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Similarity-based cooperation and spatial segregation
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We analyze a cooperative game, where the cooperative act is not based on the previous behavior of the
coplayer, but on the similarity between the players. This system has been studied in a mean-field description
recently[A. Traulsen and H. G. Schuster, Phys. Rev6g 046129(2003]. Here, the spatial extension to a
two-dimensional lattice is studied, where each player interacts with eight players in a Moore neighborhood.
The system shows a strong segregation independent of parameters. The introduction of a local conversion
mechanism towards tolerance allows for four-state cycles and the emergence of spiral waves in the spatial
game. In the case of asymmetric costs of cooperation a rich variety of complex behavior is observed depending
on both cooperation costs. Finally, we study the stabilization of a cooperative fixed point of a forecast rule in
the symmetric game, which corresponds to cooperation across segregation borders. This fixed point becomes
unstable for high cooperation costs, but can be stabilized by a linear feedback mechanism.
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I. INTRODUCTION as agents are forced to cooperate within their own group

24.,25. However, cooperation can evolve from a combina-

. |
The study of complex systems with game- thep retic INteryinn of kin selection and reciprocity, which can promote such
actions has recently attracted a lot of attention in statistic

. ; . . ) n intragroup cooperation. The mechanism that leads to co-
physics, biology, behavioral sciences, and economics. In

operation does not have to be the same for interaction within
contrast to standard game theddy the focus has recently rouns and between arouns. In spatially extended svstems
been on evolutionary game theof2—6]. In particular, the group groups. P y y

prisoner’s dilemmd7] has become the metaphor for the evo-2gents can only prosper if they get sufficient support from
lution of cooperation in populations of selfish individuals. If t€ir neighbors. Hence, cooperation based on similarity will

the game is not repeated, the dominating strategy is to defedf@d {0 @ segregation of different groups in spatially extended
However, repeated interactions of individuals memorizingSyStem(26. . o
the past can establish high levels of cooperation from direct Although the importance of group memberships is
reciprocity[7]. Reciprocity works also indirectly if individu- ~ Stressed in the social sciend@3], segregation is usually not
als can observe the behavior of others and cooperate witfesired in social systems. We raise the question on the mini-
respect to the reputation of othg&9]. mal requirements for agents in order to avoid this kind of
Real world interactions are often restricted to small localsegregation. We introduce a forecast rule that helps to over-
groups. Realizing that territoriality can have strong influ-come the segregation, leading to a population in which
ences on the evolution of cooperation, Axelrod proposed thagents support others regardless of their group membership.
study of a spatially extended prisoner’s dilemfiidi Nowak  The corresponding spatial pattern can be stabilized by a lin-
and May studied a cellular automaton based on the prisonerigar global feedback.
dilemma[10]. They found that reducing interactions to small
local groups can promote cooperation, as cooperative clus-
ters minimize their contacts with neighboring defectors.
Their paper initiated an intensive research on spatially ex- Il. DEFINITION OF THE MODEL
tended games on two-dimensional latti¢@§—14 and net-
work topologieg15-18. However, spatial structure does not  The evolution of cooperation in large populations is usu-
necessarily lead to an increased level of coopera[ﬂ_ﬂ]l ally analyzed in systems based on public goods gdi28ls
Another mechanism that can promote cooperation amongg; each cooperation a cost>0 depending on the tag of
related individuals is kin selectiof20]. Although kin selec- ¢ player is incurred which results in a benefit ¢; for the
tion is controversial in biology, indications for similarity- jnteraction partner. For simplicity, we restrict ourselves to
based interaction mechanlsms ha}ve been found on th_e Mo groups of agents only, red and blue. In every group there
lecular level[21,22. Riolo et al. introduced a model in 46 two kinds of players. Intolerant players support only oth-
wh|c_h agents are equped with traits that allow one to disyrs with the same ta(f =0). Tolerant player¢T=1) support
criminate between different groups of playd@3]. It has  any other player, regardless of his group membership. The
been argued that the model is of limited biological relevancepayoﬁ of every player depends on the strategies of his inter-
action partners. We introduag, nf), n?, andn} for the num-
ber of interaction partners that are tolerant red, intolerant red,
*Electronic address: traulsen@theo-physik.uni-kiel.de tolerant blue, and intolerant blue, respectively. The payoff
"Electronic address: claussen@theo-physik.uni-kiel.de can be written as
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In the following we restrict ourselves [©=c,=c. The sys- ~ -
tem withc, # ¢, is analyzed in Sec. IV. In a single interaction
the payoff isb—c if both players cooperate with each other, ]
—c indicating that the player has been exploited &niddi-
cating that the player has exploited his interaction partnel -

The payoff is zero when both players refused to cooperate 1 I'
The tolerant strategies are dominated by the intolerant stra =

egies, as the payoffs of thHE=1 strategies are never higher
than the payoffs of th@=0 strategies. In well-mixed sys- a A
tems without spatial structure this leads to bistability. One
group becomes extinct and the other group dominates in th| ;g

two evolutionary-stable Nash equilibria with intolerant play- ~

ers of one tag only. An alternating dominance of both group: r I
can be generated if there is a drift towards more toleranc

[29]. . (red, 1) . (blue, 1) (red,0) (blue,0)
I1l. SPATIALLY EXTENDED SYSTEM

Players are arranged on a two-dimensional regular cubic FIG. 1. (Color onling Basic system without mutations. Only ten
lattice with periodic boundary conditions. The system size iggenerations after a random initialization the system reaches a static
N=L X L. Each player interacts with his eight nearest neigh_state. The tolerant players can only survive if they have sufficient
bors (Moore neighborhoogi.e., nj+n,+nJ+n2=8. After ~ Support from their neighbore=0.3, b=1.0,L.=80).
interacting with all the neighbors, the players update their
strategy synchronously. This corresponds to discrete, non- o ) )
overlapping generations. Strategies are updated due to tiéth sufficient support from surrounding playeid. Fig. 1).
deterministic “best takes over” rulg0]; i.e., i switches to Hence, the majority of players will be intolerant when the
the strategy among its nearest neighbors that reached tis¥stem reaches a static state. X 3 cluster of intolerant
highest payoff: agents can always survive, as the player in the center has the
highest possible payoff in his neighborhood. In general, a
tolerant player not interacting with intolerant players of the
other tag can always survive. If he interacts with such play-
If several nearest neighbors with different strategies have thgrs, the cooperation cost determines which kind of clusters
same success, players keep as much of their identity as pogre staple.
siple. Qhoosin_g between swit_ching tag or tolerance, players ag expected26], the system shows a strong segregation.
will switch their tolerance. This ensures that the update rulesgqreqation between different agents in cellular automata
remains deterministic. However, these additional rules appl¥las already been observed in the seminal paper of Schelling
gglye'rr: d\ge:)ynr?rzg Cs?rsaiz NOte thh?;tge ngm;]ztrar:eg)é ofa i)rllaye[r34]. However, in our case segregation is not directly based

P . . gies n i neighborhood, as the ., o hservable traits of others, but on mutual support. Most of
payoffs in his 3x3 neighborhood are involved. Self- )

nt‘}ge players are intolerant. Players that support others across

interactions can be neglected in our case. Hence, the ga tion bord I loited: th t
can be described as a deterministic cellular automaton witHqe segregation borcders are always explorted, they canno

424 ypdate rules. This is in contrast to the usual prisoner,s'SL_Jrvive if the cqoperation cost is too high.. This is_ consi_stent
dilemma, where “only” 2* update rules are necessdfy]. yvlth the mean-field theorf29], where only fixed points with
A modification of the cooperation cost leads to a modifica-Ntolérant players of one tag are stable. _ .
tion of the update rules; see the Appendix for details. The The situation is slightly different if stochastic mutations
extension of the usual prisoner’s dilemma to four strategiegre included, as the system no longer becomes static. Toler-
complicates the application of many tools for spatial gamesance mutations increase the fraction of the tolerant agents, as
as pair approximation[13,14,3], fundamental clusters there is no equilibrium between tolerant and intolerant
[32,33, or mapping to Ising modelgl2]. agents. The tolerance mutations lead towards such an equi-
librium, while the population dynamics works against this
equilibrium. Mutations of the tags can also destabilize clus-
As the tolerant strategies can easily be exploited by intolters, as they introduce new agents into an environment that
erant players from the other group, they can only survivecannot produce such agents by the population dynamics.

s'=s wherej =argmail}. (2)
i eNNG)

A. Segregation in the basic system
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is increased by mutations. After 100 time steps we find
=8.95+0.03(c=0.3; tags and tolerances are mutated with
probability 299, which is significantly higher than the corre-
lation length in the system without mutations. The segrega-
tion properties are not altered if an asynchronous update is
applied instead.

Overall, the segregation properties and correlation length
are governed by the length defined by the size of the neigh-
borhood window. They are only marginally influenced by the
cooperation cost.

B. Emergence of spiral waves from
a local conversion mechanism

The well-mixed system was analyzed rigorously under the
influence of biased conversions towards tolerar2@].
These biased conversions show an alternating dominance of
both groups in the mixed system.

Let us now introduce a local conversion mechanism that
promotes tolerance in a similar way. We assume that an agent
in a neighborhood consisting only of players of his own tag
becomes tolerant, if he did not switch his strategy in the
same time step due to selection. As only intolerant players

FIG. 2. (Color onling Basic system with mutations. With 2% utilize the ability to distinguish between tags this could be
probability, the tag and tolerance are modified independently. As irmotivated by assuming some costs for this cognition system.
the system without mutations, the different tags segregate in spacghese conversions lead to a rock-paper-scissors-like cycle
One hundred generations after a random initialization, the majorityyith four strategies: If the neighbors are red, red agents be-

of small clusters seen in the system without mutatiisFig. 1)

come tolerant. In a red tolerant neighborhood intolerant blue

has vanished due to the destabilizing effect of the mutations. Thi%lgents have the highest payoff. If these dominate the neigh-
leads to a longer correlation length; see text. Colors are as in Fig. E)orhood, the blue players should switch to the tolerant strat-

(c=0.3,b=1.0,L=80).

This leads to the disappearance of small clustefisFig. 2).

egy. Finally, in such a neighborhood the intolerant red agents
gain the highest payoff. This in contrast[®6], where cyclic
dominance is explicitly included in a system with asynchro-

The degree of segregation can be quantified utilizing theyous update.

“spatial dissimilarity index"D [35], defined as

D=5

27

NN

N, Ny’ &

whereN! (N}) is the number of redblue) agents in subre-

gioni andN, (N,) is the total number of re¢blue) agents.
Choosing a X3 neighborhood as subregion we firial

=0.715+£0.00%(c=0.3,N=1000 indicating a strong degree

of segregation, compared to

11 .3/(9).. 35
D==—>1|"]|2j-9=—=~0.273
95125 \i 128

for a random population.D decreases less than 5%

when ¢ is increased(D=0.729+£0.001 forc=0.05 and
D=0.707+0.001 forc=0.95.

This cycle leads to the emergence of rotating spirals. The
arms of these spirals are traveling waves, as in the game of
rock, paper, scissorf87,38 or in public goods games with
volunteering[14,39. The front of such a wave consists of
intolerant agents; these are followed by tolerant agents of the
same tag(cf. Fig. 3. These players can be exploited by
intolerant players with a different tag; hence a new front with
a different tag can invade.

In the case of asynchronous update spirals are replaced by
larger structures moving through the system. However, the
mechanism for the movement of these structures is the same
as for the spiral waves.

To locate the spiral tips quantitatively, the strategies
(r,1), (r,0), (b,1), and (b,0) are associated with discrete
indices 0, 1, 2, and 3, respectively. Interpreting those as four
possible angles of a two-dimensional vector field, the curl
can be calculated from a counterclockwise Stokes path on a

Another possible measure for the segregation is the cor w« o piock. For a continuous field of phaséshe topologi-
relation length\. For simplicity, the correlations have only charge of a closed paihis defined by

been computed for one direction. The probability that an

agent in the distance af has the same color decays s

«g 9 For ¢=0.3 we find a correlation length oh

q:i3€ Ve -df. (4)
277 r

=5.85+£0.02. The correlation length decreases slightly with

increasingc (A\=6.25+0.02 forc=0.05 and\=5.65+0.02

In our case, both space and phase are discrete; the phase is

for c=0.95. As discussed above, mutations lead to the elimi-measured in units of-/2. Along the Stokes path we compute
nation of small clusters. Consequently, the correlation lengththe phase differences
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FIG. 3. (Color onling System with local conversions towards _ _ o
tolerance. Colors are as in Fig. 1. Agents become tolerant if their FIG. 4. (Color onling Topological charges: Colors are as in Fig.
new neighborhood has the same color, this leads to a rock-papet (b) shows the spatial distribution of charges for the strategy dis-

scissors-like cycle. Spirals that generate traveling waves agpear tribution shown in@). The sign +(-) indicates a topological charge
=0.3,b=1.0,L=80). of g= +% (q=—%). Full charges are not stable and disappear imme-

diately after their generatiotic) shows a typical time development
_ of the average charge densify). Initially, (p) drops rapidly. As
Apy = Xi+1j = Xijs topological charges are generated and annihilated, the charge den-
sity fluctates until the system reaches a stationary $tat&0).
Ay =Xit1 41~ Xie1 s
For a random initialization we find a topological charge

A3 =X jr1 = Xiv1 j41, density of (p)=0.219+0.003, which is consistent with the
Ad, = theoretical average value for independent topological charges
Pa=Xij = Xijei- ®) (p>=312:0.21875. The spatial game dynamics quickly re-

In the discrete case a phase difference of two steps, or angtiices the initial topological charge density. However, topo-
ar, may occur and consistently can be interpreted as a zerogical charges are generated and annihilated in an irregular
contribution to the Stokes integrdeading to the possibility manner until the system reaches a stationary state; see Fig. 4.
of half-valued partial charges as discussed bgldwus the
phase differences are mapped on differentgsaccording
to Table I. The topological charge is given by Aq;+Aq, IV. ASYMMETRIC SPATIAL SYSTEM
+Ag;+Adqg,. A typical spiral tip consists of two equal topo-
logical chargesq=t% in nearby positions. In the stationary
regime, the generic case is a pairing of two spirals with dif-
ferent chiralities—i.e., different topological charges regimes, as dominance of red players, spiral waves,(@ic
g=t1—near each other. For completeness, it should b?:ig 5 fo,r details ' e
noted that the resulting curl field is definedlon the dual lattice 'i'hree diﬁereﬁt classes of transitions can be observed in
shifted from _the original one by a Vedb%’i)‘ I Fig. 5. As in the symmetric game, the update rule is modified
A comparison betwegn .the.strgtegy d'St.”bUt.'on and thqf one of the cooperation costs crosses a threshold cost as
corresponding charge distribution is shown in Fig. 4. explained in the Appendix. Such transitions are vertical and
) _ _ horizontal lines in Fig. 5—e.g., the black dotted line in re-
TABLE |. Mapping of phase differences¢; to charge differ-  gion (B,) at ¢,=3b. Note that the transitions shown in Fig. 9

It seems natural to assume that the two different groups
can have two different costs of cooperation. For different
costsc, andcy, in Eg. (1) we find several distinct dynamical

encesAg;. (curvel) can be observed on the diagosatc, in Fig. 5. A
second kind of threshold is determined loy/c,. These

Ad, -3 -2 -1 0 +1 +2 +3 thresholds govern the dynamical behavior and divide the

Ag +1 0 - 0 + 0 - phase plane in Fig. 5 into seven distinct regions. For

cb/cr>§ red agents dominate the population; f:p,n’cr>§
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FIG. 5. Asymmetric system: fraction of red age(@scoded in a
grayscalg in dependence of the cooperation costsand c,. In
region(A,) the population is dominated by red agents; for srogll

FIG. 6. Asymmetric system: average charge density in depen-
dence of the cooperation costgsandc,. The regions are the same

! ; ) S as in Fig. 5. Topological charges can only be found when traveling
intolerant blue agents can survive. In regi@®) intolerant blue  yayes are present—i.e., in regiof@) and (E). The absence of

players form channels in a sea of tolerant red agentsDinred  gpological charges corresponds to the dominance of one group in
tolerant agents dominate again. Regi@) shows spiral waves as  the |imitt— <. The highest charge densities are observed if@e

the_ symmetric game, cf. Fig. 3. Regi¢8,) shows coexistence of regions and ir(E) near the diagonat, =c, (L=100, averages over

spiral waves from(E) and channels froniB,). For c,<c; the dy- 50 time steps and 100 independent realizagions

namics is the same with the role of red and blue agents exchanged.

Structures inside the regions are determined by changes of the up- . . .

date rule. The borders of these structures, e.g. the dotted lines Eqwards tolerance is based on tawstrategies of the neigh-

regions (D)/(E) and (B,), are given by “nea? equations,=a bors and applies also for players that switched their strategies

+bg, see text for detailsL =100, averages over 50 time steps and du€ 0 selection. Hence, now the update depends on the strat-

100 independent realizations egies in a X7 neighborhood. Such a mechanism can be

viewed as a primitive forecast. Players become tolerant if

stationary clusters of intolerant blue agents can survive A[hey expect their neighborhood to cooperate with them in the

c,/c, =2 traveling waves can appear which suppress statior]']e)g g;entet:atmn. Evenin tf]:ls s_ettllng the local conversion rule

ary clusters of intolerant blue agentscgfc <2, However eads fo the emergence of spiral Waves. .

it the cooperation costs are sufficientl hir hsbne rou ,ca It is straightforward to add an equivalent mechanism that

take o (z;pthe OhOl(;) opulation after ; trgné'ent geomg ncreases the fraction of intolerant agents. Tolerant agents
N W populati ! peq can become intolerant in order to protect themselves against

gion (Dy) in F|g. 8. Forc,=<¢ the_ roles of red and_ _blue are exploiters that refuse to cooperate. Therefore, we decrease
exchanged. Finally, we have a third class of transitions wh|cl?he tolerance of an agent if at least two neighbors will prob-

is given by linear equations,=a+bc,. Here, the transition ablv exploit him in the next time ste
threshold is given by a certain slopec,/Ac,=const as for y exp -
the second kind of transitions. However, now one of the o _
costs has to exceed a certain threshold as for the first kind of A. Cooperative fixed point

transitions—e.g., the white dotted line in regid@) of Fig. 5 For c<0.4o we observe cooperation across the segrega-
is given byc,=;b+3c;. tion borders for synchronous update. For asynchronous up-
Itis also possible to describe the phases in the asymmetrigates this fixed point does not become stable. The forecast
system by topological charge densities introduced in Sequle leads to a stable coexistence of red and blue tolerant
1B (cf. Fig. 6). agents that provide help for everybody in their neighborhood
(cf. Fig. 7). As a discrimination between different agents is

V. FEORECAST RULE no longer necessary, this can be seen as a primitive mecha-

nism to overcome segregation. However, although the behav-

Here, we return to a system where both cooperation coster of all agents is independent of the tags, the different tags
are the same. Let us assume that the local conversion rulre still segregated in space. The typical correlation lengths
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FIG. 8. Time evolution of the system with linear feedback. Cost
of cooperation(gray) and fraction of tolerant agentblack). The
fraction of tolerant agents decreases rapidly when the cost reaches
the thresholct=0.5 (f;;,=0.8, «=0.01,c°=0.5,N=200).

eration. One can even observe different stationary structures
that change periodically in which intolerant agents survive;
these resemble the “blinkers” in the “game of lifgf0]. For
c>0.4b the system reaches a stationary state only in very
FIG. 7. (Color onling System with forecast rule. Colors are as rare cases. However, parts of the system are still dominated
in Fig. 1. Agents become tolerant if their neighborhood has thepy tolerant agents. In the case @f 0.5 this is no longer
same color and intolerant if at least two neighbors will refuse tothe case; here, intolerant agents are found in the whole sys-
cooperate. This mechanism allows the coexistence of red and blugm.
tolerant age_nts; here,_ the intolera_nt agents have been eliminated by Note that such a forecast rule cannot stabilize the coop-
the mechanism, leading to a static state 0.3, b=1.0,L.=80). erative fixed point in the spatial prisoner’s dilemifii®], as
defectors have always a higher payoff than neighboring co-
are larger than in the system without conversion mechagperators.
nisms. Forc=0.3 we find\=8.32+0.02. The spatial dis-
similarity index is only slightly higher; we observe
D=0.719+0.005. Surprisingly the mechanism that enables
agents to become intolerant increases the total fraction of For cooperation costs> 0.5 the tolerant fixed point is
tolerant agents, as it helps to stabilize tolerant domains. It iginstable. However, we can enforce cooperative behavior by
interesting that a mechanism that increases intolerance helgéobal feedback on the cooperation costs. In social systems
to eliminate intolerance. However, the mechanism bearthis corresponds to adapting taxes with respect to the state of
some resemblance to the “tit-for-tat” strategy in the iteratedhe society. Specifying a desired fraction of tolerant agents
prisoner’s dilemmd7], which punishes others for not coop- fi,, we update the cost depending on the current fraction of
erating, but can also forgive defectors reestablishing cooptolerant agents;,, as

B. Feedback stabilization

1.0 , 1.0
08 F (a) I (b)
8 8 T L
2 0.6 RS e ———— =
< £ l—‘Iﬁ"—\MN_
504 E a
2 A
0.2 S S
— = 0.6
0.0
00 02 04 06 08 10 00 02 04 06 08 10
C C

FIG. 9. Dependence of different order measures on the cost of coopeation four different update rulega) shows the fraction of
tolerant agents in the system. The donation rate—i.e., the fraction of interactions in which a player cooperated with his coplayer—is shown
in (b). The order measures are shown for the system without mutatnswith stochastic mutationgS), with the local conversion
mechanism described in Sec. IlI(B), and with the forecast rulg) from Sec. V. The sharp steps correspond to modifications of the update
rules(b=1.0,L=100, spatial averages over 50 independent realizations and 50 update steps after a transient period of 50 update steps
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ever, the different groups are still segregated in space.

APPENDIX: INFLUENCE OF THE COST
OF COOPERATION

6b—5c|5b—5¢(8b-8c Due to the discrete nature of the total payoff, sharp steps
appear when the cost of cooperatignyaries. As examples,
we consider the dependence of the fraction of tolerant agents,
fio, @and the donation rate—i.e. the fraction of cooperative
interactions—on the cost of cooperati(see Fig. 9. Due to
(eI RLERTY 8b—8 the symmetry between tags, the fraction of red and blue tol-
erant agents can be computed from the fraction of tolerant
agentsf,,/2, on average. In the same manner the fraction of
intolerant agents of each group can be computed(las
—f.o)/2. The donation rate includes additional information
on the spatial distribution of the agents. The steps that are
FIG. 10. (Color online Example for a modification of the up- Observed in the order measures correspond to modifications
date rule. Colors are as in Fig. 1. The numbers are the pabofits ~ Of the update rule, as described ir0]. The steps occur at the
this neighborhood. This situation is stable & 2/3b, as the play- ~same positions for all order measures. However, the step size
ers withII=6b-5c that exploit the player in the center do not have is different for the fraction of tolerant agents and the dona-

((is1s 5Sb—8c 8b

o0

the maximum payofl1=8b-8c. tion rate(see Fig. 9.
Consider a playex with a payoff I1(x) and a second
= ctt a(fy, - fiy)ct (6) playery with the payoffIl(y) and a different strategy. If a
(0] (0] "

. _third playerz with a payoffll(z) <II(x), II(y) in the neigh-
For eachfy,, the cost fluctuates around a threshold that ishorhood of these two players searches for the best strategy,
determined by a change of the update r(dé the Appen-  his update rule changes aetc* if the sign of IT(x)-II(y)

dix), as shown in Fig. 8 fofy,=0.8. This mechanism can changes at=c*. The corresponding values fofb are given

stabilize points withfi, <1 even forc>0.%. For eachfy,  py
the cost fluctuates around a threshold that is determined by a

change of the update rulef. the Appendi. XPb - X°c = Y’b - Y¢c, (A1)

For the mean-field theory we have a fixed point fof \here o< xP (Y?)<8 is the number of agents that support
=1 [29], which is only stable for very low cooperation costs. x(y) and 0=X° (Y©)<8 is the number of agents that are

;Zgggilr(’ ;P(;fnflé(eq?G?omt cannot be stabilized with the IInearsupported bw(y). For the situation shown in Fig. 10 we find

for the center playedl(z)=5b-8c, for his left neighbor
I1(x)=6b—-5c>1I(z), and for his right neighboil(y)=8b

VI. CONCLUSIONS —-8c>11(2). Hence, we find a modification of the update rule
for
We have investigated spatial segregation, pattern forma- b ub
tion, and control in a spatial version of a public goods game e 2 (A2)
with cooperation based on the similarity between players. Xe-Yye" 377

This type of model may establish a useful approach for a . _ )

large variety of economical and social systems, where agenfs0 ¢>C" the center player will switch tolerance and group
may act not only upon economical considerations, but alsgnembership. Other transitions can be found in th_e same way,
based on similarity or group membership. Generalizations t&/though the method of fundamental clust¢8s] is more
more detailed agents can be performed in a straightforwar§omPplicated due to the high number of possible configura-
manner, yet our four-state model already is capable of showHONS:
ing different phase states from stationary segregation to com-
plex spatiotemporal behavior.

Particularly, it is interesting to note that a simple forecast We thank H. G. Schuster for raising attention to this topic
rule can help to overcome segregation and lead to a stablnd stimulating discussions. A.T. acknowledges support by
pattern of cooperating agents, as regions with limited coopthe Studienstiftung des deutschen Volk&erman National
eration at the borders between groups are eliminated. HowAcademic Foundation

ACKNOWLEDGMENTS

046128-7



A. TRAULSEN AND J. C. CLAUSSEN

[1] J. v. Neumann and O. Morgensteriiheory of Games and
Economic Behavior(Princeton University Press, Princeton,
1953.

[2] J. M. Smith,Evolution and the Theory of GaméSambridge
University Press, Cambridge, England, 1982

[3] H. Gintis, Game Theory EvolvingPrinceton University Press,
Princeton, 2000

[4] J. Hofbauer and K. Sigmundvolutionary Games and Popu-
lation DynamicgCambridge University Press, Cambridge, En-
gland, 1998

[5] M. A. Nowak and K. Sigmund, Scienc803 793 (2004).

[6] M. A. Nowak, A. Sasaki, C. Taylor, and D. Fudenberg, Nature

(London 428 646 (2004).
[7] R. Axelrod, The Evolution of Cooperatio(Basic Books, New
York, 1984).
[8] M. A. Nowak and K. Sigmund, Naturé_ondon 393 573
(1998.
[9] M. A. Nowak and K. Sigmund, J. Theor. Biol194, 561
(1998.
[10] M. A. Nowak and R. M. May, NaturgLondon 359 826
(1992.
[11] K. Lindgren and M. Nordahl, Physica 35, 292(1994).
[12] A. V. M. Herz, J. Theor. Biol.169, 65 (1994).
[13] G. Szabd6 and C. Toke, Phys. Rev.9B, 69 (1998.
[14] G. Szab6 and C. Hauert, Phys. Rev. L&®, 118101(2002.
[15] G. Abramson and M. Kuperman, Phys. Rev.&3, 030901
(200D.
[16] H. Ebel and S. Bornholdt, Phys. Rev. @&, 056118(2002.

[17] P. Holme, A. Trusina, B. J. Kim, and P. Minnhagen, Phys. Rev.

E 68, 030901(2003.
[18] G. Szab6 and J. Vukov, Phys. Rev.@, 036107(2004).
[19] C. Hauert and M. Doebeli, Natukeondon 428 643(2004).
[20] W. D. Hamilton, Am. Nat.97, 354 (1963.
[21] P. E. Turner and L. Chao, Natufeondon 398 441(1999.

PHYSICAL REVIEW E/0, 046128(2004)

[22] M. E. Taga and B. L. Bassler, Proc. Natl. Acad. Sci. U.S.A.
100, 14549(2003.

[23] R. L. Riolo, M. D. Cohen, and R. Axelrod, Natuteondon)
414, 441(2007).

[24] G. Roberts and T. N. Sherratt, Natu(eondon 418 499
(2002.

[25] C. Hauert(private communication

[26] K. Sigmund and M. A. Nowak, Naturé.ondon 414 403
(2001).

[27] R. Axelrod and R. A. Hammond, iRroceedings of the Mid-
west Political Science Convention, Chicago, April 3—6, 2003
available online at http://www.personal.umich.€@dwe/
research/AxHamm_Ethno.pdf

[28] G. Hardin, Sciencel62, 1243(1968.

[29] A. Traulsen and H. G. Schuster, Phys. Rev.6B, 046129
(2003.

[30] C. Hauert, Int. J. Bifurcation Chaos Appl. Sci. EntR, 1531
(2002.

[31] G. Szab6 and A. Szolnoki, Phys. Rev.33, 2196(1996).

[32] T. Killingback, M. Doebeli, and N. Knowlton, Proc. R. Soc.
London, Ser. B266, 1723(1999.

[33] C. Hauert, Proc. R. Soc. London, Ser.Z68 761 (2001).

[34] T. C. Schelling, J. Math. Socioll, 143(1971).

[35] O. B. Duncan and B. Duncan, Am. Sociol. Re20, 210
(1955.

[36] G. Szabo and G. A. Sznaider, Phys. Re\6& 031911(2004).

[37] M. Frean and E. R. Abraham, Proc. R. Soc. London, Ser. B
268 1323(2001).

[38] B. Kerr, M. A. Riley, M. W. Feldman, and B. J. M. Bohannan,
Nature(London) 418 171(2002.

[39] C. Hauert, S. De Monte, J. Hofbauer, and K. Sigmund, Science
296, 1129(2002.

[40] M. Gardner, Sci. Am.223 120(1970.

046128-8



