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Collective density variablesrskd have proved to be useful tools in the study of many-body problems in a
variety of fields that are concerned with structural and kinematic phenomena. In spite of their broad applica-
bility, mathematical understanding of collective density variables remains an underexplored subject. In this
paper, we examine features associated with collective density variables in two dimensions using numerical
exploration techniques to generate particle patterns in the classical ground state. Particle pair interactions are
governed by a continuous, bounded potential. Our approach involves constraining related collective parameters
Cskd, with wave vectork magnitudes at or below a chosen cutoff, to their absolute minimum values. Density
fluctuations for thosek’s thus are suppressed. The resulting investigation distinguishes three structural regimes
as the number of constrained wave vectors is increased—disordered, wavy crystalline, and crystalline
regimes—each with characteristic distinguishing features. It should be noted that our choice of pair potential
can lead to pair correlation functions that exhibit an effective hard core and thus signal the formation of a
hard-disk-like equilibrium fluid. In addition, our method creates particle patterns that are hyperuniform, thus
supporting the notion that structural glasses can be hyperuniform as the temperatureT→0.
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I. INTRODUCTION

Understanding, predicting, and manipulating the spatial
patterns of particles in many-body systems remain continu-
ing challenges to condensed matter science. Collective den-
sity variables offer a useful analytical tool in this context. If
N identical point particles reside in a regionV at positions
r1, . . . ,rN, subject to periodic boundary conditions, the col-
lective density variablesrskd are defined thus:

rskd = o
j=1

N

expsik · r jd. s1.1d

Here the wave vectors denoted byk are those appropriate for
region V. Specific applications in which these quantities
have played important descriptive roles are the random-
phase approximation for conduction electrons in metals[1],
phonons in superfluid4He [2], crystal nucleation and growth
in simulated supercooled liquids[3], and the development of
integral equations for description of short-range order in flu-
ids [4,5]. An additional physical application involves mode-
coupling theory as applied to the study of relaxation dynam-
ics of density fluctuations in supercooled liquids[6,7].

Configurations that are subject to minimized collective
density variables have potential applications in a number of
diverse fields. In the material science context, it may be de-
sirable to fabricate amorphous materials that suppress radia-
tion scattering over a range of long wavelengths without pro-
ducing strong Bragg reflections. An additional application
involves the determination of animal territory size and shape

in the ecological domain[8]. In particular, the configurations
could be used as ideal arrangements for comparison to eco-
logical field cases. Alternatively, the configurations might
serve as initial conditions for investigations in the dynamics
of gravity collapse[9].

The nonlinearity of the transformation(1.1) from the fi-
nite set of particle coordinatesr1, . . . ,rN to the infinite set of
rskd generates a variety of nontrivial features. These were
explored to some extent for one-dimensional systems in a
previous paper[10], which was specifically concerned with
the effects of forcing sets of density fluctuations to vanish.
The objective of the present contribution is to extend that
former study to two-dimensional systems. Our primary tool
for doing so is numerical simulation of a variety of finite
particle systems. As explained below, the results emerging
from this investigation have implications for phase transition
theory, and for the theory of “hyperuniform” systems[11].

The following section contains the basic formulas re-
quired for this analysis. Section III provides details of the
numerical procedures that we have employed in this study.
Sections IV and V present our results on particle patterns and
Voronoi tessellations. Conclusions and related discussion ap-
pear in the final section.

II. BASIC FORMULAS

A natural choice for the two-dimensional regionV is a
rectangle with side lengthsLx and Ly. The corresponding
infinite set of wave vectors is

k = s2pnx/Lx,2pny/Lyd, s2.1d

where thenx andny are positive or negative integers, or zero.
With the exception ofrs0d;N, the rskd are complex and
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vary with the N-particle configuration, but are bounded
above and below in magnitude:

0 ø urskdu ø N sk Þ 0d. s2.2d

For present purposes, it is more convenient to work with the
real quantitiesCskd defined by[10]

rskdrs− kd = urskdu2 = N + 2Cskd, s2.3d

Cskd = o
j=1

N−1

o
l=j+1

N

cosfk · sr j − r ldg. s2.4d

These are subject to the following constraints:

Cs0d =
1

2
NsN − 1d,

Cskd = Cs− kd,

−
1

2
N ø Cskd ø

1

2
NsN − 1d sk Þ 0d. s2.5d

The corresponding structure factorSskd for a single configu-
ration can be expressed in terms of theCskd quantities

Sskd = 1 +
2

N
o
j=1

N−1

o
l=j+1

N

cosfk · sr j − r ldg = 1 +
2

N
Cskd. s2.6d

Suppose that the particles interact pairwise with an isotro-
pic pair potentialvsr jld, so that the total energy function is

Fsr1, . . . ,rNd = o
j,l

vsr jld. s2.7d

Suppose furthermore that this pair potential has a Fourier
transformVskd:

Vskd =E
V

vsrdexpsik · rddr,

vsrd = V−1o
k

Vskdexps− ik · rd, s2.8d

where in the last expression the summation covers the entire
set of k’s. Then it is straightforward to show that the total
potential energy for theN-particle system can be exactly
expressed in the following manner in terms of the real col-
lective density variables[10]:

F = V−1o
k

VskdCskd. s2.9d

By virtue of the fact that bothCskd and Vskd are inversion
invariant, the last sum could be restricted to the origin, plus
one half of thekÞ0 space with a compensating factor of 2.

For the purposes of the present investigation, we will
place special emphasis on pair interactions whose transform
Vskd possesses the following characteristics:

Vskd = HV0 . 0 s0 ø uku ø Kd,

0 sK , ukud.
s2.10d

We choose this form for simplicity recognizing at the same
time that any other positiveVskd for ukuøK but zero other-
wise would lead to the same results. In the large-V limit,
with K held fixed, the simple Fourier transform(2.10) may
be inverted to yield the following form for the pair interac-
tion in real space:

vsrd = sV0K/2prdJ1sKrd,

vsrd , S V0K
1/2

21/2p3/2r3/2DcossKr − 3p/4d sr → + `d, s2.11d

where as usualJ1 denotes the Bessel function of first order
[12] andr is the distance. Figure 1 displays the particle-pair
interaction in real space. It should be noted that this interac-
tion potential is qualitatively similar to the weakly decaying
Friedel oscillations observed in the screened potential of ions
in molten metals[13].

If the k-space range parameterK is small, the number of
independent collective coordinatesCskd in Eq. (2.9) included
within this radius will only be a small fraction of the number
of degrees of freedom 2N present in the system. Using ear-
lier one-dimensional results as a guide[10] it is then ex-
pected that the classical ground state of the system, the ab-
solute minimum of F, will be attained for that set of
configurations with all of those includedCskd’s driven to
their minimum values −N/2. As radiusK increases to cover
larger and larger numbers of theCskd’s, and consequently
having an impact on a larger and larger fraction of the total
degrees of freedom, the result for the classical ground state is
far from obvious. Clarifying this situation forms the objec-
tive of Secs. III–V.

III. NUMERICAL SEARCH PROCEDURE

We have devoted our numerical activity to examination of
ground-state configurations for theN-particle system, subject
to the type of pair interaction specified by Eq.(2.10). Interest
centers about the effects of varying thek-space cutoff radius
K. A single simplifying assumption has been invoked. In all
subsequent calculations, we assume that the system areaV is

FIG. 1. A scaled plot of the pair interaction defined by Eq.
(2.11).
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a unit squaresLx=Ly=L=1d, to which periodic boundary
conditions apply.

The majority of our calculations have chosen the number
of particlesN to be such that they could be assembled in the
square container in a nearly undeformed version of the trian-
gular crystal. Results to be presented in the following Sec.
IV justify this tactical choice. In particular, such an ideal
configuration would consist of 2q rows of particles, each
aligned with container sides and containingp equally spaced
particles, where the rational numberp/q is a close approxi-
mation to the irrational number 31/2. Table I shows a set of
possiblep,q choices, indicating how good an approximation
to the ideal irrational ratio each choice represents.

For any given choice ofN and K, the majority of our
numerical studies utilized a random number generator to cre-
ate an initial configuration of the particles inside the square
containerV. This starting point typically produces a large
positive value of the system potential energyF. The next
step involved use of the conjugate gradient method[14] to
seek a particle configuration that yielded the absolute mini-
mum value ofF. The conjugate gradient method locates a
local minimum of the given function provided that its gradi-
ent can be computed, which is the case for the present appli-
cation.

If the number ofk vectors at or inside cutoffK is denoted
by 2MsKd+1, and if all of the correspondingCskd could be
driven to their minimum values in this configuration search,
then that absoluteF minimum would be equal tosNV0/2d
3f1–2MsKdg. Then becauseSskd=0 for thosek’s at which
Cskd has been minimized, the resulting configurations are
hyperuniform[11]. [Note thatMsKd is the number of inde-
pendent collective coordinates within radiusK.] For some of
the largerN andK choices, the conjugate gradient procedure
would converge to higher relative minima, requiring rejec-
tion and motivating a restart at a different random initial
configuration. Table II contains a tabulation of the first few
shells of k vectors surrounding the origin, and the corre-
spondingM values.

IV. RESULTS—PARTICLE PATTERNS

Our numerical studies included several system sizes, vari-
ousM values, and collections of initial configurations(both
random and lattice-based). Calculations were carried out to
high precision with the system potential energyF converg-
ing to its absolute minimum. It should be noted that at high
M values, some random initial configurations in fact did not
converge to the absolute minimum, as indicated above. Evi-
dently, theF hypersurface for those cases contained a sub-
stantial population of relative minima that lay above the
classical ground state. However, the conjugate gradient tra-
jectories converged to the absoluteF minimum in all cases
included in our final analysis. Table III displays a summary
of the investigated systems. Our findings showed a qualita-
tively consistent pattern for all system sizes.

In order to simplify our analysis, we introduce the param-
eter

x =
MsKd
2N

, s4.1d

which is the ratio of the constrained degrees of freedom to
the total number of degrees of freedom. We have observed

TABLE I. Successive rational approximationsp/q to the irratio-
nal number 31/2. The implied system sizes to permit a nearly unde-
formed triangular lattice to fit within a square regionV are the
product of integersN=2pq; the corresponding configuration con-
sists of 2q rows of p particles.

p q p/q u31/2−p/qu N

1 1 1.000000 0.732051 2

2 1 2.000000 0.267949 4

3 2 1.500000 0.232051 12

5 3 1.666667 0.065384 30

7 4 1.750000 0.017949 56

12 7 1.714286 0.017765 168

19 11 1.727273 0.004778 418

26 15 1.733333 0.0012825 780

45 26 1.730769 0.0012816 2340

71 41 1.731707 0.00034349 5822

97 56 1.732143 0.000092049 10864

TABLE II. Coordination numberZi and squares of reduced dis-
tancesukiu / uk1u for the square lattice ofk vectors.

Shell Zi sukiu / uk1ud2 Msukiu / uk1ud

1 4 1 2

2 4 2 4

3 4 4 6

4 8 5 10

5 4 8 12

6 4 9 14

7 8 10 18

8 8 13 22

9 4 16 24

10 8 17 28

11 4 18 30

12 8 20 34

13 12 25 40

14 8 26 44

15 8 29 48

16 4 32 50

17 8 34 54

18 4 36 56

19 8 37 60

20 8 40 64

A A A A
50 8 117 186

A A A A
115 8 306 486

A A A A
150 16 410 652
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three distinct regimes of the final configurations asx varies:
disordered, wavy crystalline, and crystalline. Table IV pre-
sents the ranges inx for differing system sizes and regimes.
This table shows that the disordered regime for particle con-
figurations corresponds to low values ofx. Likewise, high
values ofx yield crystalline particle patterns. Numerical en-
tries in Table IV strongly suggest that asN increases, the
crossoverx value separating the disordered and wavy crys-
talline regimes approaches a limit around 0.58. By contrast,
the corresponding crossoverx between the wavy crystalline
and crystalline regimes exhibits a slow upward drift withN,
and we are currently unable to decide if its large-N limit is
less than, or equal to, unity. In the upcoming paragraphs, we
will discuss features that are characteristic of configurations
in these regimes.

A particle pattern within the disordered regime forN
=418 is displayed in Fig. 2. The random point clustering and
lack of any visible overall regularity is quite apparent. An-
other distinct property of the disordered regime involves the
isolation of a locus of minimumCskd’s in the corresponding
k-space plot as shown in Fig. 3. Here, only thoseCskd’s
within the range of the square moundVskd (inside the cutoff
radiusK) are forced to the minimum −N/2. All others(indi-
cated as “wild” values in the legend) seem to be free to vary
between the limits shown in Eq.(2.5).

As Cskd’s for a larger and larger set of wave vectors are
constrained to their minimum values(increasingx), some
novel configuration features emerge. There is a progressive
change from the disordered configurations to particle pat-
terns that consist of particle columns that display a meander-
ing displacement away from linearity. An example of such a
pattern is displayed in Fig. 4 and is defined as a “wavy crys-
tal.” A strong indication that the particle configuration falls
within the wavy crystalline regime is the induced minimiza-
tion of additionalCskd’s outside radiusK that are not directly
constrained by the numerical search procedure. In particular,

Fig. 5 presents thek-space plot for the particle pattern shown
in Fig. 4. Two distinct characteristics of the wavy crystalline
k-space plot arise when Fig. 3 is compared to Fig. 5. The first
of these traits is indicated by the presence of bands/patches
of minimizedCskd’s beyond the locus of forcibly minimized
Cskd quantities. The other property involves the appearance
of peakvalues for isolatedCskd’s. Cskd’s are labeled as peak
values when they are within 50 percent of the maximum
attainableCskd defined in Eq.(2.5). As in the disordered
regime, mostCskd’s are free to fluctuate between the im-
posed limits.

For high values of the cutoff radiusK, we observe a fully
crystallized particle pattern devoid of waviness(see Fig. 6).
It should be noted that for high values ofx, only a triangular

TABLE III. Conjugate gradient numerical studies were per-
formed on the following systems for the indicated range ofMsKd
values. All systems included in our final analysis converged to the
absoluteF minimum.

N Range ofMsKd values

12 0øMsKdø18

56 0øMsKdø84

168 0øMsKdø244

418 0øMsKdø652

TABLE IV. Classification of investigated cases associated with
each of the three regimes.

N Disordered Wavy crystalline Crystalline

12 x,0.500000 x=0.50000 xù0.583333

56 x,0.571428 0.571428øx,0.660714 xù0.660714

168 x,0.571428 0.571428øx,0.714286 xù0.714266

418 x,0.576550 0.576550øx,0.779904 xù0.779904

FIG. 2. Real space particle pattern in the disordered regime for
a system of 418 point particles. TheCskd quantities for the wave
vectors confined within the 50th shellsx=0.222488d have been
constrained to their minimum values −N/2.

FIG. 3. k-space plot ofCskd values for a system of 418 point
particles in the disordered regime.kx ranges from −90p to 90p, as
doesky. The Cskd quantities for the wave vectors confined within
the 50th shellsx=0.222488d have been constrained to their mini-
mum values −N/2 (see legend).
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crystalline arrangement permitsF to attain its absolute mini-
mum. The correspondingk-space plots(see Fig. 7) reveal
that theCskd quantities are either minimizeds−N/2d or at
their peak valuesf,NsN−1d /2g. However, for uniformly
strained crystalline arrangements, some wildly fluctuating
Cskd’s will occur in the vicinity of those exhibiting peak
values. For both unstrained and strained crystals, the implic-
itly minimized Cskd’s exhibit a pattern that percolates
throughoutk space, as Fig. 7 illustrates.

In addition to the idealN values listed in Table I, we
investigated the effect of adding a single particle to the sys-
tem size of interest and constraining a sufficient set of wave
vectors such thatx was expected to fall within the crystalline

regime. For such cases, we observe a rotated and strained
crystalline particle pattern that fits allN+1 particles in the
unit cell without any localized structural defect such as an
interstitial particle.

Our numerical studies were extended to the use of lattice-
based initial configurations. In particular, we utilized locally
and globally perturbed rectangular arrays as inputs to our
conjugate gradient algorithm. Point particles located on the
sites of the rectangular lattice were perturbed by randomly
displacing within the rangedx= ±0.1lx, dy= ±0.1ly for small
perturbation anddx= ±0.5lx, dy= ±0.5ly for large perturba-
tion. Here, lx and ly are the distance between neighboring
points in the lattice in thex andy directions. In general, we

FIG. 4. Real space particle pattern in the wavy crystalline re-
gime for a system of 418 point particles. TheCskd quantities for the
wave vectors confined within the 115th shellsx=0.581340d have
been constrained to their minimum values −N/2.

FIG. 5. k-space plot ofCskd values for a system of 418 point
particles in the wavy crystalline regime.kx ranges from −90p to
90p, as doesky. The Cskd’s for the wave vectors confined within
the 115th shellsx=0.581340d have been constrained to their mini-
mum values −N/2 (see legend).

FIG. 6. Real space particle pattern in the crystalline regime for a
system of 418 point particles. TheCskd quantities for the wave
vectors confined within the 150th shellsx=0.779904d have been
constrained to their minimum values −N/2.

FIG. 7. k-space plot ofCskd values for a system of 418 point
particles in the crystalline regime.kx ranges from −90p to 90p, as
doesky. TheCskd’s for the wave vectors confined within the 150th
shell sx=0.779904d have been constrained to their minimum values
−N/2 (see legend).
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were able to obtain the expected particle patterns andk-space
plots in the disordered and wavy crystalline regimes. How-
ever, the absoluteF minimum was never attained for nu-
merical searches at values ofx sufficiently high to be in the
crystalline regime using either initial configuration.

Further insight into the generated point patterns can be
obtained by study of their pair correlation functions. In par-
ticular, the possible emergence of an effective hard core di-
ameter and the formation of a hard-disk-like equilibrium
fluid, in spite of the fact that the pair interaction function is
bounded and continuous, can be probed by inspection of the
radial distribution function(RDF). The presence of clustered
points at very lowx indicates that the effective hard core is
likely to emerge only at higher values ofx. Figure 8 displays
RDF’s for configurations of point particles prior tosx
=0.142857d and aftersx=0.345238d the emergence of an
effective hard core.

V. RESULTS—VORONOI TESSELLATIONS

In two dimensions, a Voronoi tessellation is a partitioning
of space into convex polygonal cells[15,16]. It is alterna-
tively known across various scientific disciplines as a Dirich-
let tessellation or as Wigner-Seitz cells. In archeology,
Voronoi polygons are used to map the spread of the use of
tools in ancient cultures and for studying the influence of
rival centers of commerce[17]. In ecology, the survival of an
organism depends on the number of neighbors with which it
must compete for food and light, and the Voronoi diagram of

forest species and territorial animals is used to investigate the
effect of overcrowding[18].

For any of the patterns discussed earlier, the set ofN
points with position coordinatesr1, . . . ,rN can be used as
starting points for the generation of a Voronoi tessellation.
The Voronoi cell is the polygonal space containing all posi-
tions closer tor i than to any of the remainingN−1 points.
The edges of the Voronoi cell are formed by segments of
perpendicular bisectors to the lines connecting the pointr i to
its nearest neighbor sites, i.e., to pointsr j that share a
Voronoi edge. The set ofN Voronoi cells that are associated
with theN points yields the Voronoi diagram. Finally, the full
Voronoi tessellation can be generated by extending the
Voronoi diagram to all space, making use of periodic bound-
ary conditions.

Figures 9 and 10 show Voronoi tessellations for four point
patterns. Voronoi polygon statistics for specific investigated
systems(including those in Figs. 9 and 10) are displayed in
Table V. The shape irregularity of the Voronoi polygons in
both panels of Fig. 9 is visually clear. This common feature
is not unexpected as relatively few constraints have been
placed on the system in the lower panel of Fig. 9. However,
the marked presence of size and shape homogeneity is ap-
parent in the lower panel and not in the upper panel. By
comparing the two panels in Fig. 10, one visually perceives
both similarities and distinctions. The similarities concern
the local regularity of the point patterns while the differences
involve waviness in the upper point pattern in contrast to
perfect periodicity on the lower.

The mean number of edgeskEl and mean areakAl per
Voronoi cell are constant for systems of the same size
(square cell withL=1 and fixedN). The average number of
edges per cellskEl=6d in two-dimensional Voronoi tessella-
tions is an immediate consequence of Euler’s theorem pro-
vided that all vertices have coordination numberZ=3 [16]. A
couple of observations can be made upon inspection of Table
V. First, the downward trend in the standard deviation for
both the number of edges and the area, for increasing values
of x, is apparent. Indeed, this trend is reflected in the higher
degree of order in highx systems.

In addition, we can explore comparisons between systems
generated via our numerical search algorithm and the ran-
dom sequential addition(RSA) process by contrasting of
RDF’s and Voronoi polygon statistics. A RSA configuration
is produced by randomly, irreversibly, and sequentially plac-
ing nonoverlapping objects into a region[16]. The filling
process terminates at the saturation limit of packing fraction
f>0.55 for identical hard disks in two dimensions. In per-
forming the above comparison, we observe that the Voronoi
tessellations of point particle systems ofx>0.382775 are
qualitatively similar to RSA configurations at the saturation
limit (see Fig. 8.4 of Ref.[14]). However, on closer numeri-
cal inspection there are clear differences that are not imme-
diately apparent as measured by the abovementioned statis-
tical attributes(see Table VI). It should be noted that despite
varying x values for the different statistical measures, all
relevant particle configurations fall within the disordered re-
gime. Furthermore, unlike our generated configurations, it is
not known whether RSA configurations at the saturation den-
sity are hyperuniform.

FIG. 8. Radial distribution function for systems of 168 point
particles. Upper panel: TheCskd’s for the wave vectors confined
within the 15th shellsx=0.142857d have been constrained to their
minimum values −N/2. Fifty configurations have been sampled to
create the RDF. Lower panel: TheCskd’s for the wave vectors con-
fined within the 33rd shellsx=0.345238d have been constrained to
their minimum values −N/2. Twenty-five configurations have been
sampled to create the RDF.
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VI. CONCLUSIONS AND DISCUSSION

The overall objective pursued in this paper involves con-
struction and analysis of many-particle configurations in two
dimensions, subject to sets of constraints on the collective
coordinate values for those configurations. In particular, col-
lective coordinatesCskd for wave vectors subject to 0, uku
øK have been forced to their absolute minimum values,
where K is a variable cutoff. The resulting many-particle
configurations(see Figs. 2, 4, and 6) which are governed by
a continuous and bounded potential(2.11) belong to the class
of “hyperuniform” systems. In particular, this supports the
notion that structural glasses can in fact be hyperuniform as

T→0. Hyperuniform systems are defined by vanishing of
density fluctuations, i.e., ofSskd, in the large-wavelength
limit [11]. This confirms a possibility advanced by Torquato
and Stillinger[11]. But note also that the class of configura-
tions generated by our conjugate gradient algorithm goes be-
yond the established concept of “hyperuniformity” in that it
suppresses all density fluctuations with wavelengths greater
than a finite cutoff specified by the parameterK.

Three qualitatively distinct regimes of particle patterns
have emerged from our calculations. These have been la-
beled “disordered,” “wavy crystalline,” and “crystalline,” to

FIG. 9. Voronoi tessellations for configurations of point par-
ticles. Upper panel: Voronoi tessellation for an ideal gas distribution
of 418 point particles. Lower panel: Voronoi tessellation for a sys-
tem of 418 point particles for which allCskd’s within the 50th shell
sx=0.222488d have been constrained to their absolute minimum.
The configuration falls within the disordered regime.

FIG. 10. Voronoi tessellation for configurations of point par-
ticles. Upper panel: Voronoi tessellation of a system of 418 point
particles for which allCskd’s within the 115th shellsx=0.581340d
have been constrained to their absolute minimum. The configuration
falls within the wavy crystalline regime. Lower panel: Voronoi tes-
sellation for a system of 418 point particles for which allCskd’s
within the 150th shellsx=0.779904d have been constrained to their
absolute minimum. The configuration falls within the crystalline
regime.
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be descriptive of the visual patterns presented by each. Start-
ing with the unconstrained ideal gas configurationssK=0d,
they appear in that order as the cutoff radiusK increases. In
the disordered regime, only those collective coordinatesCskd
inside thek-space cutoff radiusK adhere to their minimum
value −N/2. In the wavy crystalline regime, minimized
Cskd’s occur not only inside the radiusK, but also in finite
patches beyond that radius, and asK increases those patches
increase in size as well. Theseexteriorminimizations are an
implicit result of the nonlinearity of the transformation from
particle coordinates to collective coordinates,(1.1) and(2.3).
Finally, the crystalline regime presents infinite sets of mini-
mized collective coordinates that percolate throughoutk
space, interrupted only by Bragg peaks in unstrained crys-
tals, and local clusters of nonminimized collective coordi-
nates surrounding Bragg peaks in strained crystals.

Evaluation of pair correlation functions and construction
of Voronoi tessellations produce further characterization of
particle configurations in each of these three regimes. Even
within the disordered regime, an increase inK causes reor-
ganization of the particle configurations in such a way as to
produce an effective repelling core acting between neighbor-
ing particle pairs that is evident in the pair correlation func-
tion. Voronoi polygons change their character with increas-
ing K from predominantly irregular and diverse in area and
edge number, to substantially less diverse and more regular
in the wavy crystalline regime, and finally to all identical
polygons in the crystalline regime. In this evolution, the lo-
cations of the particles within their enclosing Voronoi poly-
gons statistically drift toward polygon centroids, and become
centers of inversion symmetry in the crystal regime.

Numerical data from the several system sizes investigated
(N=12, 56, 168, and 418) indicate that in the infinite system
limit, the disordered to wavy crystalline transition occurs

when the number of independent constraints on collective
coordinates reaches approximately 58% of the total number
2N of particle degrees of freedom present. The subsequent
wavy crystalline to crystalline transition has been more dif-
ficult to locate in the large system limit owing to its slow
drift with N (see Table IV). We can only conclude that in the
infinite- N limit the wavy crystalline to crystalline transition
requires that the number of minimizedCskd’s be some num-
ber between 80 and 100% of the total number of degrees of
freedom. It should be noted that in one dimension, 50% is
the corresponding infinite-system threshold for complete or-
dering(crystallization), and 33.3̄ % is the threshold for ap-
pearance of implicitly minimized collective coordinates[10].

Although our numerical studies have assumed a unit
square as the system container, it is more generally the case
that the size of this square could be varied. The spacing of
wave vectors ink space is inversely proportional to the
square’s edge length. Consequently, holding the particle
numberN and cutoff radiusK fixed, compression reduces the
number ofCskd’s that are explicitly minimized. Therefore,
compression applied to an initially crystalline system can
cause it to undergo successive phase transitions to the wavy
crystalline state, and then to the disordered state.

Thse most obvious extension of the present investigation
is to examine the behavior of three-dimensional particle sys-
tems subject to an analogous set of collective coordinate
minimizations. One might reasonably anticipate that once
again a sequence of configurational transitions involving dis-
ordered, wavy crystalline, and crystalline states would be
observed as the cutoff radiusK increased from zero. But
whether only three distinguishable regimes, or a larger num-
ber with more elaborate distinctions, would appear remains
to be determined.
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TABLE V. Relevant Voronoi polygon statistics for systems of
418 point particles.x indicates the parameter defined in Eq.(4.1).
Poisson and RSA rows indicate Voronoi polygon statistics for Pois-
son and random sequential addition configurations. The second and
third columns represent the standard deviation of the number of
edges and area of the Voronoi polygons. The mean number of edges
kEl and areakAl for each of these systems are 6 and 2.392344
310−3, respectively.

x
1

N−1
Îoi=1

N sEi −kEld2 1

N−1
Îoi=1

N sAi −kAld2

0.033493 4.013836310−4

0.126794 5.834784310−2 1.215543310−4

0.222488 5.351538310−2 4.358028310−5

0.382775 3.668359310−2 1.915487310−6

0.495215 2.956553310−2 5.328853310−7

0.581340 1.918465310−2 5.859931310−6

0.779904 0 1.731724310−8

Poisson 6.541094310−2 6.181066310−4

RSA at
saturation limit

3.806837310−2 5.310192310−5

TABLE VI. Investigation of similarities between configurations
generated by our numerical search algorithm and the RSA process
(at the saturation density) by three separate statistical measures. The
second column indicates the approximatex value for configurations
similar to the saturated RSA system for each parameter used in the
comparison.

Other statistical measures x

Standard deviation in Voronoi polygon edge
number

0.370813

Standard deviation in Voronoi polygon area 0.196172

Radial distribution function 0.495215
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