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We consider a general stochastic branching process, which is relevant to earthquakes, and study the distri-
butions of global lifetimes of the branching processes. In the earthquake context, this amounts to the distribu-
tion of the total durations of aftershock sequences including aftershocks of arbitrary generation number. Our
results extend previous results on the distribution of the total number of offspring(direct and indirect after-
shocks in seismicity) and of the total number of generations before extinction. We consider a branching model
of triggered seismicity, the epidemic-type aftershock sequence model, which assumes that each earthquake can
trigger other earthquakes(“aftershocks”). An aftershock sequence results in this model from the cascade of
aftershocks of each past earthquake. Due to the large fluctuations of the number of aftershocks triggered
directly by any earthquake(“productivity” or “fertility” ), there is a large variability of the total number of
aftershocks from one sequence to another, for the same mainshock magnitude. We study the regime where the
distribution of fertilitiesm is characterized by a power law,1/m1+g and the bare Omori law for the memory
of previous triggering mothers decays slowly as,1/t1+u, with 0,u,1 relevant for earthquakes. Using the
tool of generating probability functions and a quasistatic approximation which is shown to be exact asymp-
totically for large durations, we show that the density distribution of total aftershock lifetimes scales as
,1/t1+u/g when the average branching ratio is criticalsn=1d. The coefficient 1,g=b/a,2 quantifies the
interplay between the exponentb<1 of the Gutenberg-Richter magnitude distribution,10−bm and the increase
,10am of the number of aftershocks with mainshock magnitudem (productivity), with 0.5,a,1. The
renormalization of the bare Omori decay law,1/t1+u into ,1/t1+u/g stems from the nonlinear amplification
due to the heavy-tailed distribution of fertilities and the critical nature of the branching cascade process. In the
subcritical casen,1, the crossover from,1/t1+u/g at early times to,1/t1+u at longer times is described.
More generally, our results apply to any stochastic branching process with a power-law distribution of off-
spring per parent and a long memory.
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I. INTRODUCTION

We study the distribution of the total duration of an after-
shock sequence, for a class of branching processes[1,2] ap-
propriate in particular for modeling earthquake aftershock
sequences. The noteworthy particularity and challenging
property of this class of branching processes is that the vari-
ance of the number of progenies in direct lineage from the
mother is mathematically infinite. In addition, a long-time
(power-law) memory of the impact of a mother on the first-
generation daughters gives rise to subdiffusion[3,4] and to
non-mean-field behavior in the distributions of the total num-
ber of aftershocks per mainshock and of the total number of
generations before extinction[5]. Here, we add to this pre-
vious work by showing that the distribution of the total du-
ration of an aftershock sequence is extremely long tailed: the

very heavy-tailed nature of the distribution of the durations
of aftershock sequences predicted by this simple model may
explain the large variability of the lifetimes of observed af-
tershock sequences, and is compatible with the observation
that felt aftershocks of the great Mino-Owari(1891) Japa-
nese earthquake, which inspired Omori’s statistical rate
model, have persisted at a rate consistent with the Omori law
for 100 years[6].

Our results may also be of interest to other systems which
are characterized by branching processes with a broad
power-law distribution of fertilities, such as epidemic trans-
mission of diseases, and more generally transmission pro-
cesses involving avalanches spreading on networks such as
the World Wide Web, cellular metabolic networks, ecological
food webs, social networks, and so on, as a consequence of
the well-documented power-law distribution of connectivi-
ties among nodes. Our results are thus relevant to systems in
which the number of offspring may be large due to long-
range interactions, long-memory effects, or large deviation
processes.*Electronic address: sornette@moho.ess.ucla.edu
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II. THE EPIDEMIC-TYPE AFTERSHOCK SEQUENCE
BRANCHING MODEL OF EARTHQUAKES

WITH LONG MEMORY

We consider a general branching process in which each
progenitor or mother(mainshock) is characterized by its con-
ditional average number

Nm ; kmsmd s1d

of children (triggered events or aftershocks of the first gen-
eration), where

msmd = 10asm−m0d s2d

is a mark associated with an earthquake of magnitudem
ùm0 (in the language of “marked point processes”), k is a
constant factor, andm0 is the minimum magnitude of earth-
quakes capable of triggering other earthquakes. The meaning
of the term “conditional average” forNm is the following: for
a given earthquake of magnitudem and therefore of mark
msmd, the numberr of its daughters of the first generation is
drawn at random according to the Poissonian statistics

pmsrd =
Nm

r

r!
e−Nm =

skmdr

r!
e−km. s3d

Thus,Nm is the expectation of the number of daughters of the
first generation, conditioned on a fixed magnitudem and
mark msmd. The expression(2) for msmd is chosen in such a
way that it reproduces the empirical dependence of the aver-
age number of aftershocks triggered directly by an earth-
quake of magnitudem (see[7] and references therein). Ex-
pression(1) with (2) gives the so-called productivity law of a
given mother as a function of its magnitude.

In addition, we use the well-known Gutenberg-Richter
(GR) density distribution of earthquake magnitudes

psmd = b lns10d10−bsm−m0d, mù m0, s4d

such thatem
` psxddx gives the probability that an earthquake

has a magnitude equal to or larger thanm. This magnitude
distribution psmd is assumed to be independent of the mag-
nitude of the triggering earthquake, i.e., a large earthquake
can be triggered by a smaller one[7,8].

Combining Eqs.(4) and (2), we see that the earthquake
marksm and therefore the conditional average numberNm of
daughters of the first generation are distributed according to
a power law

pmsmd =
g

m1+g , 1 ø m , + `, g = b/a. s5d

Note thatpmsmd is normalized:e1
+`dm pmsmd=1. For earth-

quakes, b<1 almost universally and 0.5,a,1 giving
1,g,2 (Ref. [7] reports some evidence fora<0.8 corre-
sponding tog<1.25 while Ref.[9] argue thata<1 leading
to g→1). The fact that 1,g,2 implies that the mathemati-
cal expectation ofm and therefore ofNm (performed over all
possible magnitudes) is finite but its variance is infinite(we
do not address here the marginal casea=1 leading tog=1,
which needs a special treatment).

For a fixedg, the coefficientk then controls the value of
the average numbern of children of the first generation per
mother:

n = kNml = kkml = k
g

g − 1
, s6d

where the averagekNml is taken over all mothers’ magni-
tudes drawn from the GR law. In the terminology of branch-
ing processes,n is called the branching ratio. Forn,1, there
is on average less than one child per mother: this corre-
sponds to transient(subcritical) branching processes with fi-
nite lifetimes with probability 1. Forn.1, there is more than
one child per mother: this corresponds to explosive(super-
critical) branching processes with a number of events grow-
ing exponentially with time. The valuen=1 of exactly one
child per mother on average is the critical point separating
the two regimes.

Finally, we assume that a given event(the “mother”) of
magnitudemùm0 occurring at timeti gives birth to other
events(“daughters”) of the first generation in the time inter-
val betweent and t+dt at the rate

fmstd = NmFst − tid = Nm
ucu

st + cd1+uHstd s7d

where 0,u,1, Hstd is the Heaviside function,c is a regu-
larizing time scale that ensures that the seismicity rate re-
mains finite close to the mainshock andNm is given by Eq.
(1). The time decay rate(7) is called the “direct Omori law”
[12,13]. Due to the process of cascades of triggering by
which a mother triggers daughters which then trigger their
own daughters and so on, the direct Omori law(7) is renor-
malized into a “dressed” or “renormalized” Omori law
[12,13], which is the one observed empirically.

Expressions(1), (2), (4), and(7) define the epidemic-type
aftershock sequence(ETAS) model of triggered seismicity
introduced by Ogata in the present form[10] and by Kagan
and Knopoff in a slightly different form[11].

III. GENERAL FORMALISM IN TERMS OF
GENERATING FUNCTIONS

Since we are interested in characterizing the distribution
of the random times at which an aftershock sequence trig-
gered by a given mainshock terminates, we take the time of
the mainshock of magnitudem at the origint=0 and we do
not consider the effect of earlier earthquakes. This is war-
ranted by the fact that sequences of earthquakes generated by
different mainshocks are independent in the ETAS branching
model.

A. First generation aftershocks

Let us first discuss a more detailed statistical description
of first generation aftershocks. Each aftershock arising inde-
pendently of another preceding aftershock itself born at the
random timeti has a birth time possessing the probability
density function(PDF) Fst− tid defined in Eq.(7) and the
cumulative distribution function(CDF) bstd=e0

t Fst8ddt8.
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Here and everywhere below, the dimensionless timet /c is
used, and we replacet by t /c, with the understanding thatt
or t meanst /c when needed. It is convenient to introduce the
complementary CDF of first generation aftershocks

astd = 1 −bstd =
1

st + 1du . s8d

Let us consider a mainshock with markm that triggers
exactly r aftershocks of the first generation arising at the
momentsst1,t2, . . . ,trd. Then the CDF of the timeTsm u rd of
the last arising aftershock is equal to

Pmsturd = PrfTsmurd = maxht1,t2, . . . ,trj , tg = fbstdgr . s9d

Averaging this CDF over the random first-generation after-
shock numbersr at fixed m weighted by their probability
pmsrd given by Eq.(3) yields the CDFPmstd for the total
durationTsmd of the first-generation aftershocks:

Pmstd = PrfTsmd , tg = Gmfbstdg. s10d

Here,Gmszd=or=0
` pmsrdzr is the generating probability func-

tion (GPF) of the number of first-generation aftershocks. For
the Poissonian statistics(3), it is equal to

Gmszd = ekmsz−1d. s11d

This leads to the well-known relation

Pmstd = e−kmastd. s12d

In the ETAS model, the Gutenberg-Richter distribution
(4) of magnitudes together with the productivity law(2) im-
plies the power law(5) for the marksm. Averaging over all
possible mainshock magnitudes thus amounts to averaging
Eq. (10) over all possiblem’s. The CDF of durationsT of
first-generation aftershocks generated by some mother of ar-
bitrary magnitude arising at timet=0 is equal to

Pstd = Gfbstdg, s13d

whereGszd=kGmszdl is the average ofGmfbstdg over the ran-
dom magnitudesm (or, equivalently, random marksm). In
the relevant case of the Poissonian GPF(11) and using(5),
we obtain

Gszd = gkgs1 − zdgG„− g,ks1 − zd…, s14d

where Gsx,yd is the incomplete Gamma function andg
=b/a. For real aftershocks, 1,g,2 and a typical value is
g<1.25. Then, it is easy to show that the first terms ofGszd
in a power expansion with respect to 1−z are

Gszd . 1 − ns1 − zd + bs1 − zdg, 1 , g , 2, s15d

with n given by Eq.(6) and

b = ngSg − 1

g
DgGs2 − gd

g − 1
. s16d

B. All generation aftershocks

In the ETAS model, any event(the initial mother or any
aftershock, whatever its generation number) triggers its after-

shocks of the first generation in a statistically independent
and equivalent manner, according to the laws given in Sec.
II. This gives the possibility of obtaining closed equations for
the CDF of the total duration of aftershock triggering pro-
cesses.

Let T be the random waiting time between a mainshock
and one of its first-generation aftershocks, chosen arbitrarily.
The PDF ofT is nothing butFstd defined in Eq.(7). Let T be
the random duration of the aftershock branching process trig-
gered by this first-generation aftershock. The CDF ofT is
denotedPstd. Then the total duration, measured since the
mainshock, of the sequence of aftershocks generated by this
particular first-generation aftershock isT+T. The CDFFstd
of this sum is therefore the convolution

Fstd = Fstd ^ Pstd. s17d

Replacingbstd in Eq. (10) by Fstd and taking into account the
equality (11), we obtain the CDF of the total durationTsmd
of a sequence of aftershocks over all generations of a given
event of markm that occurred att=0:

Pmstd = PrfTsmd , tg = e−kmRstd, s18d

where

Rstd = 1 −Fstd s19d

is the distribution complementary to theFstd CDF defined in
Eq. (17). Correspondingly, replacing Pstd in Eq. (13) by Pstd
and bstd by Fstd, we obtain the self-consistent equation for
the CDFFstd

Pstd = GfFstdg = GfFstd ^ Pstdg. s20d

It is convenient to rewrite Eq.(20) as

Rstd − Qstd = VfRstdg, s21d

whereQstd=1−Pstd and

Vszd = Gs1 − zd + z− 1. s22d

For our subsequent analysis, expression(21) is more conve-
nient than Eq.(20) for the following reasons. First of all,
instead of the CDF’sPstd andFstd entering in Eq.(20), Eq.
(21) is expressed in terms of the complementary CDF’sQstd
andRstd, which both tend to zero fort→`. In addition, the
function Vszd also tends to zero forz→0. This gives the
possibility of extracting the influence of the nonlinear terms
of the GPFGszd on the asymptotic behavior of the solution
for t→`. Indeed, at least forg&1.5, the GPFGszd is very
precisely described by the truncated series(15). The corre-
sponding series forVszd is

Vszd . s1 − ndz+ bzg, s23d

which reduces to a pure power law in the critical casen=1:

Vszd . bzg. s24d

Correspondingly, in the critical casen=1 and most important
for earthquake applications for which 1,g,2 holds, Eq.
(21) has the form
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Rstd − Qstd = bRgstd. s25d

The exact auxiliary functionVszd defined by Eq.(22) for n
=1 and its power approximation(24) for g=1.25 are shown
in Fig. 1.

Our goal is now to solve Eq.(21) and in particular Eq.
(25) to explore in detail the statistical properties of the dura-
tions of aftershock sequences, resulting from cascades of
triggered events.

IV. FRACTIONAL ORDER DIFFERENTIAL EQUATION
FOR THE COMPLEMENTARY CDF R „t…

In order to exploit Eq.(21), we first need to expressQstd
as a function ofRstd. For this, we note that expression(17) is
equivalent to

Rstd = astd + Fstd ^ Qstd, s26d

as can be seen from direct substitutions using Eqs.(8) and
(19), and Qstd=1−Pstd. Applying the Laplace transform to
both sides of this equality, one gets

Q̂ssd =
R̂ssd

F̂ssd
−

1 − F̂ssd

sF̂ssd
, s27d

where

F̂ssd =E
0

`

Fstde−stdt = uscsduecsGs− u,csd, s28d

where we have made the correspondencet→ t /c explicit [c
is defined in Eq.(7)]. We shall be interested in the probabil-
ity distribution of the durations of total sequences of after-
shocks for durations much larger thanc. In this case, one can

replaceF̂ssd by its asymptotics for smalls,

F̂ssd . 1 − dscsdu .
1

1 + dscsdu , cs! 1, s29d

whered=Gs1−ud. Substituting it into Eq.(27) leads to

Q̂ssd = f1 + dscsdugR̂ssd − dcusu−1, s30d

which is equivalent, under the inverse Laplace transform, to
the fractional order differential equation

Qstd = Rstd + dcu
duRstd

dtu
− Sc

t
Du

. s31d

Equation(21) thus yields the following fractional order dif-
ferential equation forRstd (going back to the reduced time
variablet= t /c):

d
duR

dtu + VsRd = t−u. s32d

In particular, in the critical casen=1, using the power ap-
proximation(24), we obtain

d
duR

dtu + bRg = t−u. s33d

Note that the nonlinear fractional order differential equa-
tion (32) is exact forFstd given by

Fstd =
1

d1/uFuS t

d1/uD , s34d

where Fustd is the fractional exponential distribution pos-
sessing the Laplace transform

F̂ussd =
1

1 + su , s35d

which has the integral representation

Fustd =E
0

` 1

x
expS−

t

x
Djusxddx, s36d

where

jusxd =
1

px

sinspud
xu + x−u + 2 cosspud

. s37d

One can interpret Eq.(36) as the decomposition of the frac-
tional exponential law into regular exponential distributions,
andjusxd given by Eq.(37) as the “spectrum” of their mean
characteristic decay timesx. For u→1, the spectrum(37)
weakly converges to the delta functiondsx−1d and the frac-
tional exponential law transforms into the regular exponen-
tial distribution F1std=e−t. For u=1/2, there is an explicit
expression for the fractional exponential distribution,

F1/2std =Î 1

pt
− et erfcsÎtd. s38d

It is easy to show that the asymptotics of the fractional ex-
ponential distribution are

Fustd .
tu−1

Gsud
st ! 1d, Fustd .

ut−u−1

Gs1 − ud
st @ 1d.

s39d

Figure 2 shows a log-log plot of the Omori lawFstd
defined in Eq.(7) and of the corresponding fractional expo-
nential distribution(34) as a function of the reduced timet
= t /c and for u=1/2, demonstrating the closeness of these
two distributions.

FIG. 1. Plots of the exact functionVszd defined by Eq.(22)
(lower curve) and its pure power approximation Eq.(24) (upper
curve) for g=1.25 andn=1.
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V. EXACTLY SOLVABLE CASE: PURE
EXPONENTIAL OMORI LAW

Before addressing the case of interest for earthquakes
where the direct Omori lawFstd is a power law with expo-
nent 0,u,1, it is instructive to present the solution for the
case whereFstd is an exponential. In this case, an exact
solution can be obtained in closed form. This exact solution
will be useful to check the quasistatic and dynamical linear-
ization approximations developed below to solve the difficult
case whereFstd is a power law with exponent 0,u,1.

We write the exponential direct Omori law in nonreduced
time as

Fstd =
1

c
expS−

t

c
D ⇒ F̂ssd =

1

1 + cs
, s40d

so that Eq.(27) transforms to

Q̂ssd = s1 + csdR̂ssd − c. s41d

After taking the inverse Laplace transform, we get

Qstd = Rstd + c
dRstd

dt
− cdstd, s42d

and Eq.(21) takes the form

c
dRstd

dt
+ VfRstdg = cdstd, s43d

or, in the more traditional form of a Cauchy problem,

dR

dt
+ VfRg = 0, Rst = 0d = 1. s44d

The numerical solution of(44) is easy to obtain. In addition,
using forVszd the series approximation(23), one obtains the
analytical solution of the Cauchy problem(44) in the form

R = FS1 +
b

1 − n
DexpSs1 − nd

t

g
D −

b

1 − n
G−g

, s45d

where g=1/sg−1d. In particular, in the critical casen=1,
this leads to

R = S1 +
b

g
tD−g

. s46d

Figure 3 shows the numerical solution of Eq.(44) together
with its analytical solution(45) obtained using the polyno-
mial approximation(23) of the functionVszd defined in Eq.
(22), for g=1.25 andn=0.99. These two curves are very
close to each other.

Note that, in the subcritical casen,1, there is a crossover
from the power law(46) at early times, which is character-
istic of the critical regimen=1, to an exponential decay at
long times of the complementary CDFR.

VI. DYNAMICAL LINEARIZATION AND QUASISTATIC
APPROXIMATIONS TO OBTAIN THE ASYMPTOTIC

TAIL OF THE DISTRIBUTION OF TOTAL
AFTERSHOCK DURATIONS

A. Linear approximation

To obtain some rough estimate of the complementary
CDF Rstd, let us consider the linearized version of the frac-
tional order differential equation(32)

d
duR

dtu + hR = t−u, s47d

where the following linearization has been used:

VfRg . hR, h = Vs1d = Gs0d. s48d

The Laplace transform of the solution of the linearized equa-
tion (47) has the form

R̂ssd =
dsu−1

h + dsu . s49d

The corresponding complementary CDF is equal to

R = EuS−
h

d
tuD, d = Gs1 − ud, s50d

whereEuszd is the Mittag-Leffler function. Its integral repre-
sentation is

FIG. 2. Log-log plots of the direct Omori lawFstd defined in
Eq. (7) (lower curve) and of the fractional exponential distribution
Eq. (34) (upper curve) for u=0.5 andc=1.

FIG. 3. Plot of the numerical solution of Eq.(44) for the
complementary CDFR of the total duration of an aftershock se-
quence and the corresponding analytical approximate expression
(45) for R for the parametersg=1.25 andn=0.99.
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Eus− xd =
x

p
sinpuE

0

` yu−1e−ydy

y2u + x2 + 2xyu cospu
sx . 0d.

s51d

In particular, foru=1/2, it is equal to

E1/2s− xd = ex2
erfcsxd. s52d

Its asymptotics reads

Eus− xd ,
1

xd
sx → `d, s53d

which is already very precise forx*2.
The suggested dynamical linearization approach consists

in replacing the factorh in Eq. (48) by

hsRd =
VsRd

R
s54d

to correct for the nonlinear decay of the relaxation of the
complementary CDFR as a function of time. It is interesting
to check the validity of this dynamical linearization proce-
dure for the exactly solvable exponential Omori law(40). In
this case, the solution of the linearized equation(44) is

R = e−ht. s55d

Substituting here Eq.(54) for h, we obtain in the critical case
the transcendent equation

R = exps− tbRg−1d. s56d

Its solution is equal to

R = SYsxd
x

Dg

, s57d

where

g =
1

g − 1
, x =

tb

g
, s58d

and Ysxd is the solution of the transcendent equationY eY

=x. For x.2, there is a very precise approximate solution of
this equation:

Ysxd . ln xF1 + s1 + ln xdS1 −Î1 +
2 lnsln xd
s1 + ln xd2DG , ln x.

s59d

Thus, for largex, the main asymptotics of the dynamical
linearization approximation(57) of the Cauchy problem(44)
differs from the main asymptoticsR,x−g of the exact solu-
tion (46) only by the logarithmic correction lng x.

B. Quasistatic approximation

Close inspection of the complementary CDF(50) and its
asymptotics

R .
1

htu , t * t * , t * = S2d

h
D1/u

s60d

derived from relation(53) gives us a hint on how to approach
the solution of the nonlinear fractional order differential
equations(32) and(33) by using a quasistatic approximation.
Indeed, notice that the asymptotics(60) is a solution of the
truncated equation(47)

hR = t−u, s61d

where we omitted the fractional order derivative term.
Applying this same quasistatic approximation to the non-

linear fractional order differential equation(32) gives the ap-
proximate equality

VfRg . t−u. s62d

In particular, in the critical casen=1 for which Vszd.bzg,
we havebRg.t−u, or equivalently

R . b−1/gt−u/g. s63d

Expression(63) will lead to the main result(68) below.
The validity of this quasistatic approximation is checked

by calculating the derivation of fractional orderu of the ap-
proximate solution(63). Using the standard tabulated for-
mula of fractional order analysis

dut p

dtu =
Gs1 + pd

Gs1 + p − ud
t p−u, s64d

we obtain

d
duR

dtu . − b−1/g u

g + 1
BS− u,−

u

g
Dt−u−u/g, s65d

where Bsx,yd is the Beta function. For any fixed 1,g,2
and 0,u,1, there is at* sg ,ud,` such that

Ud
duR

dtu U ! bRg . t−u if t @ t * sg,ud s66d

so that the quasistatic approximation becomes applicable.
The physical background of the power asymptotics(60) of
the solution of the linear equation(47) and of the quasistatic
approximation(63) of the nonlinear equation(33) is obvious:
the asymptoticsR,t−u given by Eq.(60) is a consequence
of the power tailFstd, t−u−1 of the bare Omori law, while
the more slowly decayingR,t−u/g given by Eq.(63) is the
result of an interplay between the long-memory property of
the bare Omori law and the amplification by the power law
Vszd,zg, a signature of the broad distribution of productivi-
ties of daughter aftershocks from mother earthquakes. This
gives rise to a renormalization of the exponentu into a
smaller exponentu /g (for 1,g,2).

C. PDF of the total duration of aftershock
branching processes

The previous sections have discussed in detail how to
obtain the complementary CDFR of the total duration of
aftershock branching processes, corresponding to some first-
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generation aftershock, triggered by a main earthquake. The
CDF Pm of the total duration of aftershock triggering pro-
cesses, taking into account all aftershocks triggered by a
main earthquake of fixed magnitude, is described by relation
(18). The corresponding PDF of the total duration of an af-
tershock sequence is thus equal to

Wmstd = − mke−kmRstddRstd
dt

. s67d

If mk@1 (as is the case for a large earthquake which has a
large average productivity), then, due to the exponential fac-
tor in Eq. (67), this PDF differs significantly from zero only
if R is very small. Then using the expression for small values
of R described by the quasistatic approximation(63), we
obtain

Wmstd =
dPmstd

dt
.

umk

gb1/gt−1−u/g expS−
mk

b1/gt−u/gD .

s68d

Expression(68) is our main result. Figure 4 shows a log-log
plot of the PDF(68) for different values of the mainshock
sizemk for g=1.25 andu=0.2 [recall thatb is given by Eq.
(16) and we put it equal to 1 to draw Fig. 4].

Expression(68) shows that the power-law tail holds for
durationst /c. tm /c~ smkdg/u,10sag/udm for which the expo-
nential factor goes to 1. Thus, foru small (<0.1–0.3 as
seems to be relevant for earthquakes), expression(68) exhib-
its a very strong dependence on the mainshock magnitude
through its impact(2) on the markm. Therefore, the most
relevant part of the distribution of the durations for small
mainshocks is controlled by the power-law tailt−1−u/g. In

contrast, the observable part of the distribution of durations
for very large mainshocks is controlled by the exponential
term which, together with the power-law prefactor, leads to a
maximum: for very largem, Wmstd starts from zero fort
=0 and then increases up to a maximum before crossing over
slowly to the power-law tailt−1−u/g, as illustrated in Fig. 4.

D. Crossover from critical to subcritical regime

The asymptotics of the complementary CDFR satisfies
Eq. (62) in the quasistatic approximation. In the subcritical
regime, using the polynomial approximation(23), one can
rewrite Eq.(62) in the form

s1 − ndR + bRg = t−u. s69d

It is seen from this equality that ifR.Rc, where

Rc = S1 − n

b
Dg

, s70d

then one can neglect the linear term in the left-hand side of
equality (69) and obtain the power law(63), typical of the
critical regimen=1. In contrast, ifR,Rc, then the subcriti-
cal scenario of the complementary CDFR dominates and
equality (69) gives the subcritical power law

R .
t−u

1 − n
. s71d

It follows from Eqs.(69) and(70) that the time of the cross-
over from the critical to the subcritical regime is equal to

tc . S bg

s1 − ndg+1D1/u

. s72d
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