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We analyze a cooperative game, where the cooperative act is not based on the previous behavior of the
coplayer, but on the similarity between the players. This system has been studied in a mean-field description
recently[A. Traulsen and H. G. Schuster, Phys. Rev. E68, 046129(2003)]. Here, the spatial extension to a
two-dimensional lattice is studied, where each player interacts with eight players in a Moore neighborhood.
The system shows a strong segregation independent of parameters. The introduction of a local conversion
mechanism towards tolerance allows for four-state cycles and the emergence of spiral waves in the spatial
game. In the case of asymmetric costs of cooperation a rich variety of complex behavior is observed depending
on both cooperation costs. Finally, we study the stabilization of a cooperative fixed point of a forecast rule in
the symmetric game, which corresponds to cooperation across segregation borders. This fixed point becomes
unstable for high cooperation costs, but can be stabilized by a linear feedback mechanism.
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I. INTRODUCTION

The study of complex systems with game-theoretic inter-
actions has recently attracted a lot of attention in statistical
physics, biology, behavioral sciences, and economics. In
contrast to standard game theory[1] the focus has recently
been on evolutionary game theory[2–6]. In particular, the
prisoner’s dilemma[7] has become the metaphor for the evo-
lution of cooperation in populations of selfish individuals. If
the game is not repeated, the dominating strategy is to defect.
However, repeated interactions of individuals memorizing
the past can establish high levels of cooperation from direct
reciprocity[7]. Reciprocity works also indirectly if individu-
als can observe the behavior of others and cooperate with
respect to the reputation of others[8,9].

Real world interactions are often restricted to small local
groups. Realizing that territoriality can have strong influ-
ences on the evolution of cooperation, Axelrod proposed the
study of a spatially extended prisoner’s dilemma[7]. Nowak
and May studied a cellular automaton based on the prisoner’s
dilemma[10]. They found that reducing interactions to small
local groups can promote cooperation, as cooperative clus-
ters minimize their contacts with neighboring defectors.
Their paper initiated an intensive research on spatially ex-
tended games on two-dimensional lattices[11–14] and net-
work topologies[15–18]. However, spatial structure does not
necessarily lead to an increased level of cooperation[19].

Another mechanism that can promote cooperation among
related individuals is kin selection[20]. Although kin selec-
tion is controversial in biology, indications for similarity-
based interaction mechanisms have been found on the mo-
lecular level [21,22]. Riolo et al. introduced a model in
which agents are equipped with traits that allow one to dis-
criminate between different groups of players[23]. It has
been argued that the model is of limited biological relevance,

as agents are forced to cooperate within their own group
[24,25]. However, cooperation can evolve from a combina-
tion of kin selection and reciprocity, which can promote such
an intragroup cooperation. The mechanism that leads to co-
operation does not have to be the same for interaction within
groups and between groups. In spatially extended systems
agents can only prosper if they get sufficient support from
their neighbors. Hence, cooperation based on similarity will
lead to a segregation of different groups in spatially extended
system[26].

Although the importance of group memberships is
stressed in the social sciences[27], segregation is usually not
desired in social systems. We raise the question on the mini-
mal requirements for agents in order to avoid this kind of
segregation. We introduce a forecast rule that helps to over-
come the segregation, leading to a population in which
agents support others regardless of their group membership.
The corresponding spatial pattern can be stabilized by a lin-
ear global feedback.

II. DEFINITION OF THE MODEL

The evolution of cooperation in large populations is usu-
ally analyzed in systems based on public goods games[28].
For each cooperation a costci .0 depending on the tag of
the player is incurred which results in a benefitb.ci for the
interaction partner. For simplicity, we restrict ourselves to
two groups of agents only, red and blue. In every group there
are two kinds of players. Intolerant players support only oth-
ers with the same tagsT=0d. Tolerant playerssT=1d support
any other player, regardless of his group membership. The
payoff of every player depends on the strategies of his inter-
action partners. We introducen1

r , n0
r , n1

b, andn0
b for the num-

ber of interaction partners that are tolerant red, intolerant red,
tolerant blue, and intolerant blue, respectively. The payoff
can be written as
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Psxd =5
sb − crdsn0

r + n1
r + n1

bd − crn0
b for x = sred,1d,

sb − crdsn0
r + n1

r d + bn1
b for x = sred,0d,

sb − cbdsn0
b + n1

b + n1
r d − crn0

b for x = sblue,1d,

sb − cbdsn0
b + n1

bd + bn1
r for x = sblue,0d.

6
s1d

In the following we restrict ourselves tocr =cb=c. The sys-
tem withcr Þcb is analyzed in Sec. IV. In a single interaction
the payoff isb−c if both players cooperate with each other,
−c indicating that the player has been exploited andb indi-
cating that the player has exploited his interaction partner.
The payoff is zero when both players refused to cooperate.
The tolerant strategies are dominated by the intolerant strat-
egies, as the payoffs of theT=1 strategies are never higher
than the payoffs of theT=0 strategies. In well-mixed sys-
tems without spatial structure this leads to bistability. One
group becomes extinct and the other group dominates in the
two evolutionary-stable Nash equilibria with intolerant play-
ers of one tag only. An alternating dominance of both groups
can be generated if there is a drift towards more tolerance
[29].

III. SPATIALLY EXTENDED SYSTEM

Players are arranged on a two-dimensional regular cubic
lattice with periodic boundary conditions. The system size is
N=L3L. Each player interacts with his eight nearest neigh-
bors (Moore neighborhood)—i.e., n0

r +n1
r +n0

b+n1
b=8. After

interacting with all the neighbors, the players update their
strategy synchronously. This corresponds to discrete, non-
overlapping generations. Strategies are updated due to the
deterministic “best takes over” rule[30]; i.e., i switches to
the strategy among its nearest neighbors that reached the
highest payoff:

si
t+1 = sj

t where j = argmax
jPNNsid

P j
t . s2d

If several nearest neighbors with different strategies have the
same success, players keep as much of their identity as pos-
sible. Choosing between switching tag or tolerance, players
will switch their tolerance. This ensures that the update rule
remains deterministic. However, these additional rules apply
only in very rare cases. Note that the new strategy of a player
depends on the strategies in his 535 neighborhood, as the
payoffs in his 333 neighborhood are involved. Self-
interactions can be neglected in our case. Hence, the game
can be described as a deterministic cellular automaton with
424 update rules. This is in contrast to the usual prisoner’s
dilemma, where “only” 224 update rules are necessary[10].
A modification of the cooperation cost leads to a modifica-
tion of the update rules; see the Appendix for details. The
extension of the usual prisoner’s dilemma to four strategies
complicates the application of many tools for spatial games,
as pair approximation[13,14,31], fundamental clusters
[32,33], or mapping to Ising models[12].

A. Segregation in the basic system

As the tolerant strategies can easily be exploited by intol-
erant players from the other group, they can only survive

with sufficient support from surrounding players(cf. Fig. 1).
Hence, the majority of players will be intolerant when the
system reaches a static state. A 333 cluster of intolerant
agents can always survive, as the player in the center has the
highest possible payoff in his neighborhood. In general, a
tolerant player not interacting with intolerant players of the
other tag can always survive. If he interacts with such play-
ers, the cooperation cost determines which kind of clusters
are stable.

As expected[26], the system shows a strong segregation.
Segregation between different agents in cellular automata
has already been observed in the seminal paper of Schelling
[34]. However, in our case segregation is not directly based
on observable traits of others, but on mutual support. Most of
the players are intolerant. Players that support others across
the segregation borders are always exploited; they cannot
survive if the cooperation cost is too high. This is consistent
with the mean-field theory[29], where only fixed points with
intolerant players of one tag are stable.

The situation is slightly different if stochastic mutations
are included, as the system no longer becomes static. Toler-
ance mutations increase the fraction of the tolerant agents, as
there is no equilibrium between tolerant and intolerant
agents. The tolerance mutations lead towards such an equi-
librium, while the population dynamics works against this
equilibrium. Mutations of the tags can also destabilize clus-
ters, as they introduce new agents into an environment that
cannot produce such agents by the population dynamics.

FIG. 1. (Color online) Basic system without mutations. Only ten
generations after a random initialization the system reaches a static
state. The tolerant players can only survive if they have sufficient
support from their neighborssc=0.3, b=1.0, L=80d.
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This leads to the disappearance of small clusters(cf. Fig. 2).
The degree of segregation can be quantified utilizing the

“spatial dissimilarity index”D [35], defined as

D =
1

2o
j
UNr

j

Nr
−

Nb
j

Nb
U , s3d

whereNr
i sNb

i d is the number of red(blue) agents in subre-
gion i and Nr sNbd is the total number of red(blue) agents.
Choosing a 333 neighborhood as subregion we findD
=0.715±0.001sc=0.3, N=1000d indicating a strong degree
of segregation, compared to

D =
1

9

1

512oj=0

9 S9

i
Du2j − 9u =

35

128
< 0.273

for a random population.D decreases less than 5%
when c is increased(D=0.729±0.001 for c=0.05 and
D=0.707±0.001 forc=0.95).

Another possible measure for the segregation is the cor-
relation lengthl. For simplicity, the correlations have only
been computed for one direction. The probability that an
agent in the distance ofd has the same color decays asp
~e−d/l. For c=0.3 we find a correlation length ofl
=5.85±0.02. The correlation length decreases slightly with
increasingc (l=6.25±0.02 forc=0.05 andl=5.65±0.02
for c=0.95). As discussed above, mutations lead to the elimi-
nation of small clusters. Consequently, the correlation length

is increased by mutations. After 100 time steps we findl
=8.95±0.03(c=0.3; tags and tolerances are mutated with
probability 2%), which is significantly higher than the corre-
lation length in the system without mutations. The segrega-
tion properties are not altered if an asynchronous update is
applied instead.

Overall, the segregation properties and correlation length
are governed by the length defined by the size of the neigh-
borhood window. They are only marginally influenced by the
cooperation costc.

B. Emergence of spiral waves from
a local conversion mechanism

The well-mixed system was analyzed rigorously under the
influence of biased conversions towards tolerance[29].
These biased conversions show an alternating dominance of
both groups in the mixed system.

Let us now introduce a local conversion mechanism that
promotes tolerance in a similar way. We assume that an agent
in a neighborhood consisting only of players of his own tag
becomes tolerant, if he did not switch his strategy in the
same time step due to selection. As only intolerant players
utilize the ability to distinguish between tags this could be
motivated by assuming some costs for this cognition system.
These conversions lead to a rock-paper-scissors-like cycle
with four strategies: If the neighbors are red, red agents be-
come tolerant. In a red tolerant neighborhood intolerant blue
agents have the highest payoff. If these dominate the neigh-
borhood, the blue players should switch to the tolerant strat-
egy. Finally, in such a neighborhood the intolerant red agents
gain the highest payoff. This in contrast to[36], where cyclic
dominance is explicitly included in a system with asynchro-
nous update.

This cycle leads to the emergence of rotating spirals. The
arms of these spirals are traveling waves, as in the game of
rock, paper, scissors[37,38] or in public goods games with
volunteering[14,39]. The front of such a wave consists of
intolerant agents; these are followed by tolerant agents of the
same tag(cf. Fig. 3). These players can be exploited by
intolerant players with a different tag; hence a new front with
a different tag can invade.

In the case of asynchronous update spirals are replaced by
larger structures moving through the system. However, the
mechanism for the movement of these structures is the same
as for the spiral waves.

To locate the spiral tips quantitatively, the strategies
sr ,1d , sr ,0d , sb,1d, and sb,0d are associated with discrete
indices 0, 1, 2, and 3, respectively. Interpreting those as four
possible angles of a two-dimensional vector field, the curl
can be calculated from a counterclockwise Stokes path on a
232 block. For a continuous field of phasesf the topologi-
cal charge of a closed pathG is defined by

q =
1

2p
R

G

¹W f ·drW. s4d

In our case, both space and phase are discrete; the phase is
measured in units ofp /2. Along the Stokes path we compute
the phase differences

FIG. 2. (Color online) Basic system with mutations. With 2%
probability, the tag and tolerance are modified independently. As in
the system without mutations, the different tags segregate in space.
One hundred generations after a random initialization, the majority
of small clusters seen in the system without mutations(cf. Fig. 1)
has vanished due to the destabilizing effect of the mutations. This
leads to a longer correlation length; see text. Colors are as in Fig. 1
sc=0.3, b=1.0, L=80d.
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Df1 = xi+1,j − xi,j ,

Df2 = xi+1,j+1 − xi+1,j ,

Df3 = xi,j+1 − xi+1,j+1,

Df4 = xi,j − xi,j+1. s5d

In the discrete case a phase difference of two steps, or angle
p, may occur and consistently can be interpreted as a zero
contribution to the Stokes integral(leading to the possibility
of half-valued partial charges as discussed below). Thus the
phase differences are mapped on differencesDqi according
to Table I. The topological charge is given byq=Dq1+Dq2
+Dq3+Dq4. A typical spiral tip consists of two equal topo-
logical chargesq= ± 1

2 in nearby positions. In the stationary
regime, the generic case is a pairing of two spirals with dif-
ferent chiralities—i.e., different topological charges
q= ±1—near each other. For completeness, it should be
noted that the resulting curl field is defined on the dual lattice
shifted from the original one by a vectors 1

2 , 1
2

d.
A comparison between the strategy distribution and the

corresponding charge distribution is shown in Fig. 4.

For a random initialization we find a topological charge
density of krl=0.219±0.003, which is consistent with the
theoretical average value for independent topological charges
krl= 7

32=0.21875. The spatial game dynamics quickly re-
duces the initial topological charge density. However, topo-
logical charges are generated and annihilated in an irregular
manner until the system reaches a stationary state; see Fig. 4.

IV. ASYMMETRIC SPATIAL SYSTEM

It seems natural to assume that the two different groups
can have two different costs of cooperation. For different
costscr andcb in Eq. (1) we find several distinct dynamical
regimes, as dominance of red players, spiral waves, etc.(cf.
Fig. 5 for details).

Three different classes of transitions can be observed in
Fig. 5. As in the symmetric game, the update rule is modified
if one of the cooperation costs crosses a threshold cost as
explained in the Appendix. Such transitions are vertical and
horizontal lines in Fig. 5—e.g., the black dotted line in re-
gion sBrd at cr =

1
3b. Note that the transitions shown in Fig. 9

(curveL) can be observed on the diagonalcr =cb in Fig. 5. A
second kind of threshold is determined bycr /cb. These
thresholds govern the dynamical behavior and divide the
phase plane in Fig. 5 into seven distinct regions. For
cb/cr .

8
3 red agents dominate the population; forcb/cr .

8
3

FIG. 3. (Color online) System with local conversions towards
tolerance. Colors are as in Fig. 1. Agents become tolerant if their
new neighborhood has the same color, this leads to a rock-paper-
scissors-like cycle. Spirals that generate traveling waves appearsc
=0.3, b=1.0, L=80d.

TABLE I. Mapping of phase differencesDfi to charge differ-
encesDqi.

Dfi −3 −2 −1 0 +1 +2 +3

Dqi +1
4 0 −1

4 0 +1
4 0 −1

4

FIG. 4. (Color online) Topological charges: Colors are as in Fig.
1. (b) shows the spatial distribution of charges for the strategy dis-
tribution shown in(a). The sign +s−d indicates a topological charge
of q= + 1

2
sq=−1

2
d. Full charges are not stable and disappear imme-

diately after their generation.(c) shows a typical time development
of the average charge densitykrl. Initially, krl drops rapidly. As
topological charges are generated and annihilated, the charge den-
sity fluctates until the system reaches a stationary statesL=50d.
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stationary clusters of intolerant blue agents can survive. At
cb/cr =2 traveling waves can appear which suppress station-
ary clusters of intolerant blue agents atcb/cr ,

8
5. However,

if the cooperation costs are sufficiently high, one group can
take over the whole population after a transient period[re-
gion sDrd in Fig. 5]. For cb,cr the roles of red and blue are
exchanged. Finally, we have a third class of transitions which
is given by linear equationscb=a+bcr. Here, the transition
threshold is given by a certain slopeDcb/Dcr =const as for
the second kind of transitions. However, now one of the
costs has to exceed a certain threshold as for the first kind of
transitions—e.g., the white dotted line in regionsDd of Fig. 5
is given bycb= 1

4b+ 3
8cr.

It is also possible to describe the phases in the asymmetric
system by topological charge densities introduced in Sec.
III B (cf. Fig. 6).

V. FORECAST RULE

Here, we return to a system where both cooperation costs
are the same. Let us assume that the local conversion rule

towards tolerance is based on thenewstrategies of the neigh-
bors and applies also for players that switched their strategies
due to selection. Hence, now the update depends on the strat-
egies in a 737 neighborhood. Such a mechanism can be
viewed as a primitive forecast. Players become tolerant if
they expect their neighborhood to cooperate with them in the
next generation. Even in this setting the local conversion rule
leads to the emergence of spiral waves.

It is straightforward to add an equivalent mechanism that
increases the fraction of intolerant agents. Tolerant agents
can become intolerant in order to protect themselves against
exploiters that refuse to cooperate. Therefore, we decrease
the tolerance of an agent if at least two neighbors will prob-
ably exploit him in the next time step.

A. Cooperative fixed point

For c,0.4b we observe cooperation across the segrega-
tion borders for synchronous update. For asynchronous up-
dates this fixed point does not become stable. The forecast
rule leads to a stable coexistence of red and blue tolerant
agents that provide help for everybody in their neighborhood
(cf. Fig. 7). As a discrimination between different agents is
no longer necessary, this can be seen as a primitive mecha-
nism to overcome segregation. However, although the behav-
ior of all agents is independent of the tags, the different tags
are still segregated in space. The typical correlation lengths

FIG. 5. Asymmetric system: fraction of red agents(encoded in a
grayscale) in dependence of the cooperation costscb and cr. In
regionsArd the population is dominated by red agents; for smallcb

intolerant blue agents can survive. In regionsBrd intolerant blue
players form channels in a sea of tolerant red agents. InsDrd red
tolerant agents dominate again. RegionsEd shows spiral waves as
the symmetric game, cf. Fig. 3. RegionsCrd shows coexistence of
spiral waves fromsEd and channels fromsBrd. For cb,cr the dy-
namics is the same with the role of red and blue agents exchanged.
Structures inside the regions are determined by changes of the up-
date rule. The borders of these structures, e.g. the dotted lines in
regions sDbd / sEd and sBrd, are given by linear equationscb=a
+bcr, see text for details(L=100, averages over 50 time steps and
100 independent realizations).

FIG. 6. Asymmetric system: average charge density in depen-
dence of the cooperation costscb andcr. The regions are the same
as in Fig. 5. Topological charges can only be found when traveling
waves are present—i.e., in regionssCd and sEd. The absence of
topological charges corresponds to the dominance of one group in
the limit t→`. The highest charge densities are observed in thesCd
regions and insEd near the diagonalcr =cb (L=100, averages over
50 time steps and 100 independent realizations).
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are larger than in the system without conversion mecha-
nisms. Forc=0.3 we find l=8.32±0.02. The spatial dis-
similarity index is only slightly higher; we observe
D=0.719±0.005. Surprisingly the mechanism that enables
agents to become intolerant increases the total fraction of
tolerant agents, as it helps to stabilize tolerant domains. It is
interesting that a mechanism that increases intolerance helps
to eliminate intolerance. However, the mechanism bears
some resemblance to the “tit-for-tat” strategy in the iterated
prisoner’s dilemma[7], which punishes others for not coop-
erating, but can also forgive defectors reestablishing coop-

eration. One can even observe different stationary structures
that change periodically in which intolerant agents survive;
these resemble the “blinkers” in the “game of life”[40]. For
c.0.4b the system reaches a stationary state only in very
rare cases. However, parts of the system are still dominated
by tolerant agents. In the case ofc.0.5b this is no longer
the case; here, intolerant agents are found in the whole sys-
tem.

Note that such a forecast rule cannot stabilize the coop-
erative fixed point in the spatial prisoner’s dilemma[10], as
defectors have always a higher payoff than neighboring co-
operators.

B. Feedback stabilization

For cooperation costsc.0.5b the tolerant fixed point is
unstable. However, we can enforce cooperative behavior by
global feedback on the cooperation costs. In social systems
this corresponds to adapting taxes with respect to the state of
the society. Specifying a desired fraction of tolerant agents
f tol

! we update the cost depending on the current fraction of
tolerant agentsf tol

t as

FIG. 8. Time evolution of the system with linear feedback. Cost
of cooperation(gray) and fraction of tolerant agents(black). The
fraction of tolerant agents decreases rapidly when the cost reaches
the thresholdc=0.5 sf tol

! =0.8, a=0.01,c0=0.5, N=200d.

FIG. 9. Dependence of different order measures on the cost of cooperation,c, for four different update rules.(a) shows the fraction of
tolerant agents in the system. The donation rate—i.e., the fraction of interactions in which a player cooperated with his coplayer—is shown
in (b). The order measures are shown for the system without mutationssNd, with stochastic mutationssSd, with the local conversion
mechanism described in Sec. III BsLd, and with the forecast rulesFd from Sec. V. The sharp steps correspond to modifications of the update
rules (b=1.0, L=100, spatial averages over 50 independent realizations and 50 update steps after a transient period of 50 update steps).

FIG. 7. (Color online) System with forecast rule. Colors are as
in Fig. 1. Agents become tolerant if their neighborhood has the
same color and intolerant if at least two neighbors will refuse to
cooperate. This mechanism allows the coexistence of red and blue
tolerant agents; here, the intolerant agents have been eliminated by
the mechanism, leading to a static statesc=0.3, b=1.0, L=80d.
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ct+1 = ct + asf tol
! − f tol

t dct. s6d

For eachf tol
! , the cost fluctuates around a threshold that is

determined by a change of the update rule(cf. the Appen-
dix), as shown in Fig. 8 forf tol

! =0.8. This mechanism can
stabilize points withf tol

! ,1 even forc.0.5b. For eachf tol
!

the cost fluctuates around a threshold that is determined by a
change of the update rule(cf. the Appendix).

For the mean-field theory we have a fixed point forf tol
=1 [29], which is only stable for very low cooperation costs.
However, this fixed point cannot be stabilized with the linear
feedback from Eq.(6).

VI. CONCLUSIONS

We have investigated spatial segregation, pattern forma-
tion, and control in a spatial version of a public goods game
with cooperation based on the similarity between players.
This type of model may establish a useful approach for a
large variety of economical and social systems, where agents
may act not only upon economical considerations, but also
based on similarity or group membership. Generalizations to
more detailed agents can be performed in a straightforward
manner, yet our four-state model already is capable of show-
ing different phase states from stationary segregation to com-
plex spatiotemporal behavior.

Particularly, it is interesting to note that a simple forecast
rule can help to overcome segregation and lead to a stable
pattern of cooperating agents, as regions with limited coop-
eration at the borders between groups are eliminated. How-

ever, the different groups are still segregated in space.

APPENDIX: INFLUENCE OF THE COST
OF COOPERATION

Due to the discrete nature of the total payoff, sharp steps
appear when the cost of cooperation,c, varies. As examples,
we consider the dependence of the fraction of tolerant agents,
f tol, and the donation rate—i.e. the fraction of cooperative
interactions—on the cost of cooperation(see Fig. 9). Due to
the symmetry between tags, the fraction of red and blue tol-
erant agents can be computed from the fraction of tolerant
agents,f tol /2, on average. In the same manner the fraction of
intolerant agents of each group can be computed ass1
− f told /2. The donation rate includes additional information
on the spatial distribution of the agents. The steps that are
observed in the order measures correspond to modifications
of the update rule, as described in[10]. The steps occur at the
same positions for all order measures. However, the step size
is different for the fraction of tolerant agents and the dona-
tion rate(see Fig. 9).

Consider a playerx with a payoff Psxd and a second
player y with the payoffPsyd and a different strategy. If a
third playerz with a payoffPszd,Psxd , Psyd in the neigh-
borhood of these two players searches for the best strategy,
his update rule changes atc=c! if the sign of Psxd−Psyd
changes atc=c!. The corresponding values forc/b are given
by

Xbb − Xcc = Ybb − Ycc, sA1d

where 0øXb sYbdø8 is the number of agents that support
xsyd and 0øXc sYcdø8 is the number of agents that are
supported byxsyd. For the situation shown in Fig. 10 we find
for the center playerPszd=5b−8c, for his left neighbor
Psxd=6b−5c.Pszd, and for his right neighborPsyd=8b
−8c.Pszd. Hence, we find a modification of the update rule
for

c! =
Xb − Yb

Xc − Ycb =
2

3
b. sA2d

For c.c! the center player will switch tolerance and group
membership. Other transitions can be found in the same way,
although the method of fundamental clusters[33] is more
complicated due to the high number of possible configura-
tions.
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FIG. 10. (Color online) Example for a modification of the up-
date rule. Colors are as in Fig. 1. The numbers are the payoffsP for
this neighborhood. This situation is stable forcø2/3b, as the play-
ers withP=6b−5c that exploit the player in the center do not have
the maximum payoffP=8b−8c.
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