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We consider a general stochastic branching process, which is relevant to earthquakes, and study the distri-
butions of global lifetimes of the branching processes. In the earthquake context, this amounts to the distribu-
tion of the total durations of aftershock sequences including aftershocks of arbitrary generation number. Our
results extend previous results on the distribution of the total number of offs@irect and indirect after-
shocks in seismicityand of the total number of generations before extinction. We consider a branching model
of triggered seismicity, the epidemic-type aftershock sequence model, which assumes that each earthquake can
trigger other earthquakeg$aftershocks). An aftershock sequence results in this model from the cascade of
aftershocks of each past earthquake. Due to the large fluctuations of the number of aftershocks triggered
directly by any earthquaképroductivity” or “fertility” ), there is a large variability of the total number of
aftershocks from one sequence to another, for the same mainshock magnitude. We study the regime where the
distribution of fertilitiesu is characterized by a power law1/u*” and the bare Omori law for the memory
of previous triggering mothers decays slowly a4 /t**?, with 0< <1 relevant for earthquakes. Using the
tool of generating probability functions and a quasistatic approximation which is shown to be exact asymp-
totically for large durations, we show that the density distribution of total aftershock lifetimes scales as
~1/t¥*%7 when the average branching ratio is criti¢akE1). The coefficient X y=b/a<2 quantifies the
interplay between the exponem= 1 of the Gutenberg-Richter magnitude distributiea0™°™ and the increase
~10*™ of the number of aftershocks with mainshock magnitudgproductivity), with 0.5<a<1. The
renormalization of the bare Omori decay lawl /t**? into ~1/t1*%7 stems from the nonlinear amplification
due to the heavy-tailed distribution of fertilities and the critical nature of the branching cascade process. In the
subcritical casen< 1, the crossover from-1/t1*?7 at early times to~1/t'*? at longer times is described.

More generally, our results apply to any stochastic branching process with a power-law distribution of off-
spring per parent and a long memory.
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I. INTRODUCTION very heavy-tailed nature of the distribution of the durations
of aftershock sequences predicted by this simple model may
We study the distribution of the total duration of an after- explain the large variability of the lifetimes of observed af-
shock sequence, for a class of branching proceds@sap-  tershock sequences, and is compatible with the observation
propriate in particular for modeling earthquake aftershockhat felt aftershocks of the great Mino-Owgfi891) Japa-
sequences. The noteworthy particularity and challengingiese earthquake, which inspired Omori's statistical rate
property of this class of branching processes is that the varinodel, have persisted at a rate consistent with the Omori law
ance of the number of progenies in direct lineage from thdor 100 yearg6]. . .
mother is mathematically infinite. In addition, a long-time ~ Our results may also be of interest to other systems which
(power-lawy memory of the impact of a mother on the first- &r¢ characterized by branching processes with a broad
generation daughters gives rise to subdiffusidm] and to pqwgr-law d|§tr|but|on of fertilities, such as epldemlc.trans—
non-mean-field behavior in the distributions of the total num-Mission of diseases, and more generally transmission pro-

ber of aftershocks per mainshock and of the total number of€SS€S involving avalanches spreading on networks such as
generations before extinctidis]. Here, we add to this pre- the World Wide Web, cellular metabolic networks, ecological

vious work by showing that the distribution of the total du- food webs, social networks, and so on, as a consequence of

. . .. the well-documented power-law distribution of connectivi-
ration of an aftershock sequence is extremely long tailed: thﬁes among nodes. Our results are thus relevant to systems in

which the number of offspring may be large due to long-
range interactions, long-memory effects, or large deviation
*Electronic address: sornette@moho.ess.ucla.edu processes.
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II. THE EPIDEMIC-TYPE AFTERSHOCK SEQUENCE For a fixedy, the coefficientk then controls the value of
BRANCHING MODEL OF EARTHQUAKES the average numbaer of children of the first generation per
WITH LONG MEMORY mother:

We consider a general branching process in which each Y
progenitor or mothefmainshockis characterized by its con- N=(Nm) = k() = -1 (6)
ditional average number Y
where the averag€\,, is taken over all mothers’ magni-

N = xu(m) 1) tudes drawn from the GR law. In the terminology of branch-
of children (triggered events or aftershocks of the first gen-INg Processesy is called the branching ratio. Far<1, there
eration), where is on average less than one child per mother: this corre-

sponds to transiersubcritica) branching processes with fi-
w(m) = 10r(m-mp) 2) nite lifetimes with probability 1. Fon> 1, there is more than

_ _ i ) one child per mother: this corresponds to explogiseper-

is a mark associated with an earthquake of magnite yitical) branching processes with a number of events grow-
=my (in the language of “marked point processest is @ ing exponentially with time. The value=1 of exactly one
constant factor, andy, is the minimum magnitude of earth- cpijg per mother on average is the critical point separating
quakes capable of triggering other earthquakes. The meanifge (o regimes.

of the term “conditional average” fo¥, is the following: for Finally, we assume that a given evette “mother) of

a given earthquake of magnitude and therefore of mark magnitudem=m, occurring at timet; gives birth to other

w(m), the number of its daughters of the first generation is gyents“daughters) of the first generation in the time inter-
drawn at random according to the Poissonian statistics 3| betweert andt+dt at the rate

6
(t + C)1+9

Thus,N,, is the expectation of the number of daughters of thewhere 0< <1, H(t) is the Heaviside functiorg is a regu-
first generation, conditioned on a fixed magnitutleand larizing time scale that ensures that the seismicity rate re-
mark u(m). The expressio2) for w(m) is chosen in such a mains finite close to the mainshock aNg, is given by Eq.
way that it reproduces the empirical dependence of the averd). The time decay rat€7) is called the “direct Omori law”
age number of aftershocks triggered directly by an earthf12,13. Due to the process of cascades of triggering by
quake of magnituden (see[7] and references therginEx-  which a mother triggers daughters which then trigger their
pression(1) with (2) gives the so-called productivity law of a own daughters and so on, the direct Omori Igyis renor-

Nj k)"
p(1) = D= ) o @ 8,0 =Nyib(1-1) =N,

H(t) ()

given mother as a function of its magnitude. malized into a “dressed” or “renormalized” Omori law
In addition, we use the well-known Gutenberg-Richter[12,13, which is the one observed empirically.
(GR) density distribution of earthquake magnitudes Expressiongl), (2), (4), and(7) define the epidemic-type
_ - aftershock sequencdTAS) model of triggered seismicity
p(m) =bIn(10)10™™™, m=my, (4 introduced by Ogata in the present foftt0] and by Kagan

such that/% p(x)dx gives the probability that an earthquake 2nd Knopoff in a slightly different forni11].

has a magnitude equal to or larger thanThis magnitude

distribution p(m) is assumed to be independent of the mag- IIl. GENERAL FORMALISM IN TERMS OF

nitude of the triggering earthquake, i.e., a large earthquake GENERATING FUNCTIONS

can be triggered by a smaller ofigg]. . i ) . L
Combining Eqs{(4) and (2), we see that the earthquake Since we are interested in characterizing the dlstnbutpn

marksu and therefore the conditional average numiigrof of the random times at which an_aftershock sequence trig-

daughters of the first generation are distributed according tg€red by a given mainshock terminates, we take the time of

a power law the mainshock of magnituda at the origint=0 and we do
not consider the effect of earlier earthquakes. This is war-
v ranted by the fact that sequences of earthquakes generated by
Pup) = MT” Isp<+= y=ble. (5)  different mainshocks are independent in the ETAS branching
model.

Note thatp, () is normalized:/1"du p,(u)=1. For earth-
quakes,b~=1 almost universally and 05a<1 giving
1<y<2 (Ref.[7] reports some evidence far=0.8 corre-
sponding toy=1.25 while Ref[9] argue thair= 1 leading Let us first discuss a more detailed statistical description
to y—1). The fact that & y< 2 implies that the mathemati- of first generation aftershocks. Each aftershock arising inde-
cal expectation of. and therefore oN,,, (performed over all  pendently of another preceding aftershock itself born at the
possible magnitudgss finite but its variance is infinitgwe  random timet; has a birth time possessing the probability
do not address here the marginal casel leading toy=1,  density function(PDF ®(t-t;) defined in Eq.(7) and the
which needs a special treatmgnt cumulative distribution function(CDF) b(t)=[td(t")dt’.

A. First generation aftershocks
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Here and everywhere below, the dimensionless timeis  shocks of the first generation in a statistically independent
used, and we repladeby t/c, with the understanding that and equivalent manner, according to the laws given in Sec.
or rmeang/c when needed. It is convenient to introduce thell. This gives the possibility of obtaining closed equations for

complementary CDF of first generation aftershocks the CDF of the total duration of aftershock triggering pro-
cesses.
att)=1-b(t)= ——. (8) Let 7 be the random waiting time between a mainshock
(t+1)° and one of its first-generation aftershocks, chosen arbitrarily.

Let us consider a mainshock with mayk that triggers 'I;]he PDdF of’];s nc_)thlngf ?]U@%) diﬁnidbm Eqé?). Let'l" be .
exactly r aftershocks of the first generation arising at thetne random duration of the aftershock branching process trig-

; gered by this first-generation aftershock. The CDFIois
tmhgr?:srt]tz(rtils,i:?é ' r;n;tgrr)s'h-[)llini Sthee qSe?l TOOf the tim&(u|r) of denoted’(t). Then the total duration, measured since the

mainshock, of the sequence of aftershocks generated by this
PN =PT(ulr) = maxXtyty, ...t} <t]=[b(t)]". (9)  particular first-generation aftershock7s-T. The CDFF(t)

. . . . of this sum is therefore the convolution
Averaging this CDF over the random first-generation after-

shock numbers at fixed u weighted by their probability I(t) = ®(t) ® P(t). (17
p,.(r) given by Eq.(3) yields the CDFP,(t) for the total

durationT(w) of the first-generation aftershocks: Replacingb(t) in Eq. (10) by I'(t) and taking into account the

equality (11), we obtain the CDF of the total duratidi(u)
P.(t) =PiT(n) <t]=G,[b(t)]. (100  of a sequence of aftershocks over all generations of a given

Here,G,(2)=XZp,(r)Z is the generating probability func- event of marku that occurred at=0:

tion (GPBH of the number of first-generation aftershocks. For P(t) =P{T(u) <t]= g KuR(® (18)
the Poissonian statisti¢8), it is equal to
where
G (2 ==, (11)

R(t) =1-TF(t) (19
This leads to the well-known relation
g is the distribution complementary to tfigt) CDF defined in
P.(t) = e+, (12) Eq. (17). Correspondingly, replacing(B in Eq. (13) by P(t)
In the ETAS model, the Gutenberg-Richter distributionandb(t) by F(t), we obtain the self-consistent equation for
(4) of magnitudes together with the productivity 1g@) im-  the CDFI(t)
plies the power law5) for the marksu. Averaging over all

possible mainshock magnitudes thus amounts to averaging P =GF®] =GP @ P(1)]. (20

Eqg. (10) over all possible,u’s. The CDF of durationsl of It is convenient to rewrite Eq20) as

first-generation aftershocks generated by some mother of ar-

bitrary magnitude arising at time=0 is equal to R(t) = Q) = Q[R(V)], (21
P(t) = G[b(t)], (13)  whereQ(t)=1-P(t) and

whereG(2)=(G,(2)) is the average oB,[b(t)] over the ran- A(2=G(1l-2+z-1. (22

dom magnitudesn (or, equivalently, random markg). In
the relevant case of the Poissonian GRE) and using(5),
we obtain

For our subsequent analysis, express@ is more conve-
nient than Eq.(20) for the following reasons. First of all,
instead of the CDF'9’(t) andF'(t) entering in Eq(20), Eq.
G(2 = yk"(1 -2T'(- y,xk(1 -2)), (14)  (21) is expressed in terms of the complementary COK®
andR(t), which both tend to zero far— ce. In addition, the
function )(z) also tends to zero for— 0. This gives the
possibility of extracting the influence of the nonlinear terms
of the GPFG(z) on the asymptotic behavior of the solution
for t—cc. Indeed, at least foy< 1.5, the GPFG(2) is very
G(2=1-n(1-2+pB(1-27, 1<y<2, (15  precisely described by the truncated se(&s). The corre-
sponding series fof)(2) is

where I'(x,y) is the incomplete Gamma function angd
=b/«. For real aftershocks, < y<2 and a typical value is
y=1.25. Then, it is easy to show that the first termsG6z)
in a power expansion with respect to 2 are

with n given by Eq.(6) and

Q(2)=(1-n)z+ Bz, 23

1Ty - (2=(1-nz+p (23
B= y y=-1" which reduces to a pure power law in the critical casel:
O(2) = Bz". (24)

B. All generation aftershocks Correspondingly, in the critical case=1 and most important

In the ETAS model, any eveiithe initial mother or any for earthquake applications for which<ly<2 holds, Eq.
aftershock, whatever its generation numtigggers its after-  (21) has the form
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Q@) dR(t) (c)\?
06 Q(t) =R(t) + &’ a \{)- (31
05
04 Equation(21) thus yields the following fractional order dif-

ferential equation folR(t) (going back to the reduced time

03 variable 7=t/ c):
02
d’R )
01 65+ AR =7, (32)
T

02 04 06 08 T Z

In particular, in the critical casa=1, using the power ap-
FIG. 1. Plots of the exact functiofd(z) defined by Eq.22) proximation(24), we obtain
(lower curve and its pure power approximation E4) (upper

z - d’R
curve) for y=1.25 andn=1. 5F +BRY= 77, (33)
T
R(t) = Q(t) = BR1(V). (25) Note that the nonlinear fractional order differential equa-
The exact auxiliary functio)(z) defined by Eq(22) for n  tion (32) is exact ford(t) given by
_:1 z_ind its power approximatiof24) for y=1.25 are shown 1 t
in Fig. 1. O(t) = 5T,0‘Da 50 (34)

Our goal is now to solve Eq21) and in particular Eq.
(25) to explore in detail the statistical properties of the dura-where @ (t) is the fractional exponential distribution pos-
tions of aftershock sequences, resulting from cascades @gssing the Laplace transform
triggered events.

- 1
(I)()(S) = 1 +Sg1 (35)
IV. FRACTIONAL ORDER DIFFERENTIAL EQUATION
FOR THE COMPLEMENTARY CDF R (t) which has the integral representation
In order to exploit Eq(21), we first need to expregs(t) *1 r
as a function ok (t). For this, we note that expressi@t) is D7) = f + BXP ) &0dx, (36)
equivalent to 0
R() =a(t) + ®() @ (1), (26) "o
as can be seen from direct substitutions using Egjsand £4(x) = 1 5 _Sﬁm(we) . (37)
(19), and Q(t)=1-P(t). Applying the Laplace transform to mXX'+X "+ 2 cog o)

both sides of this equality, one gets One can interpret Eq36) as the decomposition of the frac-

A ]ai(s) 1 —CiD(s) tional equnential law into regular exponential dist_ributions,
()= ——-— ' (27) and &,(x) given by Eq.(37) as the “spectrum” of their mean
d(s)  sb(s) characteristic decay times For 6— 1, the spectrun(37)
weakly converges to the delta functidgXx-1) and the frac-

where tional exponential law transforms into the regular exponen-
. o tial distribution ®,(7)=€"". For 6=1/2, there is an explicit
D(s) =f d(t)e>dt=6(c9)%e™T'(- 6,c9),  (28)  expression for the fractional exponential distribution,
0
where we have made the correspondenee/c explicit [c IPGER /i _— erfc(\G)_ (38)
mT

is defined in Eq(7)]. We shall be interested in the probabil-
ity distribution of the durations of total sequences of after-
shocks for durations much larger thann this case, one can

replace&)(s) by its asymptotics for smah,

It is easy to show that the asymptotics of the fractional ex-
ponential distribution are

7_0—1 —60-1
R 1 DY) =—— (7<), Py 71)= (r>1).
d(9) =1-8(c9’=——;, cs<1, (29) ’ r'(o) ¢ ra-eo
1+ 5(cs)
(39
where 6=I"(1-6). Substituting it into Eq(27) leads to Figure 2 shows a log-log plot of the Omori lad(t)
Q(s) =[1+ 5((:5)9]&3&(5) - scfst (30) defined in Eq(7) and of the corresponding fractional expo-

nential distribution(34) as a function of the reduced time
which is equivalent, under the inverse Laplace transform, te=t/c and for #=1/2, demonstrating the closeness of these
the fractional order differential equation two distributions.
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FIG. 2. Log-log plots of the direct Omori lawp(t) defined in
Eq. (7) (lower curvg and of the fractional exponential distribution
Eq. (34) (upper curvgfor #=0.5 andc=1.

FIG. 3. Plot of the numerical solution of Eq44) for the
complementary CDRR of the total duration of an aftershock se-
guence and the corresponding analytical approximate expression

(45) for R for the parametery=1.25 andn=0.99.
V. EXACTLY SOLVABLE CASE: PURE

EXPONENTIAL OMORI LAW

R:(1+Er>_g. (46)

Before addressing the case of interest for earthquakes g

where the direct Omori lawb(t) is a power law with expo-

nent 0< #<<1, it is instructive to present the solution for the Figure 3 shows the numerical solution of E¢4) together
case wherebd(t) is an exponential. In this case, an exactwith its analytical solution45) obtained using the polyno-
solution can be obtained in closed form. This exact solutiormial approximation23) of the function(}(z) defined in Eq.
will be useful to check the quasistatic and dynamical linear{(22), for y=1.25 andn=0.99. These two curves are very
ization approximations developed below to solve the difficultclose to each other.

case whereb(t) is a power law with exponent9 6<1. Note that, in the subcritical cage< 1, there is a crossover
We write the exponential direct Omori law in nonreducedfrom the power lawm46) at early times, which is character-
time as istic of the critical regimen=1, to an exponential decay at
long times of the complementary CDF
(1) = = exp(— 5) 0 b(g= ——, (40)
c c l+cs VI. DYNAMICAL LINEARIZATION AND QUASISTATIC
APPROXIMATIONS TO OBTAIN THE ASYMPTOTIC
so that Eq(27) transforms to TAIL OF THE DISTRIBUTION OF TOTAL
~ ~ AFTERSHOCK DURATIONS
Q(s)=(1+c9R(s) —c. (41)

A. Linear approximation

After taking the inverse Laplace transform, we get To obtain some rough estimate of the complementary

CDF R(t), let us consider the linearized version of the frac-

O(t) =R(t) + Cdi(t) -cdt), (42)  tional order differential equatio(82)
t
d
and Eq.(21) takes the form 5F +npR=17" (47)
T

dR(t) here the following linearization has b d:

C?J,Q[R(t)]zcg(t)’ (43)  where the following linearization has been used:
Q[R]= 7R, 7=0Q(1)=G(0). (48

or, in the more traditional form of a Cauchy problem,
The Laplace transform of the solution of the linearized equa-

dR i
o +Q[R]=0, R(r=0)=1. (44) tion (47) has the form
T

5819—1
n+ 87

R(s) = (49

The numerical solution of44) is easy to obtain. In addition,
using for()(z) the series approximatiai23), one obtains the
analytical solution of the Cauchy proble@4) in the form The corresponding complementary CDF is equal to

_ B T B |7 _e(_m e
R—[<1+1_n)exp<(l ”)g> 1_n} , (49 R—E9< 57"), 5=T(1-0), (50)

whereg=1/(y—1). In particular, in the critical case=1, whereE(2) is the Mittag-Leffler function. Its integral repre-
this leads to sentation is
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o0

01,7y, 1 28 1/6
Eg(—x)zisinﬂ'ﬂj 28 g © c:y (x>0). =— T=7%, 7%= <—> (60)
T o Y+ X+ 2xy’ cosml nT n

(51 derived from relatior{53) gives us a hint on how to approach
the solution of the nonlinear fractional order differential

In particular, for6=1/2, it isequal to equationg32) and(33) by using a quasistatic approximation.
2 Indeed, notice that the asymptoti(®0) is a solution of the
Eyo(—x) =€ erfax). (52)  truncated equatiod7)
Its asymptotics reads 7R=77, (61)
where we omitted the fractional order derivative term.
Eo(=%) ~ X8 (X— ), (53) Applying this same quasistatic approximation to the non-
linear fractional order differential equatig82) gives the ap-
which is already very precise for= 2. proximate equality
The suggested dynamical linearization approach consists IR~ ¢ 62
in replacing the factom in Eq. (48) by [R]=7" (62)
In particular, in the critical case=1 for which Q(z) = 827,
Q(R) Y 0 i
(R)= —— (54) We haveBR?= 7 or equivalently
R
R =g, (63)

to correct for the nonlinear decay of the relaxation of the
complementary CDR as a function of time. It is interesting
to check the validity of this dynamical linearization proce-
dure for the exactly solvable exponential Omori |640). In
this case, the solution of the linearized equaiié4d) is

Expression63) will lead to the main resul{68) below.

The validity of this quasistatic approximation is checked
by calculating the derivation of fractional ordérof the ap-
proximate solution(63). Using the standard tabulated for-
mula of fractional order analysis

fi=e (59 d'r _ TA+p) ., (64
= T ,
Substituting here Eq54) for 7, we obtain in the critical case dr’ T'(1+p-06)
the transcendent equation we obtain
R = exp(— 7BR”Y). (56) O
. o 5d—ﬂ§ == B‘”yis<— 6,~ g)r'ﬁ'ﬁ’y, (65)
Its solution is equal to dr y+1 Y
Y(x) )9 where BXx,y) is the Beta function. For any fixed<ly<2
= <T> , (57) and 0< <1, there is ar* (y, #) <o such that
d’R S
where 6@ <BRY=77 if 7> 1% (y,0) (66)
g=i, X:Tﬁ’ (58) so that the quasistatic approximation becomes applicable.
y-1 g The physical background of the power asymptotié8) of

, i v  the solution of the linear equatiq#?7) and of the quasistatic
and Y(x) is the solution of the transcendent equatiére’ 555 4yimation(63) of the nonlinear equatiof83) is obvious:
=X. Forx>_ 2, there is a very precise approximate solution ofia asymptotic® ~ 7 given by Eq.(60) is a consequence
this equation: of the power taild(t)~t"?1 of the bare Omori law, while
the more slowly decaying ~ 7?7 given by Eq.(63) is the
2 In(In x) . )
Y(x) = In x{l +(1+ Inx)(l —1/1 +—)} ~Inx. result of an interplay between the long-memory property of
(1+Inx)? the bare Omori law and the amplification by the power law
(59 (2)~2", asignature of the broad distribution of productivi-
ties of daughter aftershocks from mother earthquakes. This
Thus, for largex, the main asymptotics of the dynamical gives rise to a renormalization of the exponehtnto a
linearization approximatio(b7) of the Cauchy probler44)  smaller exponend/ y (for 1< y<2).
differs from the main asymptotids ~x9 of the exact solu-

tion (46) only by the logarithmic correction %x. C. PDF of the total duration of aftershock

branching processes

B. Quasistatic approximation . . . . .
Q PP The previous sections have discussed in detail how to

Close inspection of the complementary C[89) and its  obtain the complementary CDR of the total duration of
asymptotics aftershock branching processes, corresponding to some first-
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A contrast, the observable part of the distribution of durations
o°g,288§ for very large mainshocks is controlled by the exponential
’ term which, together with the power-law prefactor, leads to a
0.00001 maximum: fqr very largeu, W,(7) §tarts from zero f(_)rr
5 X107 | |10 =0 and then increases up to a maximum before crossing over

slowly to the power-law tait2??, as illustrated in Fig. 4.

1 x10°¢
5 x1077 N
1000 10000 50000 © D. Crossover from critical to subcritical regime

FIG. 4. Log-log plots of the PDF68) of the total aftershock The asymptotics of the complementary CDiFsatisfies
sequence durations for a mainshock of markvith x=2,5,10,15, Eqg. (62) in the quasistatic approximation. In the subcritical

for the parameter valueg=1.25,6=0.2, andn=1. regime, using the polynomial approximati¢#3), one can
rewrite Eq.(62) in the form

generation aftershock, triggered by a main earthquake. The
CDF I’,, of the total duration of aftershock triggering pro- (1-nR+BRY=7". (69)
cesses, taking into account all aftershocks triggered by a
main earthquake of fixed magnitude, is described by relatioff is seen from this equality that it > R., where
(18). The corresponding PDF of the total duration of an af-
tershock sequence is thus equal to

ko=

-n\9

(5w

) — K, H(T)dR(T) . . .

W (1) = — ure™" 4 (67)  then one can neglect the linear term in the left-hand side of

equality (69) and obtain the power law63), typical of the

If ux>1 (as is the case for a large earthquake which has aritical regimen=1. In contrast, ifR <R, then the subcriti-
large average productivitythen, due to the exponential fac- cal scenario of the complementary CIOH¥ dominates and
tor in Eq.(67), this PDF differs significantly from zero only equality(69) gives the subcritical power law
if R is very small. Then using the expression for small values

of R described by the quasistatic approximati@8), we iy

obtain R = T ] (71)
1-n
o dP(D) Guk MK g It follows from Eqgs.(69) and(70) that the time of the cross-
W =— "= =" 7 exp - T ) from the critical to the subcritical regime i I
dr yBYY By over from the critical to the subcritical regime is equal to
(68)
. . . i Bg 1/6
Expression68) is our main result. Figure 4 shows a log-log To = <—) (72
plot of the PDF(68) for different values of the mainshock (1-mot
size uk for y=1.25 andf#=0.2 [recall thatB is given by Eq.
(16) and we put it equal to 1 to draw Fig].4
Expression(68) shows that the power-law tail holds for ACKNOWLEDGMENTS

durationst/c>t,/coc (ux) '~ 107%™ for which the expo-
nential factor goes to 1. Thus, faf small (=0.1-0.3 as This work was partially supported by NSF Grant No.

seems to be relevant for earthquakexpressior{68) exhib-  EAR02-30429, by the Southern California Earthquake Cen-
its a very strong dependence on the mainshock magnituder (SCEQ, and by the James S. McDonnell Foundation.
through its impact2) on the marku. Therefore, the most SCEC is funded by NSF Cooperative Agreement No. EAR-
relevant part of the distribution of the durations for small0106924 and USGS Cooperative Agreement No.
mainshocks is controlled by the power-law tail*””. In  02HQAGO0008.

[1] Classical and Modern Branching Processeslited by K.B. [4] A. Helmstetter, G. Ouillon, and D. Sornette, J. Geophys. Res.,

Athreya and P. Jage(S$pringer, New York, 1997 [Solid Eartfj 108 2483(2003.

[2] G. SankaranarayanaBranching Processes and Its Estimation [5] A. Saichev, A. Helmstetter, and D. Sornette, Pure Appl. Geo-
Theory(Wiley, New York, 1989. phys.(to be publishegd

[3] A. Helmstetter and D. Sornette, Phys. Rev. @, 061104 [6] T. Utsu, Y. Ogata, and S. Matsu'ura, J. Phys. Ea#B 1
(2002. (1995.

046123-7



A. SAICHEV AND D. SORNETTE PHYSICAL REVIEW E70, 046123(2004

[7] A. Helmstetter, Phys. Rev. Let®1, 058501(2003. [11] Y.Y. Kagan and L. Knopoff, J. Geophys. Res. &, 2853
[8] A. Helmstetter and D. Sornette, J. Geophys. R&lid Earth (1981
108 2457(2003. [12] A. Sornette and D. Sornette, Geophys. Res. Létt.1981
[9] K.R. Felzer, R.E. Abercrombie, and G. Ekstrém, Bull. Seis- (1999.
mol. Soc. Am. 94, 88 (2004. [13] A. Helmstetter and D. Sornette, J. Geophys. Ré&lid Earthy
[10] Y. Ogata, J. Am. Stat. Asso@3, 9 (1988). 107, 2237(2002.

046123-8



