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In this work I investigate the dynamics of random walk processes on scale-free networks in a short to
moderate time scale. I perform extensive simulations for the calculation of the mean squared displacement, the
network coverage, and the survival probability on a network with a concentrationc of static traps. It is shown
that the random walkers remain close to their origin, but cover a large part of the network at the same time.
This behavior is markedly different than usual random walk processes in the literature. For the trapping
problem I numerically computeFsn,cd, the survival probability of mobile species at timen, as a function of
the concentration of trap nodes,c. Comparison of these results to the Rosenstock approximation indicate that
this is an adequate description for networks with 2,g,3 and yield an exponential decay. Forg.3 the
behavior is more complicated and one needs to employ a truncated cumulant expansion.
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I. INTRODUCTION

Scale-free networks have been widely studied during the
recent years, mainly because of their connection to a plethora
of real-world structures[1,2]. These networks are made by
nodes connected to each other via links, which may be di-
rected or undirected(in the present work we only deal with
undirected links). Studies of their structure show that most of
them possess the small-world property, i.e., the mean path
length is extremely small and every node can be reached by
following a path consisting from a very small number of
nodes, as compared to the case of lattice systems. A special
feature, though, that distinguishes this class of networks is
the fact that the probability distribution for a node to havek
links to other nodes obeys a power law:

Pskd , k−g, s1d

whereg is a parameter that measures how densely connected
a network can be. There is a wide range of real-life networks
[1,2] that have been shown to follow this power-law form in
their connectivity, including networks in nature, such as the
cell, metabolic networks and the food web, artificial net-
works such as the Internet, the WWW and power grids, or
even social networks, such as sexual partnership networks.

The scale-free networks, termed after the absence of a
characteristic typical node connectivity, exhibit many un-
usual properties as compared to simple lattice models, ran-
dom graphs, or even small-world(Watts-Strogatz[3]) net-
works. This scale-free character results in the existence of a
small number of nodes which are connected to a large num-
ber of other nodes. These superconnected nodes(termed
hubs) have been shown to have a central place in the inter-
pretation of many of the network properties. A lot of work
has been devoted in the literature to the study of static prop-
erties of the networks, while interest is growing for dynami-
cal properties on these networks. Recently[4], we presented
results for the absence of kinetic effects in reaction-diffusion
processes taking place on scale-free networks. In this work, I
study a number of random walk properties, including mean-

squared displacement, network coverage, and trapping pro-
cesses on scale-free networks of varying connectivities.
Trapping has been considered in the past as a model for
energy transfer, but also in a more general frame in the con-
text of networks, as a model for the probability of reaching
targets located on the network in a given concentration via
random moves[5]. It is of interest, thus, to study the mecha-
nism, the effects of connectivity, concentration, size, etc, on
such structures that exhibit these unique properties. The
present results refer to small to moderate time regimes,
where we are still far from the asymptotic limit. This limit
has been known to be very hard to reach in regular lattices,
too, and cannot be predicted by direct simulation techniques.

II. RANDOM WALKS AND THE TRAPPING
PROBLEM

One of the most basic quantities in the random walk
theory is the mean-squared displacementkR2sndl of a particle
diffusing in a given space, which is a measure of the distance
R covered by a typical random walker after performingn
steps. In most cases, this quantity is described by an expres-
sion of the form

kR2sndl , na. s2d

The value of the parametera classifies the type of diffusion
into normal linear diffusionsa=1d, subdiffusionsa,1d, or
superlinear diffusionsa.1d. Of course, when we consider
distinct time steps and nearest neighbor lattice hops the
maximum value ofa can be 2, i.e., a completely biased walk
where the random walker continuously moves away from the
origin. Recently [6], the mean squared displacement was
studied in small world networks, where it was shown that
diffusion is linear and results were found to collapse under a
proposed scaling.

The behavior of a random walk is also characterized by
the coverage of the space, as expressed by the average num-
ber of distinct sites visitedkSnl after n steps. In regular Eu-
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clidean lattices this quantity follows a power law with the
number of steps, except in the case of two dimensions, where
logarithmic corrections appear in the denominatorskSnl
,n/ ln nd. In one dimensionkSnl,În, and in dimensions
higher than twokSnl,n, and the number of sites visited
grows linearly with the number of stepsn, since the random
walker practically visits at each step a new site. In infinite
dimensions, of course, the numberkSnl of visited sites is
equal ton, since there is no revisitation of sites during the
walk, and the walker covers the largest possible area. In
small-world networks a scaling ansatz was proposed[6],
which was verified by simulations, andkSnl shows a transi-
tion from a slope 0.5(one-dimensional behavior) to a slope 1
(d.2 behavior).

An important process related to random walk theory is
trapping[7,8]. Trapping reactions have been widely studied
in the frame of physical chemistry, as part of the general
reaction-diffusion scheme. The general idea includes two dif-
ferent species A and B, which diffuse freely in a given space
and upon proximity they react according to A+B→B. Many
different variations describe a plethora of physical phenom-
ena. In this paper we deal with the special case of the trap-
ping problem where B particles are immobile. The simplest
mean-field analytical treatment predicts a simple exponential
decay in the density of A’s, while the earlier contributions to
the subject go back to Smoluchowski[9], who was the first
to attempt to relate the macroscopic behavior with the micro-
scopic picture by taking into account local density fluctua-
tions. However, over the years a lot of work[7,8] has been
devoted to the trapping problem which, even in its simplest
form, was shown to yield a rich diversity of results, with
varying behavior over different geometries, dimensionalities,
and time regimes.

The main property monitored during such a process is the
survival probabilityFsn,cd, which denotes the probability
that a particle A survives after performingn steps in a space
which includes traps B with a concentrationc. It is well
known thatF behaves differently in different dimensions, as
well as in different time regimes. The problem was studied in
regular lattices and in fractal spaces[7,8], and, recently, in
small-world networks by Blumen and Jasch[10–12].

The simplest treatment of the trapping problem on a lat-
tice assumes that when a random walker has performedn
steps and has visitedSn different lattice sites at least once,
the probability that it has not yet been trapped is equal to
s1−cdSn, wherec is the trap concentration. When this quan-
tity is averaged over all different possible walks and trap
configurations the resulting survival probability will be equal
to

Fsn,cd = ks1 − cdSnl = ke−lSnl, s3d

where l=−lns1−cd. A simplification of this equation was
first proposed by Rosenstock[13] and simply substitutes the
above expression with the typical value of the distribution,
i.e.,

Fsn,cd = e−lkSnl. s4d

This approximation has the advantage that the mean value of
the number of sites visitedkSnl is well known[14] for prac-

tically all dimensionalities(including, e.g., fractal ones). No-
tice that the Rosenstock approximation does not necessarily
imply a simple exponential decay, except in the case where
kSnl,n. The formula predicts simple exponential decay of
the survival probability with the number of stepsn only for
dù3, and exponential dependence onÎn in d=1. In two
dimensions the predicted behavior is rather complex, with
logarithmic corrections in the exponent. The applicability of
Eq. (4) is limited to short times and/or not too large trap
concentrations. When the survival probability becomes low
enough, this expression deviates significantly from the cor-
rect behavior.

A significant improvement was possible by the use of av-
eraged quantities, known as cumulants, where the averaged
quantity of Eq.(3) can be written as a function of the cumu-
lant generating function[15]:

KJsl,nd = o
j=1

J

s− 1d j l
j

j !
kjsnd, s5d

wherekjsnd are the cumulants, which are associated to the
moments ofSn, e.g.,k1snd=kSnl, k2snd=kSn

2l−kSnl2, etc. The
expression (3) for the survival probability then simply
becomes

FJsn,cd = exp„KJsl,nd…. s6d

Improved accuracy can be obtained upon increasing the trun-
cation orderJ. In theory, the knowledge of all the moments
sJ→`d for the Sn distribution is required for the use of(5).
These moments are known analytically only in one-
dimensional lattices, while ford.1 usually the first 2–4
moments are used.

A detailed analytical treatment of the problem was per-
formed by Donsker and Varadhan[16], who were able to
predict the asymptotic behavior of the survival probability as

lim
n→`

Fsn,cd = exps− Kdl2/s2+ddnd/sd+2dd. s7d

The positive constantKd depends only on the dimensionality
and the structure of the lattice. This asymptotic expression
does not provide any information on when the asymptotic
limit is reached. Since it has been observed that the Rosen-
stock approximation describes quite well the high-F regime,
it is obvious that a crossover to the Donsker-Varadhan be-
havior will take place. The location of this crossover has
been studied in detail[17–19], and it was shown that only
with indirect methods it is possible to reach the asymptotic
limit.

This asymptotic behavior has also been explained via heu-
ristic arguments. The slow relaxation ofF at long times is
due to an interplay of two different factors. First, mean-field
treatments assume a uniform trap distribution over the entire
space. This is not strictly true, though, and for large enough
sizes it is possible to find very extended trap-free regions. A
random walker in such a region will survive for extremely
long times compared to walkers in normal regions and will
thus determine the asymptotic behavior. The second factor is
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due to unusually compact random walks, which revisit many
times the same sites, and thus result to a very small value of
Sn, even at longer times.

Recently, a number of papers were published concerning
trapping on a version of the small-world networks[10–12].
These networks, first proposed as a model by Watts and Stro-
gatz[3], are one-dimensional rings where additional links are
inserted between two random sites with a given probability.
It was shown that the results represent a fine interplay be-
tween pure order and pure disorder statistics. Initially, the
walkers feel only the presence of the one-dimensional lattice,
but at longer times the behavior of the survival probability
follows that of an open tree structure. The decays of the
survival probability were clearly not exponential, and the
cumulants description did not yield accurate coincidence
with the numerical results in all of the studied cases.

In this work, I extend the above-mentioned random walk
problems(mean-squared displacement, coverage, and trap-
ping) in the case where the underlying structure is a scale-
free network, obeying a power law in the nodes connectivity
distribution. The random walkers are located on the nodes
and can only move along the links of this network. In the
case of the trapping model certain nodes are designated as
traps, having a concentrationc. I present computer simula-
tions results for different network connectivities and com-
pare them to the known lattice behavior.

III. THE MODEL

The construction of a scale-free network follows the
Molloy-Reed scheme[20] : First, we fix the number of nodes
N in the system and theg parameter, characteristic of the
particular network. By using the transformation method we
selectN random numbers from thek−g distribution, so that
each nodei is assigned a number of linkski from the above
distribution. The value ofk lies in the range fromkmin=1
(lower cutoff) to kmax=N−1 (no upper cutoff value is used
for k).

Initially, no links are established in the system. Each node
i extendski hands towards all other nodes. We randomly
select two such hands(that do not belong in the same node)
and connect them creating thus a link. No double links are
allowed, so that if two nodes are already connected this link
is rejected. We continue this process until all nodes have
reached their preassigned connectivity. However, it is pos-
sible that at the last stages of the construction we will reach
a dead end where no further links may be established accord-
ing to the above rules. In this case we simply ignore the
hands that cannot be connected, since their number is always
very small and the structure of the network is not influenced
at all.

The largest cluster in the network is identified via the use
of a spreading algorithm. We start with a random node and
mark it with a label, say X. We then mark all the nodes
connected to this node by X, and proceed iteratively by la-
beling their neighbors, etc., until the whole cluster has been
labeled. We then choose another random node that has not
been labeled by X, which means that it belongs to a different
cluster. We mark it by Y and again spread this labeling

throughout this cluster. When the entire network has been
labeled we can easily identify the largest cluster from its
size.

All random walks in this paper take place on the largest
cluster of the network via the following algorithm. We place
a random walker on a randomly chosen sitei of the largest
cluster. This site has a connectivityki. At each Monte Carlo
step the walker makes a jump towards a node connected toi
(i.e., nearest neighbor) with probability 1/ki. This process
gives a Markovian walk, since each step is independent of all
previous steps. Distances on the network are measured ac-
cording to the shortest-length path between two nodes, and
the displacementR of a walker is calculated relative to the
initial point.

For the trapping problem, we randomly choose a percent-
agec of the network nodes and designate them as traps. A
random walker is placed on a random nontrap node and per-
forms the procedure described above until it meets a trap. In
this case, it is annihilated and the timen to trapping is re-
corded. We repeat the same process for many independent
random walkers and different networks, and we construct a
histogramHsn,cd of the number of walks that last exactlyn
steps. Then, the survival probability is simply given by

Fsn,cd = 1 −
1

M
o
m=1

n

Hsm,cd, s8d

whereM is the total number of independent random walks
sampled.

Typically, 100 different networks withN=106 nodes were
created, and 103–104 different random origins were chosen
on each network. Thus, results were averaged over 105–106

different realizations of the walk.

IV. RESULTS

A. Mean squared displacement

I first study the mean squared displacementkR2l of a ran-
dom walker on a scale-free network. Since the networks that
we study are not embedded in a regular Euclidean space, this
quantity does not measure how far in Euclidean space the
walker travels, but rather the minimum number of hops
needed in order to return to its origin. The first important
feature of Fig. 1, wherekR2l is presented as a function of
time for networks of varying connectivity distributions, is the
fact that kR2l equilibrates after a few steps to a constant
displacement value. This is a simple manifestation of the
very small diameter of these networks, which has been
shown to be of the order lnsln Nd [21]. In practice, this
means that one node can be reached from all other nodes in
the network within only a few steps and the maximum pos-
sible distance in the network is very small compared to the
network size. Note also that the plateau value increases as we
increaseg, since a network which is less connected exhibits
a larger diameter. The existence of the plateau is, of course, a
finite-size effect. However, the size dependence is not strong,
as can be seen in the figure, where we present results for
networks with g=3.0 and sizeN=104, 105, and 106. Al-
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though we increase the size of the networks by two orders of
magnitude, the value ofkR2l increases from roughly 70 to
110, i.e., the distanceR increases almost linearly from 8 to
10. This logarithmic dependence shows that for all practical
applications the plateau will be present. For example, it has
been observed[22] that the diameter of WWW(of size N
=83108 andg=2.45) is only 18, so that even on such large
networks maximum distances remain small.

In the figure inset I have rescaled thekR2sndl data so that
all curves are normalized to an asymptotic value of 1. It is
shown that upon varying the value ofg, diffusion on scale-
free networks may range from superlinear to sublinear diffu-
sion. For networks of lowg, diffusion is greatly enhanced.
Thus, for g=2.0 the walkers move away from the origin
rapidly and the slope ofkR2l reaches a value of about 1.8.
After only a few steps, though, the value ofkR2l saturates,
due to the phenomenon described above. As we increase the
value of g the slope of the curves decreases. Diffusion at
early steps remains superlinear, until we reach a value ofg
around 3.0 where the slope becomes roughly equal to 1. This
linear diffusion turns slowly into sublinear as we further in-
creaseg and forg=3.5 the slope is equal to 0.9.

B. Network coverage

The coverage of the network by random walks is found to
be a very efficient process. Numerical results ofkSnl on
scale-free networks are presented in Fig. 2. The number of
sites visited increases initially with a slow rate, but after a
crossover value the increase is almost linear. This asymptotic
linearity is observed in allg values, while the crossover point
shifts towards longer times with increasingg. The early time
slope means that the walkers initially spend some time ex-
ploring the neighborhood they were created in and visit the
same sites. After the first few steps(the exact number de-

pends on the connectivity of the network) they escape their
initial territory and diffuse around the entire network. Thus,
it is possible to continuously visit new sites, which results in
the linear increase ofkSnl. In Ref. [6], kSnl on small world
networks was found to scale at early times withÎn and as-
ymptotically with n. In the case of scale-free networks, the
early-time behavior is not consistent with aÎn law, which
would be an indication of one-dimensional behavior. For
eachg value the local environment is different, and this is
exhibited in the different evolution ofkSnl for low n values.
The crossover, also, is located at much earlier times(of the
order of tens of steps) as compared to thousands of steps
which is the case reported in Ref.[6] for small world
networks.

The size of the network usedsN=106d was two orders of
magnitude larger than the number of steps performed, in or-
der to avoid finite size effects. Despite this precaution, the
curve ofg=2 seems to deviate from linearity at longer times.
This phenomenon means that revisitation already starts to
exhibit itself for the finite network we study.

The linear growth ofkSnl is similar to the behavior exhib-
ited in dendrimer structures, modeled by Cayley trees. These
are open structures, with every node having a fixed numberk
of connected nodes which are always directed away from the
central core. It was also shown in that case[23] that kSnl had
a linear increase after a short early-time sublinear regime,
due to the same reasons as here.

Consider, now, a regular lattice that can be embedded in a
finite d-dimensional space. In this case, it is well known that
unconstrained diffusion causes the random walker to spread
in the available space, increasing bothkR2l and kSnl with
time. Thus, the walkers tend to increase their distance from
the origin and cover new territory. If for some reason we
restrict diffusion of the walkers within a finite distanceRc
from the origin, so thatkR2l saturates, then the area covered
will soon saturate, too, to a value of orderRc

d. Diffusion on
scale-free networks, though, is different. Although the walker
is always close to the origin and restricted within a distance
equal to the network diameter, new territory is continuously
sampled. This peculiar behavior can be attributed to the ex-

FIG. 1. Mean squared displacement as a function of time for
networks ofg=2.0, 2.5, 3.0, and 3.5(shown in the figure). The
network size in all cases isN=106 nodes, and forg=3.0 we also
present results for networks of sizeN=104 andN=105 (bottom to
top). The dotted lines represent slopes of 1 and 2. Inset, normalized
kR2sndl curves, so that asymptotically all curves converge to 1, for
different g values(shown on the plot). Dotted lines represent best-
fit lines with slopes(left to right) 1.8, 1.5, 1.1, and 0.9.

FIG. 2. Number of distinct sites visitedkSnl after n steps on
scale-free networks with(solid lines, top to bottom) g52.0, 2.5,
3.0, and 3.5. The dashed line is the infinite-dimensional case of
kSnl=n+1. The network size wasN=106.
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istence of the hubs. If we consider an extreme case of a hub,
that of a star node where all the nodes are connected only to
the hub, then the displacement will be at most two steps
away, but due to the large number of nodes in the system the
walker will be redirected to a nonvisited site with a revisita-
tion probability n/N, which for large enough systems and
early to moderate times is close to 0. The particular case of
Lévy flights [24] [which usually results in enhanced diffu-
sion with a.1 in Eq. (2)] can be considered similar to the
process we study in this paper. In a Lévy flight the length of
a jump follows a power law dependence. In practice, a
walker samples an area for a certain amount of time before
performing a long-range jump. This jump allows then the
walker to sample a new space. Although the areas of space
visited can be regarded as the hubs of the present problem,
the main difference is the displacement of the walk. In the
case of Lévy flights the hubs of the system are distant in
space among each other, while in our case the hubs are very
close to each other, and can even be directly connected. As
we have already seen, thus, the mean squared displacement
on scale-free networks(even of large size) is restricted to
small distances, whereaskR2l increases monotonically in the
case of Lévy flights.

C. Trapping

For the trapping problem, I first examine the dependence
of the survival probabilityF on the system sizeN. As it can
be seen in Fig. 3 forg=2.5, larger networks yield a signifi-
cantly lower survival probability. This is due to the higher
probability of finding a node with very high connectivity,
which is linked directly with the largest part of the network.
Due to the power-law dependence the appearance of these
nodes increases as we increase the network size. However,
we can see that theF curves for the larger networkssN
ù105d practically coincide. Moreover, thisN dependence is
much weaker for networks with higherg values. As we can
see in the plot, the large-size network behavior in this case is
very close to a simple exponential decay, while smaller net-
works deviate from this behavior.

In Fig. 4(a) I present the survival probability on the larg-
est cluster for different trap concentrations as a function of
time, for networks withg=2.5. For a relatively high trap
concentration, e.g.,c=0.05, we can see thatF falls very
rapidly and during the first 100 steps only a small percentage
of the walkers has survived. The decay retains for the largest
part an exponential character. In order to test the validity of
the Rosenstock approximation for scale-free networks, I used
the numerical data forkSnl presented in Fig. 2 and computed
the survival probabilityF using Eq.(4). The results in Fig. 4
show that there is almost complete coincidence between this
approximation and the simulation data. As we have men-
tioned above, the Rosenstock approximation is valid when
mean-field features are present, and fluctuations in the area
covered are not important. Thus, a high trap concentration
implies that there will be no large trap-free regions, since a
walker can easily escape any part of the system. However, in
the case ofg=2.5 the same argument is true as we gradually
move towards lower concentrations. The survival probability
retains the simple exponential character as we decreasec,
even for the lowest trap concentrations used. The Rosenstock
approximation, Eq.(4), predicts this simple exponential de-
cay only in the time range wherekSnl,n. As we have seen,
though, in Fig. 2 there is a crossover in the behavior ofkSnl
with time, which should modify this behavior. However, this

FIG. 3. Survival probability as a function of time, for a network
of g=2.5 and trap concentrationc=0.01. From right to left, the
number of nodes in the network isN=103, 104, 105, and 106.

FIG. 4. Survival probability of random walkers as a function of
time, for a network of sizeN=106 and(a) g=2.5, (b) g=3.5. Sym-
bols represent direct trapping simulations. Solid lines represent the
Rosenstock approximation based on thekSnl data of Fig. 2. Dashed
lines are the results of the cumulant approximation, with the trun-
cation orderJ indicated on the plot. From left to right, the trap
concentrations arec=0.05, 0.01, 0.005, and 0.001.
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crossover takes place at early times and is not apparent in the
linear time scale used for the survival probability. The
Rosenstock approximation, thus, based on the results of Fig.
2, predicts a simple exponential decay forF on scale-free
networks.

Figure 4(a) validates, thus, the assumption that the Rosen-
stock approximation is true in the case of scale-free networks
with g=2.5. The decay of the survival probability, though, is
greatly influenced byg. In Fig. 4(b), the results forg=3.5
and large trap concentrationsc clearly demonstrate a devia-
tion from a simple exponential behavior and the failure of
the Rosenstock approximation. Only in the case of lowc,
such asc=10−3, this approximation is satisfactory and de-
scribes reasonably well the exponential decay of the simula-
tion data. Thus, forg=3.5 I also employed the cumulant
approximation of Eq.(6). The higher-order moments of the
Sn distribution were calculated numerically, via the same
simulations that yielded the first momentkSnl of Fig. 2. It is
evident that the description of the data improves signifi-
cantly. The second-order truncation(i.e., including the stan-
dard deviation of theSn distribution) follows quite closely
the simulation data forc=0.05 andc=0.005 over more than
three decades on the vertical axis. In the case ofc=0.01 we
need to include higher moments in order to achieve the same
level of accuracy, sinceF2 captures only part of the behav-
ior. The fourth-order truncationF4 seems to be quite succes-
ful over almost four decades, and describes a significant non-
exponential part of the curve quite well.

In Fig. 5 I present the survival probabilitysc=0.01d in
different scale-free networks and in regular lattices. We can
see that asg increases the survival probability becomes
higher. Since the number of connections between the nodes
decreases withg and we have seen that the average value of
the number of sites visited also decreases, the walkers will
spend more time in smaller network regions. This has a dra-
matic influence onF and as we can see in the figure the
difference in the survival probability between networks of
g=2 andg=3.5 can be two orders of magnitude, even only

after a few hundred steps. The shape of the curves is also
different, since the exponential character of the lowestg val-
ues is no longer retained forg.3. This change in the decay,
along with the much slower relaxation is a manifestation of
the network structure, which forg.3 corresponds to a
loosely connected network where the number of nodes with
extremely high connectivity has diminished.

Inspection of Fig. 5 and similar simulations for different
concentrations on networks withg=3 suggest that in the
range 2,g,3 the Rosenstock approximation provides a re-
liable description in the time regime studied in this work. On
the contrary, wheng.3 this approximation is not valid and
one needs to resort to the use of higher moments in the
cumulant expression.

Concerning the comparison with regular lattices, it is
obvious that trapping in the most connected networkssg
=2–3d behaves in a similar manner as in three-dimensional
lattices(simple exponential decay), and forgø2.5 decays in
a similar rate, too. The case of a two-dimensional lattice
represents the borderline dimension for recurrent random
walks in lattices, and the relaxation ofF is not exponential,
while for d=1 the survival probability is considerably higher,
since the walkers are confined between two trapping sites
and perform a random walk in this region. Similarly to the
dø2 cases, the survival probability relaxation in networks
with g.3 is not exponential and, in general, cannot be de-
scribed by the Rosenstock approximation.

Scale-free networks have been considered heuristically to
behave as infinite-dimensional lattices. This assumption
sd→`d, however, implies that both the Rosenstock approxi-
mation [Eq. (4)] and the Donsker-Varadhan result[Eq. (7)]
would yield a single exponential decayFsnd,exps−nd with
the number of stepsn. As we have seen, though, this result
can be verified in the presented time scale by the simulations
for networks in the range 2,g,3, but not forg.3. The
reason is that ind→` the probability for a walker to revisit
a site is vanishingly small, since at every step the walker has
an infinite number of possible sites to jump to. Thus, the
revisitation probability tends to zero and the number of sites
visited is equal to the number of steps performedskSnl,nd.
Equation (4) then predicts the same behavior as(7), i.e.,
Fsnd,exps−nd. For scale-free networks the situation is
somewhat different, though. Although there are a few highly
connected nodes in the system(hubs), from where a walker
can be directed to previously unsampled areas of the net-
work, the largest percentage of the nodes has a very small
number of links, e.g.,k=1 or k=2. A walker that reaches
such a node will return at the next step to its former position.
The character of a scale-free network as a substrate for ran-
dom walks, thus, cannot be described as purely infinite di-
mensional. The dimensionality can be considered as a local
property which is modified according to the area of the net-
work where the walker lies in. Depending on the value ofg,
the area sampled depends on how connected a system can be
and how easy it is for a random walker to visit new nodes.
For sparse networks, for example, the revisitation probability
increases(together with the network diameter) and leads to
larger deviations of the above law.

FIG. 5. Survival probability as a function of time, for networks
of sizeN=106 and trap concentrationc=0.01. From left to right, the
network connectivity is(circles) g=2.0, 2.5, 3.0, and 3.5. The cor-
responding Rosenstock approximation is represented with thin
lines. We also present the survival probability for regular networks
(thick lines) in (top to bottom) d=1, 2, and 3 dimensions.
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V. SUMMARY

In this work I presented numerical results onkR2l, kSnl,
and trapping in scale-free networks, which are well-studied
processes in many other systems.

Mean squared displacement was found to range from su-
perlinear diffusion to sublinear diffusion as we variedg,
while the network coverage increases almost linearly with
time for all g values examined. The Rosenstock approxima-
tion is adequate for predicting the survival probability in the
range 2,g,3, but for higherg it cannot account for the
non-exponential character of the survival probability decay
with time. In this case it was found that the cumulant expan-
sion can fit quite accurately the observed behavior.

The mean-field character(exhibited by the validity of the

Rosenstock approximation) for g,3 can be also expected in
the case of these networks, since the heuristic arguments
supporting the Donsker-Varadhan expression[Eq. (7)] do not
apply here. Although a walk can still be compact, large trap-
free regions do not exist on such a network. The main reason
is the small average path length between any two nodes of
the structure. For any trap distribution, there are not any
network areas where a walker can spend a lot of time without
meeting a trap, since the connectivity of the network allows
it to easily escape to a different neighborhood, where traps
may exist in a larger local concentration. Wheng.3,
though, the importance of the hubs in a network diminishes,
and the behavior resembles more that of regular low-
dimension lattices, with prominent nonexponential decays
even at early times.
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