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The problem of assigning probability distributions which reflect the prior information available about ex-
periments is one of the major stumbling blocks in the use of Bayesian methods of data analysis. In this paper
the method of maximun(relative) entropy(ME) is used to translate the information contained in the known
form of the likelihood into a prior distribution for Bayesian inference. The argument is inspired and guided by
intuition gained from the successful use of ME methods in statistical mechanics. For experiments that cannot
be repeated the resulting “entropic prior” is formally identical with the Einstein fluctuation formula. For
repeatable experiments, however, the expected value of the entropy of the likelihood turns out to be relevant
information that must be included in the analysis. The important case of a Gaussian likelihood is treated in
detail.
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betweend andy we must use Bayes’ theorem. The updated
I. INTRODUCTION or posterior distribution ip(8|y) « w(8)p(y| 6); the relation

The inference of physical quantities from data generate&’ew"_eerw and g is supplled_ by a_known mc_)dqd(y| 0?‘; t_he”
either by experiment or by numerical simulation is a ubiqui-Prévious knowledge aboutis codified both into the “prior
tous and often cumbersome task. Whether the data is coprobability 7(¢) and also in the “likelihood” distribution
rupted by noise, hampered by finite resolution or tied up inPY 0). ) ) ) o
correlations, in principle it should always be possible to im-  The selection of the priorr(6) is a controversial issue
prove the analysis by taking into account, in addition to thewhich has generated an enormous literafd. The diffi--
information contained in the data, whatever other knowledgéulty is that it is not clear how to carry out an objective
one might have about the physical quantities to be inferred ofranslation of our previous beliefs abotitnto a distribution
about how the data was generated. The way to link this priofr(6). One reasonable attitude is to admit subjectivity and
information with the new information in the data is found in recognize that different individuals may start from the same
Bayesian probability theory. information and legitimately end with different translations.

Bayesian methods are increasingly popular in phygigs In simple cases experience and physical intuition have led to
They are essential whenever repeating the experiment mar@y considerable measure of success, but we are often con-
times in order to reduce the measurement uncertainty is efronted with new complex situations involving perhaps pa-
ther too expensive or time Consuming_ This is a commorameter spaces of hlgh dimensionality where we have neither
situation in astronomy and astrophysje$, and also in large @ previous experience nor a reliable intuition.
laboratory experiments as in fusigB] and in high energy On the other hand, there are special cases where some
physics[4]. Other typical uses in physics arise in spectrumdegree of objectivity can be attained. One example is pro-
restoration, in i||-posed inversion prob|er[f5_7_| and when vided by those cases where symmetries are known to hold;

separating a signal from an unknown backgro{@idAppli-  requirements of invariance can go a long way towards the
cations include mass spectrometf9], Rutherford back- complete specification of a prior. _
scattering[10] and nuclear magnetic resonarjd4y. A second example is given by Bayes’ theorem itself. Sup-

From a general point of view the problem of inductive POSse two batches of datg, andy, are to be processed. Start
inference is to update from a prior probability distribution to from a subjective priorr,(6) and use Bayes to process the
a posterior distribution when new information becomesdatay; to update to the posterign(6|y,) = m(6)p(y1| ). To
available. The challenge is to develop updating methods thatrocess the datay, one uses Bayes’ theorem again,
are systematic and objective. Two methods have been fourl 8|y1Y») = m5(6)p(y.| 6y1), where the new prior is given by
which are of very broad applicability: one is based on Bayes'm,(6)=p(6|y;). While there is nothing new in this well-
theorem and the other is based on the maximization of erknown example of Bayesian updating it is interesting to note
tropy. The choice between these two updating methods ithat we are confronted with a situation in which information
dictated by the nature of the information being processed. of a very special kindthe datay,) has been incorporated into

When we want to update our beliefs about the values o& distribution(the prior 7r,) in a totally objective way. This
certain quantitie® on the basis of the observed values of raises the question of whether other examples exist where
other quantitiey — the data — and of some known relation information can be objectively incorporated into a prior dis-
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tribution. The purpose of this paper is to offer an affirmativepriors is misplaced: if we do not know the likelihood, then
answer by showing explicitly which type of information and prior distributions are not needed anyway. The prior thus
which is the appropriate method for processing it. obtained is an “entropic prior.” The name and the first pro-
Other attempts to seek objectivity in assigning priors haveposal of a prior of this kind is due to Skillingl5] for the
sought to characterize that elusive state of knowledge whicbase of discrete distributions. The generalization to the con-
presumably reflects complete ignorance. Although there argnuous case and further elaborations by Rodrigiddz25
convincing arguments against the existence of such noninfoconstitute a second proposal.
mative priorg[13], the search has had the merit of suggesting It is essential for the successful use of any prior, and of
connections with the notion of entrogit4] including two  entropic priors in particular, to be aware of what information
proposals for “entropic priors[15,16. This brings us to the they contain and, crucially, what information they do not
second method of processing information. contain. No prior can be expected to succeed unless all the
Bayes’ theorem follows from the product rule for joint information relevant to the problem at hand has been taken
probabilities,p(y, ) =7 (6)p(y| 6), and therefore its applica- into account. It is quite likely that most practical problems
bility is restricted to situations where assertions concerninghat were encountered with entropic priors in the past can be
the joint values of the dataand the parameteigare mean- traced to a failure to identify and incorporate all the relevant
ingful. There are, however, situations where the availablénformation.
information is of a different nature and involves assertions The information that has, in this paper, been translated
about the probabilities themselves. Such information, whichnto the entropic prior is that contained in the likelihood. The
includes but is not limited to assertions about expected valbare entropic priors discussed here apply to a situation where
ues, cannot be processed using Bayes’ theorem. all we know about the quantitie@ is that they appear as
The method of maximum entrop§ME) is designed for parameters in the likelihood(y| 6), and nothing elseGen-
updating from a prior probability distribution to a posterior eralizations are, of course, possible. Sometimes we are aware
distribution when the information to be processed takes thef additional relevant information beyond what is contained
form of a constraint on the family of acceptable posteriorin the likelihood and it can easily be incorporated into a
distributions[17]. The early and less satisfactory justification modified entropic prior. Other times we might be guilty of
of the ME method followed from interpreting entropy, overlooking additional information we already have. Indeed,
through the Shannon axioms, as a measure of the amount wfe would not be willing to spend valuable effort in the de-
uncertainty in a probability distributiofil8,19. Objections termination of a parametérunless we suspected that knowl-
to this approach are that the Shannon axioms refer to proledge off has important implications elsewhere. Typically we
abilities of discrete variables, the entropy of continuous variknow something about the physical significance and the
ables is not defined, and that the use of one particular erphysical meaning of. It is clear that in these cases we know
tropy as the unique measure of uncertainty remaineadonsiderably more than just thatis a parameter appearing
questionable. Other so-called entropies could and, indeedh the likelihood. We might even conceive of several differ-
were introduced. Ultimately, the real problem is that Shan-ent experimentse=1,2,...,each yielding different sets of
non was not concerned with inductive inference. He was notlatay, related tog by different likelihood functiong(ye| 6).
trying to update probability distributions but was insteadlt is sometimes objected that one’s prior knowledge algbut
analyzing the capacity of communication channels. Shanshould not depend on which experiment one decides to use
non’s entropy makes no reference to prior distributions.  to measure it, but this objection is misplaced: the mere fact
Considerations such as these motivated several attempiisat 6 is measurable through one or another experiment is
to justify the ME method directly as a method of inductive additional information which, if relevant, should be taken
inference without invoking questionable measures of uncerinto account.
tainty [20-23. In these approaches the concept of relative Another family of problems that can be tackled as a rather
entropy is then introduced as a tool for consistent reasoningtraightforward extension of the ideas described here involve
which, in the special case of uniform priors, reduces to thechoosing which likelihood distribution from among several
usual entropy. There is no need for an interpretation in termsompeting candidates is responsible for generating the data.
of heat, disorder, or uncertainty, or even in terms of anindeed, it is clear that any systematic approach to model
amount of information. Perhaps this is the explanation ofselection requires as a prerequisite the capability to process
why the search for the meaning of entropy has turned out tin an objective way the information implicit in each of those
be so elusive: strictlyentropy needs no interpretationn likelihoods. Except for some brief remarks in the final sec-
Sec. Il, as background for the rest of the paper, we presenttion, all these further developments, valuable as they might
brief outline of one such no-interpretation approach which ishe, will be addressed elsewhere.
more extensively developed elsewh§?zg]. Our contribution includes a derivation of an entropic prior
In this paper we use entropic arguments to translate priofSec. Ill) following the same principles of ME inference that
information into a prior distribution. Rather than seeking ahave been successful in statistical mechanics. In fact, our
totally noninformative prior, we make use of information that whole approach is guided by intuition gained from applica-
we do in fact have. Remarkably, it turns out that the verytions of ME to statistical mechanics. Preliminary steps along
condition that allows us to contemplate using Bayes’ theorenthis direction were taken in Ref26] where a problem with
— namely, the knowledge of a likelihood functiguly| ) —  the important case of experiments that can be indefinitely
already constitutes valuable prior information. In this senseepeated had already been identified but not fully resolved.
one can assert that the search for completely noninformativ&his problem, re-examined in Sec. IV, is interpreted as a
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symptom that important relevant information has been overwhen the new information does not refer to a donfaiq Y,
looked. The complete resolution, which hinges on identify-then the conditional probabilitigg(y|D) will not be revised.
ing and incorporating this additional information, is given in The power of this axiom stems from the arbitrariness in the
Secs. V and VI. The actual way in which ME is used in thechoice ofD. The consequence of the axiom is that nonover-
derivation, in analogy to standard applications in statisticalapping domains ofy contribute additively to the entropy:
mechanics, turns out to be important because it clarifies wha p]=fdyH p(y)] whereF is some unknown function.

it is that has been derived and how to use it: ours is, in effect, Axiom 2: Coordinate invarianceThe ranking should not

a third proposal for an entropic prior. In Sec. VII we discussdepend on the system of coordinat&he coordinates that
in detail the important example of a Gaussian likelihood andabel the pointsy are arbitrary; they carry no information.
finally, in Sec. VIII, we summarize and comment on theThe consequence of this axiom is thagp]
differences among the three versions of entropic prior and or [dy p(y)f[p(y)/m(y)] involves coordinate invariants such

possible further developments. asdy p(y) and p(y)/m(y), where the densityn(y) and the
function f are, at this point, unknown.
Il. THE LOGIC BEHIND THE ME METHOD Next we make a second use of the locality axiom to en-

force objectivity. We allow domairD to extend over the
whole spaceY and assert thathen there is no new informa-
S : S tion there is no reason to change one’s miki¢hen there are
d|str|but_|on p(y) when new information n the form of a no constraints the selected posterior distribution should co-
constraint becomes availabl@he constraints can, but need j,iqe \ith the prior distribution. This eliminates the arbi-

not, be_ .I|nee}b. The .selectlon is carrle_d out b_y ranking the .4riness in the density(y): up to normalizatiorm(y) is the
probability distributions according to increasipgeference rior distribution
One feature we impose on the ranking scheme is transitivity: Axiom 3: Conéistency for independent subsystemgen
if distribution p is Pfeferfed over distributiop,, andp, is_ a system is composed of subsystems that are believed to be
preferred oveips, thenp; is preferred oveps. Such transi- independent it should not matter whether the inference pro-
tive rankings are implemented by assigning to epy) a  cedure treats them separately or jointly we originally be-
real numbe§ p] called the entropy of in such away thatif  jiee that two systems are independent and the new evidence
py is preferred ovem,, then §p;]>9p,]. The selected s gjlent on the matter of correlations, then there is no reason
will be that which maximizes§p]. Thus the method in- change our mind. Specifically, =(y,Y,) € Y=Y; X Ys,
volves entropies which are real numbers and entropies thafq the subsystem prions,(y;) andmy(y,) are, respectively,
should be maximized. These are features imposed by deSiQUbgraded tapy(y,) and py(y,), then the prior for the whole
they are dictated by the function that the ME method is SUP3ystem m,(y;)my(y,) should be upgraded te,(y;)pa(y,).
posed to perform._ . o This axiom restricts the functiof to be a logarithm(The

Next we determine the functional form &fp]. This is the fact that the logarithm applies also when the subsystems are

_rule tgat_ ddefln_es the ranking scherﬂ'd?e purpose of tlhe r;lle not independent follows from our inductive hypothesis that
is to do inductionWe want to extrapolate, to generalize from 4 ranking scheme has universal applicabjity.

those special cases where we know what the preferred dis- The overall consequence of these axiofgd] is that

tribution should be to the much larger number of cases wherg,,papility distributionsp(y) should be ranked relative to the

we do not. Thu§, m_qrder to pe an inductive rde] must prior m(y) according to thei(relative) entropy[17],

have wide applicability; we will assume thtte same rule

applies to all casesThere is no justification for this univer- p(y)

sality except for the usual pragmatic justification of induc- Sp,m]= ‘f dy D(Y)|ng- (1)

tion: we must be inclined to generalize lest we become para-

lyzed into not generalizing at all. But then, we should remainThe derivation has singled o6p, m] asthe unique entropy

cautious and keep in mind that in many instances inductioito be used in inductive inferenc®ther expressions, such as

just fails. 9m,p], or §p,m]+9m,p], or even expressions that do not
The argument goes as followg2]. If a general theory involve the logarithm, may be useful for other purposes, but

exists, then it must apply to special cases. Furthermore, if ithey do not constitute an induction: they are not a generali-

a certain special case the preferred distribution is knownzation from the simple cases described in the axioms.

then this knowledge can be used to constrain the form of We end this section with two comments on the prior den-

9 p]. Finally, if enough special cases are known, tigp]  sity m(y). First, §p,m] may be infinitely negative when

will be completely determined. The known special cases aren(y) vanishes within some regidd. In other words, the ME

called the “axioms” of ME. As we will see below the axioms method confers an overwhelming preference on those distri-

reflect the conviction that one should not change one’s mindutionsp(y) that vanish whenevan(y) does. Is this a prob-

frivolously, that whatever was learned in the past is impordem? Not really. A similar “problem” also arises in the con-

tant. The chosen posterior distribution should coincide withtext of Bayes’ theorem. A vanishing prior represents a

the prior as closely as possible and one should only updatgemendously serious prejudice because no amount of data to

those aspects of one’s beliefs for which corrective new evithe contrary would allow us to revise it. The solution in both

dence has been supplied. The three axioms are listed belosases is to recognize that unless we are absolutely certain
Axiom 1: Locality. Local information has local effects thaty could not possibly lie withinD then we should not

The goal is to update beliefs abou& Y which are codi-
fied in the prior probability distributiom(y) to a posterior
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have assignedn(y)=0 in the first place. Assigning a very Next we incorporate the crucial piece of information from
low but nonzero prior represents a safer and less prejudicesthich the parameterg derive their physical meaning and
representation of one’s beliefs and/or doubts both in the corwhich establishes the relation betweé@randy: the likeli-
text of Bayesian and of ME inference. hood functionp(y| #) is known. This has two consequences:
Second, choosing the prior densiti(y) can be tricky. First, the joint distributiom(y, ) is constrained to be of the
When there is no information leading us to prefer one mi-form =(6)p(y|#). Notice that this constraint is not in the
crostate of a physical system over another we might as weflorm that is most usual for applications of the ME method: it
assign equal prior probability to each state. Thus it is reasoris not an expectation value. Note also that the only informa-
able to identifym(y) with the density of states and the in- tion we are using about the quantitiéss that they appear as
variantm(y)dy is the number of microstates @y. This is the  parameters in the likelihoog(y|6), nothing else In many
basis for statistical mechanics. Other examples of relevancg&tuations of experimental interest there exists additional rel-
to physics arise when there is no reason to prefer one regiogvant information beyond what is contained in the likeli-
of the spacer over another. Then we should assign the saménood; such information should be included as additional con-
prior probability to regions of the same “volume,” and we straints in the maximization of the relative entropy
can choosdr dy m(y) to be the volume of a regioR in the Second, now that a bare minimum is known ab@ut
spaceY. Notice that because of the presence of the priomamely that eacld represents a probability distribution, there
m(y) not all subjectivity has been eliminated and Laplace’sis a natural but still subjective choice fpi(6). As discussed
principle of insufficient reason still plays an important role, in Ref. [28], except for an overall multiplicative constant,
albeit in a somewhat modified form. Just as with Bayes'there is a unique Riemannian metric that adequately reflects
theorem, what is objective here is the manner in whichthe fact that the points in a space of probability distributions
information is processed, not the initial probability are not structureless, but happen to be probability distribu-

assignments. tions; this is the Fisher-Rao metric. Within the finite-
dimensional subspace defined by the constraint — the known
ll. ENTROPIC PRIORS: THE BASIC IDEA p(y| 6) — the natural metric o is d¢?=g;d¢ dé), where

the uniqueg;; induced by the family of distributions(y| 6) is
In this section we follow[26] closely. We use the ME

method to derive a priofr(6) for use in Bayes’ theorem,

p(ely) = p(y,6) = m(6)p(y| 6). (2)
Accordingly we choosew(6)=g¥%(6), whereg(6) is the de-

;Z?hsglggtrlr?gnc?st tﬁaf;ﬁgegegcg'isntr\'/s#ité%nthl;s;negargewmEbterminant ofg;;. Having identified the prior measure and the
P %(Pnstraints, we allow the ME method to take over.

conducted be specified. Being a consequence of the produ o X .
rule for joint probabilities, Bayes’ theorem requires that as- (;;h; E:g;?;:iezcé distributiorp(y, 6) is chosen by varying
sertions such ag and 6 be meaningful and that the probabil- &

dlog p(y|6) d log p(y|6)
36 96 ’

0ij =fdy ply|6) (4)

ity of y and 6 be well defined. Therefore we must focus our m(6)p(y|6)

attention orp(y, 6) rather thanm(6); the relevant universe of olw]=- f dy dom(6)p(y] 9)|09Wm()
discourse is neithe®, the space of albs, nor the data space g y

Y, but the produc® X Y. This point, first made by Rodriguez B 7(6)

[24], is central to the argument. Our derivation and the final - daw(a)l‘)ggl/z(e) + | dom(0)S(6), (5

result, however, differ from hif24,25 in several respects.

To rank distributions in the spad@ x Y we must decide WhereS(0) is the entropy of the likelihood,
on a priorm(y, 6). At this starting point absolutely nothing is v10)
known about the variable®, in particular, they have no s(g):-fdyp(yw)mg&_ (6)
physical meaning, and no relation betwsgeand 6 is known. m(y)
The 6s are totally arbitrary. Therefore the prior must be a Writing the Langrange multiplier that enforcggd (6)
productm(y)u(6) of the separate priors in the spacéand  _q ¢ 1-log¢, and assuming(y| ) is normalized yields
0. Indeed, the distribution that maximizes the relative

entropy, m(6)
by 0=fd0<—|ogm+8(0)—log §)57T(0). (7)
p(y. 6)
U[]=-fd dé p(y, f)log————, 3
P Y P IO my) (o)

when no constraints are imposedpg/, 6) = m(y)u(0); it is
such that data abouyttells us absolutely nothing abost

In what follows we assume that(y) is known. We con-
sider this an important part of understanding what data it is

Therefore, the probability that the value @f should lie
within the small volumeg*?(6)dé is

1
m(6)do= Zewgl’z(a)da with ng de g*2(9)e3?.

that has been collected. In Sec. VII we will suggest a reason- (8)
ablem(y) for the special case of a Gaussian likelihood. TheThis entropic prior is our first main result. It tells us that the
prior u(6) remains unspecified. preferred value of¢ is that which maximizes the entropy
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S(6) because this maximizes the scalar probability densiticomes manifest when we consider the case of l&lg€hen

exp S(0). It also tells us the degree to which values &f the exponential preference for the valuedothat maximizes

away from the maximum are ruled out; in many cases thé¥(#) becomes so pronounced that no amount of data to the

preference for the ME distribution can be overwhelming.contrary can successfully overcome its effect. The data be-

Note also that the density eX§6) is a scalar function and comes irrelevant, and the more data we have, the more irrel-

the presence of the Jacobian factpf’(§) makes Eq.(8)  evant it becomes.

manifestly invariant under changes of the coordinatea Repeatable experiments present us with a problem. One

the spaced. possible attitude is to blame the ME method: it gives non-
We can claim a partial success. The ingredients that havéense and cannot be trusted. As with all inductive methods

been used are precisely those that led us to consider usigis is, of course, a logical possibility. A second, more con-

Bayes’ theorem in the first place. The information containedstructive approach, is to always be prepared to question the

in the model — by which we mean that the data spécigs  results of ME calculations on the basis that there is no guar-

measuran(y), and the conditional distributiop(y| ) — has  antee that all the information relevant to the situation at hand

been translated into a priar(6). The success is partial be- has been taken into account. The problem is not a failure of

cause it has been achieved for the special case of a fixed ddf$# ME method but a failure to include all the relevant

spaceY of experiments that cannot be repeated. A more cominformation.

plete treatment requires that we address the important case of That this is indeed the case can be seen as follows: When

experiments that can be repeated indefinitely. we say an experiment can be repeated twi¢e2, we actu-

ally know more than jusip(y,Y,| 0)=p(y;| O)p(y.|6). We

also know that forgetting or discarding the value of say

yields an experiment that is totally indistinguishable from the
Experiments need not be repeatable but sometimes the§ingle, N=1, experiment. Thisadditional information is

are. Let us assume that successive repetitions are possifigantitatively expressed bydy, p(y;,y2,6)=p(y1,6), or

and that they happen to be independent. Suppose, to be sgfiuivalently

cific, that the experiment is performed twice so that the space

of dataY X Y=Y? consists_of the possible outcomy,ﬁand f dy, 72 (6)p(y40)p(ys|6) = #P(O)p(y,|6), (13

Y,. Suppose further thad is not a “random” variable; the

value of 6 is fixed but unknown. Then the joint distribution

in the spaced X Y2 is

IV. REPEATABLE EXPERIMENTS

which leads tom?(6)==1(6). In the general case we get
the manifestly reasonable result

P(y1Y2 0) = 72(O)p(y1,Y2|0) = 72 (6)p(y1| O)P(y2l 0), 7N(g) = 7ND(g) = ... = 7D(g). (14)
9
© The challenge then is to identify a constraint that codifies
and the appropriate entropy is this information within each spad®@ x YN,
e
f (Y1, Vs, 6) V. MORE INFORMATION:
— | dy; dy, dép(y,,Y,, 6)log oL , THE LAGRANGE MULTIPLIER «
PR T g 2(0)] Amy)m(y,)

(10) The problem with the priorr™(6) in Eq. (12) is that it
expresses an overwhelming preference for the vajyg of

whereg?(6) is the determinant of the Fisher-Rao metric for 4 that maximizes the entrog ). Indeed, ad\—  we have

p(y1,Y»| 6). From Eq.(4) it follows that gi(jz):Zgij so that  7™(0) — 8(6- 6,50 leading to

g@(6)=2%(6), d being the dimension ob. Maximizing N

@[] subject tofdd 7?(6)=1 we get (9= f d6 7N(0)S(0) — SO (15)

1 ) 1
7?(6) = ﬁgllz(ﬁ)e§2 @ = ﬁgllz(ﬁ)ezs(e), (11)  This suggests that a better prior would be obtained by maxi-
mizing the entropyo™ of distributions on the spac®
where S2(0)=29(6) is the entropy ofp(y;,Y»|6), S(6) X YN subject to an additional constraint on the numerical

def < ;
. . L value S of the expected entrop®. It is not that we happen
=SY(6) andZ? is the appropriate normalization constant. P _ ropie) _ pp.
to know the numerical valug of (S); in fact we do not. It is

The generalization tiN repetitions of the experiment, with -
data space&r™, is immediate, rather that we recognize that information ab8us relevant
1 Y 1 in the sense that i§ were known the problem above would
aN(g) = ngm(g)es( 0 = ng(g)e“a”), (12)  not arise. Naturally, additional effort will be required to ob-
z z tain the needed value &
This is clearly wrong: the dependencef¥ on the amount The logic of the previous paragraph may sound unfamiliar
N of data would lead us to a perpetual revision of the prior asand further comments may be helpful. When justifying the
more data is collected. The absurdity of this situation beuse of the ME method to obtain, say, the canonical
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Boltzmann-Gibbs distributioquoce‘BEq) it has been com- 1 .0 %0
mon to say something like “we seek the minimally biased 77(0|a):@g (6)e™=7, (20
(i.e., maximum entropydistribution that codifies the infor-

mation we do possesghe expected energyand nothing satisfies Eq(14). This is our second main result. The prior
else.” Many authors find this justification objectionable. In- 7(6| a) codifies information contained in the likelihood func-
deed, they might argue, for example, that the spectrum dfion, plus information about the expected value of the en-
black body radiation is what it is independently of whatevertropy of the likelihood implicit in the hyperparameter
information happens to be available to us. We prefer to

phrase our objection differently: in most realistic situations Sa) = ilog Ua), (22)

the expected value of the energy is not a quantity we happen da

to know. Nevertheless, it is still true that maximizing entropy i (a)
subject to a constraint on thiginknown expected energy

leads to correct predictions. Therefore, the justification be-

hind imposing a constraint on the expected energy cannot be {(a) =f do g'4(6)e"S?. (22

that this is a quantity that happens to be known — because it

is not — but rather that the expected energy is the quantity The next and final step is to figure out whighapplies to
that shouldbe known. Even if unknown, we recognize it as the particular experimental situation under consideration.
the crucial relevant information without which no successfulThe natural way to proceed is to invoke Bayes' theorem
predictions can be made. Therefore we proceed as if this N N

crucial information were available and produce a formalism p(a, OyN) = 7(a, e)p(y_lﬁ) - W(a)w(gm)p(y_m)

is given by

that contains the temperature as a free parameter that will p(y™) - p(yM)
later have to be obtained from the experiment itself. In other (23)
words, the temperatuxer expected energys one additional _ _ . . _
parameter to be inferred from the data. The choice of a priorr(a) for « itself is addressed in the
The entropy on the spad@x YN is next section. If we were truly interested in the actualwe
o) could marginalize ovep to obtain
O)p(y™|6)
N =- f do dy™ (B)p(y(N)lﬁ)logW(—=
ag a T
g A O)m(y™) plaly™) = f do pla, 6ly") = % do m(6la)p(y"|6).
0
—fde w(e)log%Hujdew(a)S(e), (24)

But our interest in the value of is only indirect; « is a

(16) . . L .
necessary but annoying technical complication that stands in

whereS(6) given by Eq.(6). [A constant factor oN¥2 asso-  our way to the real goal of inferring. Marginalizing overa,

ciated to the Fisher-Rao measg® () has been omitted. It we get

would eventually be absorbed into the normalization of

m(6).] To obtain the priorm(6) we maximizes™ subject to p(olyN) = f da pa, gyN) = 7(6) p(yN,|\|¢9), (25)
constraints oS and thatw be normalized, p(y™)
where
5{(7(’“) +(1-log g)(f de m(6) - 1)
w(6) =J da m(a)m(6|a). (26)

+)\N(f de 77(0)8(9)—5)] =0. (17

This is the answer we sought: the effective prior fprthe
o averagedm(6), is independent of the actual dag, as it
This gives, should. The last step is the assignmentroé).

fde(—log ™0 (N+\)S(6) - log g)éw(a):o.

g%(6) VI. AN ENTROPIC PRIOR FOR a

(18) To remain consistent with the spirit of this paper, namely
using ME to obtain priors, the prior far must itself be an
entropic prior. The motivation behind discussing entropic

1 priors is that we wish to consider information included in the
m(6) = Zgllz(ﬂ)eXF[(N +\)S(6)]. (19 likelihood function. Sincep(y|6) refers to# but makes no
reference to any hyperparameters it is quite clear that
The undesired dependence bhis eliminated if in each should not be treated like the othés. The relation between
space® x YN the Lagrange multipliersy are chosen so that « and the datg is indirect: « is related tod, and @ is related
N+Ay=«a is a constant independent bf The resulting en- toy. Onced is given, the daty becomes irrelevant, it con-
tropic prior, tains no further information about. The whole significance

Therefore,

046127-6



MAXIMUM ENTROPY AND BAYESIAN DATA ...

of a is derived purely from its appearance (6| a), Eq.
(20). Therefore, the relevant universe of discoursé is ©

PHYSICAL REVIEW E 70, 046127(2004)

To summarize: the actual entropic prior férin Bayes’
theorem, Eq.(25), is 7(6) obtained by averagingr(a, 6)

with @ € A. We focus our attention on the joint distribution over«, Eq.(26), and using Eq9.36), (20), and(6). The prior

(e, 0) = w(@)7(fa) (27)
and we obtainm(«) by maximizing the entropy
(a,6)
S[a]=- J dadd m(a, 6)Iogm, (28)

7(6) codifies two pieces of information. The first piece is the
information contained in the functional form of the likeli-

hood. The second is the expected entropy of the likelihood,
which, even when unavailable, turns out to be highly rel-
evant information for repeatable experiments. The actual
derivation consists of maximizing the entropy on the space
O X YN, Eq. (16), subject to constraints corresponding to

where y%(a) is determined below. Since no reference is€ach of those two pieces of information.

made to repeatable experiments¥N there is no need for

any further constraints except for normalization.
The Fisher-Rao measung’%(a) in Eq. (28) is

d 2
y(a)=fd0 77(0|a)[d—|og 7T(t9|a)] . (29)
o
Using EQs.(20)—«22) we get
dl a) |2
y(a)=fd9 7T(6’|a){3(0)-0dg—ag()] =(A9)7?,
(30)
but
d?(a): d 1 dge_ 1 dzg(a)_[ 1 d((a)r
da dal(e) da a) da? {a) da
= (A9 (31)
Therefore,
d? | a
y(a):‘fT“). (32)

The interpretation is straightforward: the distance between

(0| @) and (6| a+de) is given by
Y(@)da = AS(@)de, (339

or, in words, the local entropy uncertainks is the distance
per unit change inv.
To maximize, rewrite it as

S| = —f da W(a)log% + f da m(a)s(a), (34)

wheres(«) is given by

m(6la) d log {(«)
S(a) = —f de 77(0|a)|0g%:|0g {a) - T

(35)

Then, varying with respect ta(a) gives

m(a) = %yllz(a)es(“) with Z:f da yM(a)ed®.

(36)
This completes our derivation.

We argued above that the hyperparametshould not be
treated in the same way as the other parametbecause the
likelihood 7(y| 6) refers only tofs and not toa. Nonethe-
less, it may still be worthwhile to discuss briefly what would
happen ifa were treated as one of thgs. In this case, the
entropic prior () would be determined by focusing our
attention on the joint distribution

p(a, 6,yN) = m(a) (6l a)p(yN6), (37)

where the last two factors on the right-hand side are assumed
known. The assumed universe of discourse wouldAbe

X @ X YN, A straightforward application of the ME method
would, as before, run into trouble with an unwantddle-
pendence which would require the introduction of a new
constraint on the appropriate expected entropy. Thus, the en-
tropic prior for @ would involve a second hyperparameter

The unknowna, would itself require its own entropic prior,
involving yet a third hyperparameter;, and so on. There
would be an endless chain of hyperparameféfg. In any
practical calculation, the chain would have to be truncated.
Whether the predictions aboétdepend on where and how
the truncation is carried out remains to be studied. But, for-
tunately, this is not necessary:is not like the others.

VII. EXAMPLE: A GAUSSIAN MODEL

Consider datgN={y,, ...
unknown valueu,

,YnJ that are scattered around an

y=utv (38)

with (#)=0 and(+?)=¢2. The goal is to estimate the param-
eters9=(6*,#°)=(u,o) on the basis of the datd' and the
information implicit in the model: the data spa¥ethe mea-
surem(y) (discussed beloy and the Gaussian likelihood,

o) = (y—,u)z}
9= o mg?)V 202 |

In Sec. lll we asserted that knowing the measuy) is
part of knowing what data has been collected. Therefore,
nothing can be said aboui(y) without further specification
of the experimental situation. For example, in discrete prob-
lems such as tossing a die the symmetry leads to the measure
m(i)=1; in the statistical mechanics of discrete energy levels
we choosamn(i) equal to the degeneracy of the levels; if the
data are points in a continuous space it may be appropriate to
choosem(y)dy to be a volume element, and if the space is
curved therm(y) is nontrivial.

(39)

p(y >exp| —
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It turns out, however, that in many physical situationsmodel selection. In the remainder of this section, however,
where the data happen to be distributed according to ave will assume that the information about cutoffs is already
Gaussian the underlying spadeis sufficiently symmetric, available.

e.g., invariant under translations, that we can assoife It is convenient to write the range qf as Au=uy—w_
=m=constant.This is physically reasonable. Gaussian distriand to define ther cutoffs in terms of dimensionless quan-
butions arise when the measured valueya$ the sum of a  tities &, and ey; o extends fromo =oge, 10 oy=0p/ep.
large number of “microscopic” contributions and the detailsThen{(a) and m(ux,o|a) are given by

of how the individual contributions are themselves distrib-

uted are washed out in the “macroscopic” sum. The macro- 2VAp el — g0t

scopically relevant features are just those that distinguish one {(a)=
Gaussian from another, namely, the megaand the variance

o?. This is the physical basis behind the Central Limit Theo-
rem. But if microscopic details are irrelevant it should be?
possible to understand the situation from a purely macro- i
scopic point of view: it should be possible to obtain the 1 a-1 (‘T>a (45)

44
o a-1 (44

nd

. . . . i ,0' o = ——_ — —
Gaussian distribution as the preferred one among all those (u,0la) Apogel®— e\ oy

with the givenu andg?, and this is, indeed, the case: setting
m(y) =constant inp,m], Eq. (1), and maximizing subject Notice that in the special case af=1, the prior overo
to constraints on the mean and variance yields(8§). reduces todo/o which is called the Jeffreys prior and is
From Egs.(6) and(39) the entropy of the likelihood is  usually introduced by the requirement of invariance under
scale transformations;— Ao

H ~8L

o deff @ \121 def
Su,0) = '09[;0}Where"0: (;) m (40) Writing & = (e, ep) Y2, the prior fora can be obtained from
Eq. (32),
and the corresponding Fisher-Rao measure, from(4qgs
(@)= 1 _( 2 loge )2 46
(o) =def 7O ’ - (41) IR
I =CCH o o2 | T ot
) and from Eqs(26) and(35),

Note that bothS(w, o) andg(w, o) are independent gf.
This means that if we were concerned with the simpler prob- P2() gt = gl 1 gla 4 gl
lem of estimatingu in a situation wherer happens to be 7(a) = xp[ +a—— ;109 s]
known, then the entropic prior, in any of the versions, Egs. z a-1 a-1
(8) and(20), or (26), is a constant independent af In other (47)

words, wheno is known, the Bayesian estimate gfusing
entropic priors coincides with the maximum likelihood esti- where the normalizatiom has been suitably redefined.
mate, i.e., by the popular procedure of minimizing Equations(46) and (47) simplify considerably when we
take the limite—0. Clearly the same result is obtained
, 1 N ) whether we letey — 0 while keepinge, fixed, or lettinge
X = 0—22 (yi = w* (42 -0 while keepingey, fixed, or even allowings;—0 and
=1 g — 0 simultaneously. The resulting«) and 7(«) are
Returning to the more interesting case of unknawrhe

a-dependent entropic prior, EQO) is 1
Na) = - (49
21/2 O_a—Z @
m(w,ola) = —— . 43
(i) {(a) of 43 and
m(w,o|@) is improper in bothu and o; normalization re- 1 . 1 of el
quires the introduction of high and low cutoffs for both - _ 2&X _ a '
and o. The fact that without cutoffs the model is not well m(a)=1(1-a) “« (49
defined is an indication that more relevant information is 0 for a=1,

being requested: the cutoffs constitute relevant information

that must be taken into accourihe logic parallels that Wherem(a) is normalized. This is shown in Fig. 1 .

which led to the introduction ofr in Sec. V) The case of m(a) reaches its maximum value at=1/2. Since m(a)
unknown cutoff values is important and we intend to explore~ a2 for a— - the expected value of and all higher

it in detail in future work. The basic idea is that specifying moments diverge. This suggests that replacing the unknown
cutoffs is an integral part of defining the model, and there-a in the prior (6| @) by any given numerical valué& is

fore the choice of cutoffs can be tackled as a problem oprobably not a good approximation.
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FIG. 1. The priora(«) for various values of the cutoff param- :(Z/X)KO[Z\“J’|OQ(X)] wherex=a/oy.

eterg, ase —0.

As explained in Sec. V, since is unknown, the effective
prior for 6=(u,0) is obtained marginalizingm(u, o, @)
=m(u,o|a@)m(a) over a, Eq. (26). Sincem(a)=0 for a=1
as e—0 we can safely take the limigy—0 or gy— .
Conversely, sincer(a)# 0 for «<1 we cannot take, — 0
or o — 0. The limit oy — o while keepingo_ fixed gives

m(u,0,a) = 1=

1
exp ——
1 p{a—l}(z)“z for a<1,
Ao a oL
0 for a=1.

(50)

The averaged prior for and o is

1 (ﬂ)ZJl ﬁ(zyda,

) = Apo\o/) ), 1-«a oL
(51
which integrates to
_ 2
fﬂﬂ¢»=———K42\ﬂoqi), (52)
Apo oL

P(x)
2
1.5
1
0.5
1 2 3 4 5 6
X
FIG. 2. The effective m(u,0) is shown as P(x)
2 —
P(x) = v logvlog x— y for x= 1. (54)

Since o is a lower cutoff the region of larga& is more
relevant. The leading asymptotic behavior is given by

I

P(x) =~ exp-2/logx forx>1. (55

Ku
x(log x)*/*
Finally, we turn to Bayes’ theorem, E@25), with the
prior (52) and consider using the expected valdg$ and
(o) over the posteriop(u,o|yN) as estimators fop ando.
The integrations can be performed numerically but are not
particularly illuminating. Of course, for larghl the results
are independent of the prior and the estimators coincide
with the standard maximum likelihood results, namely
(u)—Yy (the sample averag@and(c)?— y?>-y? (the sample
variance.
Alternatively, one can follow standard practice and mar-
ginalize the posteriop(u,o|yN) over o to obtain p(u|yN)
and calculate an estimatgr and its error bai\u from

d
— | N)2=0 56
a og p(uly™)|; (56)
and
=% tog plaly; = (57)
du? 0PIV (A

The result forp is very simple: for any value dfl the esti-

whereK, is a modified Bessel function of the second kind. mator i is the sample averagg=y. The result forAu is not
This is the entropic prior for the Gaussian model. Theas elegant but for larglN it simplifies and reduces to

function

P(0 = 2Ky(2:10g %) (53

is shown in Fig. 2 as a function of=c/ .
P(x) has an integrable singularity as—1 where it be-
haves as

(Aw)?— (y2-y?)/N as expected.

VIIl. FINAL REMARKS

In this paper the method of maximum relative entropy has
been used to translate the information contained in the
known form of the likelihood into a prior distribution for
Bayesian inference. The argument follows closely the analo-
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gous ME methods that have been so successful in statisticptovide a better representation of our state of knowledge
mechanics. For experiments that cannot be repeated the rgrior to the acquisition of the data. Indeed, the advantage of
sulting “entropic prior” is formally identical with the Ein- the Bayesian approach over the usual method of maximum
stein fluctuation formula. For repeatable experiments, howtikelihood is the possibility of including additional relevant
ever, the expected value of the entropy of the likelihood —information by replacing a flat prior by an appropriately
represented in terms of a Lagrange multipkier— turns out  more informative prior. There is nothing to prevent us from
to be relevant information that must be included in the analy'performing a similar improvement and going beyond the
sis. As an illustration the important case of a Gaussian like~yare” entropic priors discussed in this paper. Two kinds of

lihood was treate? Iin detail. o he dift additional information that are easy to include are restric-
It may be useful to comment briefly on the differences;,,q o the range of the parametérand information about

between our entropic prior and the versions previously proz - :
posed by Skilling and by Rodriguez. Perhaps the main dif—the known expected values of some variates). Steps in

ference with Skilling’s prior is that, unlike ours, its use is not Lh|s direction were .taken n Secr; Vi v;/]h?éa) 'Sl the I'ke::f'
restricted to probability distributions but is intended for ge-100d entropy, and in Sec. VIl where high and low cutoffs on

neric “positive additive distributions”including, for example, € range of the Gaussian parameters were introduced.
the distributions of intensities in imag¢$5]. One problem Second, in the introduction we mentioned the interesting
here is that of justifying the applicability of the ME method POssibility of analyzing daty. from different experiments,

in such a general context. Our impulse to generalize is £=1.2,..., related to 6 by different likelihood func-
dangerous one; we may get away with indulging it occasiontions pe(ye|6). Clearly this can be analyzed as a single
ally but overindulgence will certainly lead to error. In any combined experiment with likelihood p(y;,Ys,, ...|6)
case, our argument in Sec. lll, which consists in maximizing=p,(y; | 8)p.(y2| 6)... to which all our previous results apply.
the entropyo subject to a constrainb(y,6)=m(6)p(y|6), As we stated earlier, the mere fact th@tis measurable
makes no sense in the case of generic positive additive dishrough one or another experiment is additional relevant in-
tributions for which there is no available product rule. A formation that can be taken into account.

more specific problem arises from the fact that Skilling’s  Third, we also mentioned that problems of model selec-
entropy is not, in general, dimensionless and the hyperpajon can be tackled as an extension of the ideas described in
rametera is vaguely interpreted some sort of cutoff carrying this paper. On the basis of dajawe want to select one
the_ appropriate corrective units. Some of the difficulties,ogel among several competing candidates labelednby
which led Skilling to seek an alternative approach, Were=1 2. ..with likelihood distributions given by(y|m, 6,,).

identifiefj in F\,’ef.[29]. . . . . The answer, i.e., the probability of modelgiven the data,
Rodriguez’s approach is closer to ours. His prior applleqS given by Bayes’ theorem

to probability distributions and appears to be derived from a
ME principle [25]. One difference, perhaps a minor one, is
his treatment of the underlying measunéy). For usm(y) is

not arbitrary; knowingn(y) is part of knowing what data has (m)

been collected. For him(y) is just an initial guess and he p(mly) = Wp(ylm)

suggests setting(y)=p(y| 6,) for some values,. The more

important difference, however, is that the number of ob- :M 6y, p(y, M)

served datan is deliberately and explicitly left unspecified. p(y) mEm

The spaced® X Y" over which distributions are defined, and 1

therefore the distributions themselves, also remain unspeci- - f d6, (m, 6) p(y|m, 6. (58)
fied. It is not clear what the maximization of an entropy over p(y)

such unspecified spaces could possibly mean but a hyperpa-

rametera is eventually introduced and it is interpreted as a

“virtual number of observations supporting the initial guessThis is exact. The problem is solved, at least in principle,
6,.” He proposes thatr be considered as one more amongonce an entropic prior for(m, 6,,) is assigned. However, the
the parameter® to be inferred. As mentioned earlier this remaining practical problems associated with carrying out
leads to the introduction of an endless chain of additionathe actual numerical calculations could, of course, still be
hyperparameters. quite formidable.

There are several directions in which the ideas of this Finally, we end with a word of caution. As in all instances
paper can be further extended. First, we emphasize ona® inductive inference there is the possibility that predictions
again that the entropic priors discussed here apply to a sitibbased on the ME method could be wrong because not all the
ation where all we know about the quantitiess that they information relevant to the problem at hand was taken into
appear as parameters in the likelihop@|6), and nothing account. This potential problem is not peculiar to the ME
else In many situations of experimental interest there existsnethod; it is a problem shared by all methods of induction.
additional relevant information beyond what is contained inNevertheless, we are confident that there will be enormous
the likelihood. Such information should be included as addi+ewards in extending the benefits of the ME method, as a
tional constraints in the maximization of the relative entropymethod for induction, beyond its traditional territory in sta-
o in Eq. (17). The resulting modified entropic prior would tistical mechanics into data analysis.
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