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The problem of assigning probability distributions which reflect the prior information available about ex-
periments is one of the major stumbling blocks in the use of Bayesian methods of data analysis. In this paper
the method of maximum(relative) entropy(ME) is used to translate the information contained in the known
form of the likelihood into a prior distribution for Bayesian inference. The argument is inspired and guided by
intuition gained from the successful use of ME methods in statistical mechanics. For experiments that cannot
be repeated the resulting “entropic prior” is formally identical with the Einstein fluctuation formula. For
repeatable experiments, however, the expected value of the entropy of the likelihood turns out to be relevant
information that must be included in the analysis. The important case of a Gaussian likelihood is treated in
detail.

DOI: 10.1103/PhysRevE.70.046127 PACS number(s): 02.50.Tt, 02.50.Cw, 05.20.2y

I. INTRODUCTION

The inference of physical quantities from data generated
either by experiment or by numerical simulation is a ubiqui-
tous and often cumbersome task. Whether the data is cor-
rupted by noise, hampered by finite resolution or tied up in
correlations, in principle it should always be possible to im-
prove the analysis by taking into account, in addition to the
information contained in the data, whatever other knowledge
one might have about the physical quantities to be inferred or
about how the data was generated. The way to link this prior
information with the new information in the data is found in
Bayesian probability theory.

Bayesian methods are increasingly popular in physics[1].
They are essential whenever repeating the experiment many
times in order to reduce the measurement uncertainty is ei-
ther too expensive or time consuming. This is a common
situation in astronomy and astrophysics[2], and also in large
laboratory experiments as in fusion[3] and in high energy
physics[4]. Other typical uses in physics arise in spectrum
restoration, in ill-posed inversion problems[5–7] and when
separating a signal from an unknown background[8]. Appli-
cations include mass spectrometry[9], Rutherford back-
scattering[10] and nuclear magnetic resonance[11].

From a general point of view the problem of inductive
inference is to update from a prior probability distribution to
a posterior distribution when new information becomes
available. The challenge is to develop updating methods that
are systematic and objective. Two methods have been found
which are of very broad applicability: one is based on Bayes’
theorem and the other is based on the maximization of en-
tropy. The choice between these two updating methods is
dictated by the nature of the information being processed.

When we want to update our beliefs about the values of
certain quantitiesu on the basis of the observed values of
other quantitiesy — the data — and of some known relation

betweenu andy we must use Bayes’ theorem. The updated
or posterior distribution ispsu uyd~psudpsy uud; the relation
betweeny andu is supplied by a known modelpsy uud; the
previous knowledge aboutu is codified both into the “prior”
probability psud and also in the “likelihood” distribution
psy uud.

The selection of the priorpsud is a controversial issue
which has generated an enormous literature[12]. The diffi-
culty is that it is not clear how to carry out an objective
translation of our previous beliefs aboutu into a distribution
psud. One reasonable attitude is to admit subjectivity and
recognize that different individuals may start from the same
information and legitimately end with different translations.
In simple cases experience and physical intuition have led to
a considerable measure of success, but we are often con-
fronted with new complex situations involving perhaps pa-
rameter spaces of high dimensionality where we have neither
a previous experience nor a reliable intuition.

On the other hand, there are special cases where some
degree of objectivity can be attained. One example is pro-
vided by those cases where symmetries are known to hold;
requirements of invariance can go a long way towards the
complete specification of a prior.

A second example is given by Bayes’ theorem itself. Sup-
pose two batches of data,y1 andy2 are to be processed. Start
from a subjective priorp1sud and use Bayes to process the
datay1 to update to the posteriorpsu uy1d~psudpsy1uud. To
process the datay2 one uses Bayes’ theorem again,
psu uy1y2d~p2sudpsy2uuy1d, where the new prior is given by
p2sud=psu uy1d. While there is nothing new in this well-
known example of Bayesian updating it is interesting to note
that we are confronted with a situation in which information
of a very special kind(the datay1) has been incorporated into
a distribution(the prior p2) in a totally objective way. This
raises the question of whether other examples exist where
information can be objectively incorporated into a prior dis-
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tribution. The purpose of this paper is to offer an affirmative
answer by showing explicitly which type of information and
which is the appropriate method for processing it.

Other attempts to seek objectivity in assigning priors have
sought to characterize that elusive state of knowledge which
presumably reflects complete ignorance. Although there are
convincing arguments against the existence of such noninfor-
mative priors[13], the search has had the merit of suggesting
connections with the notion of entropy[14] including two
proposals for “entropic priors”[15,16]. This brings us to the
second method of processing information.

Bayes’ theorem follows from the product rule for joint
probabilities,psy,ud=psudpsy uud, and therefore its applica-
bility is restricted to situations where assertions concerning
the joint values of the datay and the parametersu are mean-
ingful. There are, however, situations where the available
information is of a different nature and involves assertions
about the probabilities themselves. Such information, which
includes but is not limited to assertions about expected val-
ues, cannot be processed using Bayes’ theorem.

The method of maximum entropy(ME) is designed for
updating from a prior probability distribution to a posterior
distribution when the information to be processed takes the
form of a constraint on the family of acceptable posterior
distributions[17]. The early and less satisfactory justification
of the ME method followed from interpreting entropy,
through the Shannon axioms, as a measure of the amount of
uncertainty in a probability distribution[18,19]. Objections
to this approach are that the Shannon axioms refer to prob-
abilities of discrete variables, the entropy of continuous vari-
ables is not defined, and that the use of one particular en-
tropy as the unique measure of uncertainty remained
questionable. Other so-called entropies could and, indeed,
were introduced. Ultimately, the real problem is that Shan-
non was not concerned with inductive inference. He was not
trying to update probability distributions but was instead
analyzing the capacity of communication channels. Shan-
non’s entropy makes no reference to prior distributions.

Considerations such as these motivated several attempts
to justify the ME method directly as a method of inductive
inference without invoking questionable measures of uncer-
tainty [20–22]. In these approaches the concept of relative
entropy is then introduced as a tool for consistent reasoning
which, in the special case of uniform priors, reduces to the
usual entropy. There is no need for an interpretation in terms
of heat, disorder, or uncertainty, or even in terms of an
amount of information. Perhaps this is the explanation of
why the search for the meaning of entropy has turned out to
be so elusive: strictly,entropy needs no interpretation. In
Sec. II, as background for the rest of the paper, we present a
brief outline of one such no-interpretation approach which is
more extensively developed elsewhere[23].

In this paper we use entropic arguments to translate prior
information into a prior distribution. Rather than seeking a
totally noninformative prior, we make use of information that
we do in fact have. Remarkably, it turns out that the very
condition that allows us to contemplate using Bayes’ theorem
— namely, the knowledge of a likelihood function,psy uud —
already constitutes valuable prior information. In this sense
one can assert that the search for completely noninformative

priors is misplaced: if we do not know the likelihood, then
prior distributions are not needed anyway. The prior thus
obtained is an “entropic prior.” The name and the first pro-
posal of a prior of this kind is due to Skilling[15] for the
case of discrete distributions. The generalization to the con-
tinuous case and further elaborations by Rodríguez[16,25]
constitute a second proposal.

It is essential for the successful use of any prior, and of
entropic priors in particular, to be aware of what information
they contain and, crucially, what information they do not
contain. No prior can be expected to succeed unless all the
information relevant to the problem at hand has been taken
into account. It is quite likely that most practical problems
that were encountered with entropic priors in the past can be
traced to a failure to identify and incorporate all the relevant
information.

The information that has, in this paper, been translated
into the entropic prior is that contained in the likelihood. The
bareentropic priors discussed here apply to a situation where
all we know about the quantitiesu is that they appear as
parameters in the likelihoodpsy uud, and nothing else. Gen-
eralizations are, of course, possible. Sometimes we are aware
of additional relevant information beyond what is contained
in the likelihood and it can easily be incorporated into a
modified entropic prior. Other times we might be guilty of
overlooking additional information we already have. Indeed,
we would not be willing to spend valuable effort in the de-
termination of a parameteru unless we suspected that knowl-
edge ofu has important implications elsewhere. Typically we
know something about the physical significance and the
physical meaning ofu. It is clear that in these cases we know
considerably more than just thatu is a parameter appearing
in the likelihood. We might even conceive of several differ-
ent experiments,e=1,2, . . .,each yielding different sets of
dataye related tou by different likelihood functionspesyeuud.
It is sometimes objected that one’s prior knowledge aboutu
should not depend on which experiment one decides to use
to measure it, but this objection is misplaced: the mere fact
that u is measurable through one or another experiment is
additional information which, if relevant, should be taken
into account.

Another family of problems that can be tackled as a rather
straightforward extension of the ideas described here involve
choosing which likelihood distribution from among several
competing candidates is responsible for generating the data.
Indeed, it is clear that any systematic approach to model
selection requires as a prerequisite the capability to process
in an objective way the information implicit in each of those
likelihoods. Except for some brief remarks in the final sec-
tion, all these further developments, valuable as they might
be, will be addressed elsewhere.

Our contribution includes a derivation of an entropic prior
(Sec. III) following the same principles of ME inference that
have been successful in statistical mechanics. In fact, our
whole approach is guided by intuition gained from applica-
tions of ME to statistical mechanics. Preliminary steps along
this direction were taken in Ref.[26] where a problem with
the important case of experiments that can be indefinitely
repeated had already been identified but not fully resolved.
This problem, re-examined in Sec. IV, is interpreted as a
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symptom that important relevant information has been over-
looked. The complete resolution, which hinges on identify-
ing and incorporating this additional information, is given in
Secs. V and VI. The actual way in which ME is used in the
derivation, in analogy to standard applications in statistical
mechanics, turns out to be important because it clarifies what
it is that has been derived and how to use it: ours is, in effect,
a third proposal for an entropic prior. In Sec. VII we discuss
in detail the important example of a Gaussian likelihood and
finally, in Sec. VIII, we summarize and comment on the
differences among the three versions of entropic prior and on
possible further developments.

II. THE LOGIC BEHIND THE ME METHOD

The goal is to update beliefs aboutyPY which are codi-
fied in the prior probability distributionmsyd to a posterior
distribution psyd when new information in the form of a
constraint becomes available.(The constraints can, but need
not, be linear.) The selection is carried out by ranking the
probability distributions according to increasingpreference.
One feature we impose on the ranking scheme is transitivity:
if distribution p1 is preferred over distributionp2, andp2 is
preferred overp3, thenp1 is preferred overp3. Such transi-
tive rankings are implemented by assigning to eachpsyd a
real numberSfpg called the entropy ofp in such a way that if
p1 is preferred overp2, then Sfp1g.Sfp2g. The selectedp
will be that which maximizesSfpg. Thus the method in-
volves entropies which are real numbers and entropies that
should be maximized. These are features imposed by design;
they are dictated by the function that the ME method is sup-
posed to perform.

Next we determine the functional form ofSfpg. This is the
rule that defines the ranking scheme.The purpose of the rule
is to do induction. We want to extrapolate, to generalize from
those special cases where we know what the preferred dis-
tribution should be to the much larger number of cases where
we do not. Thus, in order to be an inductive ruleSfpg must
have wide applicability; we will assume thatthe same rule
applies to all cases. There is no justification for this univer-
sality except for the usual pragmatic justification of induc-
tion: we must be inclined to generalize lest we become para-
lyzed into not generalizing at all. But then, we should remain
cautious and keep in mind that in many instances induction
just fails.

The argument goes as follows[22]. If a general theory
exists, then it must apply to special cases. Furthermore, if in
a certain special case the preferred distribution is known,
then this knowledge can be used to constrain the form of
Sfpg. Finally, if enough special cases are known, thenSfpg
will be completely determined. The known special cases are
called the “axioms” of ME. As we will see below the axioms
reflect the conviction that one should not change one’s mind
frivolously, that whatever was learned in the past is impor-
tant. The chosen posterior distribution should coincide with
the prior as closely as possible and one should only update
those aspects of one’s beliefs for which corrective new evi-
dence has been supplied. The three axioms are listed below.

Axiom 1: Locality. Local information has local effects.

When the new information does not refer to a domainD,Y,
then the conditional probabilitiespsy uDd will not be revised.
The power of this axiom stems from the arbitrariness in the
choice ofD. The consequence of the axiom is that nonover-
lapping domains ofy contribute additively to the entropy:
Sfpg=edyFfpsydg whereF is some unknown function.

Axiom 2: Coordinate invariance. The ranking should not
depend on the system of coordinates. The coordinates that
label the pointsy are arbitrary; they carry no information.
The consequence of this axiom is thatSfpg
=edy psydffpsyd /msydg involves coordinate invariants such
as dy psyd and psyd /msyd, where the densitymsyd and the
function f are, at this point, unknown.

Next we make a second use of the locality axiom to en-
force objectivity. We allow domainD to extend over the
whole spaceY and assert thatwhen there is no new informa-
tion there is no reason to change one’s mind. When there are
no constraints the selected posterior distribution should co-
incide with the prior distribution. This eliminates the arbi-
trariness in the densitymsyd: up to normalizationmsyd is the
prior distribution.

Axiom 3: Consistency for independent subsystems. When
a system is composed of subsystems that are believed to be
independent it should not matter whether the inference pro-
cedure treats them separately or jointly. If we originally be-
lieve that two systems are independent and the new evidence
is silent on the matter of correlations, then there is no reason
to change our mind. Specifically, ify=sy1,y2dPY=Y13Y2,
and the subsystem priorsm1sy1d andm2sy2d are, respectively,
upgraded top1sy1d and p2sy2d, then the prior for the whole
system m1sy1dm2sy2d should be upgraded top1sy1dp2sy2d.
This axiom restricts the functionf to be a logarithm.(The
fact that the logarithm applies also when the subsystems are
not independent follows from our inductive hypothesis that
the ranking scheme has universal applicability.)

The overall consequence of these axioms[27] is that
probability distributionspsyd should be ranked relative to the
prior msyd according to their(relative) entropy[17],

Sfp,mg = −E dy psydlog
psyd
msyd

. s1d

The derivation has singled outSfp,mg asthe unique entropy
to be used in inductive inference. Other expressions, such as
Sfm,pg, or Sfp,mg+Sfm,pg, or even expressions that do not
involve the logarithm, may be useful for other purposes, but
they do not constitute an induction: they are not a generali-
zation from the simple cases described in the axioms.

We end this section with two comments on the prior den-
sity msyd. First, Sfp,mg may be infinitely negative when
msyd vanishes within some regionD. In other words, the ME
method confers an overwhelming preference on those distri-
butionspsyd that vanish whenevermsyd does. Is this a prob-
lem? Not really. A similar “problem” also arises in the con-
text of Bayes’ theorem. A vanishing prior represents a
tremendously serious prejudice because no amount of data to
the contrary would allow us to revise it. The solution in both
cases is to recognize that unless we are absolutely certain
that y could not possibly lie withinD then we should not
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have assignedmsyd=0 in the first place. Assigning a very
low but nonzero prior represents a safer and less prejudiced
representation of one’s beliefs and/or doubts both in the con-
text of Bayesian and of ME inference.

Second, choosing the prior densitymsyd can be tricky.
When there is no information leading us to prefer one mi-
crostate of a physical system over another we might as well
assign equal prior probability to each state. Thus it is reason-
able to identifymsyd with the density of states and the in-
variantmsyddy is the number of microstates indy. This is the
basis for statistical mechanics. Other examples of relevance
to physics arise when there is no reason to prefer one region
of the spaceY over another. Then we should assign the same
prior probability to regions of the same “volume,” and we
can chooseeR dy msyd to be the volume of a regionR in the
spaceY. Notice that because of the presence of the prior
msyd not all subjectivity has been eliminated and Laplace’s
principle of insufficient reason still plays an important role,
albeit in a somewhat modified form. Just as with Bayes’
theorem, what is objective here is the manner in which
information is processed, not the initial probability
assignments.

III. ENTROPIC PRIORS: THE BASIC IDEA

In this section we follow[26] closely. We use the ME
method to derive a priorpsud for use in Bayes’ theorem,

psuuyd ~ psy,ud = psudpsyuud. s2d

The selection of a preferred distribution using the ME
method demands that the space in which the search will be
conducted be specified. Being a consequence of the product
rule for joint probabilities, Bayes’ theorem requires that as-
sertions such asy andu be meaningful and that the probabil-
ity of y andu be well defined. Therefore we must focus our
attention onpsy,ud rather thanpsud; the relevant universe of
discourse is neitherQ, the space of allus, nor the data space
Y, but the productQ3Y. This point, first made by Rodríguez
[24], is central to the argument. Our derivation and the final
result, however, differ from his[24,25] in several respects.

To rank distributions in the spaceQ3Y we must decide
on a priormsy,ud. At this starting point absolutely nothing is
known about the variablesu, in particular, they have no
physical meaning, and no relation betweeny andu is known.
The us are totally arbitrary. Therefore the prior must be a
productmsydmsud of the separate priors in the spacesY and
Q. Indeed, the distribution that maximizes the relative
entropy,

sfpg = −E dy du psy,udlog
psy,ud

msydmsud
, s3d

when no constraints are imposed ispsy,ud~msydmsud; it is
such that data abouty tells us absolutely nothing aboutu.

In what follows we assume thatmsyd is known. We con-
sider this an important part of understanding what data it is
that has been collected. In Sec. VII we will suggest a reason-
ablemsyd for the special case of a Gaussian likelihood. The
prior msud remains unspecified.

Next we incorporate the crucial piece of information from
which the parametersu derive their physical meaning and
which establishes the relation betweenu and y: the likeli-
hood functionpsy uud is known. This has two consequences:
First, the joint distributionpsy,ud is constrained to be of the
form psudpsy uud. Notice that this constraint is not in the
form that is most usual for applications of the ME method: it
is not an expectation value. Note also that the only informa-
tion we are using about the quantitiesu is that they appear as
parameters in the likelihoodpsy uud, nothing else. In many
situations of experimental interest there exists additional rel-
evant information beyond what is contained in the likeli-
hood; such information should be included as additional con-
straints in the maximization of the relative entropys.

Second, now that a bare minimum is known aboutu,
namely that eachu represents a probability distribution, there
is a natural but still subjective choice formsud. As discussed
in Ref. [28], except for an overall multiplicative constant,
there is a unique Riemannian metric that adequately reflects
the fact that the points in a space of probability distributions
are not structureless, but happen to be probability distribu-
tions; this is the Fisher-Rao metric. Within the finite-
dimensional subspace defined by the constraint — the known
psy uud — the natural metric onQ is d,2=gijdui du j, where
the uniquegij induced by the family of distributionspsy uud is

gij =E dy psyuud
] log psyuud

] ui

] log psyuud
] u j . s4d

Accordingly we choosemsud=g1/2sud, wheregsud is the de-
terminant ofgij . Having identified the prior measure and the
constraints, we allow the ME method to take over.

The preferred distributionpsy,ud is chosen by varying
psud to maximize

sfpg = −E dy dupsudpsyuudlog
psudpsyuud
g1/2sudmsyd

=−E dupsudlog
psud

g1/2sud
+E dupsudSsud, s5d

whereSsud is the entropy of the likelihood,

Ssud = −E dyp syuudlog
psyuud
msyd

. s6d

Writing the Langrange multiplier that enforcesedu psud
=1 as 1−logz, and assumingpsy uud is normalized yields

0 =E duS− log
psud

g1/2sud
+ Ssud − log zDdpsud. s7d

Therefore, the probability that the value ofu should lie
within the small volumeg1/2suddu is

psuddu =
1

z
eSsudg1/2suddu with z =E du g1/2sudeSsud.

s8d

This entropic prior is our first main result. It tells us that the
preferred value ofu is that which maximizes the entropy

A. CATICHA AND R. PREUSS PHYSICAL REVIEW E70, 046127(2004)

046127-4



Ssud because this maximizes the scalar probability density
exp Ssud. It also tells us the degree to which values ofu
away from the maximum are ruled out; in many cases the
preference for the ME distribution can be overwhelming.
Note also that the density expSsud is a scalar function and
the presence of the Jacobian factorg1/2sud makes Eq.(8)
manifestly invariant under changes of the coordinatesu in
the spaceQ.

We can claim a partial success. The ingredients that have
been used are precisely those that led us to consider using
Bayes’ theorem in the first place. The information contained
in the model — by which we mean that the data spaceY, its
measuremsyd, and the conditional distributionpsy uud — has
been translated into a priorpsud. The success is partial be-
cause it has been achieved for the special case of a fixed data
spaceY of experiments that cannot be repeated. A more com-
plete treatment requires that we address the important case of
experiments that can be repeated indefinitely.

IV. REPEATABLE EXPERIMENTS

Experiments need not be repeatable but sometimes they
are. Let us assume that successive repetitions are possible
and that they happen to be independent. Suppose, to be spe-
cific, that the experiment is performed twice so that the space
of dataY3Y=Y2 consists of the possible outcomesy1 and
y2. Suppose further thatu is not a “random” variable; the
value ofu is fixed but unknown. Then the joint distribution
in the spaceQ3Y2 is

psy1,y2,ud = ps2dsudpsy1,y2uud = ps2dsudpsy1uudpsy2uud,

s9d

and the appropriates entropy is

ss2dfpg =

−E dy1 dy2 dupsy1,y2,udlog
psy1,y2,ud

fgs2dsudg1/2msy1dmsy2d
,

s10d

wheregs2dsud is the determinant of the Fisher-Rao metric for
psy1,y2uud. From Eq. (4) it follows that gij

s2d=2gij so that
gs2dsud=2dgsud, d being the dimension ofu. Maximizing
ss2dfpg subject toedu ps2dsud=1 we get

ps2dsud =
1

Zs2dg
1/2sudeSs2dsud =

1

Zs2dg
1/2sude2Ssud, s11d

where Ss2dsud=2Ssud is the entropy of psy1,y2uud, Ssud

=
def

Ss1dsud and Zs2d is the appropriate normalization constant.
The generalization toN repetitions of the experiment, with
data spaceYN, is immediate,

psNdsud =
1

ZsNdg
1/2sudeSsNdsud =

1

ZsNdg
1/2sudeNSsud. s12d

This is clearly wrong: the dependence ofpsNd on the amount
N of data would lead us to a perpetual revision of the prior as
more data is collected. The absurdity of this situation be-

comes manifest when we consider the case of largeN. Then
the exponential preference for the value ofu that maximizes
Ssud becomes so pronounced that no amount of data to the
contrary can successfully overcome its effect. The data be-
comes irrelevant, and the more data we have, the more irrel-
evant it becomes.

Repeatable experiments present us with a problem. One
possible attitude is to blame the ME method: it gives non-
sense and cannot be trusted. As with all inductive methods
this is, of course, a logical possibility. A second, more con-
structive approach, is to always be prepared to question the
results of ME calculations on the basis that there is no guar-
antee that all the information relevant to the situation at hand
has been taken into account. The problem is not a failure of
the ME method but a failure to include all the relevant
information.

That this is indeed the case can be seen as follows: When
we say an experiment can be repeated twice,N=2, we actu-
ally know more than justpsy1,y2uud=psy1uudpsy2uud. We
also know that forgetting or discarding the value of sayy2,
yields an experiment that is totally indistinguishable from the
single, N=1, experiment. Thisadditional information is
quantitatively expressed byedy2 psy1,y2,ud=psy1,ud, or
equivalently

E dy2 ps2dsudpsy1uudpsy2uud = ps1dsudpsy1uud, s13d

which leads tops2dsud=ps1dsud. In the general case we get
the manifestly reasonable result

psNdsud = psN−1dsud = ¯ = ps1dsud. s14d

The challenge then is to identify a constraint that codifies
this information within each spaceQ3YN.

V. MORE INFORMATION:
THE LAGRANGE MULTIPLIER a

The problem with the priorpsNdsud in Eq. (12) is that it
expresses an overwhelming preference for the valueumax of
u that maximizes the entropySsud. Indeed, asN→` we have
psNdsud→dsu−umaxd leading to

kSl =E du psNdsudSsud →
N→`

Ssumaxd. s15d

This suggests that a better prior would be obtained by maxi-
mizing the entropyssNd of distributions on the spaceQ
3YN subject to an additional constraint on the numerical

valueS̄ of the expected entropykSl. It is not that we happen

to know the numerical valueS̄ of kSl; in fact we do not. It is

rather that we recognize that information aboutS̄ is relevant

in the sense that ifS̄ were known the problem above would
not arise. Naturally, additional effort will be required to ob-

tain the needed value ofS̄.
The logic of the previous paragraph may sound unfamiliar

and further comments may be helpful. When justifying the
use of the ME method to obtain, say, the canonical
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Boltzmann-Gibbs distributionsPq~e−bEqd it has been com-
mon to say something like “we seek the minimally biased
(i.e., maximum entropy) distribution that codifies the infor-
mation we do possess(the expected energy) and nothing
else.” Many authors find this justification objectionable. In-
deed, they might argue, for example, that the spectrum of
black body radiation is what it is independently of whatever
information happens to be available to us. We prefer to
phrase our objection differently: in most realistic situations
the expected value of the energy is not a quantity we happen
to know. Nevertheless, it is still true that maximizing entropy
subject to a constraint on this(unknown) expected energy
leads to correct predictions. Therefore, the justification be-
hind imposing a constraint on the expected energy cannot be
that this is a quantity that happens to be known — because it
is not — but rather that the expected energy is the quantity
that shouldbe known. Even if unknown, we recognize it as
the crucial relevant information without which no successful
predictions can be made. Therefore we proceed as if this
crucial information were available and produce a formalism
that contains the temperature as a free parameter that will
later have to be obtained from the experiment itself. In other
words, the temperature(or expected energy) is one additional
parameter to be inferred from the data.

The entropy on the spaceQ3YN is

ssNdfpg = −E du dysNdpsudpsysNduudlog
psudpsysNduud
g1/2sudmsysNdd

=

−E du psudlog
psud

g1/2sud
+ NE dupsudSsud,

s16d

whereSsud given by Eq.(6). [A constant factor ofNd/2 asso-
ciated to the Fisher-Rao measuregsNdsud has been omitted. It
would eventually be absorbed into the normalization of
psud.] To obtain the priorpsud we maximizessNd subject to
constraints onkSl and thatp be normalized,

dFssNd + s1 − log zdSE du psud − 1D
+ lNSE du psudSsud − S̄DG = 0. s17d

This gives,

E duS− log
psud

g1/2sud
+ sN + lNdSsud − log zDdpsud = 0.

s18d

Therefore,

psud =
1

z
g1/2sudexpfsN + lNdSsudg. s19d

The undesired dependence onN is eliminated if in each
spaceQ3YN the Lagrange multiplierslN are chosen so that
N+lN=a is a constant independent ofN. The resulting en-
tropic prior,

psuuad =
1

zsad
g1/2sudeaSsud, s20d

satisfies Eq.(14). This is our second main result. The prior
psu uad codifies information contained in the likelihood func-
tion, plus information about the expected value of the en-
tropy of the likelihood implicit in the hyperparametera,

S̄sad =
d

da
log zsad, s21d

with zsad is given by

zsad =E du g1/2sudeaSsud. s22d

The next and final step is to figure out whicha applies to
the particular experimental situation under consideration.
The natural way to proceed is to invoke Bayes’ theorem

psa,uuyNd = psa,ud
psyNuud
psyNd

= psadpsuuad
psyNuud
psyNd

.

s23d

The choice of a priorpsad for a itself is addressed in the
next section. If we were truly interested in the actuala, we
could marginalize overu to obtain

psauyNd =E du psa,uuyNd =
psad
psyNd E du psuuadpsyNuud.

s24d

But our interest in the value ofa is only indirect; a is a
necessary but annoying technical complication that stands in
our way to the real goal of inferringu. Marginalizing overa,
we get

psuuyNd =E da psa,uuyNd = p̄sud
psyNuud
psyNd

, s25d

where

p̄sud =E da psadpsuuad. s26d

This is the answer we sought: the effective prior foru, the
averagedp̄sud, is independent of the actual datayN, as it
should. The last step is the assignment ofpsad.

VI. AN ENTROPIC PRIOR FOR a

To remain consistent with the spirit of this paper, namely
using ME to obtain priors, the prior fora must itself be an
entropic prior. The motivation behind discussing entropic
priors is that we wish to consider information included in the
likelihood function. Sincepsy uud refers tou but makes no
reference to any hyperparameters it is quite clear thata
should not be treated like the otherus. The relation between
a and the datay is indirect:a is related tou, andu is related
to y. Onceu is given, the datay becomes irrelevant, it con-
tains no further information abouta. The whole significance
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of a is derived purely from its appearance inpsu uad, Eq.
(20). Therefore, the relevant universe of discourse isA3Q
with aPA. We focus our attention on the joint distribution

psa,ud = psadpsuuad s27d

and we obtainpsad by maximizing the entropy

Sfpg = −E dadu psa,udlog
psa,ud

g1/2sadg1/2sud
, s28d

where g1/2sad is determined below. Since no reference is
made to repeatable experiments inYN there is no need for
any further constraints except for normalization.

The Fisher-Rao measureg1/2sad in Eq. (28) is

gsad =E du psuuadF d

da
log psuuadG2

. s29d

Using Eqs.(20)–(22) we get

gsad =E du psuuadFSsud −
d log zsad

da
G2

= sDSd2,

s30d

but

dS̄sad
da

=
d

da

1

zsad
dzsad

da
=

1

zsad
d2zsad

da2 − F 1

zsad
dzsad

da
G2

= sDSd2. s31d

Therefore,

gsad =
d2 log zsad

da2 . s32d

The interpretation is straightforward: the distance between
psu uad andpsu ua+dad is given by

g1/2sadda = DSsadda, s33d

or, in words, the local entropy uncertaintyDS is the distance
per unit change ina.

To maximizeS rewrite it as

Sfpg = −E da psadlog
psad
g1/2 +E da psadssad, s34d

wheressad is given by

ssad = −E du psuuadlog
psuuad
g1/2sud

=log zsad − a
d log zsad

da
.

s35d

Then, varying with respect topsad gives

psad =
1

z
g1/2sadessad with z=E da g1/2sadessad.

s36d
This completes our derivation.

To summarize: the actual entropic prior foru in Bayes’
theorem, Eq.(25), is p̄sud obtained by averagingpsa ,ud
overa, Eq.(26), and using Eqs.(36), (20), and(6). The prior
p̄sud codifies two pieces of information. The first piece is the
information contained in the functional form of the likeli-
hood. The second is the expected entropy of the likelihood,
which, even when unavailable, turns out to be highly rel-
evant information for repeatable experiments. The actual
derivation consists of maximizing the entropy on the space
Q3YN, Eq. (16), subject to constraints corresponding to
each of those two pieces of information.

We argued above that the hyperparametera should not be
treated in the same way as the other parametersu because the
likelihood psy uud refers only tous and not toa. Nonethe-
less, it may still be worthwhile to discuss briefly what would
happen ifa were treated as one of theus. In this case, the
entropic priorpsad would be determined by focusing our
attention on the joint distribution

psa,u,yNd = psadpsuuadpsyNuud, s37d

where the last two factors on the right-hand side are assumed
known. The assumed universe of discourse would beA
3Q3YN. A straightforward application of the ME method
would, as before, run into trouble with an unwantedN de-
pendence which would require the introduction of a new
constraint on the appropriate expected entropy. Thus, the en-
tropic prior fora would involve a second hyperparametera2.
The unknowna2 would itself require its own entropic prior,
involving yet a third hyperparametera3, and so on. There
would be an endless chain of hyperparameters[16]. In any
practical calculation, the chain would have to be truncated.
Whether the predictions aboutu depend on where and how
the truncation is carried out remains to be studied. But, for-
tunately, this is not necessary:a is not like the otherus.

VII. EXAMPLE: A GAUSSIAN MODEL

Consider datayN=hy1, . . . ,yNj that are scattered around an
unknown valuem,

y = m + n s38d

with knl=0 andkn2l=s2. The goal is to estimate the param-
etersu=su1,u2d=sm ,sd on the basis of the datayN and the
information implicit in the model: the data spaceY, the mea-
suremsyd (discussed below), and the Gaussian likelihood,

psyum,sd =
1

s2ps2d1/2expF−
sy − md2

2s2 G . s39d

In Sec. III we asserted that knowing the measuremsyd is
part of knowing what data has been collected. Therefore,
nothing can be said aboutmsyd without further specification
of the experimental situation. For example, in discrete prob-
lems such as tossing a die the symmetry leads to the measure
msid=1; in the statistical mechanics of discrete energy levels
we choosemsid equal to the degeneracy of the levels; if the
data are points in a continuous space it may be appropriate to
choosemsyddy to be a volume element, and if the space is
curved thenmsyd is nontrivial.
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It turns out, however, that in many physical situations
where the data happen to be distributed according to a
Gaussian the underlying spaceY is sufficiently symmetric,
e.g., invariant under translations, that we can assumemsyd
=m=constant.This is physically reasonable. Gaussian distri-
butions arise when the measured value ofy is the sum of a
large number of “microscopic” contributions and the details
of how the individual contributions are themselves distrib-
uted are washed out in the “macroscopic” sum. The macro-
scopically relevant features are just those that distinguish one
Gaussian from another, namely, the meanm and the variance
s2. This is the physical basis behind the Central Limit Theo-
rem. But if microscopic details are irrelevant it should be
possible to understand the situation from a purely macro-
scopic point of view: it should be possible to obtain the
Gaussian distribution as the preferred one among all those
with the givenm ands2, and this is, indeed, the case: setting
msyd=constant inSfp,mg, Eq. (1), and maximizing subject
to constraints on the mean and variance yields Eq.(39).

From Eqs.(6) and (39) the entropy of the likelihood is

Ssm,sd = logF s

s0
Gwheres0=

defS e

2p
D1/2 1

m
, s40d

and the corresponding Fisher-Rao measure, from Eq.(4) is

gsm,sd = detU1/s2 0

0 2/s2U =
2

s4 . s41d

Note that bothSsm ,sd andgsm ,sd are independent ofm.
This means that if we were concerned with the simpler prob-
lem of estimatingm in a situation wheres happens to be
known, then the entropic prior, in any of the versions, Eqs.
(8) and(20), or (26), is a constant independent ofm. In other
words, whens is known, the Bayesian estimate ofm using
entropic priors coincides with the maximum likelihood esti-
mate, i.e., by the popular procedure of minimizing

x2 =
1

s2o
i=1

N

syi − md2. s42d

Returning to the more interesting case of unknowns, the
a-dependent entropic prior, Eq.(20) is

psm,suad =
21/2

zsad
sa−2

s0
a . s43d

psm ,s uad is improper in bothm and s; normalization re-
quires the introduction of high and low cutoffs for bothm
and s. The fact that without cutoffs the model is not well
defined is an indication that more relevant information is
being requested: the cutoffs constitute relevant information
that must be taken into account.(The logic parallels that
which led to the introduction ofa in Sec. V.) The case of
unknown cutoff values is important and we intend to explore
it in detail in future work. The basic idea is that specifying
cutoffs is an integral part of defining the model, and there-
fore the choice of cutoffs can be tackled as a problem of

model selection. In the remainder of this section, however,
we will assume that the information about cutoffs is already
available.

It is convenient to write the range ofm as Dm=mH−mL
and to define thes cutoffs in terms of dimensionless quan-
tities «L and «H; s extends fromsL=s0«L to sH=s0/«H.
Thenzsad andpsm ,s uad are given by

zsad =
21/2Dm

s0

«H
1−a − «L

a−1

a − 1
s44d

and

psm,suad =
1

Dms0

a − 1

«H
1−a − «L

a−1S s

s0
Da−2

. s45d

Notice that in the special case ofa=1, the prior overs
reduces tods /s which is called the Jeffreys prior and is
usually introduced by the requirement of invariance under
scale transformations,s→ls.

Writing « =
def

s«L«Hd1/2, the prior fora can be obtained from
Eq. (32),

gsad =
1

sa − 1d2 − S 2 log «

«1−a − «a−1D2

s46d

and from Eqs.(26) and (35),

psad =
g1/2sad

z

«1−a − «a−1

a − 1
expF 1

a − 1
+ a

«1−a + «a−1

«1−a − «a−1log «G ,

s47d

where the normalizationz has been suitably redefined.
Equations(46) and (47) simplify considerably when we

take the limit «→0. Clearly the same result is obtained
whether we let«H→0 while keeping«L fixed, or letting«L
→0 while keeping«H fixed, or even allowing«H→0 and
«L→0 simultaneously. The resultinggsad andpsad are

gsad =
1

sa − 1d2 , s48d

and

psad = 5 1

s1 − ad2expF 1

a − 1
G for a , 1,

0 for a ù 1,

s49d

wherepsad is normalized. This is shown in Fig. 1 .
psad reaches its maximum value ata=1/2. Sincepsad

,a−2 for a→−` the expected value ofa and all higher
moments diverge. This suggests that replacing the unknown
a in the prior psu uad by any given numerical valueâ is
probably not a good approximation.
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As explained in Sec. V, sincea is unknown, the effective
prior for u=sm ,sd is obtained marginalizingpsm ,s ,ad
=psm ,s uadpsad over a, Eq. (26). Sincepsad=0 for aù1
as «→0 we can safely take the limit«H→0 or sH→`.
Conversely, sincepsadÞ0 for a,1 we cannot take«L→0
or sL→0. The limit sH→` while keepingsL fixed gives

psm,s,ad =5 1

DmsL

expF 1

a − 1
G

1 − a
S s

sL
Da−2 for a , 1,

0 for a ù 1.

s50d

The averaged prior form ands is

p̄sm,sd =
1

DmsL
SsL

s
D2E

−`

1 expF 1

a − 1
G

1 − a
S s

sL
Da

da,

s51d

which integrates to

p̄sm,sd =
2

Dms
K0S2Îlog

s

sL
D , s52d

whereK0 is a modified Bessel function of the second kind.
This is the entropic prior for the Gaussian model. The
function

Psxd =
2

x
K0s2Îlog xd s53d

is shown in Fig. 2 as a function ofx=s /sL.
Psxd has an integrable singularity asx→1 where it be-

haves as

Psxd <
2

x
− logÎlog x − g for x < 1. s54d

Since sL is a lower cutoff the region of largex is more
relevant. The leading asymptotic behavior is given by

Psxd <
Îp

xslog xd1/4exp − 2Îlog x for x @ 1. s55d

Finally, we turn to Bayes’ theorem, Eq.(25), with the
prior (52) and consider using the expected valueskml and
ksl over the posteriorpsm ,s uyNd as estimators form ands.
The integrations can be performed numerically but are not
particularly illuminating. Of course, for largeN the results
are independent of the prior and the estimators coincide
with the standard maximum likelihood results, namely

kml→ ȳ (the sample average) and ksl2→y2̄− ȳ2 (the sample
variance).

Alternatively, one can follow standard practice and mar-
ginalize the posteriorpsm ,s uyNd over s to obtain psm uyNd
and calculate an estimatorm̂ and its error barDm from

d

dm
ulog psmuyNdum̂ = 0 s56d

and

−
d2

dm2ulog psmuyNdum̂ =
1

sDmd2 . s57d

The result form̂ is very simple: for any value ofN the esti-
matorm̂ is the sample average,m̂= ȳ. The result forDm is not
as elegant but for largeN it simplifies and reduces to

sDmd2→ sy2̄− ȳ2d /N as expected.

VIII. FINAL REMARKS

In this paper the method of maximum relative entropy has
been used to translate the information contained in the
known form of the likelihood into a prior distribution for
Bayesian inference. The argument follows closely the analo-

FIG. 1. The priorpsad for various values of the cutoff param-
eter«, as«→0.

FIG. 2. The effective p̄sm ,sd is shown as Psxd
=s2/xdK0f2Îlogsxdg wherex=s /sL.
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gous ME methods that have been so successful in statistical
mechanics. For experiments that cannot be repeated the re-
sulting “entropic prior” is formally identical with the Ein-
stein fluctuation formula. For repeatable experiments, how-
ever, the expected value of the entropy of the likelihood —
represented in terms of a Lagrange multipliera — turns out
to be relevant information that must be included in the analy-
sis. As an illustration the important case of a Gaussian like-
lihood was treated in detail.

It may be useful to comment briefly on the differences
between our entropic prior and the versions previously pro-
posed by Skilling and by Rodríguez. Perhaps the main dif-
ference with Skilling’s prior is that, unlike ours, its use is not
restricted to probability distributions but is intended for ge-
neric “positive additive distributions”including, for example,
the distributions of intensities in images[15]. One problem
here is that of justifying the applicability of the ME method
in such a general context. Our impulse to generalize is a
dangerous one; we may get away with indulging it occasion-
ally but overindulgence will certainly lead to error. In any
case, our argument in Sec. III, which consists in maximizing
the entropys subject to a constraintpsy,ud=psudpsy uud,
makes no sense in the case of generic positive additive dis-
tributions for which there is no available product rule. A
more specific problem arises from the fact that Skilling’s
entropy is not, in general, dimensionless and the hyperpa-
rametera is vaguely interpreted some sort of cutoff carrying
the appropriate corrective units. Some of the difficulties,
which led Skilling to seek an alternative approach, were
identified in Ref.[29].

Rodríguez’s approach is closer to ours. His prior applies
to probability distributions and appears to be derived from a
ME principle [25]. One difference, perhaps a minor one, is
his treatment of the underlying measuremsyd. For usmsyd is
not arbitrary; knowingmsyd is part of knowing what data has
been collected. For himmsyd is just an initial guess and he
suggests settingmsyd=psy uu0d for some valueu0. The more
important difference, however, is that the number of ob-
served datan is deliberately and explicitly left unspecified.
The spaceQ3Yn over which distributions are defined, and
therefore the distributions themselves, also remain unspeci-
fied. It is not clear what the maximization of an entropy over
such unspecified spaces could possibly mean but a hyperpa-
rametera is eventually introduced and it is interpreted as a
“virtual number of observations supporting the initial guess
u0.” He proposes thata be considered as one more among
the parametersu to be inferred. As mentioned earlier this
leads to the introduction of an endless chain of additional
hyperparameters.

There are several directions in which the ideas of this
paper can be further extended. First, we emphasize once
again that the entropic priors discussed here apply to a situ-
ation where all we know about the quantitiesu is that they
appear as parameters in the likelihoodpsy uud, and nothing
else. In many situations of experimental interest there exists
additional relevant information beyond what is contained in
the likelihood. Such information should be included as addi-
tional constraints in the maximization of the relative entropy
s in Eq. (17). The resulting modified entropic prior would

provide a better representation of our state of knowledge
prior to the acquisition of the data. Indeed, the advantage of
the Bayesian approach over the usual method of maximum
likelihood is the possibility of including additional relevant
information by replacing a flat prior by an appropriately
more informative prior. There is nothing to prevent us from
performing a similar improvement and going beyond the
“bare” entropic priors discussed in this paper. Two kinds of
additional information that are easy to include are restric-
tions on the range of the parametersu and information about
the known expected values of some variablesasud. Steps in
this direction were taken in Sec. V, whereasud is the likeli-
hood entropy, and in Sec. VII where high and low cutoffs on
the range of the Gaussian parameters were introduced.

Second, in the introduction we mentioned the interesting
possibility of analyzing dataye from different experiments,
e=1,2, . . ., related to u by different likelihood func-
tions pesyeuud. Clearly this can be analyzed as a single
combined experiment with likelihood psy1,y2, . . .uud
=p1sy1uudp2sy2uud. . . to which all our previous results apply.
As we stated earlier, the mere fact thatu is measurable
through one or another experiment is additional relevant in-
formation that can be taken into account.

Third, we also mentioned that problems of model selec-
tion can be tackled as an extension of the ideas described in
this paper. On the basis of datay we want to select one
model among several competing candidates labeled bym
=1,2, . . .with likelihood distributions given bypsy um,umd.
The answer, i.e., the probability of modelm given the datay,
is given by Bayes’ theorem,

psmuyd =
psmd
psyd

psyumd

=
psmd
psyd E dum psy,umumd

=
1

psyd E dum psm,umd psyum,umd. s58d

This is exact. The problem is solved, at least in principle,
once an entropic prior forpsm,umd is assigned. However, the
remaining practical problems associated with carrying out
the actual numerical calculations could, of course, still be
quite formidable.

Finally, we end with a word of caution. As in all instances
of inductive inference there is the possibility that predictions
based on the ME method could be wrong because not all the
information relevant to the problem at hand was taken into
account. This potential problem is not peculiar to the ME
method; it is a problem shared by all methods of induction.
Nevertheless, we are confident that there will be enormous
rewards in extending the benefits of the ME method, as a
method for induction, beyond its traditional territory in sta-
tistical mechanics into data analysis.
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