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A method for the analysis of spectral densities of hysteretic nonlinearities driven by diffusion processes is
presented. This method is based on the Preisach formalism for the description of hysteresis and the mathemati-
cal machinery of diffusion processes on graphs. The calculations are appreciably simplified by the introduction
of the “effective” distribution function. The implementation of the method for the case of the Ornstein-
Uhlenbeck input process is presented in detail, and analytical expressions for spectral noise densities for
various hysteretic systems are obtained. The general qualitative features of these spectral densities are exam-
ined and their dependence on various parameters is discussed. Because of the universality of the Preisach
model, this approach can be used to compute spectra in hysteresis nonlinearities of various physical origins.
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I. INTRODUCTION

The phenomenon of hysteresis has been known and has
attracted the attention of many researchers for a long time.
However, a systematic study of hysteresis was only recently
attempted and led to the appearance of the first monographs
on the subject[1–4]. Since then, interest in this topic has
been continuously growing, and it has extended far beyond
the classical areas of magnetism and plasticity. For example,
optical hysteresis[5], superconducting hysteresis[6], and
economic hysteresis[7] became well-established scientific
domains, and many pioneering studies appeared in biology
[8,9], psychology[10,11], and computer science[12,13].

The physical origin of hysteresis is due to the multiplicity
of metastable states exhibited by hysteretic systems. A physi-
cal system can persist in a metastable state for some time, but
thermal perturbations usually drive the system to more stable
nearby states. In magnetism, this thermally activated relax-
ation is commonly called an “aftereffect” or “viscosity,”
while in the area of superconductivity it is known as “creep.”
Therefore, the behavior of a hysteretic system could be de-
scribed as a nonlinear hysteretic transformation of a stochas-
tic input that consists of a random internal noise superim-
posed on a deterministic external input. In other areas such
as economics[7], computer science[12,13], or wireless com-
munication[14], the external input of a hysteretic system is
already considered as a stochastic process due to its random
nature or to external noise. Regardless of the reasons that led
to such models, the mathematical study of hysteretic systems
driven by stochastic input is of relevance to all the previ-
ously mentioned areas. This point is also supported by the
universality of the Preisach model that has been used to de-
scribe hysteretic nonlinearities of various physical origins.
Furthermore, the study of multivalued nonlinear systems
with stochastic inputs is still a hardly touched territory, being
of considerable mathematical complexity[15]. Therefore, the
techniques used to analyze the properties of these systems
are of interest in their own right.

The calculation of spectral density is a central problem in
physics. This problem is of considerable complexity for non-
linear physical systems and it has been studied in the past by
such authorities in the field as van Vleck and Uhlenbeck.
However, the calculation of spectra for hysteresis systems
has not been attempted mainly because of the non-
Markovian nature of the stochastic output processes. In this
article, a method for computing spectral densities for com-
plex hysteretic systems driven by diffusion processes is dis-
cussed, and computational results illustrating this method are
presented. For the class of Ornstein-Uhlenbeck input pro-
cesses, closed form(analytical) expressions for the spectral
density are derived. The method takes full advantage of the
fact that various hysteretic nonlinearities can be constructed
through the Preisach formalism as a “weighted superposi-
tion” of rectangular loop operators that are individually
driven by the same diffusion process. Then the mathematical
theory of stochastic processes on graphs(see the Appendix)
is used to circumvent the difficulties related to the fact that
outputs of hysteretic systems are not Markovian processes.
In addition, some special techniques are used to simplify the
expression for the spectral density of output processes.

Preisach-type models with stochastic input were intro-
duced by Mayergoyz and Kormann in[16–18] to offer a
unified and detailed description of hysteresis and the afteref-
fect in magnetic materials[6,19–22]. Moreover, it has been
shown that this approach can be successfully applied to the
study of creep phenomena in type II superconductors[23]
and in the fields of mechanical and structural engineering
[24]. Key computations in these viscosity models are based
on the relation between randomly induced switchings of rect-
angular loops and the exit problem for stochastic processes,
which is a very well-studied problem in the theory of diffu-
sion processes. Later, a simpler and more efficient technique
for these computations was discovered, which uses the re-
cently developed theory of diffusion processes on graphs
[25]. This theory was first applied to the study of random
perturbations of Hamiltonian dynamical systems[25,26].
Then it was realized that this mathematical technique is natu-
rally suited for the analysis of noise in hysteretic systems
[27,28].*Electronic address: dimian@glue.umd.edu

PHYSICAL REVIEW E 70, 046124(2004)

1539-3755/2004/70(4)/046124(12)/$22.50 ©2004 The American Physical Society70 046124-1



The article is organized as follows. In Sec. II, a general
discussion of the method for the calculation of the spectral
density of the output of the Preisach model driven by a dif-
fusion process is presented. In Sec. III, this method is applied
to the calculation of the spectral density in the case when the
input is the Ornstein-Uhlenbeck process. Sample results of
the computations of the spectral density and their analysis
are presented in Sec. IV. Finally, conclusions are drawn in
Sec. V.

II. DISCUSSION OF THE METHOD

Consider complex hysteretic nonlinearities that can be
modeled through the Preisach formalism as weighted super-
positions of rectangular loops. This can be mathematically
described as follows:

hstd =E E
aùb

msa,bdĝabxstddadb. s1d

Here,msa ,bd is a Preisach distribution function, whileĝab

are rectangular loop operators shown in Fig. 1. The Preisach
model has been extensively used for the description of hys-
teresis of various physical types such as magnetic hysteresis
[1–4], superconducting hysteresis[6,23], mechanical hyster-
esis of consolidated granular materials[29–31], hysteresis of
shape-memory alloys[32] and piezoceramics[33], etc. This
clearly revealed the physical universality of the Preisach
model.

It has also been realized that the Preisach model driven by
a stochastic inputxstd is an effective model for thermally
activated relaxations commonly known as the aftereffect in
magnetism[16–22] and creep in the area of superconductiv-
ity [6,23]. The universality of this approach has made it natu-
rally suitable for applications in the fields of mechanical and
structural engineering, where the dynamic loading acting on
hysteretic systems is usually random in nature[24]. It is
expected that other areas where the input has a stochastic
behavior, such as communications or economics, will benefit
from this direction of research.

For many hysteretic materials(especially magnetic mate-
rials), the weight functionmsa ,bd is narrowly peaked around
the linea=−b. For these materials, the symmetric Preisach
model constructed as a weighted superposition of symmetric
rectangular loopsĝa= ĝas−ad can be regarded as a fairly good
approximation. This Preisach model can be written in the
form

hstd =E
0

a0

ĝaxstdmsadda=E
0

a0

iastdmsadda, s2d

where

iastd = ĝaxstd =5
1 if xstd . a,

− 1 if xstd , − a,

1 if xstd P s− a,ad andx„tstd… = a,

− 1,if xstd P s− a,ad andx„tstd… = − a,

s3d

wheretstd is the value of time at which the last threshold(a
or −a) was attained.

The input processxstd is assumed to be described by the
Itô stochastic differential equation

dxstd = b„xstd…dt + s„xstd…dWstd, s4d

with initial condition xs0d=x0. HereWstd is the Wiener pro-
cess, whileb and s are known functions that satisfy local
Lipshitz and linear growth conditions[34–36]. These stan-
dard conditions ensure the existence of a nonexploding,
unique solution of Eq.(4) that satisfies the initial condition.

The stochastic nature of the input leads to random switch-
ings of the rectangular loop operatorsĝa and, therefore, the
output of the Preisach modelhstd is a stochastic process as
well. The autocorrelation function of the output process is

Chstd = khstdhs0dl

=E
0

a0E
0

a0

kĝbxstdĝaxs0dlmsbdmsaddbda, s5d

wherekl denotes the expected value. Thus, we can express
the autocorrelation of the Preisach model(2) as a weighted
superposition of cross-correlation functionsCba of two-
dimensional processes(ibstd , iastd), representing the outputs
of two symmetric rectangular loops:

Chstd =E
0

a0E
0

a0

Cbastdmsbdmsaddbda. s6d

The cross-correlation functionsCbastd are not even func-
tions, butCbas−td=Cabstd. This implies that the correlation
function of the Preisach systemChstd is an even function.

According to the Wiener-Khinchine theorem[36], the
process’s spectral density is the Fourier transform of the au-
tocorrelation function. Because we deal with an even corre-
lation function, the spectral density of the output process can
be expressed as

FIG. 1. Rectangular hysteresis loop that represents the operator
ĝab.

M. DIMIAN AND I. D. MAYERGOYZ PHYSICAL REVIEW E 70, 046124(2004)

046124-2



Shstd = 2 ReHE
0

`

Chstde−jvtdtJ
=E

0

a0E
0

a0

Sbasvdmsbdmsaddbda, s7d

where Sbasvd is the “cross-spectral density” for the two-
dimensional process(ibstd , iastd) and it is related to the cross-
correlation functionCbastd as follows:

Sbasvd = 2 ReHE
0

`

Cbastde−jvtdtJ . s8d

The Preisach model describes hysteresis nonlinearities
with nonlocal memories. For this reason, the output process
hstd cannot be embedded as a component of some Markovian
process. However, the previous expression shows that this
spectral density can be expressed as a weighted superposition
of spectral densities for much simpler processes(ibstd , iastd).
These processes are still non-Markovian, but they can be
embedded in higher dimensional Markovian processes.

In order to computeSbasvd, we consider the three-
component processy(td=(ibstd , iastd ,xstd), with iastd
= ĝaxstd, ibstd= ĝbxstd defined on the graphY shown in Fig.
2. Because the rectangular loop operators describe hysteresis
with local memory, the joint specification of current values
of input and output uniquely defines the states of this hyster-
esis. As a result,ystd is a Markovian process. In addition,
only certain combinations ofibstd , iastd, andxstd are possible,
and they are presented in Fig. 2. The binary processesibstd
andiastd assume constant values on the edges of the graphY.
Applying the theory of stochastic processes on graphs, the
following initial-boundary value problem for the transition
probability density functionrsy ,tuy8 ,0d of the Markovian
processystd defined on the graphY can be derived(see the
Appendix). On each edge of this graph,rsy ,tuy8 ,0d satisfies
the forward Kolmogorov equation:

] rsy,tuy8,0d
] t

+ Lxrsy,tuy8,0d = 0, s9d

whereL̂x is the second order elliptic operator associated with
the input diffusion process defined in Eq.(4), and it is speci-
fied by the expression

L̂xr = −
1

2

]2

] x2fs2sxdrg −
]

] x
fbsxdrg, s10d

with ssxd andbsxd being the diffusion and drift coefficients,
respectively, of the input processxstd. The function
rsy ,tuy8 ,0d satisfies the initial conditions

rsy,0uy8,0d = dibi
b8
diai

a8
dsx,x8d s11d

and it has to decay to zero asx goes to infinity. In addition,
the so-called vertex type boundary conditions[6,28] at graph
vertices have to be satisfied. These vertex type boundary
conditions express the continuity of the transition probability
density when the transition from one graph edge occurs with-
out switching of the rectangular loop, and a zero boundary
condition is imposed on the third graph edge connected to
this vertex. Moreover, the probability current has to be con-
served at each vertex. For example, at the vertexV1 (corre-
sponding tox=−a, in the casea.b), these conditions are
explicitly written as

r„s− 1,− 1,−a+d,tuy8,0… = r„s− 1,− 1,−a−d,tuy8,0…,

r„s− 1,1,−a+d,tuy8,0… = 0,

] r

] x
„s− 1,1,−a+d,tuy8,0… +

] r

] x
„s− 1,− 1,−a+d,tuy8,0…

=
] r

] x
„s− 1,− 1,−a−d,tuy8,0…. s12d

FIG. 2. Graph on which the
three-component processy is
defined.
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It is apparent that the stationary probability density of the
processystd is the solution of the following boundary value
problem:

L̂xrssyd = 0 on each graph edge,

lim
x→±`

rssyd = 0.

vertex boundary conditions at each graph vertex.s13d

Taking into account the facts presented above, the cross-
correlation functionCbasad can be seen as a component of
the correlation matrixCystd for the Markovian processystd:

Cystd = kyTstdys0dl

=E
−`

` E
−`

`

o
ia,ib

o
ia8 ,ib8

yTy8rsy,t;y8,0ddxdx8

=E
−`

` E
−`

`

o
ia,ib

o
ia8 ,ib8

yTy8rsy,tuy8,0drssy8ddxdx8.

s14d

In the above formula, the sums are taken over all graph val-
ues of thesib , iad andsib8 , ia8d, respectively. This convention is
maintained throughout the paper.

To simplify the computation of the cross-correlation func-
tion, the “effective” distribution functiongsy ,td is intro-
duced:

gsy,td =E
−`

`

o
ia8 ,ib8

ia8rsy,tuy8,0drssy8ddx8. s15d

A similar function has been previously proposed in[37] and
used in the analysis of noise in semiconductor devices.

By using Eq.(9) on each edge of the graph, the initial
condition (11), and vertex type boundary conditions for the
transition probability densityrsy ,tuy8 ,0d, as well as the
boundary value problem(13) for the stationary probability
densityrssy8d, one can derive the following initial boundary
value problem for the “effective” distribution function:

] gsy,td
] t

+ Lxgsy,td = 0 on each graph edge,

gsy,0d = iarssyd,

lim
x→±`

gsy,td = 0,

vertex boundary conditions. s16d

Using formulas(14) and (15) the cross-correlation function
Cbastd can be expressed by the formula

Cbastd =E
−`

`

o
ia,ib

ibg„sib,ia,xd,t…dx. s17d

Thus, in order to find the cross-correlation functionCbastd,
one has to solve first the boundary value problem(13) for the

stationary distributionrssyd and then the initial boundary
value problem(16) for the “effective” distribution function
gsy ,td, and finally to compute the integral(17). According to
Eq. (8), another integration has to be performed for the com-
putation of the cross-spectral densitySbasvd. However, by
introducing the one-side Fourier transform of the “effective”
distribution function,

Gsy,vd =E
0

`

gsy,tde−jvtdt, s18d

the cross-spectral densitySbasvd can be written in the form

Sbasvd = 2 ReHE
0

`

o
ia,ib

ibGsy,vddxJ . s19d

Performing the Fourier transformation of the initial boundary
value problem(16), we arrive at the following boundary
value problem forGsy ,vd:

jvGsy,vd + LxGsy,vd = iarssyd on each graph edge,

lim
x→±`

Gsy,vd = 0,

vertex boundary conditions. s20d

For example, these “vertex” boundary conditions at the ver-
tex V1sx=−ad are

G„s− 1,− 1,−a+d,v… = G„s− 1,− 1,−a−d,v…,

G„s− 1,1,−a+d,v… = 0,

] G

] x
„s− 1,1,−a+d,v… +

] G

] x
„s− 1,− 1,−a+d,v…

=
] G

] x
„s− 1,− 1,−a−d,v…. s21d

Because the stationary probability distribution satisfies the
differential equation of the boundary value problem(13), the
function sia / jvdrssyd is (for eachv) a particular solution for
the nonhomogeneous differential equation in(20). Taking
into account the linearity of the operatorLx, Gsy ,vd can be
written as

Gsy,vd = G0sy,vd +
ia

jv
rssyd, s22d

whereG0sy ,vd is a solution of the corresponding homoge-
neous equation. Since the particular solution is purely imagi-
nary, it does not contribute to the cross-spectral density
Sbasvd. Thus,

Sbasvd = 2 ReHE
0

`

o
ia,ib

ibG0sy,vddxJ , s23d

with G0sy ,vd satisfying the following boundary value prob-
lem:

jvG0sy,vd + LxG
0sy,vd = 0 on each graph edge,
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lim
x→±`

G0sy,vd = 0,

inhomogeneous vertex type boundary conditions.s24d

Next, we describe these inhomogeneous vertex type bound-
ary conditions. First, by inspecting vertex boundary condi-
tions for Gsy ,vd andrssyd, it can be observed that, when a
transition from one edge to another occurs without switching
of the rectangular loops,Gsy ,vd andrssyd corresponding to
these edges are continuously matched andia does not change
its value. Consequently, the correspondingG0sy ,vd is also
continuously matched in this case. On the third edge con-
nected to the vertex, the zero boundary condition is valid.
Until this point, the inhomogeneous vertex boundary type
conditions coincide with the previous ones. This coincidence
is also maintained in the boundary conditions for derivatives
at verticesV2–5sx= ±bd. However, the difference appears in
the conditions for derivatives at verticesV1 andV6sx= ±ad;
namely, from the boundary condition(21) for the derivative
of Gsy ,vd, we have

] G0

] x
„s− 1,1,−a+d,v… +

1

jv

] rs

] x
s− 1,1,−a+d

+
] G0

] x
„s− 1,− 1,−a+d,v… +

s− 1d
jv

] rs

] x
s− 1,− 1,−a+d

=
] G0

] x
„s− 1,− 1,−a−d,v… +

s− 1d
jv

] rs

] x
s− 1,− 1,−a−d.

s25d

Taking into account the boundary condition for a stationary
probability distribution, the following boundary condition for
G0sy ,vd is derived:

] G0

] x
„s− 1,1,−a+d,v… +

] G0

] x
„s− 1,− 1,−a+d,v…

+
2

jv

] rs

] x
s− 1,1,−a+d

=
] G0

] x
„s− 1,− 1,−a−d,v…. s26d

By using similar arguments, the inhomogeneous vertex
boundary condition at the vertexV6 is found to be

] G0

] x
„s1,1,a−d,v… +

] G0

] x
„s1,− 1,a−d,v… −

2

jv

] rs

] x
s1,− 1,a−d

=
] G0

] x
„s1,1,a+d,v…. s27d

In the casea,b, the boundary conditions for vertices cor-
responding tox= 7a take the following forms:

] G0

] x
„sib,1, 7 a±d,v… +

] G0

] x
„sib,− 1, 7 a±d,v…

±
2

jv

] rs

] x
sib, ± 1, 7 a±d

=
] G0

] x
„sib, 7 1, 7 a7d,v…. s28d

Now the method for the computation of the spectral den-
sity can be summarized as the sequence of the following
steps.

Step 1. Solve the boundary value problem(13) for the
stationary distributionrssyd.

Step 2. Solve the boundary value problem(24) for
G0sy ,vd.

Step 3. Compute the cross-spectral densitySbasvd by us-
ing formula (23).

Step 4. Compute the spectral densityShsvd by using for-
mula (7).

The following observations can simplify the implementa-
tion of the above steps.

(1) For a given input, the first three steps of the method
are independent of the Preisach functionmsad. Therefore,
once theSbasvd are precomputed, they can be used for any
“symmetric” Preisach system(2). In other words, the spectral
density of a hysteretic system can be computed as a weighted
superposition of cross-spectral densitiesSbasvd precomputed
at the third step, with the weight being given by the Preisach
function of that system.

(2) As can be observed from Eq.(23), the cross-spectral
densitiesSbasvd are expressed as linear combinations of
G0sy ,vd corresponding to different edges. This indicates that
it may not be necessary to find an explicit expression for
G0sy ,vd on every edge, but rather their linear combinations
mentioned above.

(3) By using the expression(10) for the operatorL̂x, an
important simplification can be made. From formula(24) it

follows that G0sy ,vd=s j /vdL̂xG
0sy ,vd. By substituting the

latter expression into formula(23), one can obtain

Sbasvd = 2 ReHE
0

`

o
ia,ib

ibS j

v
DL̂xG

0sy,vddxJ
= −

2

v
ImHE

0

`

L̂xSo
ia,ib

ibG0sy,vdDdxJ . s29d

The derivatives in the operatorL̂x can be integrated and this
results in a simple expression for the spectral density in
terms of the first derivatives ofG0sy ,vd at vertex points[see,
for example, Eq.(41)].

(4) The boundary value problems(23) and(24) defined on
the entire graphY can be sequentially reduced to the bound-
ary value problems defined on real line intervals, which are
more tractable analytically and numerically. Efficient nu-
merical algorithms for solving these problems defined on the
real line interval are three-diagonal matrix solvers described,
for instance, in Ref.[38].
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The above observations produce further simplifications in
the method for computations of the spectral density once a
specific form of the input stochastic process is given. These
advantages will be further exploited in the next section,
where the Ornstein-Uhlenbeck process is used as a model of
driving noise.

The proposed method is conceptually valid for Preisach
systems with nonsymmetric rectangular loops, although the
algorithmic complexity of computations will be appreciably
increased.

III. HYSTERETIC SYSTEMS DRIVEN BY
THE ORNSTEIN-UHLENBECK PROCESS

In this section we shall apply the method developed in the
previous section to the case when the input is an Ornstein-
Uhlenbeck(OU) process and analytical expressions for the
spectral density will be obtained. As was discussed in the
Introduction, the stochastic nature of the input in hysteresis
systems is generally due to(internal or external) noise super-
imposed on the external deterministic input. It is natural to
require the stochastic process that models the noise to be a
stationary Gaussian Markovian process. According to the
Doob theorem[35], the only process that satisfies these re-
quirements is the OU process. This noise model is used in a
wide class of physical systems[36,39] and has a very inter-
esting history that was described by Nelson in[40].

For an OU process, the operatorL̂x has the form

L̂xf = −
s2

2

]2f

] x2 − b
] fsx − x0dfg

] x
. s30d

Next, we shall discuss how the steps 1 through 4 can be
implemented for this case and analytical expressions will be
derived. As a result, closed form expressions for the spectral
densities of hysteretic systems driven by OU input noise are
found.

Step 1

For the OU process, the boundary value problem(13) for
the stationary distribution of the processystd defined on the
graphY was solved in[27] and the results are

rssyd =5
r̃ssxd on E1 andE10,

r̃ssxdf1 − w−aasxdg on E2 andE8,

r̃ssxdw−aasxd on E3 andE9,

r̃ssxdf1 − w−aasxdgf1 − w−bbsxdg on E4,

r̃ssxdf1 − w−aasxdgw−bbsxd on E5,

r̃ssxdw−aasxdf1 − w−bbsxdg on E6,

r̃ssxdw−aasxdw−bbsxd on E7,

s31d

where

r̃ssxd =Î b

ps2e−bsx − x0d2/s2
, s32d

wa1a2
sxd =

E
a1

x

ebsy − x0d2/s2

E
a1

a2

ebsy − x0d2/s2
. s33d

The results for the casea,b are obtained by interchanging
a andb, as well asia and ib.

Step 2

Next, the boundary value problem(24) defined on the
graphY is reduced to boundary value problems defined on
line intervals, which are more tractable both analytically and
numerically. This technique is very useful because it could
be applied to steps 1 and 2 of the method in the case of a
general input diffusion process(4). The resulting boundary
value problems defined on the line intervals can be solved
numerically by using three-diagonal matrix solvers[38].

First, we formulate the boundary value problem for
G0sx,vd=oia,ib

G0sy ,vd, where the sum is taken over all
graph edges:

jvG0sx,vd + LxG
0sx,vd = 0, x P s− `, + `d \ h− a,aj,

lim
x→±`

G0sx,vd = 0,

] G0

] x
s− a−,vd −

] G0

] x
s− a+,vd =

2

jv
Î b

ps2

1

E
−a

a

ebsy − x0d2/s2
,

] G0

] x
sa−,vd −

] G0

] x
sa+,vd = −

2

jv
Î b

ps2

1

E
−a

a

ebsy − x0d2/s2
.

s34d

The solution to this problem coincides with the solution of
problem(24) for edgesE1 and E10. In addition, it will also
help to simplify the expression for the cross-spectral density.

Second, we formulate the boundary value problem for
G0s1,x,vd=oib

G0(s1,ib ,xd ,v), where the sum is taken over
“central” graph edges. In the casea,b, G0s1,x,vd
=oia

G0(sia ,1 ,xd ,v).
From formulas(24) and (31), we find

jvG0s1,x,vd + LxG
0s1,x,vd = 0, x P s− a,ad,

G0s1,−a,vd = 0,

G0s1,a,vd = G0sa,vd s35d

for the case ofa.b and

jvG0s1,x,vd + LxG
0s1,x,vd = 0, x P s− b,bd \ h− a,aj,

G0s1,−b,vd = 0,

G0s1,b,vd = G0sb,vd,
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] G0

] x
s1,a−,vd −

] G0

] x
s1,a+,vd = −

2

jv
Î b

ps2

w−bbsad

E
−a

a

ebsy − x0d2/s2

] G0

] x
s1,−a−,vd −

] G0

] x
s1,−a+,vd

=
2

jv
Î b

ps2

w−bbs− ad

E
−a

a

ebsy − x0d2/s2
s36d

for the case ofa,b.
It is obvious thatG0s−1,x,vd=G0sx,vd−G0s1,x,vd in

both cases. The solutions of these problems coincide with the
solution of the problem(24) for the edgesE2, E3 andE8, E9.
To completely solve the problem(24), one should find the
solution for the “central” edgesE4–7. However, it will be
shown below that the cross-spectral density can be expressed
in terms of the previously found functions, and, conse-
quently, the solution of problem(24) for these “central”
edges is not necessary. Thus, the boundary value problem
(24) defined on the entire graphY was reduced to the bound-
ary value problems defined on line intervals.

In the case of an OU input process, the specific form of

the operatorL̂x is helpful in order to find an explicit analyti-
cal solution to the problem(24) in terms of parabolic cylin-

der functions; namely, one can observe that if a functionf̃
satisfies the differential equation for the parabolic cylinder
functions

]2f̃

] x̃2sx̃,vd + F−
1

4
x̃2 + S1

2
− j

v

b
DG f̃sx̃,vd = 0, s37d

then the function fsx,vd= f̃(Î2bsx−x0d /s ,v)e−bsx−x0d2/2s2

represents a solution to the differential equation

jvfsx,vd + L̂xfsx,vd = 0, s38d

with L̂x defined by Eq.(30). Let f1 and f2 be the solutions of
Eq. (38) corresponding to parabolic cylinder functions that
vanish at +̀ and −̀ , respectively[41]. The solution to the
problem(24) on each graph edge can be expressed as a linear
combination of these functions:

G0
„y,v… = l1si1,i2,vdf1sx,vd + l2si1,i2,vdf2sx,vd. s39d

The coefficientsl1si1, i2,vd and l2si1, i2,vd corresponding
to each edge are found(for a given frequency) by matching
the inhomogeneous “vertex” boundary conditions of the
problem (24) (for that frequency). Thus, the analytical ex-
pression for the solution of the problem(24) can be ex-
pressed in terms of parabolic cylinder functions. In addition
to having importance in its own right, the analytical ap-
proach described can be used to test the accuracy of numeri-
cal techniques applicable for a general nonexplosive diffu-
sion input.

Step 3

Using observation 3 from Sec. II, the cross-spectral den-
sity Sbasvd can be expressed as

Sbasvd = −
2

v
Im5E

−`

` s2

2

]2So
ia,ib

ibG0D
] x2

− b

] Ssx − x0do
ia,ib

ibG0D
] x

dx6 . s40d

The derivatives in Eq.(40) can be integrated and appropriate
vertex boundary conditions can be used in the simplification
of Eq. (40). By using formulas(24) and (31)–(36), one can
derive the following formula for the cross-spectral density,
for a,b:

FIG. 3. Spectral density for a hard limiter system using analyti-
cal formula(44) (lines) and spectral densitySbasb=a=0.01d com-
puted using the presented method(symbols) for selected values of
the drift coefficientb.

FIG. 4. Spectral densitySaa of a rectangular loop for various
widths of the loopa plotted on a log10-log10 scale. The Ornstein-
Uhlenbeck input parameters areb=s=1, x0=0.
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Sbasvd =
4sÎb

v2ÎpE
−b

b

ebsy − x0d2/s2
dy

−
2s2

v
ImF ] G0

] x
s1,−b+,vd

−
] G0

] x
s1,b−,vd +

] G0

] x
sb+,vdG , s41d

while for a.b we have

Sbasvd =
4sÎb

v2ÎpE
−a

a

ebsy − x0d2/s2
dy

−
2s2

v
ImHo

ia

F ] G0

] x
s1,ia,− b+,vd

−
] G0

] x
s1,ia,b−,vdG +

] G0

] x
sb+,vdJ . s42d

According to Eq.(39), G0sy ,vd can be represented in terms
of parabolic cylinder functions on each graph edge and, con-
sequently, an explicit analytical formula in terms of parabolic
cylinder functions can be given for the cross-spectral density
Sbasvd.

Step 4

Using formulas(41) and (42) for cross-spectral densities
Sbasvd in Eq. (7) and taking into account the relation(39), a
closed form expression for the spectral density for the output
process of a Preisach system characterized by a distribution
m and driven by an OU process is found.

IV. COMPUTATIONAL RESULTS AND THEIR
DISCUSSION

In this section, we present and analyze the computational
results for various hysteretic systems driven by OU pro-
cesses. As has already been mentioned in Sec. II(observation
1), the calculation of cross-spectral densitiesSbasvd is inde-
pendent of the choice of the Preisach distributionm. There-
fore, once computed,Sbasvd can be used for any Preisach

system(2) as long as the same input process is considered
for these systems. The spectral density of the output process
Shsvd is then constructed as a weighted superposition of
cross-spectral densitiesSbasvd with weights given by the
Preisach distribution[see Eq.(7)]. These observations entitle
us to discuss the properties of the functionSbasvd.

As a test of our method, we have compared our results
with the classical ones obtained for a hard limiter(strong
clipping) system. These results can be traced back to the
work of van Vleck[42,43]. It has been shown that the auto-
correlation of the output of a hard limiter is related to the
autocorrelation of the input by the so-called arcsine law

CHLstd =
2

p
arcsin

Cxstd
Cxs0d

. s43d

In the case when the input is an OU process, the spectral
density of the output is given by the formula

FIG. 5. Spectral densityS11 for various values of the input av-
erage valuex0sb=s=1d.

FIG. 6. (a) Spectral densityS11 for selected values of the drift
coefficientb plotted on a log10-log10 scaless=1,x0=0d. (b) Mag-
nitude ofS11 in the white noise region plotted againstb.
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SHLsvd =
4

p
E

0

`

arcsinse−btdcossvtddt. s44d

It is clear that the functionSaasvd represents the spectral
density of the output of a rectangular loopĝa. When the
width of the loop approaches zero, the rectangular loop op-
erator ĝa approaches the step operator corresponding to a
hard limiter system. As a consequence, the functionSaasvd
should converge toSHLsvd if a tends to zero. In Fig. 3, some
sample results of the comparison between the function
Saasvd computed by using our method and the function
SHLsvd given by the formula(44) are presented. It is appar-
ent from Fig. 3 thatSaasvd practically coincides withSHLsvd
for sufficiently smalla.

Next, we examine the influence of the input parameters
and system characteristics on the spectral densitySaasvd of
the output of a rectangular loop. In addition to being inter-
esting in its own right, this analysis will be also useful for
understanding the behavior of the functionSbasvd and, im-
plicitly, that of the spectral densityShsvd of a Preisach sys-
tem. In Fig. 4, the dependence of the spectral noise density
on the loop width is presented. For narrow loops, the spectral
noise density is similar to that of a step operator(hard limiter

system) where the region of the white noise is connected to
the region of 1/f2 noise through an intermediate region of
1/ fa behavior(the frequencyf =v /2p). As can be seen from
Fig. 4, the intermediate frequency region is reduced as the
loop is broadened, and the variations of the loop width lead
mostly to self-similar transformations of the spectral noise
density graph. Another interesting observation that emerges
from this analysis is related to the transformation of the spec-
tral band. It is known that memoryless nonlinearities broaden
spectral bands. However, memory effects may lead to the
opposite results, as is evident from Fig. 4. By analyzing the
formula forSaasvd and the related boundary value problems,
the following scaling property can be deduced:

Saa„sx0,b,sd,v… = Sa

s
D2

S11XFx0

a
,bSa

s
D2

,1G,vSa

s
D2C .

s45d

The advantage provided by formula(45) is that the compu-
tation of the spectral density for various OU inputs and vari-
ous widths of the loop is reduced to the computation of the
spectral densityS11 for various external inputsx0 and the
drift coefficient b. The effect of an external deterministic
input x0 (an applied magnetic field, for instance) can be seen

FIG. 7. (a)–(c) Variation of cross spectral densitySba with respect to the widthsb anda of the two loops, forv=0.5 (a), 1 (b), and 2
(c). (d) Diagonal sectionsSaa plotted for different frequenciesfsv=2pfd.
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from Fig. 5. It is apparent that whenx0 is increased output
signals “stabilize” around +1 and, consequently, the spectral
noise density is diminished. In Fig. 6(a), sample results of
the computation of the spectral densityS11 for selected val-
ues of the drift coefficientb are presented. The magnitude of
the spectral density in the white noise region is plotted
against the drift coefficientb in Fig. 6(b).

Next, consider an OU input process withb=s=1 andx0
=0 (no external field applied). In Figs. 7(a)–7(c), variations
of the cross-spectral densitySbasvd with respect to the
widths b and a of the two loops are presented for some
selected values of the frequency. The cross-spectral density
has negligible values outside a finite region around the ori-
gin, and this region becomes smaller when the frequency is
increased. For a better understanding of the relation between
the graphs presented in Figs. 7(a)–7(c), the diagonal section
fSaasvdg is plotted in Fig. 7(d) for different frequencies. It
can be clearly observed that the maximum ofSaasvd be-
comes more pronounced and it is shifted toward “wider
loops” as the frequency is decreased. This suggests that two
Preisach systems whose Preisach distributions coincide near
the origin should have approximately the same spectral noise
densities for high frequencies. It is apparent that the region in
the sb ,ad plane that gives the main contribution to the spec-
tral density depends on the characteristics of the input. It is
also expected thatSbasvd will decrease for everyb anda as
x0 is shifted from zero.

The computations suggest thatSbasvd undergoes mono-
tonic variations with respect tov for fixed b and a. This
observation leads to the conclusion that the spectral noise
density of a Preisach system driven by an OU process should
be a decreasing function of frequency, regardless of the
shape of the Preisach distribution.

As has been stressed, onceSbasvd is computed, the cal-
culation of the spectral noise density for any Preisach system
(2) is reduced to the integration of this function with some
specific weight related to the Preisach distribution[see Eq.
(7)]. First, we considered a uniform Preisach distribution
msad=1,aP s0,1d. The results of computations for some se-
lected values of the external deterministic inputx0 and the
OU noise characterized byb=s=1 are shown in Fig. 8. The

same spectral analysis is shown in Fig. 9 for the case of a
Gaussian typem distribution. It can be observed that the
Gaussian type distribution leads to higher spectral densities
than the uniform one. As is expected, these hysteretic sys-
tems have a monotonic spectral density, and an increase in
the external deterministic inputx0 (applied field) results in a
decrease in the output noise spectrum.

V. CONCLUSION

A method for the calculation of spectral densities for hys-
teretic systems driven by diffusion processes is presented.
The outputs of such systems are non-Markovian processes
that represent nonlinear hysteretic transformations of diffu-
sion processes. For this reason, the calculation of their spec-
tral densities is associated with considerable mathematical
difficulties. The method proposed in this paper circumvents
these difficulties by using the Preisach description of hyster-
etic systems as well as the recently developed theory of dif-
fusion processes on graphs. In addition, special techniques
are used to simplify the expression for the spectral density of
the output process. The case of Ornstein-Uhlenbeck input
noise is extensively discussed, and the spectral noise densi-
ties of various Preisach systems are obtained. The Ornstein-
Uhlenbeck input process is of special physical significance
as a model of noise because of its stationary, Gaussian, and
Markovian nature. Moreover, the closed form expressions for
spectra have been obtained in this case. The general qualita-
tive features of these spectral densities are examined and
their dependence on various parameters is elucidated. Be-
cause of the universality of the Preisach model, the method
developed is useful for the calculation of spectra in hysteretic
systems of various physical types.

APPENDIX: DIFFUSION PROCESSES ON GRAPHS

The theory of stochastic processes on a graph has been
recently developed by Freidlin and Wentzell[25]. This
theory was first applied to the study of random perturbations
of Hamiltonian dynamical systems[25,26]. Then it was re-
alized that this mathematical technique is naturally suitable

FIG. 8. Spectral densitySh for a hysteretic system with uniform
type Preisach distribution for different values of input average value
x0sb=s=1d.

FIG. 9. Spectral densitySh for a hysteretic system with Gaussian
type Preisach distribution for different values of input average value
x0sb=s=1d.
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for the analysis of noise in hysteretic systems[27,28,44]. In
this appendix, we give a short description of diffusion pro-
cesses on a graph based on the previously cited references.
This description is adapted to our problem. Finally, the initial
boundary value problem(9)–(12) for the transition probabil-
ity density of the Markovian processystd is derived.

Consider a connected graphY with verticesV1, . . . ,Vm
and edgesE1, . . . ,En. Several edges can meet at a vertexVk;
we will write Ej ,Vk if the edgeEj has the vertexVk as its
end. With each edgeEj, a diffusion processxjstd is associated
that is governed by the second order elliptic operator

T = bsxd
]

] x
+

s2sxd
2

]2

] x2 . sA1d

Here,b ands satisfy local Lipschitz and linear growth con-
ditions (see[34,35]) andssxd.c.0. We will denote byAY

the infinitesimal operator of a strongly continuous semigroup
of linear operators on the spaceCsYd of continuous functions
corresponding to a Markov processystd on the graphY with
a continuous path.

The immediate task is to characterize the behavior of the
diffusion process at the interior vertices of the graphY. It has
been shown in[25] that for any continuous Markov process
ystd on Y that is governed by the operatorT insideEj one can
find nonnegative constantsak and xkj, with ak
+o j :Ej,Vk

xkj.0 for k=1, . . . ,m, such that the infinitesimal
operatorAY of that process is defined for any functionf from
CsYd that satisfies the following conditions.

(1) f is twice continuously differentiable inside the edges
Ej.

(2) If Ej ,Vk then limy→V,yPEj
Tfsyd exists and is inde-

pendent ofj ; this limit will be denoted byTfsVkd.
(3) akTfsVkd+o j :Ej,Ok

xkjs]f /]yjdsVkd=0 for k=1, . . . ,m,
whereyj is the coordinate onEj equal to the distance of the
point of Ej from Vk.

These conditions at the vertices will be further called
“gluing” conditions. The constantsak describe how much

time the process spends inVk, and the constantsxkj are
(roughly speaking) proportional to the probabilities that the
process will “move” from vertexVk along the edgesEj. For
the model presented in Sec. II(see Fig. 2), the following
facts can be established. Since the process has no delay at the
vertices,ak=0 for k=1, . . . ,6. Moreover, it is clear that in
our case there is zero probability that the processystd will
move from vertexV2 along the edgeE3, while random mo-
tions along the edgesE1 andE2 are equally probable. There-
fore, x13=0,x11=x12=1. Taking into account that the coor-
dinatesy1=−a−x andy2=−a+x, we arrive at the following
interface condition at the vertexV1:

dfE1

dx
s− ad =

dfE2

dx
s− ad. sA2d

Similar assertions are valid for each interior vertex, and
analogous interface conditions can be derived.

The next task is to specify the partial differential equa-
tions for the transition probability densityrst ,yuy8 ,0d corre-
sponding to the Markov processystd. Since ystd
=(ibstd , iastd ,xstd) and the binary processesibstd and iastd
assume constant values on each edgeEk, the following nota-
tion for the transition probability density is justified:

rs jdst,xuy8,0d = rst,yuy8,0dyPEj
. sA3d

According to the theory of Markovian processes, the follow-
ing equality is valid forrs jd:

o
j=1

10 E
Ej

f
] rs jd

] t
dx= o

j=1

10 E
Ej

sTfdrs jddx. sA4d

By integrating by parts in the equality(A3) and taking into
account the interface conditions presented above and the fact
that f can be chosen arbitrary in the domain of the infinitesi-
mal operatorAY, one finds that the transition probability den-
sity rst ,yuy8 ,0d satisfies the forward Kolmogorov equation
(9) and the vertex boundary conditions(12).
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