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Spectral density analysis of nonlinear hysteretic systems
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A method for the analysis of spectral densities of hysteretic nonlinearities driven by diffusion processes is
presented. This method is based on the Preisach formalism for the description of hysteresis and the mathemati-
cal machinery of diffusion processes on graphs. The calculations are appreciably simplified by the introduction
of the “effective” distribution function. The implementation of the method for the case of the Ornstein-
Uhlenbeck input process is presented in detail, and analytical expressions for spectral noise densities for
various hysteretic systems are obtained. The general qualitative features of these spectral densities are exam-
ined and their dependence on various parameters is discussed. Because of the universality of the Preisach
model, this approach can be used to compute spectra in hysteresis nonlinearities of various physical origins.
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[. INTRODUCTION The calculation of spectral density is a central problem in
) hysics. This problem is of considerable complexity for non-

The phenomenqn of hysteresis has been known anq h Near physical systems and it has been studied in the past by
attracted the attention of many researchers for a long tim& ., 4 thorities in the field as van Vieck and Uhlenbeck.

However, a systemaltic study of hysteresis was only recentl)Llowever, the calculation of spectra for hysteresis systems
attempted qnd led to the appearance of the f|r§t monograpfp%s not been attempted mainly because of the non-
on the subjec{1-4]. Since then, interest in this topic has yjaovian nature of the stochastic output processes. In this
been continuously growing, and it has extended far beyon r

he classical ¢ . d plasticity. F | ticle, a method for computing spectral densities for com-
the classical areas of magnetism and plasticity. For exampley ., pysteretic systems driven by diffusion processes is dis-
optical hysteresig5], superconducting hysteresj$], and

: ! . o . cussed, and computational results illustrating this method are
economic hystereS|{57]' becaf"e WeII—.establlshed S.C'en.t'f'c resented. For the class of Ornstein-Uhlenbeck input pro-
dé)mams, ?]n? ma{%/ 1p|onee(:jr|ng studies a_ppegr;i In biolog¥esses, closed formnalytica) expressions for the spectral
[8,9], psyc (_)ogy[_ N 1, an computer sciendd2, Ci-_ ... density are derived. The method takes full advantage of the

The physical origin of hysteresis is due to the multiplicity

7 i fact that various hysteretic nonlinearities can be constructed
of metastable states e>§h|b|ted by hysteretic systems. 'A_‘physfhrough the Preisach formalism as a “weighted superposi-
cal system can persist in a metastable state for some time,

; ; bﬁ'&n of rectangular loop operators that are individually
thermal perturbations usuglly drl\_/e the system to more Stabl8riven by the same diffusion process. Then the mathematical
nearby states. In magnetism, this thermally activated rela theory of stochastic processes on gragsee the Appendjx
at;]qln N r(]:ommonl%/ called ag a}ftgrgﬁ_eclt( or wsciosny, ,is used to circumvent the difficulties related to the fact that
while In the area of superconductivity it is known as “creep.” , ., s of hysteretic systems are not Markovian processes.

Thgrefore, the behawor of a hysteretlc system could be dep, addition, some special techniques are used to simplify the
scribed as a nonlinear hysteretic transformation of a StOCha%kpression for the spectral density of output processes

tic input that consists of a random internal noise SUPerim- ~praisach-type models with stochastic input were intro-
posed on a deterministic external input. In other areas sucf .oq by Mayergoyz and Kormann [16-1§ to offer a

as egonpmmg?], computer sc!encﬂz,la, or ere!ess COM- " ynified and detailed description of hysteresis and the afteref-
munication[14], the external input of a hysteretic system IS fact in magnetic materialgs,19-22. Moreover, it has been

already considered as a stochastic process due to its rand own that this approach can be successfully applied to the
nature or to external noise. Regardless of the reasons that Ig

to such models, the mathematical study of hysteretic systemg, iy the fields of mechanical and structural engineering
driven by S.tOChaSt'C Input is of .relgvance to all the previ- 24]. Key computations in these viscosity models are based
ou;ly m?.ntlor;eﬁ a;ea_s. TE'S pglnlt Ihs aLso sbupporteddby tg n the relation between randomly induced switchings of rect-
universality of the Preisach model that has been used to %(ngular loops and the exit problem for stochastic processes,
‘which is a very well-studied problem in the theory of diffu-

. o S ; "Mion processes. Later, a simpler and more efficient technique
with stochastic inputs is still a hardly touched territory, bemgfor these computations was discovered, which uses the re-

of coq3|derable mathematical complexﬂﬂﬂ_.Therefore, the cently developed theory of diffusion processes on graphs
technlques usgd to _analyze' the properties of these syste%_ This theory was first applied to the study of random
are of interest in their own right. perturbations of Hamiltonian dynamical systerfizs,2§.
Then it was realized that this mathematical technique is natu-
rally suited for the analysis of noise in hysteretic systems
*Electronic address: dimian@glue.umd.edu [27,28.
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A For many hysteretic materia{gespecially magnetic mate-
Yap rials), the weight functionu(«, 8) is narrowly peaked around

the line a=-p. For these materials, the symmetric Preisach
+1 model constructed as a weighted superposition of symmetric
rectangular loop§,=7,(-, can be regarded as a fairly good
approximation. This Preisach model can be written in the
form

@Q

B a h(t) = f O%X(t),u(a)dﬁ f Ou@de,  (2)

0 0

where

-1 1if x(t) > a,

-1if x(t) < - a,

1if x(t) € (- a,) andx(7(t)) = a,
-1,if x(t) € (- a,a) andx(7(t)) =-a,

3)
The article is organized as follows. In Sec. Il, a general ) ) )

discussion of the method for the calculation of the spectraivhere(t) is the value of time at which the last threshoid
density of the output of the Preisach model driven by a dif-Of @) was attained. _
fusion process is presented. In Sec. Ill, this method is applied The input process(t) is assumed to be described by the
to the calculation of the spectral density in the case when th#0 stochastic differential equation
input is the Ornstein-Uhlenbeck process. Sample results of
the computations of the spectral density and their analysis dx(t) = b(x(t))dt+ o (x(t)) dW), (4)
are presented in Sec. IV. Finally, conclusions are drawn in
Sec. V.

() = ¥ X(1) =
FIG. 1. Rectangular hysteresis loop that represents the operator
AYaB'

ith initial condition x(0)=x,. HereW(t) is the Wiener pro-
cess, whileb and o are known functions that satisfy local
Lipshitz and linear growth conditiong84—364. These stan-

Il. DISCUSSION OF THE METHOD dard conditions ensure the existence of a nonexploding,

Consider complex hysteretic nonlinearities that can pdinique solution of Eq(4) that satisfies the initial condition.
modeled through the Preisach formalism as weighted super- Thef ?F]OChaStt'C naltur? of the mptltAIeadzt(ihran?om stvr\wntch-
positions of rectangular loops. This can be ma’thematicall)'/ngS ot the rectanguiar loop operatoyz and, theretore, the
described as follows: output of the Preisach modalt) is a stochastic process as

well. The autocorrelation function of the output process is

h(t) = J f wla, B) YapX(t)dadp. 1) Ch(7) =(h(nh(0))
a=f

ag ag

Here, u(a, B) is a Preisach distribution function, whifg, :f f (¥pX(1) Y X(0)) (B ()dBder,  (5)
are rectangular loop operators shown in Fig. 1. The Preisach 0 J0
model has been extensively used for the description of hys-

. ; ; . where() denotes the expected value. Thus, we can express
teresis of various physical types such as magnetic hystereaﬁ, lati f the Preisach iahted
[1-4], superconducting hysteregis,23], mechanical hyster- the autoc_o_rre at|fon of the re||s§1c ;no@)l asa er'g te
esis of consolidated granular materig29—31], hysteresis of superposition of cross-correlation unCtIOFG%a of two-
shape-memory alloyE82] and piezoceramici83], etc. This dimensional processéss(t),i,(t)), representing the outputs

clearly revealed the physical universality of the PreisactP WO Symmetric rectangular loops:

model. o ra
It has also been realized that the Preisach model driven by Co(7) :f Of OCBQ(T)/.L(B)/.L(Q’)dﬁda. ©)
a stochastic inpuk(t) is an effective model for thermally o Jo

activated relaxations commonly known as the aftereffect in

magnetisn{16—29 and creep in the area of superconductiv- The cross-correlation function§,(7) are not even func-

ity [6,23). The universality of this approach has made it natu-tions, butCg,(-7)=C,4(7). This implies that the correlation
rally suitable for applications in the fields of mechanical andfunction of the Preisach syste@)(7) is an even function.
structural engineering, where the dynamic loading acting on According to the Wiener-Khinchine theorefi36], the
hysteretic systems is usually random in nat{i?d]. It is process’s spectral density is the Fourier transform of the au-
expected that other areas where the input has a stochastimcorrelation function. Because we deal with an even corre-
behavior, such as communications or economics, will benefiation function, the spectral density of the output process can
from this direction of research. be expressed as
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(pi~(LD

V3

(i/?: la)=(1 s 1)

(iﬁ’ia)=('l’l
(ipi)=C1,-1) (pig=C1.1) pid=(1,1)
. Ey
(isi)=~(1,-1) FIG. 2. Graph on which the
three-component procesy is
(pi=(-1,- (nid=(11-1) defined.
(iﬁl irt)=(' 1 s~ l)
X .
-a » B a
N | Iply.tly",0) ,
Si(n)=2 R{J Ch(n)e J"”dr} T Leo(y,tly’,00=0, 9
0
l)lo CMO A . . . . .
- S dBda, 7 whereL, is the second order elliptic operator associated with
fo Jo pal ) ()l @)dfda @ the input diffusion process defined in E¢), and it is speci-

fied by the expression
where Sg,(w) is the “cross-spectral density” for the two- 12 5
d|men3|_onal proges(s;ﬁ(t) ,i,()) and it is related to the cross- Lo=- __Z[az(x)p] - Z[b(x)pl, (10)
correlation functionCg,(7) as follows: 29 Ix

(8) respectively, of the input process(t). The function

% with o(x) andb(x) being the diffusion and drift coefficients,
Spal@) =2 R f Cpa(DET“dr (.
0 p(y,tly’,0) satisfies the initial conditions

The Preisach model describes hysteresis nonlinearities
with nonlocal memories. For this reason, the output process
h(t) cannot be embedded as a component of some Markovian
process. However, the previous expression shows that th d
spectral density can be expressed as a weighted superpositi
of spectral densities for much simpler proces§g),i,(t)).
These processes are still non-Markovian, but they can b
embedded in higher dimensional Markovian processes.

In order to computeSg,(w), we consider the three-

p(y,0ly’,0) = di1d,ir XX 11

it has to decay to zero agoes to infinity. In addition,
so-called vertex type boundary conditig628| at graph
vertices have to be satisfied. These vertex type boundary
onditions express the continuity of the transition probability
ensity when the transition from one graph edge occurs with-
out switching of the rectangular loop, and a zero boundary
a ) . : condition is imposed on the third graph edge connected to
cqmpone;nt Qrocessy(.t)—(lﬁ(t),|a(t),x(t)), with . '“(.t) this vertex. Moreover, the probability current has to be con-
=¥aX(), 15(t)=ypx(t) defined on the graplf shown in Fig. served at each vertex. For example, at the vewtexcorre-

2. Because the rectangular loop operators describe hyStere§'|§onding tox=—a, in the casen> @), these conditions are
with local memory, the joint specification of current values explicitly written és '

of input and output uniquely defines the states of this hyster-

esis. As a resulty(t) is a Markovian process. In addition, p((=1,-1,-a"),tly’,00=p((-1,- 1,—a"),t
only certain combinations 6f(t),i,(t), andx(t) are possible,

and they are presented in Fig. 2. The binary procesges

andi,(t) assume constant values on the edges of the graph
Applying the theory of stochastic processes on graphs, the
following initial-boundary value problem for the transition ap N , ap ol
probability density functionp(y,tly’,0) of the Markovian x(CLl-e ).tly”,0) + 5((_ 1,-1,-a").ty",0
processy(t) defined on the grapl can be derivedsee the

Appendi®. On each edge of this grapp(y,tly’,0) satisfies _ @((_ 1,-1,-a)tly’,0) (12)
the forward Kolmogorov equation: X o B

y,!o)y

p((-1,1,-a"),tly’,0)=0,
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It is apparent that the stationary probability density of thestationary distributionp,(y) and then the initial boundary
processy(t) is the solution of the following boundary value value problem(16) for the “effective” distribution function

problem: gy, 7), and finally to compute the integrél7). According to
~ Eq. (8), another integration has to be performed for the com-
Lxps(y) =0 on each graph edge, putation of the cross-spectral densBy,(w). However, by
_ introducing the one-side Fourier transform of the “effective”
x“jjmps()’) =0. distribution function,
vertex boundary conditions at each graph vertdés3) Gly,w) = Jo gly,ne’*mdr, (18

Taking into account the facts presented above, the cross-

correlation functionCBa(a) can be seen as a component Ofthe cross-spectral dens@;a(w) can be written in the form

the correlation matri>xC,(7) for the Markovian procesg(t): % s
Sgo®@) =2 R i 3G(y, w)dX (. (19
Cy(n) =(yT(Ay(0) ¢ N wildid
- [ T\, o Performing the Fourier transformation of the initial boundary
f_w f_xg ,,2,y y'ply, 7y’ 0)dxax value problem(16), we arrive at the following boundary
“Alalp value problem foiG(y, w):
= f f 2 2 Y'Y p(y, 7y’ 0)pdy’)dxdx . jwG(y,w) + L,G(y, ) =i,p4y) on each graph edge,
—o0 _Oci(l’iﬂi’ i’
a'p

(14) lim G(y,w)ZO,

X—to0

In the above formula, the sums are taken over all graph val-
ues of the(iz, i,) and(i,i,), respectively. This convention is vertex boundary conditions. (20)
maintained throughout the paper.

To simplify the computation of the cross-correlation func-
tion, the “effective” distribution functiong(y, ) is intro-

For example, these “vertex” boundary conditions at the ver-
tex Vi(x=-a) are

duced: G((-1,-1,-a",0)=G((-1,-1,-a),0),
oy, D= | iy 7y .0pdy)dx. (15 G((-1,1,-a"),w) =0,
e G G
A similar function has been previously proposed37] and (9_((_ 1,1,-a"),0) + a—((— 1,-1,-a%),w)
used in the analysis of noise in semiconductor devices. Ix IX
By using EQ.(9) on each edge of the graph, the initial Ele
condition (11), and vertex type boundary conditions for the = 5((— 1,-1,-a),w). (21)
transition probability densityp(y,tly’,0), as well as the
boundary value problenil3) for the stationary probability Because the stationary probability distribution satisfies the
densityps(y’), one can derive the following initial boundary differential equation of the boundary value probl€r8), the
value problem for the “effective” distribution function: function (i,,/jw)ps(y) is (for eachw) a particular solution for
aq(y.7) the nonhomogeneous differential equation(&0). Taking
29y, 7 +L,g(y,7) =0 on each graph edge, into account the linearity of the operatbg, G(y,w) can be
ar written as
=i o
o0 =aply), Gly. ) =Gy,0) + ) (22
xll,ng(y’T) =0, where Gy, w) is a solution of the corresponding homoge-
neous equation. Since the particular solution is purely imagi-
vertex boundary conditions. (16)  nary, it does not contribute to the cross-spectral density

) _ . Sgy(w). Thus,
Using formulas(14) and (15) the cross-correlation function

C can be expressed by the formula *
pel7) P y Spalw) =2 Re{ S ﬁGo(y,w)dX}, (23
% 0 i
Cpal7) =J 2 19((i g1 ), DX, (17) _ o -
=0 i i g with G%(y, w) satisfying the following boundary value prob-
Thus, in order to find the cross-correlation functiGp,(7), lem:
one has to solve first the boundary value prob{@s) for the jwG%y,w) + L,G%y,») =0 on each graph edge,
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lim G%(y,w) =0, 9G° aG°
Jm et i (lip 1% a@)0) + (=17 a),0)
. - 2 dps,. —
inhomogeneous vertex type boundary conditiofi24) * j_wﬁ(hga +1, % o)
Next, we.(.jescrib(.a these .inhomqgeneous vertex type bour_ld— - ﬁ)((iﬁ, T1,7 a),0) (28)
ary conditions. First, by inspecting vertex boundary condi- X

tions for G(y,w) and p4(y), it can be observed that, when a
transition from one edge to another occurs without switchin
of the rectangular loop$G(y, w) andpgy) corresponding to
these edges are continuously matchedigritbes not change

. . Step 1 Solve the boundary value proble3) for the
its value. Consequently, the correspondi@f(y,w) is also stationary distributiorpy(y).

continuously matched in this case. On the third edge con-
nected to the vertex, the zero boundary condition is validGoétea?) 2 Solve the boundary value probleite4) for

Until this point, the inhomogeneous vertex boundary type
conditions coincide with the previous ones. This coincidence Sftep 3|Cozrgpute the cross-spectral densgy,(w) by us-
is also maintained in the boundary conditions for derivativeéngStormilJ g( )- te th iral densi b ing f
at verticesV,_s(x=+ B). However, the difference appears in : ep ompute the spectral densify(w) by using for-
the conditions for derivatives at verticdg and Vg(x=t a); mula (7). . . L .
namely, from the boundary conditiq21) for the derivative The following observations can simplify the implementa-
of G ’w) we have tion of the above steps.
Y, @), (1) For a given input, the first three steps of the method
o are independent of the Preisach functigfw). Therefore,
ﬁ((_ 1.1,-a"),0) + ia_Ps(_ 1.1,-a") once theS;,(w) are precomputed, they can be used for any
X Y ' joax T “symmetric” Preisach systei@). In other words, the spectral
density of a hysteretic system can be computed as a weighted

Now the method for the computation of the spectral den-
gsity can be summarized as the sequence of the following
steps.

9GO (=1) dps

+—((-1,-1,-a"),0) + ———(-1,- 1,-a") superposition of cross-spectral densitig(w) precomputed
JX Jo JX at the third step, with the weight being given by the Preisach
0G0 B (- 1) 9 ps ) function of that system.
= W((_ 1,-1,-a),w)+ j_wﬁ(_ 1,-1,-a). (2) As can be observed from E3), the cross-spectral

densities Sg,(w) are expressed as linear combinations of

(25  G%y,w) corresponding to different edges. This indicates that

it may not be necessary to find an explicit expression for

Taking into account the boundary condition for a stationaryG%(y,w) on every edge, but rather their linear combinations
probability distribution, the following boundary condition for mentioned above.

Gy, w) is derived: (3) By using the expressio(l0) for the operatoi,, an
important simplification can be made. From form2) it
9GP . 9GO . follows that G(y, w)=(j/ w)L,G(y, w). By substituting the
W((_ 1.1,-a")w)+ W((_ 1-1-a).0) latter expression into formule23), one can obtain
209Ps 14 _¢ - i\~
=28 Lm0 (26) e
= Eholma) ). :——Im{f LX(E iBGO(y,w))dx}. (29)
w 0 \igig

By using similar arguments, the inhomogeneous vertex o ) N ) ]
boundary condition at the verte¥ is found to be The derivatives in the operatdr, can be integrated and this

results in a simple expression for the spectral density in
0 0 terms of the first derivatives @%(y, w) at vertex point§see,
AS - AS - 2 9ps - for example, Eq(41
—((1,1,0),0) + —((1,-10),0) - ——=(1,-1,«7)  for example, Eq(41)]. ,
X aX Jw dX (4) The boundary value probleni®3) and(24) defined on
0 the entire graply can be sequentially reduced to the bound-
=—((1,1,0"),w). (27)  ary value problems defined on real line intervals, which are
2 more tractable analytically and numerically. Efficient nu-
merical algorithms for solving these problems defined on the
In the casex< B, the boundary conditions for vertices cor- real line interval are three-diagonal matrix solvers described,
responding tox= F « take the following forms: for instance, in Ref[38].
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X
. . _ 2 02
the method for computations of the spectral density once a CRA

specific form of the input stochastic process is given. These ()=
. . . . Paya, a

advantages will be further exploited in the next section, 2 by - xp)o?

where the Ornstein-Uhlenbeck process is used as a model of €

driving noise.
The proposed method is conceptually valid for PreisachThe results for the case< B are obtained by interchanging

systems with nonsymmetric rectangular loops, although ther and 8, as well as, andig.

algorithmic complexity of computations will be appreciably

The above observations produce further simplifications in f

a

(33

a

increased. Step 2
Next, the boundary value probleii24) defined on the
IIl. HYSTERETIC SYSTEMS DRIVEN BY graphY is reduced to boundary value problems defined on
THE ORNSTEIN-UHLENBECK PROCESS line intervals, which are more tractable both analytically and

numerically. This technique is very useful because it could

In this section we shall apply the method developed in thébe applied to steps 1 and 2 of the method in the case of a
previous section to the case when the input is an Ornsteirgeneral input diffusion procegd). The resulting boundary
Uhlenbeck(OU) process and analytical expressions for thevalue problems defined on the line intervals can be solved
spectral density will be obtained. As was discussed in theaumerically by using three-diagonal matrix solv§Bss)].
Introduction, the stochastic nature of the input in hysteresis First, we formulate the boundary value problem for
systems is generally due {mternal or externalnoise super- Go(x,w):ZimiBGO(y,w), where the sum is taken over all
imposed on the external deterministic input. It is natural tograph edges:
require the stochastic process that models the noise to be a. 0 B
stationary Gaussian Markovian process. According to the 19G (%) +LG (X®)=0, Xe& (=», +2)\{-a,a},
Doob theoreni35], the only process that satisfies these re-
quirements is the OU process. This noise model is used in a lim G°(x,w) =0,
wide class of physical systenfi86,39 and has a very inter- o
esting history that was described by Nelsor{44].

~ 0 0
For an OU process, the operatgrhas the form E(_ o) - ﬁ(_ o', w) = 2 7 /b 1
X ’ X ' jo N mo?® (@ 22
2 P l(x=x0)f] SRS
[f=- LT T (30) e
2 dx JX

implemented for this case and analytical expressions will be dx jw
derived. As a result, closed form expressions for the spectral

0 0
Next, we shall discuss how the steps 1 through 4 can be ﬁ(a—’w)_ﬁ(a+'w)=__£1 /%a;
IX ™ f DUy = x0)%/c?
densities of hysteretic systems driven by OU input noise are -

found. (34)
The solution to this problem coincides with the solution of
Step 1 problem(24) for edgesk; and E;,. In addition, it will also

help to simplify the expression for the cross-spectral density.
Second, we formulate the boundary value problem for
Go(l,x,w):EiBGO((l,iﬁ,x),w), where the sum is taken over
“central” graph edges. In the case<p, G%1,X,w)
:EiaGO((ia,l,x),w).
From formulas(24) and(31), we find

jwGo1,x,w) +L,G1,x,0) =0, Xe (-aa),

For the OU process, the boundary value probi{és) for
the stationary distribution of the procegg) defined on the
graphY was solved if27] and the results are

[~
ps(X) on E; andEyy,
Ps(X[1 = ¢_aa(X)] ONE; andEg,
’[BS(X) QD—aa(X) on E3 and E9!

Psy) = | PO = 0 oaI[L ~ 0-s(0]  ONEy, L~ a,0) =0,
P = ¢_yo(X)]e_pa(x) 0N Es,
’ﬁs(x)(P—auz(X)[l - QD—B,B(X)] on EG! Go(l,a, (1)) = Go(av (1)) (35)
LPsX)@-aa(X)@_pp(X) ONEg, for the case ofxr> g and

(31) jwG%(1,x,w) +L,GY1,x,0) =0, xe (-B8\{-aa},

h
where GO(1, - B.w) = 0,

PeX) = \/%e‘b“ ~x01e?, (32 G%(1,8,0) = G%B,),
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0 0 / ——b=05
ﬁ(l,a_,w)—ﬁ(l,aJr,w):—i L_QD‘E.B(L 25l — b=
dX dX Jw 770'2 @ 2, 2 S
f eb(y—xo) lo of - == b=3
_a 20k O «=p=0.01 b=0.5
® o==0.01 b=1
o o 150 0 «==0.01 b=3
21— 0) - S (1,- )
JaX JX 1.0
2 b _ga(— a
R B -\ S .
=- 3 :D ) (36) 0.5
jo ¥V J By~ 30

0.0
0

for the case oix<p. o
; ; 0(_ -0 —0 ;
It'is obvious thatQ (-1 X, 0)=G7(X,w) -G (1.’X’.w) |n. FIG. 3. Spectral density for a hard limiter system using analyti-
both cases. The solutions of these problems coincide with the,, formula(44) (lines) and spectral densitgz,(8=a=0.01) com-

solution of the problent24) for the edgeds,, Eq andE_g, Eo. puted using the presented meth@ymbol9 for selected values of
To C(_)mpletely solve the probleri24), one shoul_d f|r_1d the  the drift coefficientb.
solution for the “central” edge&, ;. However, it will be
shown below that the cross-spectral density can be expressed
in terms of the previously found functions, and, conse- Step 3
quently, the solution of probleni24) for these “central”
edges is not necessary. Thus, the boundary value problem Using observation 3 from Sec. Il, the cross-spectral den-
(24) defined on the entire graphwas reduced to the bound- Sity Sg,(w) can be expressed as
ary value problems defined on line intervals.
In the case of an OU input process, the specific form of

the operatoIA_X is helpful in order to find an explicit analyti- P> 1,6°
cal solution to the probleni24) in terms of parabolic cylin- 2 7 o? i g
_ . - Spal@) == =Im f et
der functions; namely, one can observe that if a funcfion o) w2 aX
satisfies the differential equation for the parabolic cylinder o
functions J ((X - Xo)z i5G )
—b @~ gx(. (40)

P 1, (1 ,w) . ax

ﬂz&,w>+{—4x + 570y ) [fRe)=0, @37

then the function f(x,w) =“f‘( ,/m lo w)e—b(x—xo)Z/Z(rZ The derivatives in Eq40) can be integrated and appropriate
' N o e vertex boundary conditions can be used in the simplification

of Eq. (40). By using formulag24) and (31)—36), one can

derive the following formula for the cross-spectral density,

represents a solution to the differential equation

jof(x,w) + L f(x,0) =0, (39)

for a<p:
with I:X defined by Eq(30). Let f; andf, be the solutions of
Eqg. (38) corresponding to parabolic cylinder functions that 2k -
vanish at + and —o, respectively{41]. The solution to the s N
problem(24) on each graph edge can be expressed as a linear < ofE
combination of these functions: g
Go(yv @) = Nq(ig, iz 0)F1(X, @) + Ny(iq,i5, @) fo(X, @) (39 2
The coefficients\4(i,i,, w) and \,(i1,i», w) corresponding 4} :—:‘f;tos
to each edge are foun@br a given frequencyby matching el
the inhomogeneous “vertex” boundary conditions of the P g:;
problem (24) (for that frequency. Thus, the analytical ex- —— =3
pression for the solution of the problef24) can be ex- s s :

pressed in terms of parabolic cylinder functions. In addition 1logf2

to having importance in its own right, the analytical ap-

proach described can be used to test the accuracy of numeri- FIG. 4. Spectral densit,,, of a rectangular loop for various
cal techniques applicable for a general nonexplosive diffuwidths of the loopa plotted on a logy-log, o scale. The Ornstein-
sion input. Uhlenbeck input parameters doeo=1, x9=0.
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S — x =0.0
1 LN xo=0.2
3b s, o_ -
"\ | x°-0.4 =
"\ —o— X =0.6 (73]
2.5p % o
",‘ —— X°=0.8 8’
R —— X =1.0 -~
2 \\ ‘\ 0_
R\ X°—1 2
~ ‘.“
1.5} R
A Y B
N
\\\‘\‘
0.5} o,
0.5 1 15 2 25
o
FIG. 5. Spectral densit$,;, for various values of the input av-
erage value(b=0=1).

a3 25 =2 A5

40b 202 [aG° ® log f
Spalw) = 3 - m = (1-Fw)
w0\ J P~y ¢
-8
aGg° aG% |
~ oy LBLe)+— (B ,w)], (41)

while for a> B we have

40\“‘“‘6

. a
-

20° aG° N
- Tlm{z [W(lalm_ﬁ , @)

la

S,Ba(w) =

log S, (22107

Flc Pl '
_E(l"“"g’“’)}ﬁ(ﬁ'@}' (42) (b) b

According to Eq«(39), Go(y,w) can be represented in terms FI_G_. 6. (a) Spectral densitys,, for selected values of the drift
of parabolic cylinder functions on each graph edge and, conﬁiﬁgg'gpé? ?rl]ottltqidv\?hr:t: ;%?gloféoiiﬁal?ége_ dléx‘);i%t(b) Mag-
sequently, an explicit analytical formula in terms of parabolic . glon p 9

cylinder functions can be given for the cross-spectral density ) ) )
Spal@). system(2) as long as the same input process is considered

for these systems. The spectral density of the output process

S\(w) is then constructed as a weighted superposition of

_ . cross-spectral densitieS;,(w) with weights given by the
Using formulas(41) and (42) for cross-spectral densities prejsach distributiofisee Eq(7)]. These observations entitle

Sga(@) in Eq. (7) and taking into account the relatie89), a  ys to discuss the properties of the functigg,(w).

closed form expression for the spectral density for the output As a test of our method, we have compared our results

process of a Preisach system characterized by a distributiqgith the classical ones obtained for a hard limitstrong

Step 4

w and driven by an OU process is found. clipping) system. These results can be traced back to the
work of van Vleck[42,43. It has been shown that the auto-
IV. COMPUTATIONAL RESULTS AND THEIR correlation of the output of a hard limiter is related to the
DISCUSSION autocorrelation of the input by the so-called arcsine law

In this section, we present and analyze the computational
results for various hysteretic systems driven by OU pro- CHL(T):garcsinCX—(T). (43)
cesses. As has already been mentioned in Séab#ervation ™ C.(0)
1), the calculation of cross-spectral densit®g(w) is inde-
pendent of the choice of the Preisach distributionThere-  In the case when the input is an OU process, the spectral
fore, once computeds,,(w) can be used for any Preisach density of the output is given by the formula
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0.8+

20 5 064

/

/ /III;A\‘Q\\\\\\ 0.2

(a) 60 (©

~.A‘A,A§'.A_b=c=1;x0=0‘~._, i

FIG. 7. (8—(c) Variation of cross spectral densig, with respect to the widthg and « of the two loops, forw=0.5(a), 1 (b), and 2
(c). (d) Diagonal sections,,, plotted for different frequencief{ w=2mf).

Su(w) ==

f” system where the region of the white noise is connected to
T

arcsire™)cog wt)dt. (44 the region of 112 noise through an intermediate region of
1/f* behavior(the frequencyf =w/2). As can be seen from
. . Fig. 4, the intermediate frequency region is reduced as the
It is clear that the functior§,.(w) represents the spectral ooy is broadened, and the variations of the loop width lead
density of the output of a rectangular loop. When the  mostly to self-similar transformations of the spectral noise
width of the loop approaches zero, the rectangular loop opgensity graph. Another interesting observation that emerges
erator y, approaches the step operator corresponding to fom this analysis is related to the transformation of the spec-
hard limiter system. As a consequence, the funcB(®)  tral band. It is known that memoryless nonlinearities broaden
should converge 8, () if a tends to zero. In Fig. 3, some spectral bands. However, memory effects may lead to the
sample results of the comparison between the functiompposite results, as is evident from Fig. 4. By analyzing the
Sua(®) computed by using our method and the functionformula forS,,(w) and the related boundary value problems,
SiL(w) given by the formulg44) are presented. It is appar- the following scaling property can be deduced:
ent from Fig. 3 thaB,,(w) practically coincides witt8y ()

0

for sufficiently smalla. S, ((Xob.0),0) = (“)2 ( Xo b<“>2 1 (0‘)2)
Next, we examine the influence of the input parameters ¢ XoBa) @)=\ Su a'\o) " Na) )
and system characteristics on the spectral deiityw) of (45)

the output of a rectangular loop. In addition to being inter-

esting in its own right, this analysis will be also useful for The advantage provided by formuld5) is that the compu-
understanding the behavior of the functigg,(w) and, im-  tation of the spectral density for various OU inputs and vari-
plicitly, that of the spectral densit$,(w) of a Preisach sys- ous widths of the loop is reduced to the computation of the
tem. In Fig. 4, the dependence of the spectral noise densitypectral densityS,; for various external inputg, and the

on the loop width is presented. For narrow loops, the spectrarift coefficient b. The effect of an external deterministic
noise density is similar to that of a step opergtaard limiter  inputx, (an applied magnetic field, for instanaean be seen
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FIG. 8. Spectral densit§, for a hysteretic system with uniform ~ FIG. 9. Spectral densit, for a hysteretic system with Gaussian
type Preisach distribution for different values of input average valudYPe Preisach distribution for different values of input average value

Xg(b=0=1). Xo(b=0=1).

from Fig. 5. It is apparent that whex is increased output same spectral analysis is shown in Fig. 9 for the case of a
signals “stabilize” around +1 and, consequently, the spectrabaussian typeu distribution. It can be observed that the
noise density is diminished. In Fig(#, sample results of Gaussian type distribution leads to higher spectral densities
the computation of the spectral dens8y, for selected val-  than the uniform one. As is expected, these hysteretic sys-
ues of the drift coefficienb are presented. The magnitude of tems have a monotonic spectral density, and an increase in
the spectral density in the white noise region is plottedthe external deterministic inpug, (applied field results in a

against the drift coefficiert in Fig. 6(b). decrease in the output noise spectrum.
Next, consider an OU input process witlro=1 andxg

=0 (no external field applied In Figs. {a)—7(c), variations
of the cross-spectral densitg,(w) with respect to the V. CONCLUSION

widths g and a of the two loops are presented for some A method for the calculation of spectral densities for hys-
selected values of the frequency. The cross-spectral densitgretic systems driven by diffusion processes is presented.
has negligible values outside a finite region around the oriThe outputs of such systems are non-Markovian processes
gin, and this region becomes smaller when the frequency igat represent nonlinear hysteretic transformations of diffu-
increased. For a better understanding of the relation betwe%”]on processes. For this reason, the calculation of their spec-
the graphs presented in Figgay-7(c), the diagonal section tral densities is associated with considerable mathematical
[Suo(w)] is plotted in Fig. 7d) for different frequencies. It difficulties. The method proposed in this paper circumvents
can be clearly observed that the maximum)f(w) be-  these difficulties by using the Preisach description of hyster-
comes more pronounced and it is shifted toward “wideretic systems as well as the recently developed theory of dif-
loops” as the frequency is decreased. This suggests that twasion processes on graphs. In addition, special techniques
Preisach systems whose Preisach distributions coincide neare used to simplify the expression for the spectral density of
the origin should have approximately the same spectral noisghe output process. The case of Ornstein-Uhlenbeck input
densities for high frequencies. It is apparent that the region imoise is extensively discussed, and the spectral noise densi-
the (8, @) plane that gives the main contribution to the spec-ties of various Preisach systems are obtained. The Ornstein-
tral density depends on the characteristics of the input. It i¥Jhlenbeck input process is of special physical significance
also expected tha,(w) will decrease for everyg anda as  as a model of noise because of its stationary, Gaussian, and
X is shifted from zero. Markovian nature. Moreover, the closed form expressions for

The computations suggest th8},(w) undergoes mono- spectra have been obtained in this case. The general qualita-
tonic variations with respect te for fixed 8 and a. This  tive features of these spectral densities are examined and
observation leads to the conclusion that the spectral noisdeir dependence on various parameters is elucidated. Be-
density of a Preisach system driven by an OU process shoulehuse of the universality of the Preisach model, the method
be a decreasing function of frequency, regardless of théeveloped is useful for the calculation of spectra in hysteretic
shape of the Preisach distribution. systems of various physical types.

As has been stressed, on8g,(w) is computed, the cal-
culation of the spectral noise density for any Preisach system
(2) is reduced to the integration of this function with some
specific weight related to the Preisach distributjsee Eq. The theory of stochastic processes on a graph has been
(7)]. First, we considered a uniform Preisach distributionrecently developed by Freidlin and WentzgR5]. This
u(a)=1,a e (0,1). The results of computations for some se-theory was first applied to the study of random perturbations
lected values of the external deterministic inpytand the of Hamiltonian dynamical systen|25,2§. Then it was re-

OU noise characterized ly=0=1 are shown in Fig. 8. The alized that this mathematical technique is naturally suitable

APPENDIX: DIFFUSION PROCESSES ON GRAPHS
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for the analysis of noise in hysteretic systefg,28,44. In  time the process spends M, and the constanty,; are

this appendix, we give a short description of diffusion pro-(roughly speakingproportional to the probabilities that the
cesses on a graph based on the previously cited referencgsocess will “move” from vertex/, along the edgeg;. For

This description is adapted to our problem. Finally, the initialthe model presented in Sec. (dee Fig. 2, the following
boundary value problerf®)—(12) for the transition probabil- facts can be established. Since the process has no delay at the
ity density of the Markovian processt) is derived. vertices, =0 for k=1, ...,6. Moreover, it is clear that in

Consider a connected graph with verticesV,...,V,  our case there is zero probability that the procgds will

and edge%,, ... ,E,. Several edges can meet at a veitgx  move from vertexV, along the edgé;, while random mo-

we will write E;~V, if the edgeE; has the verte¥, as its  tions along the edges, andE, are equally probable. There-
end. With each edgg;, a diffusion procesg/(t) is associated fore, x13=0,x11=x12=1. Taking into account that the coor-

that is governed by the second order elliptic operator dinatesy;=-a—x andy,=—a+Xx, we arrive at the following
) interface condition at the verte:
d XX o
T=b(x)— + - (A1) df df
ax 2 Jx B __ 5B
—(—a)=—(-a). (A2)
dx dx

Here,b and o satisfy local Lipschitz and linear growth con-

ditions (see[34,35) and o(x) >c>0. We will denote byAy  Similar assertions are valid for each interior vertex, and
the infinitesimal operator of a strongly continuous semigroupanalogous interface conditions can be derived.

of linear operators on the spa€gY) of continuous functions The next task is to specify the partial differential equa-
corresponding to a Markov procegé) on the graphy with  tions for the transition probability densip(t,y|y’,0) corre-
a continuous path. sponding to the Markov processy(t). Since y(t)

The immediate task is to characterize the behavior of the=(i4(t),i,(t),x(t)) and the binary processeg(t) and i,(t)
diffusion process at the interior vertices of the graplit has  assume constant values on each efigehe following nota-

been shown if25] that for any continuous Markov process tion for the transition probability density is justified:
y(t) onY that is governed by the operafbinsideE; one can

find nonnegative constantsay and i, With ay pV(t,xly’,0 =p(tyly’.O)yce,- (A3)
+Ej:Ej~Vkaj>O for k=1,... m, such that the infinitesimal
operatorAy of that process is defined for any functibfrom
C(Y) that satisfies the following conditions.

According to the theory of Markovian processes, the follow-
ing equality is valid forp":

(1) fis twice continuously differentiable inside the edges 10 EP) 10 ‘
E;. S| T odx=3 | (Thlx (A4)
(2) If Ej~V then lim,_y, e Tf(y) exists and is inde- =1YE =1YE

pendent ofj; this limit will be denoted byTf(V,). By integrating by parts in the equalita3) and taking into
B aTf(Vi)+Zjg ~oXkj(df/dy)(V)=0 for k=1,...m,  account the interface conditions presented above and the fact
wherey; is the coordinate of; equal to the distance of the thatf can be chosen arbitrary in the domain of the infinitesi-
point of Ej from V. mal operatory, one finds that the transition probability den-
These conditions at the vertices will be further calledsity p(t,yly’,0) satisfies the forward Kolmogorov equation
“gluing” conditions. The constantg, describe how much (9) and the vertex boundary conditiok2).
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