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Collective density variablep(k) have proved to be useful tools in the study of many-body problems in a
variety of fields that are concerned with structural and kinematic phenomena. In spite of their broad applica-
bility, mathematical understanding of collective density variables remains an underexplored subject. In this
paper, we examine features associated with collective density variables in two dimensions using numerical
exploration techniques to generate particle patterns in the classical ground state. Particle pair interactions are
governed by a continuous, bounded potential. Our approach involves constraining related collective parameters
C(k), with wave vectolk magnitudes at or below a chosen cutoff, to their absolute minimum values. Density
fluctuations for thosé&’s thus are suppressed. The resulting investigation distinguishes three structural regimes
as the number of constrained wave vectors is increased—disordered, wavy crystalline, and crystalline
regimes—each with characteristic distinguishing features. It should be noted that our choice of pair potential
can lead to pair correlation functions that exhibit an effective hard core and thus signal the formation of a
hard-disk-like equilibrium fluid. In addition, our method creates particle patterns that are hyperuniform, thus
supporting the notion that structural glasses can be hyperuniform as the temp@&ratQre
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I. INTRODUCTION in the ecological domaif8]. In particular, the configurations

Understandin redicting. and manioulating the spatia ould be used as ideal arrangements for comparison to eco-
9, Pre 9 P 91 ba ogical field cases. Alternatively, the configurations might
patterns of particles in many-body systems remain continu-

! . : serve as initial conditions for investigations in the dynamics
ing cha_llenges to condensed maitter science. C_:ollectlve der(]_)—]c gravity collapse9].
S vaiablos offer s usell nabcal Lo e SOMEX 1 T noinearty o e ransformatat. rom te
) r subiect to periodic boundary conditions. the Col_nlte set of particle coqrdlnate@, SN to the infinite set of
1,---fy, SUDJECL 1O P aary i ' p(k) generates a variety of nontrivial features. These were
lective density variablep(k) are defined thus: : . .
explored to some extent for one-dimensional systems in a
N previous papef10], which was specifically concerned with
p(k) = E explik - ;). 1.1 the effects of forcing sets of density fluctuations to vanish.
j=1 The objective of the present contribution is to extend that
. former study to two-dimensional systems. Our primary tool
Here the wave vgctors d'enolted Ib_ﬁre th_ose appropriate fqr for doing so is numerical simulation of a variety of finite
region (). Specific applications in which these quantities ,icje systems. As explained below, the results emerging

have played important descriptive roles are the randomgqy, s investigation have implications for phase transition
phase approximation for conduction electrons in mejtals theory, and for the theory of “hyperuniform” systeis].

phonons in superfluifHe [2], crystal nucleation and growth g following section contains the basic formulas re-

in simulated supercooled liquig8], and the development of ¢ ireq for this analysis. Section Il provides details of the

integral equations for description of short-range order in ﬂu'numerical procedures that we have employed in this study.

ids [Aifbj' 'Aﬁn additional thSicarl] applicatic])cn i|r1volyes mode- gactions IV and V present our results on particle patterns and
coupling theory as applied to the study of relaxation dynamy,;on; tessellations. Conclusions and related discussion ap-
ics of density fluctuations in supercooled liquids7]. pear in the final section.

Configurations that are subject to minimized collective

density variables have potential applications in a number of
diverse fields. In the material science context, it may be de- Il. BASIC FORMULAS
E'rﬁble tt? t?r?rlc?/ter arrr10rr]ph0ufs| rEatSv”?/Isl tzaisusv?trﬁsstrard'?' A natural choice for the two-dimensional regiéh is a

on scatlering over a range of long wavelengins ou porectangle with side lengthk, and L,. The corresponding
ducing strong Bragg reflections. An additional application: . . .

. A : . : infinite set of wave vectors is

involves the determination of animal territory size and shape

k=(2mn /Ly, 2my/L,), (2.2
*Corresponding author. where then, andn, are positive or negative integers, or zero.
Electronic address: torquato@princeton.edu With the exception ofp(0)=N, the p(k) are complex and
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vary with the N-particle configuration, but are bounded

above and below in magnitude:

0<|p(k)|<N (k#0). (2.2

For present purposes, it is more convenient to work with the

real quantitiesC(k) defined by[10]

p(K)p(=k) = [p(K)[* =N +2C(Kk), (2.3
N-1 N
Ck =2 > cogk-(rj-r)]. (2.4)
j=1 I=j+1
These are subject to the following constraints:
1
C(0) = EN(N -1,
C(k) =C(=k),
1 1
—ENsC(k)géN(N—l) (k #0). (2.5

The corresponding structure fact8ik) for a single configu-

ration can be expressed in terms of thg) quantities

N-1 N

S(k):1+22 E cos{k-(rj—r|)]:1+EC(k). (2.6
Nz 15j+1 N
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FIG. 1. A scaled plot of the pair interaction defined by Eq.
(2.10).

V(k):{VO>O 0=kl =K), (2.10

0 (K<Kk).

We choose this form for simplicity recognizing at the same
time that any other positivé/(k) for |k| <K but zero other-
wise would lead to the same results. In the lafydimit,
with K held fixed, the simple Fourier transfor(@8.10 may

be inverted to yield the following form for the pair interac-
tion in real space:

v(r) = (VoK/27m)J1(Kr),

V, 1/2
v(r) ~ (W)COS{KI’ -37mld) (r— +x), (2.1])

Suppose that the particles interact pairwise with an isotrogyhere as usual; denotes the Bessel function of first order

pic pair potential(rj), so that the total energy function is

D(ry, ... 1) =2 o(ry). (2.7)

j<l

[12] andr is the distance. Figure 1 displays the particle-pair
interaction in real space. It should be noted that this interac-
tion potential is qualitatively similar to the weakly decaying
Friedel oscillations observed in the screened potential of ions

Suppose furthermore that this pair potential has a Fourief? molten metalgf13].

transformV(k):

V(k) = v(r)explik - r)dr,

Q

o(N =Q > V(k)exp(-ik - 1), (2.9
k

where in the last expression the summation covers the entirI
set ofk’s. Then it is straightforward to show that the total
potential energy for theN-particle system can be exactly
expressed in the following manner in terms of the real col

lective density variablefl0]:

O =0 V(k)CK). (2.9
k

By virtue of the fact that botlC(k) and V(k) are inversion

If the k-space range parametiéris small, the number of
independent collective coordinat€sk) in Eq.(2.9) included
within this radius will only be a small fraction of the number
of degrees of freedomN2 present in the system. Using ear-
lier one-dimensional results as a guifiE]] it is then ex-
pected that the classical ground state of the system, the ab-
solute minimum of ®, will be attained for that set of
configurations with all of those include@(k)’s driven to
their minimum values N/2. As radiusK increases to cover
grger and larger numbers of th&k)’s, and consequently
having an impact on a larger and larger fraction of the total
degrees of freedom, the result for the classical ground state is

far from obvious. Clarifying this situation forms the objec-
tive of Secs. IlI-V.

IIl. NUMERICAL SEARCH PROCEDURE

We have devoted our numerical activity to examination of

invariant, the last sum could be restricted to the origin, plugground-state configurations for th&particle system, subject

one half of thek # 0 space with a compensating factor of 2. to the type of pair interaction specified by £8.10). Interest
For the purposes of the present investigation, we willcenters about the effects of varying tkespace cutoff radius

place special emphasis on pair interactions whose transforik. A single simplifying assumption has been invoked. In all

V(k) possesses the following characteristics:

subsequent calculations, we assume that the systenflasea
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TABLE I. Successive rational approximatiopsq to the irratio- TABLE II. Coordination numbe®; and squares of reduced dis-
nal number 32 The implied system sizes to permit a nearly unde-tanceslk;|/|k,| for the square lattice df vectors.
formed triangular lattice to fit within a square regiéh are the
product of integerdN=2pgq; the corresponding configuration con- Shell Z (il /|ka])? M(|Ki/|K4])
sists of 2y rows of p particles.

1 4 1 2

p q p/q |312-plq N 2 4 2 4

3 4 4 6

1 1 1.000000 0.732051 2 4 8 5 10

2 1 2.000000 0.267949 4 5 4 8 12

3 2 1.500000 0.232051 12 6 4 9 14

5 3 1.666667 0.065384 30 7 8 10 18

7 4 1.750000 0.017949 56 8 8 13 29

12 7 1.714286 0.017765 168 9 4 16 o4

19 11 1.727273 0.004778 418 10 8 17 o8

26 15 1.733333 0.0012825 780 1 4 18 30

45 26 1.730769 0.0012816 2340 12 8 20 34

71 41 1.731707 0.00034349 5822 13 12 o5 40

97 56 1.732143 0.000092049 10864 14 8 26 44

_ _ o 15 8 29 48
a unit square(L,=L,=L=1), to which periodic boundary 16 4 32 50
conditions apply.

The majority of our calculations have chosen the number 1 8 34 54
of particlesN to be such that they could be assembled in the 18 4 36 56
square container in a nearly undeformed version of the trian- 19 8 37 60
gular crystal. Results to be presented in the following Sec. 20 8 40 64

IV justify this tactical choice. In particular, such an ideal : : : :
configuration would consist of rows of particles, each 50 8 117 186
aligned with container sides and containingqually spaced
particles, where the rational numbefq is a close approxi-
mation to the irrational number*. Table | shows a set of
possiblep, g choices, indicating how good an approximation
to the ideal irrational ratio each choice represents.

For any given choice oN and K, the majority of our
numerical studies utilized a random number generator to cre-
ate an initial configuration of the particles inside the square

container(). This starting point typically produces a large  oyr numerical studies included several system sizes, vari-
positive value of the system potential ener@ly The next o5\ values, and collections of initial configuratiotsoth
step involved use of the conjugate gradient metfbl o random and lattice-basgdCalculations were carried out to
seek a particle configuration that yielded the absolute MiNinigh precision with the system potential energyconverg-
mum value of®. The conjugate gradient method locates ajnq 10 jts absolute minimum. It should be noted that at high
local minimum of the given function provided that its gradi- v yajues, some random initial configurations in fact did not
ent can be computed, which is the case for the present applipnyerge to the absolute minimum, as indicated above. Evi-
cation. o _ dently, thed hypersurface for those cases contained a sub-
If the number ofk vectors at or inside cutoff is denoted  giantial population of relative minima that lay above the
by 2M(K)+1, and if all of the correspondinG(k) could be  ¢|assical ground state. However, the conjugate gradient tra-
driven to their minimum values in this configuration Searchjectories converged to the absoleminimum in all cases
then that absolute> minimum would be equal t6NVo/2)  included in our final analysis. Table 11l displays a summary
X[1-2M(K)]. Then becaus&(k)=0 for thosek’s at which  of the investigated systems. Our findings showed a qualita-
C(k) has been minimized, the resulting configurations arejvely consistent pattern for all system sizes.
hyperuniform[11]. [Note thatM(K) is the number of inde- In order to simplify our analysis, we introduce the param-
pendent collective coordinates within radiig For some of  eter
the largeN andK choices, the conjugate gradient procedure
would converge to higher relative minima, requiring rejec- M(K)
tion and motivating a restart at a different random initial X 2N ' (4.1
configuration. Table Il contains a tabulation of the first few
shells ofk vectors surrounding the origin, and the corre-which is the ratio of the constrained degrees of freedom to
spondingM values. the total number of degrees of freedom. We have observed

115 8 306 486

150 16 410 652

IV. RESULTS—PARTICLE PATTERNS
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TABLE Ill. Conjugate gradient numerical studies were per- S, . o ° s T L |
formed on the following systems for the indicated rangevidK) o o oo ot oo * : Py . * @ .‘
values. All systems included in our final analysis converged to the po S o LYY ~ o '. : % . % .
absolute® minimum. e o . . . o °

o ® o g P e o o
'..: ®o o *e o % ®e e’ %o e o
N Range ofM(K) values o o : e o o o v 0 ® e
o o %o L4 oo ® © ° ® %4
12 0=M(K)<18 e e T e e e
_ _ [ ** ot o S el . o’ .
56 0=M(K)<84 o o 0%, 4 ° o oo S .
168 0<M(K) <244 se o 0° L, * o * 9
p & e o o 0 o . ® evee
418 OgM(K)$652 ® o9 @ : .. i »® .. LIPS o ® PY o L4
° Y L4 o ©4
L4 . . o ® ® o o
o . i . . . e P e o "% .. g S %, . .'
three distinct regimes of the final configurationsyagaries: S 6 00 %ee% *°q o oo
disordered, wavy crystalline, and crystalline. Table IV pre- pOe * : Y B e
sents the ranges ip for differing system sizes and regimes. e e’ . * .‘ « *, . $°,.,° °°
This table shows that the disordered regime for particle con- o* 0.' °. ’.' . .o.. e o : oo
figurations corresponds to low values pf Likewise, high ®ee o, . * e %
’ L) ° o o, ¢ %0 o ®

values ofy yield crystalline particle patterns. Numerical en-
tries in Table IV strongly suggest that &sincreases, the
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FIG. 2. Real space particle pattern in the disordered regime for

crossovery value separating the disordered and wavy Crys4 system of 418 point particles. Tig(k) quantities for the wave
talline regimes approaches a limit around 0.58. By contrastyectors confined within the 50th shell=0.222488 have been
the corresponding crossovgrbetween the wavy crystalline constrained to their minimum valuesN£2.

and crystalline regimes exhibits a slow upward drift with
and we are currently unable to decide if its lafgdimit is

Fig. 5 presents thk-space plot for the particle pattern shown

less than, or equal to, unity. In the upcoming paragraphs, win Fig. 4. Two distinct characteristics of the wavy crystalline
will discuss features that are characteristic of configurationk-space plot arise when Fig. 3 is compared to Fig. 5. The first

in these regimes.
A particle pattern within the disordered regime for

of these traits is indicated by the presence of bands/patches
of minimizedC(k)’s beyond the locus of forcibly minimized

=418 is displayed in Fig. 2. The random point clustering andC(k) quantities. The other property involves the appearance
lack of any visible overall regularity is quite apparent. An- of peakvalues for isolatedC(k)'s. C(k)'s are labeled as peak
other distinct property of the disordered regime involves thg,zjues when they are within 50 percent of the maximum
isolation of a locus of minimun€(k)'s in the corresponding  attainableC(k) defined in Eq.(2.5. As in the disordered

k-space plot as shown in Fig. 3. Here, only thaS&)'’s

regime, mostC(k)'s are free to fluctuate between the im-

within the range of the square moukk) (inside the cutoff  posed limits.

radiusK) are forced to the minimumN/2. All others(indi-

For high values of the cutoff radius, we observe a fully

cated as “wild” values in the legendeem to be free to vary crystallized particle pattern devoid of wavingsee Fig. 6.

between the limits shown in E@2.5).

As C(k)'s for a larger and larger set of wave vectors are
constrained to their minimum valudg@creasingy), some
novel configuration features emerge. There is a progressive
change from the disordered configurations to particle pat-
terns that consist of particle columns that display a meander-
ing displacement away from linearity. An example of such a
pattern is displayed in Fig. 4 and is defined as a “wavy crys-
tal.” A strong indication that the particle configuration falls
within the wavy crystalline regime is the induced minimiza-
tion of additionalC(k)’s outside radiuK that are not directly
constrained by the numerical search procedure. In particular,

TABLE IV. Classification of investigated cases associated with
each of the three regimes.

It should be noted that for high values pfonly a triangular

k + Minimum Values
yT "Wild" Values

e

iR

iR

S k
THEHERET X

N Disordered Wavy crystalline Crystalline
12 x<0.500000 x=0.50000 x=0.583333
56 x<0.571428 0.571428 y<0.660714 x=0.660714
168 x<0.571428 0.571428 y<0.714286 x=0.714266
418 x<0.576550 0.576558 y<0.779904 x=0.779904

FIG. 3. k-space plot ofC(k) values for a system of 418 point
particles in the disordered regim. ranges from —9& to 90w, as
doesk,. The C(k) quantities for the wave vectors confined within
the 50th shell(y=0.222488 have been constrained to their mini-
mum values N/2 (see legend

046122-4



CONSTRAINTS ON COLLECTIVE DENSITY... PHYSICAL REVIEW E 70, 046122(2004)

li.!. ....'-.....vv

FIG. 4. Real space particle pattern in the wavy crystalline re- FIG. 6. Real space particle pattern in the crystalline regime for a
gime for a system of 418 point particles. TB&) quantities for the  system of 418 point particles. Thé(k) quantities for the wave
wave vectors confined within the 115th shefi=0.581340 have  vectors confined within the 150th shélf=0.779904 have been
been constrained to their minimum valued/2. constrained to their minimum values\N+2.

crystalline arrangement permis to attain its absolute mini-  regime. For such cases, we observe a rotated and strained
mum. The corresponding-space plotgsee Fig. J reveal  crystalline particle pattern that fits al+1 particles in the
that theC(k) quantities are either minimize@-N/2) or at  unit cell without any localized structural defect such as an
their peak valueg~N(N-1)/2]. However, for uniformly interstitial particle.
strained crystalline arrangements, some wildly fluctuating Our numerical studies were extended to the use of lattice-
C(k)'s will occur in the vicinity of those exhibiting peak based initial configurations. In particular, we utilized locally
values. For both unstrained and strained crystals, the implicand globally perturbed rectangular arrays as inputs to our
ity minimized C(k)’'s exhibit a pattern that percolates conjugate gradient algorithm. Point particles located on the
throughoutk space, as Fig. 7 illustrates. sites of the rectangular lattice were perturbed by randomly
In addition to the ideaN values listed in Table I, we displacing within the rang@é,=+0.1,, 6,=+0.1, for small
investigated the effect of adding a single particle to the sysperturbation ands,=+0.9,, §=+0.9, for large perturba-
tem size of interest and constraining a sufficient set of wavéion. Here,l, and |, are the distance between neighboring
vectors such that was expected to fall within the crystalline points in the lattice in the& andy directions. In general, we

* Minimum Values - Minimum Values
k I E’ea}( Yalues w1l * Peak Values
y Wild" Values yT "Wild" Values
4 A o Ta '
;F 4 : e
& i
Lf g
B S
5o o8
HEE
< il 4 .l!!.__ _____ f
i SRR 4
e . VW
P 44 &
s
Y E
: &
o J
b i

FIG. 5. k-space plot ofC(k) values for a system of 418 point FIG. 7. k-space plot ofC(k) values for a system of 418 point
particles in the wavy crystalline regimé&, ranges from -9@ to particles in the crystalline regimé&, ranges from —-9@ to 90w, as
90w, as doe,. The C(k)'s for the wave vectors confined within doesk,. The C(k)’s for the wave vectors confined within the 150th
the 115th shelly=0.581340 have been constrained to their mini- shell(y=0.779904 have been constrained to their minimum values
mum values N/2 (see legengd -N/2 (see legend
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forest species and territorial animals is used to investigate the

4 effect of overcrowdind18].

12f For any of the patterns discussed earlier, the seN of
a 0" points with position coordinates,, ... ,ry can be used as
- ..' "'...,w"""""w.-“' starting points for the generation of a Voronoi tessellation.

P The Voronoi cell is the polygonal space containing all posi-

) S tions closer tor; than to any of the remaininbl—1 points.

0.6f%s" The edges of the Voronoi cell are formed by segments of

001 02 03 04 05 perpendicular bisectors to the lines connecting the poitat

its nearest neighbor sites, i.e., to pointsthat share a

5 Voronoi edge. The set dfl Voronoi cells that are associated
with theN points yields the Voronoi diagram. Finally, the full
Voronoi tessellation can be generated by extending the

5 Voronoi diagram to all space, making use of periodic bound-
O ary conditions.
B e e Figures 9 and 10 show Voronoi tessellations for four point
. patterns. Voronoi polygon statistics for specific investigated
03¢ . systemg(including those in Figs. 9 and 1@re displayed in
Table V. The shape irregularity of the Voronoi polygons in
0 (] L L L 1

both panels of Fig. 9 is visually clear. This common feature
is not unexpected as relatively few constraints have been

FIG. 8. Radial distribution function for systems of 168 point Placed on the system in the lower panel of Fig. 9. However,
particles. Upper panel: The(k)'s for the wave vectors confined the marked presence of size and shape homogeneity is ap-
within the 15th shelly=0.142857 have been constrained to their parent in the lower panel and not in the upper panel. By
minimum values N/2. Fifty configurations have been sampled to comparing the two panels in Fig. 10, one visually perceives
create the RDF. Lower panel: TI&Kk)’s for the wave vectors con- both similarities and distinctions. The similarities concern
fined within the 33rd shelly=0.345238 have been constrained to the local regularity of the point patterns while the differences
their minimum values N/2. Twenty-five configurations have been involve waviness in the upper point pattern in contrast to
sampled to create the RDF. perfect periodicity on the lower.

The mean number of edgéE) and mean areéA) per
were able to obtain the expected particle patternskasijgace ~ Voronoi cell are constant for systems of the same size
plots in the disordered and wavy crystalline regimes. How<{square cell with_.=1 and fixedN). The average number of
ever, the absolut@ minimum was never attained for nu- edges per cell{E)=6) in two-dimensional Voronoi tessella-
merical searches at values pfsufficiently high to be in the tions is an immediate consequence of Euler’s theorem pro-
crystalline regime using either initial configuration. vided that all vertices have coordination numBer3 [16]. A

Further insight into the generated point patterns can beouple of observations can be made upon inspection of Table
obtained by study of their pair correlation functions. In par-V. First, the downward trend in the standard deviation for
ticular, the possible emergence of an effective hard core diboth the number of edges and the area, for increasing values
ameter and the formation of a hard-disk-like equilibrium of y, is apparent. Indeed, this trend is reflected in the higher
fluid, in spite of the fact that the pair interaction function is degree of order in higly systems.
bounded and continuous, can be probed by inspection of the In addition, we can explore comparisons between systems
radial distribution functiofRDF). The presence of clustered generated via our numerical search algorithm and the ran-
points at very lowy indicates that the effective hard core is dom sequential additioiRSA) process by contrasting of
likely to emerge only at higher values gf Figure 8 displays RDF’s and Voronoi polygon statistics. A RSA configuration
RDF's for configurations of point particles prior toy  is produced by randomly, irreversibly, and sequentially plac-
=0.142857 and after(y=0.345238 the emergence of an ing nonoverlapping objects into a regigt6]. The filling
effective hard core. process terminates at the saturation limit of packing fraction
¢=0.55 for identical hard disks in two dimensions. In per-
forming the above comparison, we observe that the Voronoi
tessellations of point particle systems p&0.382775 are
qualitatively similar to RSA configurations at the saturation

In two dimensions, a Voronoi tessellation is a partitioninglimit (see Fig. 8.4 of Ref{14]). However, on closer numeri-
of space into convex polygonal cell$5,14. It is alterna- cal inspection there are clear differences that are not imme-
tively known across various scientific disciplines as a Dirich-diately apparent as measured by the abovementioned statis-
let tessellation or as Wigner-Seitz cells. In archeologytical attributessee Table V). It should be noted that despite
Voronoi polygons are used to map the spread of the use ofarying x values for the different statistical measures, all
tools in ancient cultures and for studying the influence ofrelevant particle configurations fall within the disordered re-
rival centers of commerdd.7]. In ecology, the survival of an gime. Furthermore, unlike our generated configurations, it is
organism depends on the number of neighbors with which ihot known whether RSA configurations at the saturation den-
must compete for food and light, and the Voronoi diagram ofsity are hyperuniform.

0.1 0.2 ' 0.3 0.4 0.5

V. RESULTS—VORONOI TESSELLATIONS
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FIG. 9. Voronoi tessellations for configurations of point par- FIG. 10. Voronoi tessellation for configurations of point par-
ticles. Upper panel: Voronoi tessellation for an ideal gas distributiorticles. Upper panel: Voronoi tessellation of a system of 418 point
of 418 point particles. Lower panel: Voronoi tessellation for a sys-particles for which allC(k)’s within the 115th shelly=0.581340
tem of 418 point particles for which ali(k)’s within the 50th shell have been constrained to their absolute minimum. The configuration
(x=0.222488 have been constrained to their absolute minimum.falls within the wavy crystalline regime. Lower panel: Voronoi tes-
The configuration falls within the disordered regime. sellation for a system of 418 point particles for which @llk)’'s

within the 150th shel(y=0.779904 have been constrained to their

absolute minimum. The configuration falls within the crystalline
VI. CONCLUSIONS AND DISCUSSION regime.

The overall objective pursued in this paper involves con-t_. g, Hyperuniform systems are defined by vanishing of
struction and analysis of many-particle configurations in tWogensity fluctuations, i.e., o8(k), in the large-wavelength

dimensions, subject to sets of constraints on the collectivgmit [11]. This confirms a possibility advanced by Torquato
coordinate values for those configurations. In particular, coland Stillinger[11]. But note also that the class of configura-
lective coordinateC(k) for wave vectors subject to<Olk|  tions generated by our conjugate gradient algorithm goes be-
=<K have been forced to their absolute minimum valuesyond the established concept of “hyperuniformity” in that it

where K is a variable cutoff. The resulting many-particle suppresses all density fluctuations with wavelengths greater
configurationgsee Figs. 2, 4, and)@vhich are governed by than a finite cutoff specified by the parameler

a continuous and bounded potentialll) belong to the class Three qualitatively distinct regimes of particle patterns
of “hyperuniform” systems. In particular, this supports thehave emerged from our calculations. These have been la-
notion that structural glasses can in fact be hyperuniform abeled “disordered,” “wavy crystalline,” and “crystalline,” to
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TABLE V. Relevant Voronoi polygon statistics for systems of
418 point particlesy indicates the parameter defined in £4.1).

PHYSICAL REVIEW E70, 046122(2004

TABLE VI. Investigation of similarities between configurations
generated by our numerical search algorithm and the RSA process

Poisson and RSA rows indicate Voronoi polygon statistics for Pois{at the saturation densitpy three separate statistical measures. The
son and random sequential addition configurations. The second arsgcond column indicates the approximgtealue for configurations
third columns represent the standard deviation of the number ofimilar to the saturated RSA system for each parameter used in the
edges and area of the Voronoi polygons. The mean number of edgesmparison.

(E) and area(A) for each of these systems are 6 and 2.392344

X 1073, respectively. Other statistical measures X
1 1 Standard deviation in Voronoi polygon edge 0.370813
SN [ _/En2 SN (A _/an2
X 2 (BE=(E)° VI (A-(A) number
N-1 N-1
Standard deviation in Voronoi polygon area 0.196172
0.033493 4.013838 10°* Radial distribution function 0.495215
0.126794 5.834784 107 1.215543< 104
0.222488 5.351538 1072 4.358028<10°° hen th ber of ind dent raint lect
when the number of independent constraints on collective
2 6
0.382775 3.668359 102 1.915487< 107 coordinates reaches approximately 58% of the total number
0.495215 2.956558 10° 5.328853< 107 2N of particle degrees of freedom present. The subsequent
0.581340 1.918468 1072 5.859931x 1076 wavy crystalline to crystalline transition has been more dif-
0.779904 0 1.73172410°8 ficult to locate in the large system limit owing to its slow
Poi 6.541094 102 6.181066< 104 drift with N (see Table 1Y. We can only conclude that in the
oisson : ' infinite- N limit the wavy crystalline to crystalline transition
RSA at 3.806837< 1072 5.310192< 107 requires that the number of minimiz&ik)’s be some num-

saturation limit ber between 80 and 100% of the total number of degrees of

freedom. It should be noted that in one dimension, 50% is

be descriptive of the visual patterns presented by each. Staff}e corresponding infinite-system threshold for complete or-
ing with the unconstrained ideal gas configuratioks=0), ~ dering(crystallization, and 33.3--% is the threshold for ap-
they appear in that order as the cutoff radilincreases. In  Pearance of implicitly mlnlmlzed qollectlve coordinafé®]. _
the disordered regime, only those collective coordin@igs Although our numerical studies have assumed a unit
inside thek-space cutoff radiu& adhere to their minimum SAuare as the system container, it is more generally the case
value N/2. In the wavy crystalline regime, minimized that the size of_ this square c_ould be varied. T_he spacing of
C(k)’s occur not only inside the radius, but also in finite ~Wave vectors ink space is inversely proportional to the

patches beyond that radius, andkagcreases those patches square’s edge Iength._ Con.sequently, holcjing the particle
increase in size as well. Thesgterior minimizations are an "UmperN and c’utoﬁ‘ radiu f'Xefd.’ compression reduces the
implicit result of the nonlinearity of the transformation from Number of C(k)'s that are explicitly minimized. Therefore,
particle coordinates to collective coordinatés]) and(2.3). ~ COMpression applied to an initially crystalline system can
Finally, the crystalline regime presents infinite sets of mini-CauSe it to undergo successive phase transitions to the wavy
mized collective coordinates that percolate throughkut CryStalline state, and then to the disordered state.

space, interrupted only by Bragg peaks in unstrained crys- Thse mpst obvious extension of tr_]e pre_sent inve;tigation
tals, and local clusters of nonminimized collective coordi-'S 0 €xamine the behavior of three-dimensional particle sys-

nates surrounding Bragg peaks in strained crystals. tem_s ;ubject to an analogous set of collleptive coordinate
Evaluation of pair correlation functions and construction™Minimizations. One might reasonably anticipate that once
of Voronoi tessellations produce further characterization off92in @ sequence of configurational transitions involving dis-
particle configurations in each of these three regimes. Evefi'déred, wavy crystalline, and crystalline states would be
within the disordered regime, an increasekircauses reor- ©0PServed as the cutoff radius increased from zero. But
ganization of the particle configurations in such a way as t%/heth'er only three distinguishable regimes, or a larger num-
produce an effective repelling core acting between neighbor2®" with more elaborate distinctions, would appear remains
ing particle pairs that is evident in the pair correlation func-t© Pe determined.
tion. Voronoi polygons change their character with increas-
ing K from predominantly irregular and diverse in area and
edge number, to substantially less diverse and more regular
in the wavy crystalline regime, and finally to all identical
polygons in the crystalline regime. In this evolution, the lo- The authors gratefully acknowledge D. K. Stillinger for
cations of the particles within their enclosing Voronoi poly- carrying out a comprehensive set of preliminary calculations
gons statistically drift toward polygon centroids, and becomehat has provided useful guidelines for the work reported in
centers of inversion symmetry in the crystal regime. this paper. S.T. and F.H.S. gratefully acknowledge the sup-
Numerical data from the several system sizes investigategort of the Office of Basic Energy Sciences, DOE, under
(N=12, 56, 168, and 4)8ndicate that in the infinite system Grant No. DE-FG02-04ER46108. O.U.U. gratefully ac-
limit, the disordered to wavy crystalline transition occurs knowledges the support of the DOE CSGF program.
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