average energy per nucleon in a
nucleus, in the case of a compact packing of the nucleons
(one nucleon per cell); at the same time we duplicate the
realistic sizes of nuclei. A high enough value of the param-
eterDV has been selected to prevent an unrealistic accumu-
lation of nucleons in a single cell; we thereby avoid an actual
realization of very high densities in an equilibrium state, and
hence nuclear sizes smaller than the empirical sizes of the
stable nuclei.

(2) We also model the qualitative and quantitative fea-
tures of the caloric curve(Sec. III), temperatureT against
energy per nucleonE/A. Our numerical experiments have
indeed established that the pattern of the caloric curve is
quite sensitive to the values of the parametrization of the
potential energy.

Schematically, over the energy range over which our ex-
periments are performed, 0.3 MeV per nucleon
,E/A,30 MeV per nucleon, the caloric curve we generate
for various parameter values of the potential energy can be
interpolated by a simple algebraic expression(cf. paper I).
For our purposes the following representation appears as
convenient

kT= kTcsnd + fssndFbsEdg
E

A
, FbsEd ;

Eb

Eb + Etrsndb s3d

(k, Boltzmann constant). This representation is found to ac-
commodate the empirical data as well(cf. Fig. 5). Equation
(3) involves, in principle, four free functions of the density.

(i) The functionTcsnd, which plays the part of a critical
temperature, depends strongly on the main potential energy
parameter,Vos,0d. The higheruVou is, the higherTcsnd be-
comes. We anticipate thatTc is constrained by the empirical
data(Fig. 5).

(ii ) The asymptotic slope,ssnd, of the temperature at high
enough energyfE/A@Etrsnd /Ag, turns out to be independent
of the parametrization of the potential, and independent of
the density as well. In the asymptotic regime,E/A reduces to
the classical kinetic energy per particle, so thatssnd=2/3.

(iii ) The transition energyEtrsnd depends on all param-
eters of the potential. This coefficient separates two tempera-
ture regimes, a high-energy regime in which the temperature
increases linearly with energy,E@Etrsnd, and a regime in
which the temperature is practically independent of the en-
ergy,E!Etrsnd.

(iv) The exponentb is found to be insensitive to the pa-
rameters of the potential and of density. The simplest choice,
b<1, gives a reasonable fit for all of our data points.

With the interaction potential being specified, the thermo-
dynamic equilibrium of our idealized systemS* depends on
three extensive thermodynamic variables:

The total number of particles,A; this variable is fixed and
set equal to 300 in all of our experiments.

FIG. 1. (a) Evolution of Dtstd for a high-density configuration
sno=0.15 nucleons fm−3d, at energy per nucleonE/A=21.7 MeV,
over 2000 time steps.(b) Dependence ofkDtl on energyE/A.
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The volumeV of the lattice space, or, equivalently, the
particle density,n.

The total energyE of the system, or, equivalently, the
energy per particle,E/A.

Each experimental run is fully specified by the latter two
thermodynamic magnitudes.

(1) Given the particle density, in principle, the size pa-
rameterL of the lattice space(and the volume of the con-
figuration), is fixed by

L =
1

l
SA

n
D1/3

. s4d

But in a CA contextL is an integer by definition. Relation
(4) then plays the part of a constraining relation on the ad-
missible discrete collection of densities. In order to generate
a systemS* required to have an approximate densitynappr,
we proceed in practice as follows.

(a) We compute a corresponding formal size param-
eter Lappr from Eq. (4); generically the latter is noninteger,
and hence nonadmissible.

(b) We introduce as a new admissible size parameter
the integerL higher than, and closest toLappr (ceiling func-
tion of Lappr).

(c) Inserting the new size parameter into the equation

n =
1

l3

A

L3 , s5d

we obtain a corresponding admissible density which is close
to nappr, and which we adopt in our computations. ForL
ranging from 5 to 20, we obtain admissible densities in the
interval 0.41 to0.006 nucleons/ fm3.

(2) The energyE is the sum of the following compo-
nents. (i) The potential energy of the interacting pairs of
particles,W. (ii ) The classical kinetic energy,K, of the indi-
vidual particles. And(iii ) the quantum-mechanical zero-point
energy of the system,Eo. Moreover,(iv) in order to be con-
sistent with the empirical caloric curve, we redefine the zero
of the potential energy as corresponding to the minimum of
the potential energy(at the given densityn). We discuss
these energy contributions separately.

(i) Our program computes the potential energyW from
the individual pair-interactions. For instance, for a sample of
30 randomly generated compact configurations we obtain an
average ofW/A=−63.6 MeV per nucleon.

(ii ) The total kinetic energyK is equal to the elementary
kinetic energy of a single particle in a state of motion,DK
=1/2mv2, times the total number of moving particles,Am
(integer). We observe that the elementary kinetic energyDK
is proportional tosDtd−2, so that it is quite sensitive to the
precise value of this computational parameter. In our specific
nuclear problem(m, mass of nucleon), if we set the time step
equal to 2.5, 5.0, or 7.5310−23 s, thenDK is 27.0, 6.8, or
3.0 MeV, respectively.

(iii ) With the quantum-mechanical zero-point kinetic en-
ergy, Eo, resulting from the fermion nature of the nucleons,
we associate a corresponding maximum momentumpM by
Eo/A=pM

2 / s2md. If g is the degeneracy parameter of a quan-
tum state, then a cell in the phase space, of “volume”h3 (h,

Planck’s non-normalized constant), contains g quantum
states, which are all occupied in the case of highest density.
Hence, in the traditional elementary treatment the total num-
ber of occupied states(total number of available particles,
A), is given by

A =E g dx dy dz dpx dpy dpz

h3 . s6d

Carrying out the integration from −pM to +pM in each mo-
mentum component, and from 0 tolL in each position com-
ponent, and introducing the volumeV, and then the density,
n, identified with the standard nuclear densityno, we finally
find for the quantum-mechanical zero-point energy per par-
ticle

Eo

A
=

h2

g2/38m
n2/3. s7d

Since our treatment deals with a single species of nucleons
sno isotopic spin degeneracyd, and since it does not explicitly
take account of a spin of the nucleons either, we set the
degeneracy factorg equal to 1. We then haveEo/A
=9.33 10−5 ergs=58 MeV. The moredetailed calculation
leads to the value 53MeV. The binding energy per
nucleon estimated in this fashion becomesB=W/A
+Eo/A<−10 MeV per nucleon, which is the correct order
of magnitude. By treating all nucleons as indiscernible–all
nucleons are of a single electrically neutral species—we
disregard one further energy contribution. As in papers I
and II, electrostatic effects are not taken into consider-
ation. The inclusion of the isospin effect would lead to a
decrease in the zero-point energy.

The energy per nucleon in our nuclear matter then be-
comesW/A+sAm/AdDK+Eo/A.

(iv) In the above representation of the interactions, the
total potential energy vanishes,W=0, when the particles of
the system cease to interact. This happens if the density is
low enough, so that statistically the interaction neighborhood
contains less than one particle. The maximum density con-
sistent with this situation is then 1/27 particle per cell, or
nfree<0.00635 nucleon fm−3. At densities less thannfree the
CA model describes an essentially interaction-free ideal gas.

At densities exceedingnfree, the potential energy is nega-
tive, so that in principle the total energy of the system can
become negative as well. To conform to the convention
adopted in the representation of the empirical caloric curve
of nuclear fragmentation(cf. Fig. 5) in which the zero of the
energy is chosen such that the energy is non-negative(and
vanishes atT=0), we redefine here the zero of our energy
scale in the following way.

For a given density,n, denote byWminsnd the statistical
average of the potential energy of the system of particles in
the stable thermal equilibrium state, irrespectively of the
temperature of the system. If we then shift the potential en-
ergy, settingW* = W−Wminsnd, we secure that the latter ex-
pression is statistically non-negative. The numerical calcula-
tion of Wminsnd is straighforward.

Taking account of(i), (ii ), (iii ), (iv), we adopt as our final
expression for the average energy per nucleon
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E

A
=

Am

A
DK +

W

A
+

Eo

A
−

Wminsnd
A

. s8d

The assignment of an energy value for our experimental
runs proceeds along the following lines. We first observe that
the number of moving particles obeys

Am =
E − Eo − W*

DK
, s9d

which is required to be an integer. Equation(9) plays the role
of a constraining relation for the allowed discrete energy
spectrum of our CA model.

In practice, we compute an admissible energy value close
enough to a trial total energy,Eappr, in the following straight-
forward way. Assume that the(admissible) density n, and
hence the required size parameterL have already been ob-
tained.

(a) Distribute theA particles over the available lattice
space,ZL

3, in a statistically uniform way.
(b) Compute the potential energyW corresponding to

the spatial configuration of the particles.
(c) Derive a formal number of moving particles,

Am appr, from Eq. (7). Generically, this number is not an in-
teger.

(d) Substitute to the formal valueAm appr the integer
Am closest toAm appr.

In this paper all total energiesE are evaluated by Eq.(8).

III. NUMERICAL EXPERIMENTS AND RESULTS

A. Computation of thermal equilibria

Our experimental investigation has been conducted ac-
cording to the following protocol.

(1) Suppose that an admissible densityn and an admis-
sible total energyE corresponding to our initial tentative
valuesnappr and Eappr have been obtained by the procedure
discussed in the previous section. In the process, theA par-
ticles have been distributed randomly and uniformly over the
cellular spaceZL

3 (of size parameterL determined byn). The
positional coordinates of all particles are then known. To
generate the velocity states of this collection of particles, we
choose a subset ofAm particles[cf. Eq. (9)] among the full
collection ofA particles, taking care that this subset is again
uniformly distributed over the cellular space. We then assign
the 6 nonzero velocity states randomly and isotropically
among the subset ofAm particles. The remainingA−Am par-
ticles are at rest. This computational step then specifies the
initial spatial distribution and the velocity states of the indi-
vidual particles. Thereby the individual initial cellstates
ss0,r d, r PZL

3 are known, and hence so is the global initial
stateSs0d of the CA.

(2) Given the initial CA state,Ss0d, the CA dynamical
program as described in papers I and II successively gener-
ates a finite sequence oftmax global states,

hSs1d,Ss2d, . . . ,Ssttrans− 1d,Ssttransd,Ssttrans+ 1d, . . . ,

Sstmax− 1d,Sstmaxdj. s10d

For most of our runs we havetmax=2000 timesteps.

(3) For all initial configurationsSs0d generated according
to the above procedure, we observe that the CA system re-
laxes towards a stable statistical equilibrium after a short
transient time ttrans. In all cases investigated we have
ttrans,1000 steps.

In contrast with the methodology of paper I, in which
macroscopic magnitudes were computed with respect to
single global configurationsSstd (with t. ttrans), we adopt
here a procedure which enables us to obtain these magni-
tudes with a higher precision. Any thermodynamic magni-
tudeQ associated with the statistical equilibrium is obtained
by a time-average of the corresponding magnitudeqstd at-
tached with the individual fluctuating global stateSstd, at a
time stept, over the equilibrium phase,

Q = kql ;
1

tmax− ttrans
o
u=1

tmax−ttrans

qsttrans+ ud. s11d

Since two successive configurations,Sstd andSst+1d, differ
little, we single out, in practice,h different times in the equi-
librium phase,t1, t2, , . . . ,tn, over which the microscopic con-
figuration has changed significantly; we then average over
those preselected steps:

kql ;
1

h
o
j=1

h

„qstjd…. s12d

For instance, adopting for the temperature the usual classical
kinetic definition(energy per kinetic degree of freedom equal
to 1

2kT in the statistical equilibrium state), we have

3

2
kT= DKKAm

A
L ; DK

1

tmax− ttrans
o
u=1

tmax−ttrans Amsttrans+ ud
A

,

s13d

or

=DK
1

h
o
j=1

h SAmstjd
A

D . s14d

B. Equilibrium tests

Several tests were made to assess the establishment of the
statistical equilibrium. Figure 1(a) illustrates one of our tests,
which displays the fluctuations of the time stepDt for a high
density configurationsn=nod and a high energysE/A
=21.7 MeVd, over tmax=2000 time steps. In our CA dynam-
ics the computational parameterDt is readjusted at each time
step to secure rigorous conservation of total energy(cf. pa-
pers I and II). During the transient phase this parameter is
expected to change systematically, with superimposed statis-
tical fluctuations. Once thermal equilibrium is established,
the statistical fluctuations alone survive. The occurrence of
these fluctuations is essentially due to the discrete nature of
the energy spectrum. If the CA equations of motion require
the state of one particle to change from rest to motion with
the particle being shifted into a neighbor cell, then the
change in total potential energy,DW, typically differs from
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the change in total kinetic energy,DK (elementary kinetic
energy of a moving particle). Generically, if DA particles
change their state of motion and their position, the sum of
changes in the kinetic and potential energies of the particles
cannot be compensated exactly. To guarantee strict conserva-
tion of the energy, the time stepDt is rescaled.

Initially we set the stepDt equal to 1310−23 s. As is seen
on Fig. 1(a), Dtstd jumps up, to stabilize around 4.5
310−23 s, practically in less than 200 steps. We observe that
Dtstd keeps fluctuating in the statistical equilibrium state,
around the mean, 4.5310−23 s, with a standard deviation of
0.67310−23 s.

In comparison with traditional statistical mechanics, the
number of particles involved in our specific nuclear simula-
tions, A=300, is extremely small, so that large relative sta-
tistical fluctuations in any extensive magnitudeG, dG/G
,A−1/2s,0.06d, are to be expected in the thermal equilib-
rium state. These fluctuations are in fact observed in a sec-
ond test, which is based on the computation of the(instanta-
neous) temperatureTstd of our system of nucleons, in a
single global stateSstd of the equilibrium phaset. ttrans. If
we compute the average temperatureT over the whole ac-
cessible equilibrium range,tP fttrans+1,tmaxg, Eq. (11), to-
gether with the standard deviationdT computed by a similar
expression, then our experiments givedT/T,0.05. This re-
sult is in line with the elementary estimate

dT

T
=

dAm

Am
,

1

A1/2. s15d

C. The equilibrium configurations

Plate 2 exhibits several stereoscopic views of instanta-
neous particle configurationsSstd at several densities, fort a
randomly chosen instant of time of the equilibrium phase.

The pair of Fig. 2(a) represent a global high-density CA
state, n=no=0.15 nucleon fm−3, at low temperature,T
=4 MeV. With a kinetic energy per nucleon lower than the
binding energy, we expect that this system is in a configura-
tion essentially similar to the configuration of a standard
stable nucleus. In fact, the figure demonstrates that a single
cluster, or compact configuration, is observed, whose(instan-
taneous) surface assumes an irregular shape. It should be
obvious that the surface irregularities are caused by the extra
kinetic energy available; these irregularities undergo fluctua-
tions in the course of time. A plot of the global stateSst8d,
with t8Þ t, exhibits a different surface, while the compact
configuration remains essentially the same(not shown). Fig-
ure 2(a) makes it obvious that we are dealing here with a
condensed phase, which has properties reminiscent of a liq-
uid.

The two pairs of Fig. 2(b) refer to global instantaneous
CA states of low density,n=0.051 nucleons fm−3<1/3no, at
two different temperatures.

(i) In the lower temperature regime,T=4 MeV, we ob-
serve a configuration made of one large central cluster sur-
rounded by clusters of small sizes,a=1, 2, 3, . . . . As is
made clear from a plot of a succession of global states(not
shown), the smaller clusters evaporate from the central clus-

ter, and recondense again. This process causes the large clus-
ter to have a more fragmented dynamic surface structure than
the clusters of the high density regime[Fig. 2(a)].

(ii ) In the higher temperature state,T=8 MeV, the aver-
age kinetic energy per nucleon is of the order of, and slightly
higher than the average binding energy, so that the large
condensed object atT=4 MeV loses its stability. Thereby an
equilibrium is established between clusters of different sizes;
the configuration is made of clusters of all sizesa (up to the
maximum size).

Finally, the pair of Fig. 2(c) illustrate a global state of
very low density, close tonfree, n=0.007 nucleons fm−3

<1/21no, and of very high temperatureT=14.4 MeV. The
kinetic energy substantially exceeds the binding energy. It is
then manifest that the formation of clusters is energetically
not favored. In fact, the configuration we observe is mainly
made of clusters of smallest sizes. Under these low density
conditions the equilibrium phase is comparable to a gas
phase.

To summarize, the plots demonstrate the occurence of a
condensed, liquidlike phase at high density(and low tem-
perature) manifesting itself as an essentially single cluster
[Fig. 2(a)] and a statistically nearly uniform gaslike phase at
low density(and high temperature) presenting itself as a col-

FIG. 2. Stereoscopic views of the spatial configurations(clus-
ters) of nucleons:(a) high densityn=0.15 nucleons fm−3, low tem-
perature T=4 MeV; (b) intermediate density n
=0.051 nucleons fm−3, (i) low temperatureT=4 MeV, and higher
temperature 8 MeV;(c) very low densityn=0.007 nucleons fm−3,
very high temperatureT=14.4 MeV.
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lection of essentially free particles[Fig. 2(c)]. Therefore, one
expects a transition between the liquid and the gas phase at
some intermediate density. Figure 2(b) is indicative that such
a transition manifests itself at some critical density at which
clusters of all sizesa are simultaneously present.

D. The cluster distribution

On plate 3 we display the number of clustersNsad against
cluster sizea=1, 2, 3, . . .(number of particles in a cluster),
under statistical equilibrium conditions. The plots are shown
as usual in log-log form, for a variety of different combina-
tions of densitiesn and energies per nucleonE/A.

In the first place, it is clear from our results on the spatial
equilibrium configurations(plate 2) that two extreme pat-
terns of the cluster distribution are due to occur.

(a) At high densities and low energies, the configura-
tion consists of a single large cluster, generally surrounded
by a few clusters of small size; the number of the small
clusters decreases rapidly with size[Fig. 2(a)]. Accordingly,
the cluster distribution, logNsad−log a, consists of(i) a
single point at some largea value, the absolute maximum of
a, aamax [single cluster, logNsaamaxd=0]; (ii ) an empty inter-
mediate a range; and (iii ) a populated low-a end, a
=1, 2, 3, . . . ,almax, with the property thatNsad is rapidly
decaying witha over the latter interval.

(c) At low densities and high energies, clusters of all
sizes up to an absolute maximum size,a=1, 2, . . . ,aamax,
appear in the equilibrium distribution[Fig. 2(c)]. The num-
ber Nsad decreases again rapidly with size(and is expected
to decrease the more rapidly the higher the energy is). The
representative points of the cluster distribution are then car-
ried by a curve with a locally negative slope(of absolute
value expected to increase with energy).

For these two extreme physical conditions the general na-
ture of the logfNsadg−log sad distributions is obvious. The
corresponding plots are not shown. We only observe that the
representative points are nearly linearly distributed over the
lower-a range,a=1, 2, 3, . . . . The slopes we find aret1−4
<2.1, under alternative(a) (n=no; T=4 MeV); and t1−4
<2.9 [alternative(c): n<1/21 no; T=14.4 MeV].

In spite of the qualitative difference in the two extreme
spatial configurations, the quantitative slopes of the cluster
distribution at the low-a end,t1−4, remain relatively stable.

We should add that a slope ceases to exist:(i) Under the
extreme alternative(a), in the formal limit of zero kinetic
energy at high density. We then have just one single cluster
left. And (ii ) under the extreme alternative(c), in the formal
limit of an infinite kinetic energy, at low density. All particles
are then free; all clusters are of sizea=1. (Under the latter
alternative we disregard any complications relating to the
materialization of other particles, such as pions in the nuclear
fragmentation illustration.)

(b) The physically interesting alternative arises in the
intermediate density(and energy) range. We have explored
more systematically the rangen<1/5 to 1/2no.

Figures 3 and 4 refer to the distributions of clusters ob-
tained as averages overh=49 equilibrium configurations
Sstd, t= t1, t2, . . . , tn [Eq. (12)]. Figure 3 exhibits superposed

FIG. 3. Superposition of cluster distributions logN–log a as
measured in the equilibrium state, at fixed density, and at different
energies(a) n=0.030 nucleons fm−3; E/A=0.3, 0.7, 1.3, 1.7, 4.3,
4.7, 6.7, 7.0, 9.3, 9.7, 15.3, 15.7 MeV.(b) n=0.071 nucleons fm−3;
E/A=1.0, 1.3, 5.3, 5.6, 7.6, 8.0, 10.3, 10.6, 16.3, 16.6 MeV.

FIG. 4. Size of largest clusterabr shown as a contour plot over
the (n, e) plane,e=E/AsMeVd, n snucleons fm−3d.
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log Nsad−log a plots for equilibrium configurations at dif-
ferent energiesE/A ranging from 0.3 to 16 MeV per
nucleon. The densities are 0.030[panel(a), 12 different en-
ergies] and 0.071[panel (b), 10 different energies] nucleon
fm−3. The perhaps unexpected conclusion we are led to draw
is that within the precision of our calculations, the curves at
fixed density corresponding to different energies(of the
range considered) are practically superposable. In other
words, at each density level the cluster distribution is only
slightly dependent on the energy. The representative points
of the logNsad−log a plot trace out a fairly straight line, up
to a<5. One can notice a clearcut breakoff in the approxi-
mate linear distribution ata=almax (; to the absolute maxi-
mum, aamax), in the range 28–54 for the lower densityn
=0.030 nucleon fm−3. And there is a breakoff as well ata
=almax, in the range 43–103sÞaamax<268–285d, for the
higher densityn=0.071 nucleon fm−3. More generally, we
have estimated a breakoff for each pair of variables(n, E/A),
for which the thermodynamic equilibrium has been investi-
gated, by identifying the characteristic size of the clusters at
the breakoff,abr, with almax. The latter magnitude is the larg-
est size of the sequence of clusters of sizes 1, 2,. . . , whose
frequenciesNsad decrease on average witha, and such that
almax is the highesta value preceding a gap in the distribution
of Nsad. This leads to an unambiguous specification ofabr.
We are fully aware, though, that the cluster-size at the brea-
koff, abr, cannot be determined with high precision. In fact,
this parameter is derived from the small number statistics of
Nsad (=1 whena=abr), and therefore necessarily subject to
large statistical errors. The quantitative conclusions one can
draw from the numerical values found for this parameter
under different physical conditions are then expected to be
subject to large fluctuations as well. Our CA equilibrium
calculations are indicative thatabr is a well-defined function
of densityn and energy per particleE/A,

abr = Fsn,E/Ad. s16d

More precisely, our results indicate thatabr is strongly de-
pendent on the density, and only slightly on the energy. This
conclusion is consistent with an observation made above.

To filter out the statistical fluctuations inabr we have ap-
proximated the functionFsn,E/Ad by a polynomial interpo-
lation,Pksn,E/Ad, of degreek. Figure 4 is the contour plot of
this representation fork=3, in the(n, E/A) plane. The locus
of maxima is seen to lie on a nearly vertical critical density
line, nbr<0.058 nucleon fm−3, or roughly,

nbr < 1/3no. s17d

Due to the small numbers of representative clusters involved
in the estimate ofabr for a given CA experiment, the prob-
able error in the position of the critical density line is of the
order of 25%. We can be confident, however, that statement
(17) does hold. The absolute maximum of the polynomial
interpolation is atn=0.059 nucleon fm−3, Em/A=4.24 MeV
per nucleon. We should mention that the interpolation pro-
duces a surface which is much flatter than the original sur-
face of the direct CA model results, a property which sup-
ports our observation that the position of this critical density

curve cannot be determined with high precision. There is
little doubt, however, that the critical line over which the
breaks (and hence the clusters of maximum size) occur,
obeys an equation

nbr = NsE/Ad, s18d

which is only slightly dependent onE/A (or temperature).
Therefore, if a true maximum with respect toE/A exists, the
critical value ofE/A cannot be ascertained with any confi-
dence. These conclusions are also supported by an interpola-
tion with a polynomial of degreek=2, which locates the
critical curve atnbr<0.052 nucleon fm−3; there is no maxi-
mum with respect toE/A.

Our numerical results are consistent with three alterna-
tives.

In the thermodynamic limit,sV,Ad→`, with A/V→n,
finite, the critical line given by Eq.(17) may correspond to a
line of maximimum-size aggregation clusters(a) which are
all of infinite size;(b) which remain of finite size except at
the pointnbr, Em/A; or (c) which remain all finite.

Under both alternatives(a) and (b) we have to conclude
that the idealized particle systemS* (extrapolated to the ther-
modynamic limit) undergoes an aggregation-type phase tran-
sition. Under alternative(c) the system continuously and
smoothly passes from the gas phase to the liquid phase and
vice versa, without suffering a phase transition. Our experi-
ments provide a numerical clue suggesting that alternative
(c) is to be ruled out. Namely, the largest cluster we encoun-
ter atnbr, Em/A, extends from one limiting plane of the cel-
lular space to the opposite limiting plane, i.e., it does indeed
define an infinite cluster in the crystallographic interpretation
of our lattice. Such an experimental property is adopted as
the standard computational criterion for an aggregation or
percolation phase transition.

The same numerical criterion also suggests that alterna-
tive (b) is unlikely to hold. The most probable alternative is
then(a). Equation(18) appears as defining a thermodynamic
coexistence curve separating a liquidlike phase from a gas-
like phase.

As a complementary question, we attempt to characterize
analytically the cluster distribution in the neighborhood of
the coexistence curve, for densities in the rangen=0.030 to
0.071 nucleon fm−3. Our purpose is to represent the
log Nsad–log a curve by an algebraically simple interpola-
tion formula which(i) is capable of allowing us to estimate a
stable(negative) slope valuet (which can then be compared
with laboratory slopes of nuclear fragmentation experi-
ments); and which(ii ) is capable of duplicating the curvature
effect, clearly visible in Fig. 3.

The following parabolic representation:

log Nsad = nsarefd − tsarefdlog
a

aref
+ kSlog

a

aref
D2

, s19d

complies with these requirements. In this expressionaref is
the reference cluster size in the neighborhood of which we
wish to estimate a linear slope,tsarefd. In particular, if we set
aref=1, then the coefficientns1d gives the best estimate of the
logarithm of the number of free particles(particles of size 1),
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log Ns1d. The coefficientk provides a measure of the curva-
ture of the representation; this coefficient is independent of
the reference size. To switch from reference size 1 to an
arbitray reference sizearef, we have the relations

tsarefd = ts1d − 2k log aref,

nsarefd = ns1d − ts1dlogsarefd + kslog arefd2. s20d

Our results indicate that with the choicearef=4 (average of
the a-range considered above), the estimate for the slope
ts4d, becomes practically independent of the density(within
the 0.030 to 0,071 nucleon fm−3 range) and the energy per
nucleon(in the interval 0.3 to 16 MeV)

t = ts4d = 2.23 ± 0.15, s21d

where the error is here the maximum deviation we have ob-
served over all of our numerical results.

The curvature parameterk depends on the densityn and
the energy per nucleonE/A. We have approximated the latter
functional dependence by a polynomial of degreek. Our nu-
merical experiments indicate that the linear interpolation re-
lation, k=1, which we conveniently write in dimensionless
variables

ksn,E/Ad = ko + sn
n

no
+ sE

E/A − B

B
, ko = − 1.365,

sn = + 4.67, sE = − 0.19, s22d

gives already an adequate approximation to our CA results
(B=8 MeV, binding energy per nucleon). Since the sensitiv-
ity coefficient to energy,sE, is small in absolute value as
compared to the sensitivity to density,sn, it is clear thatk
depends only marginally on the energy. An interpolation by a
polynomial of degree 3, which has been tried as well, does
not significantly modify the above results.

The curvature vanishes if

n

no
=

nc

no
+ e

E/A − B

B
,

nc

no
= 0.292, e = 0.040. s23d

Since the coefficiente is small, the curvature vanishes
essentially at a critical density nc<0.292no
=0.044 nucleon fm−3<1/3no. The latter result is indicative
that the critical curve in thesn,E/Ad plane at whichk van-
ishes is to be identified with the critical curve of maxima of
abr, Eq. (17), within the precision of our results.

Since the curvaturek vanishes on the critical curvenc, an
exactpower law holds

Nsad = Ns1da−t, s24d

wheret;ts4d=2.23. The exact power law is regarded as the
fingerprint of an aggregation-type phase transition.

E. The caloric curve

The CA caloric curve,T against E/A, computed for
E/A.0.3 MeV, and with the temperature understood as the
kinetic temperature of the nucleons, is displayed in Fig. 5,

for the collection of decreasing densitiesn=0.15, 0.10,
0.071, 0.051, 0.039, and 0.030 nucleon fm−3. Instead of es-
timating the temperature overh states of the thermodynamic
equilibrium phase[Eq. (14)], we have computed here the
average temperature overh different runs.

In a preliminary experiment, all parameters of the inter-
polation formula, Eq.(3), were regarded as adjustable pa-
rameters. Our curve fitting program indicated that for all
densities the best estimates fors andb were close to 0.667
and 1 respectively. The asymptotically linear rising branch
corresponds to a perfect gas behavior, so that we should in-
deed find a slope valuessnd equal to 2/3, independent of
density. At the highest densities of the series,n=0.15 and
0.10 nucleon fm−3, the reconstructed curve, Eq.(3), deviates
qualitatively from the CA result in the low-energy region, in
so far as the plateau occurs at a lower temperature level and
is shorter. We have therefore not taken account of the CA
data at these latter densities in the remaining calculations.

In a second experiment, we sets=2/3, andb=1 by hand,
so that only the two parametersTc and Etr /A remain to be
adjusted. These parameters are found to be well approxi-
mated by linear relations in the density, which we can write
in dimensionless form

kTc

B
= u + sn

n

no
, u = 0.148, sn = 0.194,

Etr/A

B
= e8 + sn8

n

no
, e8 = 0.026, sn8 = 2.18. s25d

Practically the coefficiente8 is seen to be negligible, so that
that the transition energyEtr is just proportional to the den-
sity in the lower density range.

Qualitatively the thermodynamic caloric curves we obtain
for the 3D nuclear matter are comparable with the caloric

FIG. 5. CA caloric curves,T−e [T, kinetic temperature of nucle-
onssMeVd, e=E/AsMeVd] at densitiesn=0.15, 0.10, 0.071, 0.051,
0.039, 0.030 nucleon fm−3. Experimental caloric curve Au-Au frag-
mentation(shown at fictitious density 0.2 nucleon fm−3).
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curves of the 2D simulations of paper I. Due to computa-
tional difficulties in the low-energy range in the 2D case, it
was not manifest how the slope pattern would continue to-
wards the lower energies. In the present 3D simulations our
results indicate unambiguously that forE,Etr, the curve
tends to becomehorizontal. In particular, for the higher den-
sities of 0.15 and 0.10 nucleon fm−3 the CA results show the
existence of an approximately horizontal extended plateau in
the caloric curve at the lower energies. We recall that the
caloric curve we construct is a curve at constant available
volumeV, rather than the traditional caloric curve at constant
pressure. Under constant volume, the observed plateau is
only approximately horizontal.

In the case of the highest density, this plateau seems to
terminate with a bend towards a zero temperature for a small
enough energy(Fig. 5). The low energy branch of the curve
has not been computed. The high discretization involved in
the current version of the CA method does not allow us to
handle the particle dynamics at very low kinetic energies.
The presence of a plateau is consistent with the occurrence of
a phase transition.

This becomes transparent if we regard the caloric curve as
an energy-temperature curve(at constant density), and we
adopt the analytic approximation[Eq. (3), with b=1]. Close
enough to the temperatureTc we have, keeping the dominant
order in fT−Tcsndg only

EsTd
A

, SEtrsnd
A

3

2
kfT − TcsndgD1/2

, and

cnsTd ~ sT − Tcds−ad, a = 1/2, s26d

the functioncnsTd representing the specific heat at constant
density. The latter magnitude exhibits therefore a singular
behavior at the temperatureTcsnd. We observe that the nu-
merical value of the critical exponenta depends only on the
value of the exponentb describing the transition in the ca-
loric curve of our interpolation formula[Eq. (3)].

It is intuitively clear, and it is manifest from our plots of
the spatial configurations(plate 2), that the singularity relates
to the formation, or the disruption, of clusters of large(infi-
nite) size, as the temperature is decreased or increased,
dT,or.0, respectively. Both steps involve indeed huge
changes in the energy of the system,dE=cndT→` nearTc.
And conversely, near the critical temperature, any amount of
energydE we introduce into the system is used to break the
bonds among the nucleons which are bound in the clusters;
or any energy we extract from the system leads to the merger
of clusters with other clusters of bound nucleons. There is
then no change of temperature accompanying the change of
energy dT=1/cndE→0 near Tc. Such features leave little
doubt that at the temperatureTc the system of particles un-
dergoes a genuine phase transition. Quantitatively, the spe-
cific heat diverges for a temperature exactly equal toTc,
which is realized forE/A;0 only (within the range of va-
lidity of our interpolation formula). Practically however, the
temperatureTc is realized, and the specific heat becomes
very large, over the full approximately horizontal branch of
the caloric curve, i.e., over an extended energy interval,E/A.

The size of the latter increases with the density. For instance,
at the density of<1/3no, the specific heat exceeds 7 times
the ideal gas value, at any temperature,7 MeV. At higher
densities the curves of high constant specific heat in the
n–E/A plane become approximately normal to the density
axis (cf. the curves of maxima ofabr, or of vanishing curva-
ture k). At low densities the specific heat remains equal to
the ideal gas value for nearly any energyE/A, except close
to the limit E/A=0. Qualitatively, the existence of a critical
temperature at which the specific heat becomes large is thus
consistent with the indicators of a phase transition discussed
above.

F. A brief comparison with empirical data

The laboratory caloric curve in Fig. 5 drawn at a fictitious
density<0.2 nucleon fm−3, corresponds to the NUPECC in-
terpretation of the fragmentation results of an Au-Au colli-
sion experiment[8]. The curve exhibits a plateau at the tem-
perature levelTc<4.5 MeV, extending from an energy of
<6 MeV per nucleon down to<2 MeV per nucleon. In the
limit of low enough energies the temperature is theoretically
required to vanish. This trend is indeed indicated by the ex-
perimental data points in the rangeE/A,2 MeV (and sug-
gested by our CA results for the case of the highest density).

We wish to insist that the conditions of our CA model
calculations are not identical with those of the laboratory
experiment, so that a quantitative comparison of the CA ca-
loric curves with the laboratory data is not meaningful. The
small number of model parameters involved in the interac-
tion potential has been adjusted to obtain theoretical curves
which are consistent with the general behavior of the experi-
mental data(for E/A.3 MeV per nucleon). The laboratory
plateau is approximately duplicated for the highest density
we investigated,n=no (standard nuclear density). Quantita-
tively the theoretical plateau occurs at a temperature of
4 MeV, which is 11 percent lower than the temperature of
the experimental plateau. This difference may be due, at least
in part, to the fact that in the197Au-197Au fragmentation 394
nucleons are involved, against 300 in our numerical setup.
Besides, it is manifest that the differences are due, in part
also, to the incompleteness of the physics included in our
treatment. We recall in particular that the electrostatic inter-
actions, disregarded in our treatment, lead to a contribution
of 10 percent to the binding energy. The effect of the Cou-
lomb interaction has been discussed in[25]. Finally, as al-
ready pointed out, the thermodynamic equilibrium conditions
cannot be fully applicable to the nuclear fragmentation ex-
periments. We come back to this point at the end of this
section.

Qualitative similarity and quantitative lack of exact agree-
ment, as observed between the theoretical and the empirical
caloric curves, also apply to the theoretical and empirical
cluster-size distributions. The CA results indicate that a
power law, Eq.(24), holds close to a critical density, Eq.
(17), over a broad range of energies per nucleon. The best
estimate for the(negative) exponent of the distribution we
derive from our CA thermodynamic equilibrium configura-
tions is tequ=2.2. This value is consistent with the value
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derived by other authors adopting different statistical equi-
librium models([21] for a review). Our results indicate that
this value is insensitive not only to the precise energy of the
many–body configuration, but also to the details of the inter-
actions(the parameter values of the potential energy). This
provides numerical evidence for a universality of the ob-
servedt value. The universality class depends(1) on the
dimensionalityd of space(in 2D, t<1.35, paper I); this
dimensionality effect is well known in critical phenomena.
We further conjecture that it may depend also(2) on the
precise cluster definition, namely(a) on the cell geometry,
and(b) on the allowed mode of connection of the cells. The
latter point needs to be substantiated by further experiments.

Qualitatively the laboratory distribution curve of the frag-
ments against size is consistent with a power law(cf.
[18–20] for details on the empirical distribution of the frag-
ments resulting from collisions of different nuclei). Quanti-
tatively, the experimental(negative) exponent istexp<2.6.
We thus have a relative discrepancy with respect to the em-
pirical value, stexp−tequd /texp, of 15 percent. Although not
totally different from the CA thermodynamic model result,
this value is sufficiently higher than the theoretical value, so
that the difference is to be regarded as physically significant.

We believe that the approximate agreement, on the one
hand, and the relatively minor numerical discrepancies be-
tween the statistical models and simulations(including our
own CA simulation) and the nuclear fragmentation labora-
tory experiments on the other hand, are due to an inadequacy
in the thermodynamic assumptions on which this class of
models rely. As we argued already in paper II, in a laboratory
collision between two nuclei there is no evidence of an oc-
currence of an intermediate phase of long enough duration,
following the actual collision and preceding the onset of the
fragmentation processes, during which an efficient energy
sharing among all of the nucleons of the two colliding nuclei
is taking place(via the formation of a compound nucleus).
There is no experimental basis for postulating a phase of
thermal equilibrium. On the contrary, the CA simulation of
the dynamics of the collisions of paper II, which produce a
fragment distribution of slopetdyn consistent with the slope
of the laboratory distribution,tdyn<texp, supports the view
that there is no formation of a proper compound nucleus of
long enough lifetime.

The dynamic experiments of paper II rather indicate that
the fragment distribution appears as the outcome of the fol-
lowing.

(i) Peripheral groups of particles of the collision site,
which acquire a same outward velocity, one, two, . . ., time
steps after the onset of the collision. These groups, or frag-
ments, then leave the collision site, virtually unimpeded by
the remainder of the particles. It is then manifest that the first
particles being ejected from the collision site cannot be in
thermal equilibrium with the remainder of the particles.

(ii ) The dynamic collision experiments of paper II also
indicate that already at the earliest time steps following the
onset of the collision, two fragments, which may be of a
larger size, may be ejected along the collision direction;
these fragments correspond to two groups of particles be-
longing to the original two colliding bodies; they have essen-
tially suffered no deflection. By definition, these larger frag-

ments then do not contribute to energy sharing; they are not
in thermal equilibrium with the rest of the system.

(iii ) At later time steps successively deeper layers of in-
dividual particles, and clusters of particles, are ejected from
the collision site. The particles involved have remained con-
fined long enough to exchange energy with the rest of the
system. In other words these particles have reached a state of
approximate thermal equilibrium.

Within this interpretation suggested by the CA dynamics
of the collision, the global fragment distribution resulting
from laboratory collision experiments cannot be identified
with a fragment distribution in a strict thermodynamic equi-
librium state realized under exchanges of energy and par-
ticles among the clusters(to be ejected as fragments). Ac-
cordingly, in real laboratory experiments we observe a
distribution which globally deviates from a statistical equi-
librium distribution, but which, on the other hand, is not
unrelated to the equilibrium distribution. For all those frag-
ments which are ejected from the collision site under condi-
tions (iii ), a sufficient number of time steps following the
onset of the collision, have achieved a thermal equilibrium.

We are then led to conclude that the observed fragment
distribution is to be viewed as a superposition of a thermo-
dynamic equilibrium distribution distorted by nonequilib-
rium effects. Significant distortion is naturally expected on
the small-size end(individual free particles, two-particle
clusters, . . .) of the distribution, effect(i), and on the large-
size end[effect (ii )]. Since a surplus of smallest clusters is
produced during the initial stages following the collision, the
small-size end is due to be overpopulated with respect to the
equilibrium distribution. This mechanism necessarily gener-
ates an increase of thet value characterizing collision ex-
periments, with respect to the equilibrium exponent, or

tequ, tdyn < texp. s27d

The equilibrium distributions of the present paper(Fig. 3)
and the nonequilibrium distributions(Fig. 4 of paper II) are
indeed consistent with this inequality. To summarize, in a
schematic treatment of the interactions, the thermodynamic
(i.e., equilibrium) CA analysis of the fragmentation process
leads to an exponenttequ=2.2. The dynamic(nonequilib-
rium) treatment of the fragmentation mechanism(all other
parameters of the formulation of the problem being held con-
stant) of paper II leads to an exponenttdyn=2.6. The latter
value is close to the canonical exponent of nuclear fragmen-
tation as reported in the literature.

IV. OUTLOOK

In this paper we have analyzed the statistical equilibrium
configurations of a many-body system, following the evolu-
tionary dynamics of the individual particles on a simple 3D
CA model, from an initial randomly prepared state to a final
state of thermodynamic equilibrium. Although our flexible
CA dynamical program is applicable to classical many-body
problems of arbitrary nature, the concrete application we
have treated in this paper is dealing with a collection ofA
interacting nucleons(cf. papers I and II). The initial state, a
statistically spatially uniform configuration, is specified by
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(i) a number of particlesA=300 (fixed in all of our experi-
ments); (ii ) the total(conserved) energyE of the system; and
(iii ) the volumeV accessible to the particles.

The energy and density ranges investigated are:E/A from
0.3 to 30 MeV per nucleon,n from 0.006 nucleon per fm3 to
the standard nuclear densityno. Plots of the instantaneous
spatial configurations of the individual particles in the ther-
modynamic equilibrium phase, such as those exhibited on
plate 2, show that at low particle densities,n,1/5no, we
have a gas of essentially free particles. At high particle den-
sities,n.1/2no, we observe a condensed state, essentially a
single compact cluster, or a liquid drop. These observations
hold for the the full energy range investigated.

In the intermediate density range, clusters of all sizesa
occur, with frequencies regularly decreasing witha, up to a
maximumabr. The cluster distribution obeys an approxima-
tion power law up toabr. The maximum size parameter is
strongly dependent onn, and slightly modulated byE/A.
Numerical evidence suggests that at a critical density
<1/3no a percolation cluster is formed(formally, abr tends
to diverge). This behavior is indicative of an aggregation-
type phase transition.

The conclusion of an occurrence of an aggregation-type
phase transition is strengthened by a second result. The
log Nsad–log a plot of the cluster-distributionNsad exhibits
an exact straight line, characterized by a global(negative)
slope, t, which is found to be close to 2.2, at the critical
density of the order of 1/3no. In turn, we notice that if we
estimate an overall slopetsarefd for the cluster distributions
at arbitrary densities, neararef=4 [cf. Eqs. (19) and (20)],
then we recover the critical slope value 2.2. In that sense, to
measure the critical slope value, the precise critical density is
not required to be realized.

As a third indicator pointing towards a phase transition
we have noticed that the specific heat at constant volume
diverges at a critical temperature, Eq.(26), with an exponent
a<1/2. This temperature corresponds in fact to a broad en-
ergy range at densities of the order of 1/3no.

The interpretation of the occurence of an exact approxi-
mate power law of the fragments, and, in particular, the uni-
versality of the latter in nuclear collision-fragmentation and
other fragmentation problems involving matter of an arbi-
trary physical origin, raises several comments. Our 3D simu-
lations of the thermodynamic equilibrium of systems of

many-particles, interacting according to a two-body potential
given in parametrized form(and whose parametrization is
flexible enough to approximate a broad spectrum of interac-
tion potentials exhibiting a finite lower bound), establish un-
ambiguously that these systems develop energetically bound
aggregates of particles. The distribution law of the latter fol-
lows an approximate power law with a seemingly universal
exponentt<2.2 [cf. Eq. (24), at aref=4] over a broad range
of physical conditions. As discussed in this paper, the fact
that for many observed distributions of aggregates the expo-
nent is different from the thermodynamic equilibrium value,
and in fact higher(<2.6 in nuclear fragmentation problems),
can be interpreted as an off-equilibrium effect. In the case of
nuclear fragmentation, this point is supported by our CA
simulations of the nuclear collision dynamics.

We conjecture therefore that among the variety of ob-
served power laws referring to 3D aggregates of matter, and
which are described by exponents

t = tequ+ udtu, 0 , udtu ! tequ, s28d

there is a large subset that can be interpreted in a similar
manner. Namely, in a first approximation a thermodynamic
equilibrium is responsible for the overall power law, and the
contribution tequ to the exponent. The correctiondt then
measures the departure from the equilibrium.

In particular, on the basis of the discussion outlined in this
paper, in any collision problem leading on to fragmentation,
one expects an overabundance of small clusters. The extra
small-size clusters are then responsible for a positive correc-
tion dt. For some power laws(distribution law of ava-
lanches, earthquakes, etc.) more specific paradigms are avail-
able (for instance, Bak’s sandpile model, and related
nonequilibrium models[22–24]) which are capable of pro-
viding good approximations to the observed exponents. It
remains to be seen whether these specific approaches can be
subsumed under the umbrella of disturbed thermodynamic
equilibria.
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