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Phase transition in conservative diffusive contact processes
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We determine the phase diagrams of conservative diffusive contact processes by means of numerical simu-
lations. These models are versions of the ordinary diffusive single-creation, pair-creation, and triplet-creation
contact processes in which the particle number is conserved. The transition between the frozen and active states
was determined by studying the system in the subcritical regime, and the nature of the transition, whether
continuous or first order, was determined by looking at the fractal dimension of the critical cluster. For the
single-creation model the transition remains continuous for any diffusion rate. For pair- and triplet-creation
models, however, the transition becomes first order for high enough diffusion rate. Our results indicate that in
the limit of infinite diffusion rate the jump in density equals 2/3 for the pair-creation model and 5/6 for the
triplet-creation model.
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[. INTRODUCTION by Tomé and de Oliveirgll], who have shown its equiva-

lence in the thermodynamic limit to the ordinary contact pro-

gess and how to calculate the rates from averages over the

nstant-density ensemble. The equivalence between this en-

mble and the constant-rate ensemble was later proved by
ilhorst and Wijland[12].

In the conservative versions of contact processes
11,13,14, an empty site becomes occupied in a way similar
tfo the catalytic creation. But instead of creating a new par-
e, as in the ordinary contact processes, a randomly chosen
rticle of the system leaves its place and jumps into the

The usual contact proce$s—3] is a model for nonequi-
librium process composed of two subprocesses: a catalyt
creation and a spontaneous annihilation. In the usual contaEf
process, which we call the single-creation contact process,
particle is created if the site has at least one neighbor sit
occupied. Many generalizatiof4—6] can be made by taking
into account the basic mechanisms contained in the sing|
creation model. In the pair-creation contact process, for int. |
stance, at least two occupied neighbor sites are necessary {é

create a new partlcle.llnthe trlplt_at-creanon modellone Shou"gmpty site. Thus, both the creation and annihilation pro-
have at least three sites occup|.ed. All these variants of th(‘?esses are replaced with a jumping process. However, this is
contact process exhibit a continuous phase transition byo an unrestricted jumping because particles are not allowed
tween an absorblng state and an active state that belongs 9 jump to a vacant site surrounded by empty sites. It is
the direct percolatioiDP) universality class. ~ necessary to have a neighborhdadset of one, two, or three

Diffusive models are defined by permitting the diffusion gjtes, depending on the modlelf sites occupied.
of particles in addition to the catalytic creation and sponta- One advantage of using the conservative versions is that
neous annihilation. A diffusion process is done by moving ahey allow us to study the model without the danger of fall-
particle to an empty nearest neighbor site. The introductioing down into the absorbing state. The conservation of par-
of diffusion does not destroy the transition from an activeticles permits us to perform numerical simulations that avoid
state to an absorbing state, giving rise to a transition line thahe accidental fall into the absorbing state. Although they do
separates the two phases. Jensen and Dickfiiarhave not have absorbing states, they are equivalent, in the thermo-
shown that for the single-creation diffusive contact processlynamic limit, to the ordinary models. The conservative and
this line is always second order for any diffusion rate andordinary models are versions of the same model in distinct
belongs to the DP universality class, i.e., the addition of theensembles[11-14, the first models belonging to the
diffusion does not change the universality class nor the naconstant-particle ensemble, the second models belonging to
ture of the transition. For pair creation the numerical resultgshe constant-rate ensemble.
by Dickman and Tomé8] show that the transition is con- Another advantage is related to the expected existence of
tinuous for low diffusion and they argue that there is noa first order transition. In the ordinary models, a very small
change in the nature of the transition for high diffusion. Forchange in the annihilation rat¢he control parametgrnear
the triplet-creation contact process, Dickman and TgBjé the transition, causes a great change in the density. In the
have shown that the transition becomes first order for higltonservative models, because of the fact that the particle
enough diffusion. number is a conserved quantignd, therefore, works as the

In the present work, we study conservative versions of theontrol parametey this problem does not occur. This advan-
models mentioned above. A conservative version of a moddhge has been used by Ziff and Brosil§9] in their study of
for nonequilibrium process was introduced by Ziff and the first order transition in the ZGB model.
Brozilow [9], who used a constant-density ensemble to study
the Ziff-Gulari-Barshad(ZGB) model. A conservative ver-
sion of directed percolation was used by Broker and Grass- In the construction of conserved models we have to be
berger[10]. The conservative contact process was introduced¢oncerned only with the reaction process since the diffusion

Il. CONSERVED REACTION DIFFUSION MODELS
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process already conserves the particle number. The necessary (N,
condition to set up an equivalent conserved version of an a=—",
arbitrary ordinary reaction-diffusion process in a lattice is

that the reaction process be a sum of a creation subprocesdiere the averages are taken in the constant-particle en-
and an annihilation subprocegi4]. This is always possible semble. Usually one defines the ordinary reaction process so
to realize because these two subprocesses are mutually dkat the rate amplitudes akg=1 andk,=k. Therefore, ac-
clusive. If a site of the lattice is empty only creation is pos-cording to relation(2), « coincides with the parametérof
sible; if it is occupied, only annihilation is possible. There- the ordinary model as long as the average density of particles
fore, the transition ratey related the creation-annihilation of of the ordinary model equals the density of partiaks in

(4)

n

a particle at sité can always be written in the form the conserved model.
The rules of the reaction-diffusion processes we used are
m :kcwiC+kAwiA, (1) such that the diffusion occurs with probabiliy and the

jump process with probability 1B. The quantityD and the

where the first term is related to the creation of a particle atliffusion rateD are related by
sitei and the second to annihilation of a particle at &if€he
quantitya)iC vanishes if there is already a particle at $itand D= D 5)
wiA vanishes if sitd is empty. The quantitiek: andk, are - 1+D

the actual parameters of the ordinary model, which we call
amplitudes of the creation and annihilation rates, respec-
tively.

The conserved version is set up by replacing both the
creation and annihilation subprocesses by a particle jump The average number of active sites per site of the lattice
process — j with ratew; =w'w]’/L whereL is the number  equals the probabilitie®(10), P(110), and P(1110 for the
of sites of the lattice. One can proyé4] that a two-site  single-creation, pair-creation, and triplet-creation models, re-
process defined by this transition rate is equivalent in th&pectively. Since the number of particles per site is the prob-
thermodynamic limit to the ordinary process. To see how thispijlity P(1) it follows that « is given, respectively, byr
comes about let us look at the total rafv; with which  =p(10)/P(1), a=P(110/P(1), and a=P(1110/P(1), for
partAcIes jump to sitg. In the thermodynamic limit, the Sum he three models. In the limit of infinite diffusion rate the
Ei‘/‘;i /L approaches, Ry the law of large numbers, the averaggarticles will be uncorrelated so th&(10)=P(1)P(0), etc.
() S0 thatZw;; =( >"’JC'_ By an analogous argument the Taying into account tha®(1)=p andP(0)=1-p, we get the
totalc ra}e at which pa/r\ﬂcles Iecave the siteis 2w  following exact results for the active state, valid DF 1:
=<wj Ywi. The averageéw;) and(w;") act then as the ampli-
tudes of the creation and annihilation rates, respectively, a=1-p (6)
which allows us to write down the following relatidi4]: for the single-creation model,

IIl. EXACT AND MEAN-FIELD RESULTS

ka _ (@) @) a=p(l-p) (7)
ke (of)’ for the pair-creation model, and
between the amplitude rates of the constant-rate ensemble a=p*1-p) (8)

and averages determined in the constant-particle ensemblgoy the triplet-creation model.

For the model we study here particles are spontaneously These results give a continuous transition for the single-
annihilated so thaio; is 1 if sitei is occupied and 0if itis  creation model. For the pair-creation and triplet-creation
empty. Thereforel;{"=n wheren is the number of particles. - models, on the other hand, they give a discontinuous transi-
The quantityw;” is O if site j is occupied. Since creation is tjon sincep does not vanishes continuously as one increases
Catalytlc, this quantity depends also on the nelghborhOOd 0&_ The quantitya has a maximum at a nonzero Va]p@of
sitej. For the single-creation model it equals half the numbethe density which ig=1/2 for thepair-creation model and
of nearest neighbor occupied sites. For the pair-creatiop =2/3 for triplet creation. The corresponding values cof
model it equals half the number of pairs of nearest neighbogre ay=1/4 and ay=4/27, respectively. Since there is no
occupied sites. For the triplet-creation model it equals halfree energy from which we could decide at what point the
the number of triplets of nearest neighbor occupied sites. Itifymp in the density occurs one is tempted to use the maxi-
convenient to define an active site as a site for Whl?hls mum value ofa (spinoda| poin)‘ However, as we will see,

nonzero. The number of active siteg is defined by our numerical results do not support this point of view. Ac-
cording to the numerical results, the discontinuity occurs at a

Nae= >, WJC, (3)  smaller value ofa.
j For single creation the diffusion does not change the na-
ture of the transition. Even at infinite diffusion rate the tran-
We also define a quantity as being the right-hand side of sition is continuous as the exact req@t shows. The critical
Eg. (2) so that, for the models studied here, line on the diagranD versusa can be obtained by a mean-
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FIG. 1. The effective number of active sites per particlas
function of particle density for single-creation conservative con-
tact process for some values of probabily

FIG. 2. The effective number of active sites per particles
function of the particle density for pair-creation conservative con-
tact process for some values of probabili, The horizontal
straight line ate=0.222 was obtained by extrapolation.
field approximation. By using a two-site mean-field approxi-

mation we get a relation betwegnand « which shows a sjtej. In the case of the pair-creation or triplet-creation mod-

continuous transition for all values @f and which recovers g5 however, this happens only, if the chosen partitles at
the exact resul(6) when D=1. The critical line obtained |east one or two nearest neighbor occupied sites, respec-

from this approximation is given by tively. The relation between the probabili/ we use in the
2a—1 simulation and the actual probability of diffusidd is D’
= do—2a2 -1 9) =2D/(1+D) [16]. This is so because we are choosing a par-
a— L —

ticle from a list of occupied sites and then choosing with
showing thate—1 asD—1 in accordance with the exact €qual probability one of the neighboring sites on which to
result(6) and, as we will see, with numerical simulations. place the particle.

The exact resultg7) and (8) for the pair-creation and
triplet-creation models cannot be used to infer that the tran-
sition will remain discontinuous for finite diffusion rate even
if the rate is large. An indication that the transition is con- ~ The simulation was performed using lattices wiittsites
tinuous at low diffusion and discontinuous for sufficiently and periodic boundary conditions. The averages of the ap-
large diffusion, giving rise to a tricritical point, comes from propriates quantities were obtained from a number of Monte
mean-field approximations which can be done at several levcarlo steps ranging from £ao 3x 10, after discarding a
els[15]. At the level of three sites the mean-field approxima-sufficient number of steps to reach the stationary state. In
tion locates the tricritical point of the pair-creation model atFigs. 1, 2, and 3, we show the particle dengityn/L as a
D,=0.032 andy;=0.1687. For the triplet-creation model it is function of a, calculated by using formuléd), for several
necessary to use a higher order of approximation. At thevalues of the hopping probabilitp. We have used.=10*
level of four sites the tricritical point occurs Bt{=0.017[8].

Although both results are in qualitative agreement with our 0.14 . ; .

A. Supercritical regime

numerical simulations they are very low when compared
with the figures coming from the numerical simulations. 012 1 il
0.1 i
IV. NUMERICAL SIMULATIONS 0.08 [ |
o
We have simulated the conservative diffusive contact pro- 006 L o—ooss i
cess in a one-dimensional lattice. The actual simulation is aoss
performed as follows. At each time step a particle is selected 004 | T }
at random, say a particle at siteand one of its neighboring 0.02 -
sites is chosen randomly, say sjtdf this neighboring site is
empty then we decide which process to perform: the diffu- 0 : : ‘ .

0 02 04 06 08 1

sion of particles, occurring with probabilityp’, or the 0

creation-annihilation process, occurring with probability 1
—D’. If the diffusion process is chosen then the particlé at  FIG. 3. The effective number of active sites per partial@s

hops to the neighboring sitg If the creation-annihilation function of the particle density for triplet-creation conservative
process is chosen then any another particle of the systerspntact process for some values of probability The horizontal

including the one at sitg is chosen randomly and placed at straight line ate=0.115 was obtained by extrapolation.
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] ) ] ] tact process. The star corresponds to the valuesfl in the limit
FIG. 4. The effective number of active sites per partisl@s  p=1. The inset corresponds to the log-log plot of Et0). The

function of the particle density for several values ot in the  transition from active to frozen state is always second order.
supercritical regime foD=0.5 for the pair-creation model. The

inset show the scaling plot gf=L#"|a.— a| versusx=L"p, using . . . .
the DP critical exponentg=0.277 andy=1.097. 5, displays a jump wheh — o increases. Results similar to

those of Figs. 4 and 5 are also found for the triplet-creation

and varied the number of particles As expected, for high model.

diffusion rate the curves approach the exact behaviors given

by Egs.(6), (7), and(8). B. Subcritical regime
For the diffusive single-creation contact process, the tran-

sition is found to be continuous for all values Bf Increas-

|Cngathee ?gfuz'rgnth%mg?bg'?t)’hHii”;cil Vaelgtz dOfgoIP;he practice we use a finite lattice and check whether a particle
reases tow vaiue 1 wh S €Xp ' reaches the border. If a particle is about to reach the border

diffusive pair-creation and triplet-creation models the phasg:Ne increase the size of the lattice. For a fixed valu® ofie
transition is continuous for low diffusion, becoming discon- have simulated the system for sev.eral values, @omputing
tinuous for high enough diffusion. The tricritical point occurs by using Eq/(4). For each value ob, the criti’cal valuen
at D;=0.965+0.010 for the pair-creation contact process anétas obtained in ihe limin—s o by a Ii’near extrapolationcin

D;=0.945+0.005 for triplet creation as we shall see shortly. : : : :
| S 1/n. Using these results we have built the phase diagram in
Figures 2 and 3 seem to show that this is indeed the Case.yq planeD versusa, as shown in Figs. 6, 7, and 8. The

To compare the behaviors corresponding to the seconHumerical values we have obtained for the transition line

and first o_rder transTons, we S|m'ulated the palr—creatlonagree very well with the results obtained previously for the
model atD=0.5 andD=0.995 for various values of the sys- ordinary modelg7,§]

tem sizeL ranging from 50 to 18 For the former case) WhenD — 1 the critical value ofx approaches a limiting

=0.5, the plot ofp versusa, shown in Fig. 4, shows a con- .0 “For the single-creation modely=1 as expected
tinuous transition. That the transition is continuous is cons

firmed by the the data collapse of the data shown in the insef{om the exact resul6) and also from the mean-field result
of Fig. 4. ForD=0.995, the plot op versusa, shown in Fig.

To simulate the system in the subcritical regime we con-
sider an infinite lattice with a finite numberof particles. In

1
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FIG. 7. Phase diagram for the pair-creation conservative contact
FIG. 5. The effective number of active sites per partiel@s  process. The star corresponds to the valuesf0.222 in the limit
function of the particle density for several values ot in the D=1. The tricritical point(full circle) is located atw;=0.199 and
supercritical regime foD=0.995 for the pair-creation model. D;=0.965.

046131-4



PHASE TRANSITION IN CONSERVATIVE DIFFUSIVE .. PHYSICAL REVIEW E 70, 046131(2004

1 T

*

active
0.8

06 - frozen 4

04

02

0 1 1
008 0.09 0.1 0.11 0.12
o

Inn

FIG. 8. Phase diagram for the triplet-creation conservative con- G- 10- Log-log plot of size of the systeR) in the subcritical

tact process. The star corresponds to the valueysf0.115 in the regime, as function of the number of particlegor several values
limit D=1 The tricritical point(full circle) is located at=0.102 of probability D for the triplet-creation conservative contact pro-

andD.=0.945. cess. The upper straight line has slope 1.33 and the lower one has
! slope 1.
(9). Assuming that the behavior &f arounda=1 is given by For the continuous phase transition studied here we ex-
pect the emergence of a fractal cluster with a fractal dimen-
(1-D)~(1-w? (10)  sion dg strictly less than 1. Indeed for the single-creation

) ) ) model and for the pair and triplet up to a certain valudof
we have found from the plot shown in the inset of Fig. 6 thatye found a fractal dimensiod-=0.75 which is the expected
$=4.033). Notice that the mean-field behavior, given by value for a system in the DP universality class. However, for
Eq. (9), predicts the values=1. the pair and triplet creation and for sufficient large values of

An important feature of the models studied here is theD, the fractal dimension becomes the Euclidean dimension
emergence of a fractal structure at the transition point, chad-=d=1, reflecting the formation of a compact cluster
acterized by its fractal dimension. We have calculated thevhose sizeR increases linearly witim. The changing of be-
fractal dimension at the transition for each valuedfTo  havior occurs aD,=0.965+0.010 andy=0.199+0.003 for
this end we have simulated a system witiparticles and the pair-creation model and),=0.945+0.005 and«;
determined the average distarRéetween the two particles =0.102+0.001 for the triplet-creation model. The tricritical
located at the extremities of the system. We assume thgoint obtained by Dickman and Ton{&] for the ordinary
asymptotic behaviof10] triplet-creation model by means of numerical simulations is

D;=0.85 anda;=0.096. These values correspond, actually,
n~ R, (11 to a point over the critical line in Fig. 8. Fd»=0.85 our
result isa«=0.0954. As for the pair-creation model, the nu-
merical results obtained by Dickman and Tof8gshow that
the transition is continuous fdd < 0.95 which is consistent
with our results. However, they argue that the transition
should remain continuous for any finite diffusion.
We argue that the formation of a compact clustef

where d: is the fractal dimension, so that the slope of a
log-log plot of N versusR gives the fractal dimension as
shown in Figs. 9 and 10, for the pair and triplet-creation
models, respectively.

10 i ' ' ' ' =1) is a signature of a first order transition. First of all, the
compact cluster has a nonzero density becaus®/ R does
81 i not vanish in the limith— << and should therefore be identi-
fied with the active phase. Since the lattice is infinite the
6r 1 active phase is in coexistence with the frozen statepar-
Ink ticles). This behavior is very different from that correspond-
4 1 ing to a continuous transition. In this case, the fractal dimen-
sion is less than 1, which cannot be identified with the active
2+ . phase since the density=n/R~ n~-9/dF _, 0 whenn— .
When the cluster is a compact one, the rati® gives, in
0 ' : : ' : the limit n— oo, the densitypy of the active phase in coex-

istence with the frozen phase. We have determined the values

of p, for several values ob above the tricritical point. An
FIG. 9. Log-log plot of size of the systeR, in the subcritical ~ €Xtrapolation foD=1 givesp,=0.6651)~2/3 for the pair-

regime, as function of the number of particlesor several values ~Creation model andp,=0.8382)~5/6 for the triplet-

of probability D for the pair-creation conservative contact process.creation model. The values of, at the first order transition

The upper straight line has slope 1.33 and the lower one has sloggan be obtained by substituting into the exact resultér?)

1. and (8). Using the numerical values, we get=0.2223)
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~2/9 and a(=0.1151)=25/216 for the pair-creation ried out by a creation followed by a annihilation. This se-
model and the triplet-creation model, respectively. As statedjuence, on the other hand, is not possible for the other two
before, these values are distinct from the spinodal valuesodels.
coming from the exact solutiond) and(8). We remark, on For the pair-creation and triplet-creation models the tran-
the other hand, that the value @f that we have obtained for sition is continuous for low diffusion and becomes discon-
the triplet-creation model agrees with the vapre0.84 ob-  tinuous for high enough diffusion. The present approach in
tained by Dickman and Tomg8] for the active coexistence which the number of particles is conserved is appropriate to
phase aD=0.95. study first order transition because it is possible to distin-
guish this transition from a continuous one by measuring the
V. CONCLUSION fractal dimension of the fractal cluster occurring at the criti-
cal point. If the fractal dimension is smaller than the dimen-
The effect of diffusion in nonequilibrium systems has sjon of the lattice the transition is continuous. When the clus-
been studied here for the case of three conservative contagly hecomes compact, and the fractal dimension equals the
processes. For the single-creation contact process, the diffigttice dimension, the transition becomes first order and, in
sion does not change the nature of the phase transitioRddition, the density of particles turns out to be the density of

which is continuous for any diffusion rate. This is expectedihe active phase in coexistence with the frozen phase.
since the usual contact process already has an intrinsic dif-

f_usmn. Indeed, consider 'ghe fqllowm_g sequence.of transi- ACKNOWLEDGMENT
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