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We determine the phase diagrams of conservative diffusive contact processes by means of numerical simu-
lations. These models are versions of the ordinary diffusive single-creation, pair-creation, and triplet-creation
contact processes in which the particle number is conserved. The transition between the frozen and active states
was determined by studying the system in the subcritical regime, and the nature of the transition, whether
continuous or first order, was determined by looking at the fractal dimension of the critical cluster. For the
single-creation model the transition remains continuous for any diffusion rate. For pair- and triplet-creation
models, however, the transition becomes first order for high enough diffusion rate. Our results indicate that in
the limit of infinite diffusion rate the jump in density equals 2/3 for the pair-creation model and 5/6 for the
triplet-creation model.
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I. INTRODUCTION

The usual contact process[1–3] is a model for nonequi-
librium process composed of two subprocesses: a catalytic
creation and a spontaneous annihilation. In the usual contact
process, which we call the single-creation contact process, a
particle is created if the site has at least one neighbor site
occupied. Many generalizations[4–6] can be made by taking
into account the basic mechanisms contained in the single-
creation model. In the pair-creation contact process, for in-
stance, at least two occupied neighbor sites are necessary to
create a new particle. In the triplet-creation model one should
have at least three sites occupied. All these variants of the
contact process exhibit a continuous phase transition be-
tween an absorbing state and an active state that belongs to
the direct percolation(DP) universality class.

Diffusive models are defined by permitting the diffusion
of particles in addition to the catalytic creation and sponta-
neous annihilation. A diffusion process is done by moving a
particle to an empty nearest neighbor site. The introduction
of diffusion does not destroy the transition from an active
state to an absorbing state, giving rise to a transition line that
separates the two phases. Jensen and Dickman[7] have
shown that for the single-creation diffusive contact process
this line is always second order for any diffusion rate and
belongs to the DP universality class, i.e., the addition of the
diffusion does not change the universality class nor the na-
ture of the transition. For pair creation the numerical results
by Dickman and Tomé[8] show that the transition is con-
tinuous for low diffusion and they argue that there is no
change in the nature of the transition for high diffusion. For
the triplet-creation contact process, Dickman and Tomé[8]
have shown that the transition becomes first order for high
enough diffusion.

In the present work, we study conservative versions of the
models mentioned above. A conservative version of a model
for nonequilibrium process was introduced by Ziff and
Brozilow [9], who used a constant-density ensemble to study
the Ziff-Gulari-Barshad(ZGB) model. A conservative ver-
sion of directed percolation was used by Bröker and Grass-
berger[10]. The conservative contact process was introduced

by Tomé and de Oliveira[11], who have shown its equiva-
lence in the thermodynamic limit to the ordinary contact pro-
cess and how to calculate the rates from averages over the
constant-density ensemble. The equivalence between this en-
semble and the constant-rate ensemble was later proved by
Hilhorst and Wijland[12].

In the conservative versions of contact processes
[11,13,14], an empty site becomes occupied in a way similar
to the catalytic creation. But instead of creating a new par-
ticle, as in the ordinary contact processes, a randomly chosen
particle of the system leaves its place and jumps into the
empty site. Thus, both the creation and annihilation pro-
cesses are replaced with a jumping process. However, this is
not an unrestricted jumping because particles are not allowed
to jump to a vacant site surrounded by empty sites. It is
necessary to have a neighborhood(a set of one, two, or three
sites, depending on the model) of sites occupied.

One advantage of using the conservative versions is that
they allow us to study the model without the danger of fall-
ing down into the absorbing state. The conservation of par-
ticles permits us to perform numerical simulations that avoid
the accidental fall into the absorbing state. Although they do
not have absorbing states, they are equivalent, in the thermo-
dynamic limit, to the ordinary models. The conservative and
ordinary models are versions of the same model in distinct
ensembles [11–14], the first models belonging to the
constant-particle ensemble, the second models belonging to
the constant-rate ensemble.

Another advantage is related to the expected existence of
a first order transition. In the ordinary models, a very small
change in the annihilation rate(the control parameter), near
the transition, causes a great change in the density. In the
conservative models, because of the fact that the particle
number is a conserved quantity(and, therefore, works as the
control parameter), this problem does not occur. This advan-
tage has been used by Ziff and Brosilow[9] in their study of
the first order transition in the ZGB model.

II. CONSERVED REACTION DIFFUSION MODELS

In the construction of conserved models we have to be
concerned only with the reaction process since the diffusion
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process already conserves the particle number. The necessary
condition to set up an equivalent conserved version of an
arbitrary ordinary reaction-diffusion process in a lattice is
that the reaction process be a sum of a creation subprocess
and an annihilation subprocess[14]. This is always possible
to realize because these two subprocesses are mutually ex-
clusive. If a site of the lattice is empty only creation is pos-
sible; if it is occupied, only annihilation is possible. There-
fore, the transition ratewi related the creation-annihilation of
a particle at sitei can always be written in the form

wi = kCvi
C + kAvi

A, s1d

where the first term is related to the creation of a particle at
site i and the second to annihilation of a particle at sitei. The
quantityvi

C vanishes if there is already a particle at sitei and
vi

A vanishes if sitei is empty. The quantitieskC and kA are
the actual parameters of the ordinary model, which we call
amplitudes of the creation and annihilation rates, respec-
tively.

The conserved version is set up by replacing both the
creation and annihilation subprocesses by a particle jump
processi → j with ratewij =vi

Av j
C/L whereL is the number

of sites of the lattice. One can prove[14] that a two-site
process defined by this transition rate is equivalent in the
thermodynamic limit to the ordinary process. To see how this
comes about let us look at the total rateoiwij with which
particles jump to sitej . In the thermodynamic limit, the sum
oivi

A/L approaches, by the law of large numbers, the average
kvi

Al so thatoiwij =kvi
Alv j

C. By an analogous argument the
total rate at which particles leave the sitei is o jwij
=kv j

Clvi
A. The averageskvi

Al andkvi
Cl act then as the ampli-

tudes of the creation and annihilation rates, respectively,
which allows us to write down the following relation[14]:

kA

kC
=

kv j
Cl

kvi
Al

, s2d

between the amplitude rates of the constant-rate ensemble
and averages determined in the constant-particle ensemble.

For the model we study here particles are spontaneously
annihilated so thatvi

A is 1 if site i is occupied and 0 if it is
empty. Thereforeoivi

A=n wheren is the number of particles.
The quantityv j

C is 0 if site j is occupied. Since creation is
catalytic, this quantity depends also on the neighborhood of
site j . For the single-creation model it equals half the number
of nearest neighbor occupied sites. For the pair-creation
model it equals half the number of pairs of nearest neighbor
occupied sites. For the triplet-creation model it equals half
the number of triplets of nearest neighbor occupied sites. It is
convenient to define an active site as a site for whichv j

C is
nonzero. The number of active sitesnac is defined by

nac= o
j

wj
C. s3d

We also define a quantitya as being the right-hand side of
Eq. (2) so that, for the models studied here,

a =
knacl

n
, s4d

where the averages are taken in the constant-particle en-
semble. Usually one defines the ordinary reaction process so
that the rate amplitudes arekC=1 andkA=k. Therefore, ac-
cording to relation(2), a coincides with the parameterk of
the ordinary model as long as the average density of particles
of the ordinary model equals the density of particlesn/L in
the conserved model.

The rules of the reaction-diffusion processes we used are
such that the diffusion occurs with probabilityD and the
jump process with probability 1−D. The quantityD and the

diffusion rateD̃ are related by

D =
D̃

1 + D̃
. s5d

III. EXACT AND MEAN-FIELD RESULTS

The average number of active sites per site of the lattice
equals the probabilitiesPs10d , Ps110d, andPs1110d for the
single-creation, pair-creation, and triplet-creation models, re-
spectively. Since the number of particles per site is the prob-
ability Ps1d it follows that a is given, respectively, bya
=Ps10d /Ps1d , a=Ps110d /Ps1d, and a=Ps1110d /Ps1d, for
the three models. In the limit of infinite diffusion rate the
particles will be uncorrelated so thatPs10d=Ps1dPs0d, etc.
Taking into account thatPs1d=r andPs0d=1−r, we get the
following exact results for the active state, valid forD=1:

a = 1 −r s6d

for the single-creation model,

a = rs1 − rd s7d

for the pair-creation model, and

a = r2s1 − rd s8d

for the triplet-creation model.
These results give a continuous transition for the single-

creation model. For the pair-creation and triplet-creation
models, on the other hand, they give a discontinuous transi-
tion sincer does not vanishes continuously as one increases
a. The quantitya has a maximum at a nonzero valuer0 of
the density which isr0=1/2 for thepair-creation model and
r0=2/3 for triplet creation. The corresponding values ofa
are a0=1/4 anda0=4/27, respectively. Since there is no
free energy from which we could decide at what point the
jump in the density occurs one is tempted to use the maxi-
mum value ofa (spinodal point). However, as we will see,
our numerical results do not support this point of view. Ac-
cording to the numerical results, the discontinuity occurs at a
smaller value ofa.

For single creation the diffusion does not change the na-
ture of the transition. Even at infinite diffusion rate the tran-
sition is continuous as the exact result(6) shows. The critical
line on the diagramD versusa can be obtained by a mean-
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field approximation. By using a two-site mean-field approxi-
mation we get a relation betweenr and a which shows a
continuous transition for all values ofD and which recovers
the exact result(6) when D=1. The critical line obtained
from this approximation is given by

D =
2a − 1

4a − 2a2 − 1
, s9d

showing thata→1 asD→1 in accordance with the exact
result (6) and, as we will see, with numerical simulations.

The exact results(7) and (8) for the pair-creation and
triplet-creation models cannot be used to infer that the tran-
sition will remain discontinuous for finite diffusion rate even
if the rate is large. An indication that the transition is con-
tinuous at low diffusion and discontinuous for sufficiently
large diffusion, giving rise to a tricritical point, comes from
mean-field approximations which can be done at several lev-
els [15]. At the level of three sites the mean-field approxima-
tion locates the tricritical point of the pair-creation model at
Dt=0.032 andat=0.1687. For the triplet-creation model it is
necessary to use a higher order of approximation. At the
level of four sites the tricritical point occurs atDt=0.017[8].
Although both results are in qualitative agreement with our
numerical simulations they are very low when compared
with the figures coming from the numerical simulations.

IV. NUMERICAL SIMULATIONS

We have simulated the conservative diffusive contact pro-
cess in a one-dimensional lattice. The actual simulation is
performed as follows. At each time step a particle is selected
at random, say a particle at sitei, and one of its neighboring
sites is chosen randomly, say sitej . If this neighboring site is
empty then we decide which process to perform: the diffu-
sion of particles, occurring with probabilityD8, or the
creation-annihilation process, occurring with probability 1
−D8. If the diffusion process is chosen then the particle ati
hops to the neighboring sitej . If the creation-annihilation
process is chosen then any another particle of the system,
including the one at sitei, is chosen randomly and placed at

site j . In the case of the pair-creation or triplet-creation mod-
els, however, this happens only, if the chosen particlei has at
least one or two nearest neighbor occupied sites, respec-
tively. The relation between the probabilityD8 we use in the
simulation and the actual probability of diffusionD is D8
=2D / s1+Dd [16]. This is so because we are choosing a par-
ticle from a list of occupied sites and then choosing with
equal probability one of the neighboring sites on which to
place the particle.

A. Supercritical regime

The simulation was performed using lattices withL sites
and periodic boundary conditions. The averages of the ap-
propriates quantities were obtained from a number of Monte
Carlo steps ranging from 106 to 33107, after discarding a
sufficient number of steps to reach the stationary state. In
Figs. 1, 2, and 3, we show the particle densityr=n/L as a
function of a, calculated by using formula(4), for several
values of the hopping probabilityD. We have usedL=104

FIG. 1. The effective number of active sites per particlea as
function of particle densityr for single-creation conservative con-
tact process for some values of probabilityD.

FIG. 2. The effective number of active sites per particlea as
function of the particle densityr for pair-creation conservative con-
tact process for some values of probabilityD. The horizontal
straight line ata=0.222 was obtained by extrapolation.

FIG. 3. The effective number of active sites per particlea as
function of the particle densityr for triplet-creation conservative
contact process for some values of probabilityD. The horizontal
straight line ata=0.115 was obtained by extrapolation.
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and varied the number of particlesn. As expected, for high
diffusion rate the curves approach the exact behaviors given
by Eqs.(6), (7), and(8).

For the diffusive single-creation contact process, the tran-
sition is found to be continuous for all values ofD. Increas-
ing the diffusion probabilityD, the critical value ofa in-
creases toward the value 1 whenD→1 as expected. For the
diffusive pair-creation and triplet-creation models the phase
transition is continuous for low diffusion, becoming discon-
tinuous for high enough diffusion. The tricritical point occurs
at Dt=0.965±0.010 for the pair-creation contact process and
Dt=0.945±0.005 for triplet creation as we shall see shortly.
Figures 2 and 3 seem to show that this is indeed the case.

To compare the behaviors corresponding to the second
and first order transitions, we simulated the pair-creation
model atD=0.5 andD=0.995 for various values of the sys-
tem sizeL ranging from 50 to 104. For the former case,D
=0.5, the plot ofr versusa, shown in Fig. 4, shows a con-
tinuous transition. That the transition is continuous is con-
firmed by the the data collapse of the data shown in the inset
of Fig. 4. ForD=0.995, the plot ofr versusa, shown in Fig.

5, displays a jump whenL→` increases. Results similar to
those of Figs. 4 and 5 are also found for the triplet-creation
model.

B. Subcritical regime

To simulate the system in the subcritical regime we con-
sider an infinite lattice with a finite numbern of particles. In
practice we use a finite lattice and check whether a particle
reaches the border. If a particle is about to reach the border
we increase the size of the lattice. For a fixed value ofD we
have simulated the system for several values ofn, computing
a by using Eq.(4). For each value ofD, the critical valueac
was obtained in the limitn→` by a linear extrapolation in
1/n. Using these results we have built the phase diagram in
the planeD versusa, as shown in Figs. 6, 7, and 8. The
numerical values we have obtained for the transition line
agree very well with the results obtained previously for the
ordinary models[7,8].

WhenD→1 the critical value ofa approaches a limiting
value a0. For the single-creation modela0=1 as expected
from the exact result(6) and also from the mean-field result

FIG. 5. The effective number of active sites per particlea as
function of the particle densityr for several values ofL in the
supercritical regime forD=0.995 for the pair-creation model.

FIG. 4. The effective number of active sites per particlea as
function of the particle densityr for several values ofL in the
supercritical regime forD=0.5 for the pair-creation model. The
inset show the scaling plot ofy=Lb/nuac−au versusx=L1/nr, using
the DP critical exponentsb=0.277 andn=1.097.

FIG. 6. Phase diagram for the single-creation conservative con-
tact process. The star corresponds to the value ofac=1 in the limit
D=1. The inset corresponds to the log-log plot of Eq.(10). The
transition from active to frozen state is always second order.

FIG. 7. Phase diagram for the pair-creation conservative contact
process. The star corresponds to the value ofa0=0.222 in the limit
D=1. The tricritical point(full circle) is located atat=0.199 and
Dt=0.965.
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(9). Assuming that the behavior ofD arounda=1 is given by

s1 − Dd , s1 − adf, s10d

we have found from the plot shown in the inset of Fig. 6 that
f=4.03s3d. Notice that the mean-field behavior, given by
Eq. (9), predicts the valuef=1.

An important feature of the models studied here is the
emergence of a fractal structure at the transition point, char-
acterized by its fractal dimension. We have calculated the
fractal dimension at the transition for each value ofD. To
this end we have simulated a system withn particles and
determined the average distanceR between the two particles
located at the extremities of the system. We assume the
asymptotic behavior[10]

n , RdF, s11d

where dF is the fractal dimension, so that the slope of a
log-log plot of N versusR gives the fractal dimension as
shown in Figs. 9 and 10, for the pair and triplet-creation
models, respectively.

For the continuous phase transition studied here we ex-
pect the emergence of a fractal cluster with a fractal dimen-
sion dF strictly less than 1. Indeed for the single-creation
model and for the pair and triplet up to a certain value ofD
we found a fractal dimensiondF=0.75 which is the expected
value for a system in the DP universality class. However, for
the pair and triplet creation and for sufficient large values of
D, the fractal dimension becomes the Euclidean dimension
dF=d=1, reflecting the formation of a compact cluster
whose sizeR increases linearly withn. The changing of be-
havior occurs atDt=0.965±0.010 andat=0.199±0.003 for
the pair-creation model andDt=0.945±0.005 andat
=0.102±0.001 for the triplet-creation model. The tricritical
point obtained by Dickman and Tomé[8] for the ordinary
triplet-creation model by means of numerical simulations is
Dt.0.85 andat.0.096. These values correspond, actually,
to a point over the critical line in Fig. 8. ForD=0.85 our
result isa=0.0954. As for the pair-creation model, the nu-
merical results obtained by Dickman and Tomé[8] show that
the transition is continuous forD,0.95 which is consistent
with our results. However, they argue that the transition
should remain continuous for any finite diffusion.

We argue that the formation of a compact clustersdF

=1d is a signature of a first order transition. First of all, the
compact cluster has a nonzero density becauser=n/R does
not vanish in the limitn→` and should therefore be identi-
fied with the active phase. Since the lattice is infinite the
active phase is in coexistence with the frozen state(no par-
ticles). This behavior is very different from that correspond-
ing to a continuous transition. In this case, the fractal dimen-
sion is less than 1, which cannot be identified with the active
phase since the densityr=n/R,n−s1−dFd/dF→0 whenn→`.

When the cluster is a compact one, the ration/R gives, in
the limit n→`, the densityr0 of the active phase in coex-
istence with the frozen phase. We have determined the values
of r0 for several values ofD above the tricritical point. An
extrapolation forD=1 givesr0=0.665s1d<2/3 for the pair-
creation model andr0=0.835s2d<5/6 for the triplet-
creation model. The values ofa0 at the first order transition
can be obtained by substitutingr0 into the exact results(7)
and (8). Using the numerical values, we geta0=0.222s3d

FIG. 8. Phase diagram for the triplet-creation conservative con-
tact process. The star corresponds to the value ofa0=0.115 in the
limit D=1 The tricritical point(full circle) is located atat=0.102
andDt=0.945.

FIG. 9. Log-log plot of size of the systemR, in the subcritical
regime, as function of the number of particlesn for several values
of probability D for the pair-creation conservative contact process.
The upper straight line has slope 1.33 and the lower one has slope
1.

FIG. 10. Log-log plot of size of the systemR, in the subcritical
regime, as function of the number of particlesn for several values
of probability D for the triplet-creation conservative contact pro-
cess. The upper straight line has slope 1.33 and the lower one has
slope 1.
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<2/9 and a0=0.115s1d<25/216 for the pair-creation
model and the triplet-creation model, respectively. As stated
before, these values are distinct from the spinodal values
coming from the exact solutions(7) and (8). We remark, on
the other hand, that the value ofr0 that we have obtained for
the triplet-creation model agrees with the valuer=0.84 ob-
tained by Dickman and Tomé[8] for the active coexistence
phase atD=0.95.

V. CONCLUSION

The effect of diffusion in nonequilibrium systems has
been studied here for the case of three conservative contact
processes. For the single-creation contact process, the diffu-
sion does not change the nature of the phase transition,
which is continuous for any diffusion rate. This is expected
since the usual contact process already has an intrinsic dif-
fusion. Indeed, consider the following sequence of transi-
tions 010→011→001 starting with an isolated particle. The
net result is a hopping of the isolated particle to a neighbor-
ing site, or effectively a diffusion. The sequence shown is a
possible sequence of states for single creation which is car-

ried out by a creation followed by a annihilation. This se-
quence, on the other hand, is not possible for the other two
models.

For the pair-creation and triplet-creation models the tran-
sition is continuous for low diffusion and becomes discon-
tinuous for high enough diffusion. The present approach in
which the number of particles is conserved is appropriate to
study first order transition because it is possible to distin-
guish this transition from a continuous one by measuring the
fractal dimension of the fractal cluster occurring at the criti-
cal point. If the fractal dimension is smaller than the dimen-
sion of the lattice the transition is continuous. When the clus-
ter becomes compact, and the fractal dimension equals the
lattice dimension, the transition becomes first order and, in
addition, the density of particles turns out to be the density of
the active phase in coexistence with the frozen phase.
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