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Harmonic oscillators in the Nosé-Hoover environment
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We study the dynamics of an ensemble of noninteracting harmonic oscillators in a nonlinear dissipative
environment described by the Nosé-Hoover model, and find the histogram for energy regions of phase space
against visiting time by employing numerical simulation. The results agree with the analysis of the Nosé-
Hoover equations effected with the method of averaging for small values of the dissipative paraofetes
thermostat. We find oscillations at frequencies proportional%, m being the characteristic mass of the
particle, about the stationary state corresponding to equilibrium, for sufficiently amallthis region ofa the
histogram does not correspond to Gibbs’ canonical distribution. For larger valuegha® motion becomes
irregular. The phenomena could have an important bearing upon simulating molecular dynamics in the Nosé-
Hoover thermostat.
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I. INTRODUCTION namic behavior for simple harmonic systems; it is still gen-
erally accepted that its efficiency improves with an increase

lar dynamics for simulating a system’s behavior at constan f complexity and dimension of the simulated syst&h It
Y 9 asy L . should be noted that substantial improvement aimed at com-
temperature. The central idea of the model, which is the in-

troduction of auxiliary dynamic variables to control kinetic patibility with Gibbs™ ensembles has been effected on the

ener admits of various implementations. In the mostOriginal version of the Nosé-Hoover modelee the review
gy, P : ~article [6]). Indeed, one can reproduce Brownian motion by

e rotns Don 11 el Semstn o nd ye MGG severl hermosta varibies, or demons, sicad
ginal €q : YSof the singular auxiliaryy (see the comprehensive treatment
tem. It should be noted that Hamiltonian versions of the

model drew considerable attentipd. of the subject in[6,7]). In this paper we study the initial

In the present paper we study the Nosé-Hoover model version of the Nosé-Hoover model, which, from the point of

the form aenerally emoloved in molecular dvnamics. that iSview of dynamical theory, corresponds to a nonlinear time-
9 y employed I wrar dy - 7. “dependent dissipative environment and, therefore, has a
a system constructed from initial Hamiltonian equations, i.e.

using Newton'’s second law, by employing nonlinear dissi a_physical interest of its own.
1SIng » Oy pioying P We focus our attention on ensembles of harmonic oscilla-

tive terms on.th(_air r_ight-hand sides, and an additiqnal_equat—ors, the importance of such systems follows from the fact
tion for the dissipation parameter, or “demony” which is that among these is the harmonic lattice, familiar in the theo-

allowed to vary in time, so that the equations of eVOIUtIcmries of solids and molecules. The potential energy of a har-

The Nosé-Hoover modglL-3] is widely used in molecu-

read monic lattice is given by the quadratic form
M, = = Uy Far... Fy) = 7, N2
TR U(FL P ) = 2 2 MK 2)
iji=11k=1
N2 in whichr! is thelth coordinate of théth particle. To see the
y=a 2 > mfi _ 1], (1) ~ Symmetry properties of the model we may cast @9in the
3k, TIN5, 2 matrix form

In this setting the Nosé-Hoover model is a Hamiltonian sys- mif; + (Ar); + 91, =0

tem with dissipation. For sufficiently small values @fthe tin which A is the matrix of force constant)s}‘-‘. It can be

d|SS|pat|v.e effects can be treated within the framework O 2 nsformed by an appropriate orthogonal transformagon
perturbation theory. 1o the diagonal form

Considerable criticism has been leveled at the Nosé-

Hoover approaclisee[5] and references thergjrbecause it 3N
runs across difficulties in providing the correct thermody- U(Wy, W, ..., Wap) = >, )\iwiz. (3
i=1
Assume that alln; are equalm,=m, and letR be the matrix
*Electronic address: golo@mech.math.msu.su of the orthogonal transformation mentioned above, ana
"Electronic address: vladsal@moldyn.ru 3N-dimensional vector of coordinates with respect to the
*Electronic address: shaitan@moldyn.ru new coordinate system determined By Since R(t)=R is
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constant, and is an invariant of the orthogonal transforma-
tion, we may cast Eq.l) in the form

Riv+ ARw+ yRw=0,

so that the equation acquires the form At
w+ (RTARwW+ yv=0 T
in which the matrixR"AR is the diagonal one. i !
It should be noted that three of the eigenvalugsare 1

equal to zero, which corresponds to the conservation of mo-
mentum of the lattice. In what follows, we shall neglect the
modes of zero frequencies, considering only internal degree:
of freedom corresponding to thermodynamical properties of
the SyStem. 0.02

Thus, we have transformed the original problem of har-
monic lattice to that for a set of harmonic oscillators, which
do not interact with each other. It is more tractable from an .01k
analytical point of view. At this point it should be noted that ™ 7
molecular dynamics usually involves nonlinear systems, anc
therefore it is of interest to investigate possible nonlinear
extensions of our results. For the moment we may only claim 1500 =T.=3000 4500 E
that, according to the numerical simulation, very small non- Q
linear terms in Eq(1) do not lead to any dra_‘StiC changes, but FIG. 1. Energy regions of phase space against visiting time.
the problem needs thorough study, which is to be found eISqilumber of oscillatordN=1000, dissipative parameter=0.01, tem-
where. o _ _ perature parametdiz=3,To=0.3Tg; all frequenciess;=1; initial

At this point it is worthwhile to notice that problems of cqordinates; and momentay, distributed randomly from -2 to +2;
molecular dynamics involve dynamical systems of extremelynitial y=0. Averaged distribution, Eq15), given by dashed line.
high dimension, and this circumstance brings about specific
difficulties for numerical simulations. The best approach to _
the problem is to use analytical methods in conjunction with E=Ban+U,
the numerical ones, e.g., for the Nosé-Hoover model, wher@nd the dissipative variablg. Directing the output in the
systematic investigation of high-dimensional cases is par¢E-y) plane, we obtain a kind of two-dimensional window on
ticularly interesting(see[5]). To this end we use the method the phase space of the model, which has dimenshn 2
of “windows” worked out for the needs of relaxation dynam- yhereN is the number of oscillators. Since we aim at study-
ics of spin in superfluiHe (see the review articigs]) to  ing situations in which is large, the two-dimensional re-
obtain a general picture of the Nose-Hoover dynamics for agjyction is of primary importance. Next, one should look for
ensemble of harmonic oscillators. We show that, if the dissithe distribution law of the the system in phase space, and one
pative constant is small enough, the dynamics is charac-could expect that it should be either the microcanonical or
terized by the presence of oscillations around the stationarfe Gibbs one; the first is characterized by its being centered
solution corresponding to an equilibrium for which the gn a particular value of enerdg,, whereas the latter has a
phase-space sampling is different from the normal law. Incharacteristic bell shape. We shall see that the actual situa-
fact, we find that for sufficiently large the oscillations dis-  tion is richer(Fig. 1).
appear, and the motion of the system becomes irregular. |t js worthwhile to employ units of physical quantities
corresponding to the scales of molecular dynamics. In our
computer calculations we shall use the unit of mass
~1022 g, the unit of length 1 cm, and the unit of time

The numerical analysis of the Nosé-Hoover model giver2 X 1073 s, so that the unit of energy reads
by Eg.(1), which is a high-dimensional nonlinear dissipative _
system, is a serious challenge, and, in fact, it is generally £=125x 10" erg,
confined to low-dimensional situationsee[9], in which the  ang we may introduce the reduced temperature
case of two oscillators is considepedn treating high-
dimensional problems the key point is the wise choice of _ kT
output variables. In the present case it is dictated by the T
physics of the problem, and taking into account the structure
of the Nosé-Hoover model, that is, its being a Hamiltonianwhich, at room temperatures, turns out to be of the order 1.
system with dissipation, we employ to that effect the total To find the distribution law we consider the partition of
energy of the systerk, the phase space into regions

II. STOCHASTIC PROPERTIES OF THE SYSTEM

TR
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W = min{wl,wz,...,wN}. (6)

In fact, our numerical calculations, as well as the averaging
method(see Sec. Il indicate that the region of really small
a should comply with the requirement

Qa < W (7)

in which

1500

One may state that the characteristic frequeflgyshould be
below the lowest edge of the oscillator band.

FIG. 2. Trajectory in(E-y) window. RegionsRy indicated by Therefore, our calculations can be partitioned into two
shaded vertical band. Values of parameters and initial data are tH@0ups: F1, long time scales for which conditiof is satis-
same as in Fig. 1. fied; F2, intermediate time scales for which is broken and
the characteristic frequencies lie inside or above the oscilla-
tor bandw;, wy, ..., wy.

RuRaei Ry Ry ) Let us consider first case F1, which strictly follows the
corresponding to the energy intervéls< E<E,,,, assumed Mmolecular dynamics prescriptiqd0]. In accord with Eq(4)
to be of equal size, and compile a record of periods of timeéve obtain the histogram given in Fig. 1, describing the prob-
t;,t, ..., t, ...t which the system spends in regia@s; the  ability distributionp for the system in phase space. It is quite

total time of simulation reads different from the microcanonical or Gibbs distribution. It is
L important that the windowE-+y) provides a means for elu-
_ cidating the form of the fluctuations around the stationary
T—= E ti . . .
= state given by the equations
The frequencies for the system’s visiting the regions are y=0, E=2To, En=To
given by the equation for some valueT, of the temperature parametgef. Eq.
t, (13)]. The circular motion seen in tH&-vy) window is char-
=", k=1,2...L. (5 acterized by a mean angular velocity given by the lawm

to within one-thousandth, that is, we obtaid, indicated

It is convenient to use a representation for the set of frequerabove. The fact agrees with the histogram given in Fig. 1
cies by a histogram, that is, rectangles whose widths reprgsee Sec. Il for the details
sent the energy intervalg) and whose heights represent the  The width of the ring swept over by a trajectory as seen in
corresponding frequencies. It is worth noting that the partithe (E-v) window depends on the structure of the oscillator
tion of the phase space into the energy regigf)scan be band. If the scattering of the oscillator frequency is small, for
effected in a more graphic form with the help of ttley)  example, they are all equal, the width is sufficiently pro-
window on the phase space. In fact, the numerical simulatiomouncedsee Fig. 2 For the case of a harmonic lattice when
gives a picture of the system’s motion, the timgseing the frequencies read
those spent in the bands determined by the constré&pts
<E=<E,,,, as is illustrated in Fig. 2. W= ﬂ:sinzbr_ka

To be specific, we consider a set of one-dimensional har- K m N
monic oscillators given by the Hamiltonians

(8

the width is very smal(see Fig. 3. The same phenomenon
p2+ mPodx? also takes place for a sufficiently dense random distribution
T o, 0 T 1,2...N. of the oscillators. For the case of an ideal gas the oscillation
law yVa/m was found in[9] [see Eqgs(5) and(8) of [9]].
The oscillators do not interact with each other, so that the The results of the calculation can be cast in the form of a
total Hamiltonian reads histogram, and it should be noted that the shape of the his-
H=Hy+Hy+ - +Hy. togram depend; on thg amplitude of the oscillatioqs, that is,
the size of deviations in the enerdy from the stationary
The choice of the dissipative parameteis important. In  value 2I; determined by the temperature parameter of the
accord with the general prescription of molecular dynamicanodel. In the next section we shall find the distribution using
[10], one usually takes it small. It is a matter of a certainan averaging method fatx which satisfies the requirement
interest to see what happensdifis of intermediate size. We () ,<w, and it is worth noting that the numerical results are
come to the conclusion that the actual small size @f to be  in good agreement with those given by the averaging, as is
gauged in accord with the smallest of frequenciesseen from Fig. 4. The energy distribution that should corre-
W1, W, ..., 0, spond to Gibbs’ canonical ensemble for the set of harmonic
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AT "

0.02-
0.01-

1500 2T_-3000 4500 E

1500 2T,=3000 4500

L FIG. 5. Trajectory in window(E-y). Characteristic frequency
Q, inside oscillator frequency band. Number of oscillatdis
=1000; dissipative parameter=0.01; temperature parametég
=3,To=0.5NTg; frequenciesw; given by Eg. (8) with 4C/m
=2.25a=1; initial coordinates and momenta; distributed ran-
domly from -2 to +2.

FIG. 3. Very narrow band swept by a trajectory (i) win-
dow. Number of oscillatorsN=1000; dissipative parametes
=105 temperature parametdiz=3,To=0.NTg, frequencieso;
given by Eq.(8) with 4C/m=2.25 a=1; initial coordinatest; and . . . . .
momentap; distributed randomly from -2 to +2; initiay=0. sweeps over a region in tfe-y plane. The motion is quite
irregular and needs specific study, which is to be done else-
where. The energy distribution illustrated in Fig. 6 strongly

oscillators at temperatuis given by the equation suggests that it is chaotic. It should be noted that in case F2

EN-1 the averaging method of Sec. Ill breaks down, for values of
dp= CN—Ne‘B"deE (9) a not small enough. But we cannot claim that the histogram
(27k,T) corresponds to the Gibbs distribution. In fact, its shape

. . . ) strongly depends on the data, i.e., oscillator frequencies, ini-
and is totally different from Fig. 1. The discrepancy between;,| qata and values af. This circumstance could be instru-

the obtained and expected distributions indicates that th?nental in the use of the Nosé-Hoover model for molecular
Nosé-Hoover model describes a kind of nonlinear d'Ss'pa“V%lynamics, for one might obtain helpful distributions by ad-

system having special propertl_es. S __justing the model's data.
Turn now to case F2. A typical situation is illustrated in

Fig. 5. We see that a trajectory seen in {li2y) window
IIl. AVERAGED SYSTEM

The simulation of the last section, which was thoroughly
checked by calculating with different algorithms and com-
paring their results, might nonetheless be subject to artifacts
and errors. In this respect, it is important that analytical

at means capable of verifying Sec. Il have been used and re-
— sulted in agreement with the numerical work.
T Let us notice that according to the prescription described

in the Introductionsee Eq(1)] the ensemble dl harmonic

atl
0.02F
] - -
1500 27,3000 4500 E B E 0017
FIG. 4. Characteristic frequendy, below oscillator frequency 1500  2T,=3000 4500 E

band. Values of parameters and initial data are the same as in Fig. 1.

Filled area gives energy distribution against visiting time according FIG. 6. Energy regions of phase space against visiting time;
to numerical simulation; dashed line corresponds to Gibbscharacteristic frequencf),, inside the oscillator band. The data are
distribution. the same as in Fig. 5.
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oscillators confined to the Nosé-Hoover thermostat is de- N
scribed by the system of equations =l of E
*i=1
5'(i+wi2xi=—%)'(i (i=1,2,..N), in which
i
1
T = =Nk, T (13

. 2 m¢ 2

y=a E -1 (10) -

kTN 2 and we cancel out the oscillating terms. The procedure

means, as was claimed above, that we consider a time scale
in which all dimensional quantities are in the CGS system ofarger than the largest period of our oscillators, or, to put it
units. It is important that the dissipative constants sug-  the other way round, the frequencies of the averaged system
gested to be smallg<<1, or, to be more precisef), should be lower than the band determined by the oscillators’
<w_, w_ being the lowest edge of the oscillator band. Infrequencies. Thus, we obtain the averaged equations
fact, we shall require that the characteristic frequencies sat-
isfy condition (7). The structure of the oscillator frequency
set deserves special attention. If the number of oscillators is
large, the frequencies may be very dense, so that one may
regard them as a band, as may happen, for example, in the ( N o 2 )

_1 ,

2 2

.y
g=-—+ ,
' m 2

case of numerical modeling of large molecules. At the same -
time, even for large systems there may exist situations in
which the number of different values af is small, even all

of them being equal. Our analysis, based on the averagin@’

method, depends on conditiqi¥) being satisfied, that is,
small values ofw, usually employed in molecular dynamics a=-2eo E e-1
(see[10)). If (7) is broken, the nature of the system’s dynam- ' v 2T. 1o

ics changes drastically, and one may expect its becoming
chaotic, as could be expected from Figs. 5 and 6. This pheas follows from Eq(12).
nomenon may be useful for the practical needs of molecular Since the total energy of the system is given by the
dynamics; its detailed treatment is to be found elsewhere. equation
Thus, we may say thd, should lie below the edge of N
the band determined by the oscillators’ frequencies and cor-
respond to a time scale larger than the time scales of the E=mX e,
oscillators. This assumption enables us to choose, as a first
approximation, the nondissipative regime for whieh e obtain the following two equations:
=0,y=0, and there is an exact solution given by the
equation E:—ZE, 'y:i(E—ZT*),
. m 2T,
X =Acodwit+ ¢y), X =-Awsin(ot+¢). (11
which have a stationary solution describing the oscillators at
The energy of théth oscillator divided by mass reads the temperature parametér, given by Eq.(13), or, using
the units of Sec. IIE=2T,,

Wi X

B (12)
B RRrabires E=2T,, y=0.

, Close to the stationary solutions we have the equations for
The masses of the particles are assumed to be emu=am, energy

the oscillators being allowed to differ only in their frequen-

cies w;. Equations(11), from the topological point of view, E=2T.+Z.

mean that the ensemble’s motion belongs to an

N-dimensional torus, the whole phase space being foliated byherefore the equations fa and y acquire the forms
the tori. We shall consider the system at temperatui®ince

the parametew is small, we may take into account the non- Z=- lz_ 211'*, y= @
linear dissipative terms on the right-hand sides of E@§), m m 2T.
within the framework of the averaging approach, that is, by,
substituting the basic equatio(isl) into the right-hand sides On linearizing the equations indicated above, we obtain

Z.

of the exact equations, . 2T, o
Z=-"y, y=-Z
2,2 A2,2 m 2T.
e:—l(i— | 'cos(2wt+2¢)) .
m\ 2 2 and hence the equation fa@r

046130-5



GOLO, SALNIKOV, AND SHAITAN PHYSICAL REVIEW E 70, 046130(2004)

the number of oscillatordl being large, and the dissipative

T constanta small. Our analysis indicates that the nonlinear
dynamics of the model has very interesting specific features
L even in the case of a simple harmonic system, and in this
respect the characteristic frequency of collective oscillations
Q,=Val/m deserves particular attention. Indeed, if the mass

m of a particle, corresponding to the oscillator~40722 g,

. anda~0.1 g/¢, the frequency of the oscillations generated
27173000 E by the thermostat dynamics should be in the region of 100

GHz, that is, the low-frequency region of molecular vibra-

tions. At the same time it is worth noting that the Nosé-
Hoover model corresponds to a Hamiltonian system confined
to a dissipative environment, that is, it comprises a base
FIG. 7. Oscillations round stationary solution. Numerical simu- Hamiltonian system, e.g., oscillators, and a dissipative exten-
lation corresponds to filled area, averaged equations to dashed lingion formed by auxiliary variables; in the present case it is

The data are the same as in Fig. 1. the variabley. A similar system, even though more sophisti-
cated, is the Leggett-Takagi theory of spin dynamics in su-

.« perfluid phases of helium-BL1,12, in which the equations

Z+ EZZ 0, (14)  describing the spin motion are augmented by an equation for
the order parameter that contains a dissipative term. The situ-

which has the form of a harmonic oscillator with the ation is reminiscent of that taking place in the hydrodynami-
frequency cal treatment of viscous phenomena in the GHz region,
where, according to the theory worked out by Mandelstam

\/E and Leontovic(see[13)]), the effects of dissipation can be

m’ accommodated by employing an auxiliary dynamical vari-
. . . . able ¢, which describes certain states of the system, e.g., the
Solutions to Eqs(10) are illustrated in theE-y) plane, in concentration of a chemical reagent. The evoI)l/Jtion equgtions

Fig. 7. for £ have dissipati i
. . pative character, for they should describe the
We may use Eq(14) to find the time spent by the system system’s coming to equilibrium, although the initial equa-

in the region of the phase space corresponding to the energy < tor the system could be of Hamiltonian form. The

interval E, < E< E,. In fact, T“?T” the periodic m<_)tion of the Nosé-Hoover model may turn out to be of a similar kind and

system, we mf_er th_at the visiting frequendg/t, in the av- thus helpful in studying interesting physical problems.

eraged approximation, reads It is also worth noting that for very large systems, for
At . E,—2T. - E; - 2T example, macromolecules, the lowest edge of the oscillator
T | aresing. T —arcsin———-|. (15  band may turn out to be very small, as is suggested by the

max max dispersion law for a harmonic lattice, given by E8), which
It is convenient to use the density of the visiting events pedescribes the dispersion of elastic waves within the Born—

energy interval, von Karméan approximation, i.e., imposing periodic boundary

conditions. The error with respect to the dispersion of the

lim ( 1 ﬂ) - iiarcsinﬂ free lattice is proportional to the ratio of surface sites to the
EE,—0\Ep—E; t 27 dE Ennax— 2T+ total number of lattice sitesee[14]). We see that the lowest

edge of the frequency band for lariyes very small, and the

= 1 application of the Nosé-Hoover thermostat should require
27(Epax— 2T+) intermediate values of the dissipative parameigso that
E-oT. \2]-12 the characteristic frequenc§2, should lie inside the fre-
x{1—<ﬁ) } qguency band of the lattice, and the motion might become
max *

chaotic. These phenomena may turn out to be useful for the
The cusp form of the dashed line for the averaged distrineeds of molecular dynamics.

bution in Fig. 1 is in agreement with the singularity &t

=Eax IN the above equation. ACKNOWLEDGMENTS
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