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Random walk and trapping processes on scale-free networks
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In this work | investigate the dynamics of random walk processes on scale-free networks in a short to
moderate time scale. | perform extensive simulations for the calculation of the mean squared displacement, the
network coverage, and the survival probability on a network with a concentratidistatic traps. It is shown
that the random walkers remain close to their origin, but cover a large part of the network at the same time.
This behavior is markedly different than usual random walk processes in the literature. For the trapping
problem | numerically computé(n,c), the survival probability of mobile species at timgas a function of
the concentration of trap nodes, Comparison of these results to the Rosenstock approximation indicate that
this is an adequate description for networks witht 2<3 and yield an exponential decay. Fpr>3 the
behavior is more complicated and one needs to employ a truncated cumulant expansion.
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I. INTRODUCTION squared displacement, network coverage, and trapping pro-

cesses on scale-free networks of varying connectivities.

Scale-free netyvorks have been yvidely studied during theI'rapping has been considered in the past as a model for
recent years, mainly because of their connection to a plethor@nergy transfer, but also in a more general frame in the con-

of (;eal-world sttrléc:ureﬂ,hZ]. t‘lr']hese_ nlgt\ll(vorkshfarﬁ madeb b3(/j.text of networks, as a model for the probability of reaching
hodes connected 1o each other via links, which may be 'fargets located on the network in a given concentration via

recdtgd ct)r dulr]dll(r ecSttteddq the fptLeS.entt W‘irk wehonlyt/hd(taal W':h ¢ random moveg$5]. It is of interest, thus, to study the mecha-
undirected linkg Studies of their structure show that most o nism, the effects of connectivity, concentration, size, etc, on

them POSSESS the small-world property, i.e., the mean patg'uch structures that exhibit these unique properties. The
length is extremely small and every node can be reached resent results refer to small to moderate time regimes,

foII((j)wmg a path codn?stélr?g from &;Ivir.y smaltl numger of .\/ﬁlgere we are still far from the asymptotic limit. This limit
nodes, as compared to the case of atlice Systems. A SPECR ¢ haen known to be very hard to reach in regular lattices,

feature, though, that distinguishes this class of networks i : . . : .
the fact that the probability distribution for a node to have '1300, and cannot be predicted by direct simulation techniques.

links to other nodes obeys a power law:

Pk) ~ k7, (1) II. RANDOM WALKS AND THE TRAPPING
PROBLEM
wherevy is a parameter that measures how densely connected . o
a network can be. There is a wide range of real-life networks One_ of the most basic quantities in the ra“dom walk
[1,2] that have been shown to follow this power-law form in tN€OrY is the mean-squared dl-splgcen(éﬁ(n)) of a particle
their connectivity, including networks in nature, such as thediffusing in a given space, which is a measure of the distance
cell, metabolic networks and the food web, artificial net-R covered by a typical random walker after performing
works such as the Internet, the WWW and power grids, oBteps. In most cases, this quantity is described by an expres-
even social networks, such as sexual partnership networksSion of the form
The scale-free networks, termed after the absence of a 2 __a
- . < - (RE(n)) ~ n?. (2

characteristic typical node connectivity, exhibit many un-
usual properties as compared to simple lattice models, ranFhe value of the parameterclassifies the type of diffusion
dom graphs, or even small-woridVatts-Strogatz3]) net-  into normal linear diffusion(a=1), subdiffusion(a<1), or
works. This scale-free character results in the existence of superlinear diffusiona>1). Of course, when we consider
small number of nodes which are connected to a large nundistinct time steps and nearest neighbor lattice hops the
ber of other nodes. These superconnected ngtlysned maximum value ok can be 2, i.e., a completely biased walk
hubg have been shown to have a central place in the interwhere the random walker continuously moves away from the
pretation of many of the network properties. A lot of work origin. Recently[6], the mean squared displacement was
has been devoted in the literature to the study of static propstudied in small world networks, where it was shown that
erties of the networks, while interest is growing for dynami- diffusion is linear and results were found to collapse under a
cal properties on these networks. Receidly we presented proposed scaling.
results for the absence of kinetic effects in reaction-diffusion The behavior of a random walk is also characterized by
processes taking place on scale-free networks. In this work,the coverage of the space, as expressed by the average num-
study a number of random walk properties, including meanber of distinct sites visitedS,) after n steps. In regular Eu-
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clidean lattices this quantity follows a power law with the tically all dimensionalitiegincluding, e.g., fractal ongsNo-

number of steps, except in the case of two dimensions, whettice that the Rosenstock approximation does not necessarily

logarithmic corrections appear in_the denominat¢s,)  imply a simple exponential decay, except in the case where

~n/In n). In one dimensionS,)~ Vn, and in dimensions (S,)~n. The formula predicts simple exponential decay of

higher than two(S,)~n, and the number of sites visited the survival probability with the number of stepsonly for

grows linearly with the number of steps since the random d=3, and exponential dependence on in d=1. In two

walker practically visits at each step a new site. In infinitedimensions the predicted behavior is rather complex, with

dimensions, of course, the numbés,) of visited sites is logarithmic corrections in the exponent. The applicability of

equal ton, since there is no revisitation of sites during the Eq. (4) is limited to short times and/or not too large trap

walk, and the walker covers the largest possible area. l@oncentrations. When the survival probability becomes low

small-world networks a scaling ansatz was propog&ld  enough, this expression deviates significantly from the cor-

which was verified by simulations, af&,) shows a transi- rect behavior.

tion from a slope 0.%one-dimensional behavipto a slope 1 A significant improvement was possible by the use of av-

(d>2 behavioy. eraged quantities, known as cumulants, where the averaged
An important process related to random walk theory isquantity of Eq.(3) can be written as a function of the cumu-

trapping[7,8]. Trapping reactions have been widely studiedlant generating functiofil 5]:

in the frame of physical chemistry, as part of the general

reaction-diffusion scheme. The general idea includes two dif- J Y

ferent species A and B, which diffuse freely in a given space Ky, =2 (- D'~ kj(n), (5)

and upon proximity they react according to A+BB. Many =1 I

different variations describe a plethora of physical phenomwhere k() are the cumulants, which are associated to the

ena. In this paper we deal with the special case of the trap- _ ~ 5
ping problem where B particles are immobile. The simplestmoments 05, €.9., k() =(Sy, kz(n)_@%)_(Sf‘) , efc. The

mean-field analytical treatment predicts a simple exponentigfXPression(3) for the survival probability then simply
decay in the density of A's, while the earlier contributions to PECOmMes
the subject go back to SmoluchowgRi, who was the first

to attempt to relate the macroscopic behavior with the micro-

scopic picture by taking into account local density fluctua-
tions. However, over the years a lot of wdik,8] has been
devoted to the trapping problem which, even in its simples J— <) for the S, distribution is required for the use 68).

form, was shown to yield a rich diversity of results, with h K iicall Vi
varying behavior over different geometries, dimensionalities,| '€S¢ _moments are known analytically only In one-

and time regimes. dimensional lattices, while fod>1 usually the first 2—4
The main property monitored during such a process is thgnoments are used._
survival probability®(n,c), which denotes the probability _* détailed analytical treatment of the problem was per-
that a particle A survives after performimgsteps in a space form_ed by Donsker_and Var_adhe{llG], Who. were able_ o
which includes traps B with a concentratian It is well predict the asymptotic behavior of the survival probability as
known that® behaves differently in different dimensions, as
well as in different time regimes. The problem was studied in
regular lattices and in fractal spacgs8], and, recently, in
small-world networks by Blumen and Jasd0-12. The positive constari, depends only on the dimensionality
The simplest treatment of the trapping problem on a latand the structure of the lattice. This asymptotic expression
tice assumes that when a random walker has performed does not provide any information on when the asymptotic
steps and has visitef, different lattice sites at least once, limit is reached. Since it has been observed that the Rosen-
the probability that it has not yet been trapped is equal tGtock approximation describes quite well the hijhregime,
(1-c)*, wherec is the trap concentration. When this quan-it is obvious that a crossover to the Donsker-Varadhan be-
tity is averaged over all different possible walks and traphavior will take place. The location of this crossover has
configurations the resulting survival probability will be equal been studied in deta[l17-19, and it was shown that only
to with indirect methods it is possible to reach the asymptotic
=1 =0)S) = (&S limit.
P(n,0) ={(L -7 =), ® This asymptotic behavior has also been explained via heu-
where A=-In(1-c). A simplification of this equation was ristic arguments. The slow relaxation & at long times is
first proposed by Rosensto¢k3] and simply substitutes the due to an interplay of two different factors. First, mean-field
above expression with the typical value of the distribution,treatments assume a uniform trap distribution over the entire
ie., space. This is not strictly true, though, and for large enough
B(n,c) = &N 4) sizes it is possible to find very extended trap-free regions. A
T ' random walker in such a region will survive for extremely
This approximation has the advantage that the mean value &dng times compared to walkers in normal regions and will
the number of sites visite(B,) is well known[14] for prac-  thus determine the asymptotic behavior. The second factor is

®4(n,c) = exp(K;(\,n)). (6)

Improved accuracy can be obtained upon increasing the trun-
ation orderd. In theory, the knowledge of all the moments

lim @ (n,c) = exp(— K\2/(Z+dpd/(@+2)) (7)

n—oo
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due to unusually compact random walks, which revisit manythroughout this cluster. When the entire network has been
times the same sites, and thus result to a very small value ddbeled we can easily identify the largest cluster from its
S, even at longer times. size.

Recently, a number of papers were published concerning All random walks in this paper take place on the largest
trapping on a version of the small-world netwoii-12. cluster of the network via the following algorithm. We place
These networks, first proposed as a model by Watts and Stra- random walker on a randomly chosen sitef the largest
gatz[3], are one-dimensional rings where additional links arecluster. This site has a connectivity At each Monte Carlo
inserted between two random sites with a given probabilitystep the walker makes a jump towards a node connected to
It was shown that the results represent a fine interplay bed.e., nearest neighbpmwith probability 1k;. This process
tween pure order and pure disorder statistics. Initially, thegives a Markovian walk, since each step is independent of all
walkers feel only the presence of the one-dimensional latticeprevious steps. Distances on the network are measured ac-
but at longer times the behavior of the survival probability cording to the shortest-length path between two nodes, and
follows that of an open tree structure. The decays of théhe displacemenR of a walker is calculated relative to the
survival probability were clearly not exponential, and theinitial point.
cumulants description did not yield accurate coincidence For the trapping problem, we randomly choose a percent-
with the numerical results in all of the studied cases. agec of the network nodes and designate them as traps. A

In this work, | extend the above-mentioned random walkrandom walker is placed on a random nontrap node and per-
problems(mean-squared displacement, coverage, and tragerms the procedure described above until it meets a trap. In
ping) in the case where the underlying structure is a scalethis case, it is annihilated and the timeto trapping is re-
free network, obeying a power law in the nodes connectivitycorded. We repeat the same process for many independent
distribution. The random walkers are located on the nodesandom walkers and different networks, and we construct a
and can only move along the links of this network. In thehistogramH(n,c) of the number of walks that last exactly
case of the trapping model certain nodes are designated gteps. Then, the survival probability is simply given by
traps, having a concentratian | present computer simula-
tions results for different network connectivities and com-

n
1
pare them to the known lattice behavior. P(nc)=1 _Mz H(m.c), (8)

m=1

whereM is the total number of independent random walks
IIl. THE MODEL sampled.

The construction of a scale-free network follows the TyPically, 100 different networks withl=10° nodes were

Molloy-Reed schemg20] : First, we fix the number of nodes created, and £8-1¢* different random origins were chosen
N in the system and the parameter, characteristic of the On €ach network. Thus, results were averaged over 109

particular network. By using the transformation method wedifferent realizations of the walk.

selectN random numbers from thk™” distribution, so that
each node is assigned a number of links from the above

distribution. The value ok lies in the range fronk;,=1 IV. RESULTS
SOV\Sr cutoff) to kax=N—1 (no upper cutoff value is used A. Mean squared displacement
or k).

Initially, no links are established in the system. Each node ! first study the mean squared dlspla_lcerrK@?t) of a ran-
i extendsk; hands towards all other nodes. We randomlydom walker on a scale-free petwork. Since the networks thap
select two such handghat do not belong in the same node We stl_de are not embedded in a regul_ar Eucl_ldean space, this
and connect them creating thus a link. No double links aréluantity does not measure how far in Euclidean space the
allowed, so that if two nodes are already connected this linkvalker travels, but rather the minimum number of hops
is rejected. We continue this process until all nodes havéeeded in order to return to its origin. The first important
reached their preassigned connectivity. However, it is posfeature of Fig. 1, wheréR?) is presented as a function of
sible that at the last stages of the construction we will reactime for networks of varying connectivity distributions, is the
a dead end where no further links may be established accoract that (R?) equilibrates after a few steps to a constant
ing to the above rules. In this case we simply ignore thedisplacement value. This is a simple manifestation of the
hands that cannot be connected, since their number is alwaysry small diameter of these networks, which has been
very small and the structure of the network is not influencedshown to be of the order (m N) [21]. In practice, this
at all. means that one node can be reached from all other nodes in
The largest cluster in the network is identified via the usethe network within only a few steps and the maximum pos-
of a spreading algorithm. We start with a random node andible distance in the network is very small compared to the
mark it with a label, say X. We then mark all the nodesnetwork size. Note also that the plateau value increases as we
connected to this node by X, and proceed iteratively by laincreasey, since a network which is less connected exhibits
beling their neighbors, etc., until the whole cluster has beem larger diameter. The existence of the plateau is, of course, a
labeled. We then choose another random node that has nfiite-size effect. However, the size dependence is not strong,
been labeled by X, which means that it belongs to a differenas can be seen in the figure, where we present results for
cluster. We mark it by Y and again spread this labelingnetworks with y=3.0 and sizeN=10, 1%, and 16. Al-
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) ) . FIG. 2. Number of distinct sites visite,) after n steps on
FIG. 1. Mean squared displacement as a function of time forscale-free networks witlsolid lines, top to bottomy=2.0, 2.5,

networks of y=2.0, 2.5, 3.0, and 3.gshown in the figure The 3 ang 3.5. The dashed line is the infinite-dimensional case of
network size in all cases i=10° nodes, and fory=3.0 we also (S)=n+1. The network size wali=10P.

present results for networks of sité=10* andN=10 (bottom to
top). The dotted lines represent slopes of 1 and 2. Inset, normalizegends on the connectivity of the netwotkey escape their
(R?(n)) curves, so that asymptotically all curves converge to 1, forinitial territory and diffuse around the entire network. Thus,
different y values(shown on the plot Dotted lines represent best- it is possible to continuously visit new sites, which results in
fit lines with slopeg(left to right) 1.8, 1.5, 1.1, and 0.9. the linear increase ofS,). In Ref. [6], (S,) on small world
networks was found to scale at early times with and as-
though we increase the size of the networks by two orders ofmptotically with n. In the case of scale-free networks, the
magnitude, the value ofR?) increases from roughly 70 to early-time behavior is not consistent withva law, which
110, i.e., the distancR increases almost linearly from 8 to would be an indication of one-dimensional behavior. For
10. This logarithmic dependence shows that for all practicatachy value the local environment is different, and this is
applications the plateau will be present. For example, it hasxhibited in the different evolution gfS,) for low n values.
been observe@22] that the diameter of WWWof size N  The crossover, also, is located at much earlier tioéshe
=8x 10® and y=2.45) is only 18, so that even on such large order of tens of stepsas compared to thousands of steps
networks maximum distances remain small. which is the case reported in Reff6] for small world

In the figure inset | have rescaled tR?(n)) data so that networks.
all curves are normalized to an asymptotic value of 1. It is The size of the network use@=10°) was two orders of
shown that upon varying the value ¢f diffusion on scale- magnitude larger than the number of steps performed, in or-
free networks may range from superlinear to sublinear diffu-der to avoid finite size effects. Despite this precaution, the
sion. For networks of lowy, diffusion is greatly enhanced. curve ofy=2 seems to deviate from linearity at longer times.
Thus, for y=2.0 the walkers move away from the origin This phenomenon means that revisitation already starts to
rapidly and the slope ofR?) reaches a value of about 1.8. exhibit itself for the finite network we study.

After only a few steps, though, the value @%?) saturates, The linear growth of S, is similar to the behavior exhib-
due to the phenomenon described above. As we increase tied in dendrimer structures, modeled by Cayley trees. These
value of y the slope of the curves decreases. Diffusion atre open structures, with every node having a fixed nurkber
early steps remains superlinear, until we reach a valug of of connected nodes which are always directed away from the
around 3.0 where the slope becomes roughly equal to 1. Thigentral core. It was also shown in that c§28] that(S,) had
linear diffusion turns slowly into sublinear as we further in- a linear increase after a short early-time sublinear regime,
creasey and for y=3.5 the slope is equal to 0.9. due to the same reasons as here.

Consider, now, a regular lattice that can be embedded in a
finite d-dimensional space. In this case, it is well known that
unconstrained diffusion causes the random walker to spread

The coverage of the network by random walks is found toin the available space, increasing bd®?) and (S,) with
be a very efficient process. Numerical results(8f) on time. Thus, the walkers tend to increase their distance from
scale-free networks are presented in Fig. 2. The number dghe origin and cover new territory. If for some reason we
sites visited increases initially with a slow rate, but after arestrict diffusion of the walkers within a finite distané¥
crossover value the increase is almost linear. This asymptotitom the origin, so thatR?) saturates, then the area covered
linearity is observed in aly values, while the crossover point will soon saturate, too, to a value of ordéi. Diffusion on
shifts towards longer times with increasingThe early time  scale-free networks, though, is different. Although the walker
slope means that the walkers initially spend some time exis always close to the origin and restricted within a distance
ploring the neighborhood they were created in and visit theequal to the network diameter, new territory is continuously
same sites. After the first few stephe exact number de- sampled. This peculiar behavior can be attributed to the ex-

B. Network coverage
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FIG. 3. Survival probability as a function of time, for a network ) _
of y=2.5 and trap concentratioc=0.01. From right to left, the D) 10

number of nodes in the network é=10%, 10%, 10°, and 16.

A=

istence of the hubs. If we consider an extreme case of a hub,
that of a star node where all the nodes are connected only to
the hub, then the displacement will be at most two steps B | . o B
away, but due to the large number of nodes in the system the 107" 5000 4000 6000 8000 10000
walker will be redirected to a nonvisited site with a revisita- Time (MC steps)
tion probability n/N, which for large enough systems and . y .
ear|y to moderate times is close to 0. The particular case Of FIG. 4. Survival probablllty of random walkers as a function of
Lévy flights [24] [which usually results in enhanced diffu- time, for a network of siz&=10° and(a) y=2.5, (b) y=3.5. Sym-
sion witha>1 in Eq.(2)] can be considered similar to the bols represent direct trapping simulations. Solid lines represent the
process we study in this paper. In a Lévy flight the length 011_?os,enstock approximation based on (B¢ dat_a of _Flg. 2._ Dashed
a jump follows a power law dependence. In practice 6{lnes are the results of the cumulant approximation, with the trun-
walker samples an area for a certain amount of time befor&ation orderJ indicated on the plot. From left to right, the trap
performing a long-range jump. This jump allows then the concentrations are=0.05, 0.01, 0.005, and 0.001.
walker to sample a new space. Although the areas of space
visited can be regarded as the hubs of the present problem,
the main difference is the displacement of the walk. In the . . .
case of Lévy flights the hubs of the system are distant irﬁSt cluster for dlﬁerent trap concentratlons_ as a functlon of
space among each other, while in our case the hubs are vel§i’®: for networks Vi”th7’:2'5' For a relatively high trap
close to each other, and can even be directly connected. Ancentration, e.g.¢=0.05, we can see thab falls very
we have already seen, thus, the mean squared displacemé@Pidly and during the first 100 steps only a small percentage
on scale-free networkgeven of large sizeis restricted to ~ Of the walkers has survived. The decay retains for the largest
small distances, where@B?) increases monotonically in the part an exponential character. In order to test the validity of
case of Lévy flights. the Rosenstock approximation for scale-free networks, | used
the numerical data fofS,) presented in Fig. 2 and computed
the survival probabilityd using Eq.(4). The results in Fig. 4
C. Trapping show that there is almost complete coincidence between this

For the trapping problem, | first examine the dependenc@PProximation and the simulation data. As we have men-
of the survival probabilityP on the system sizhl. As it can  tioned above, the Rosenstock approximation is valid when
be seen in Fig. 3 foy=2.5, larger networks yield a signifi- mean-field features are present, and fluctuations in the area
cantly lower survival probability. This is due to the higher covered are not important. Thus, a high trap concentration
probability of finding a node with very high connectivity, implies that there will be no large trap-free regions, since a
which is linked directly with the largest part of the network. walker can easily escape any part of the system. However, in
Due to the power-law dependence the appearance of the#ge case ofy=2.5 the same argument is true as we gradually
nodes increases as we increase the network size. Howevénove towards lower concentrations. The survival probability
we can see that thé curves for the larger networkeN retains the simple exponential character as we decrease
=10P) practically coincide. Moreover, thild dependence is €ven for the lowest trap concentrations used. The Rosenstock
much weaker for networks with highervalues. As we can approximation, Eq(4), predicts this simple exponential de-
see in the plot, the large-size network behavior in this case i§ay only in the time range whef&,) ~n. As we have seen,
very close to a simple exponential decay, while smaller netthough, in Fig. 2 there is a crossover in the behaviotSf
works deviate from this behavior. with time, which should modify this behavior. However, this

Ll A

In Fig. 4(a) | present the survival probability on the larg-
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after a few hundred steps. The shape of the curves is also
different, since the exponential character of the lowsegal-

ues is no longer retained far> 3. This change in the decay,
along with the much slower relaxation is a manifestation of
the network structure, which fory>3 corresponds to a
loosely connected network where the number of nodes with
extremely high connectivity has diminished.

Inspection of Fig. 5 and similar simulations for different
concentrations on networks witlh=3 suggest that in the
range X y<3 the Rosenstock approximation provides a re-
liable description in the time regime studied in this work. On
) . . . | \ | . the contrary, wheny>3 this approximation is not valid and
0% 2000 4000 6000 8000 10000 one needs to resort to the use of higher moments in the

Time (MC steps) .
cumulant expression.

FIG. 5. Survival probability as a function of time, for networks ~ Concerning the comparison with regular lattices, it is
of sizeN=10f and trap concentratior=0.01. From left to right, the ~ Obvious that trapping in the most connected netwalrks
network connectivity igcircles y=2.0, 2.5, 3.0, and 3.5. The cor- =2-3) behaves in a similar manner as in three-dimensional
responding Rosenstock approximation is represented with thiirattices(simple exponential decgyand fory=<2.5 decays in
lines. We also present the survival probability for regular networksy similar rate, too. The case of a two-dimensional lattice
(thick lines) in (top to bottom d=1, 2, and 3 dimensions. represents the borderline dimension for recurrent random

crossover takes place at early times and is not apparent in ti¢2lks in lattices, and the relaxation @f is not exponential,
linear time scale used for the survival probability. TheWhile ford=1 the survival probability is considerably higher,
Rosenstock approximation, thus, based on the results of Figince the walkers are confined between two trapping sites
2, predicts a simple exponential decay fbron scale-free and perform a random walk in this region. Similarly to the
networks. d=2 cases, the survival probability relaxation in networks
Figure 4a) validates, thus, the assumption that the Rosenwith y>3 is not exponential and, in general, cannot be de-
stock approximation is true in the case of scale-free networkscribed by the Rosenstock approximation.
with y=2.5. The decay of the survival probability, though, is ~ Scale-free networks have been considered heuristically to
greatly influenced byy. In Fig. 4b), the results fory=3.5  behave as infinite-dimensional lattices. This assumption
and large trap concentrationsclearly demonstrate a devia- (d— ), however, implies that both the Rosenstock approxi-
tion from a simple exponential behavior and the failure ofmation[Eqg. (4)] and the Donsker-Varadhan res{iiq. (7)]
the Rosenstock approximation. Only in the case of lpw would yield a single exponential decdy(n) ~exp(—n) with
such asc=1073, this approximation is satisfactory and de- the number of steps. As we have seen, though, this result
scribes reasonably well the exponential decay of the simulasan be verified in the presented time scale by the simulations
tion data. Thus, fory=3.5 | also employed the cumulant for networks in the range 2 y<<3, but not fory>3. The
approximation of Eq(6). The higher-order moments of the reason is that inl— o the probability for a walker to revisit
S, distribution were calculated numerically, via the samea site is vanishingly small, since at every step the walker has
simulations that yielded the first mome(i8,) of Fig. 2. Itis  an infinite number of possible sites to jump to. Thus, the
evident that the description of the data improves signifi-revisitation probability tends to zero and the number of sites
cantly. The second-order truncatigire., including the stan-  Visited is equal to the number of steps perforniég}) ~n).
dard deviation of theS, distribution follows quite closely Equation(4) then predicts the same behavior @3, i.e.,
the simulation data foc=0.05 andc=0.005 over more than ®(n)~exp(-n). For scale-free networks the situation is
three decades on the vertical axis. In the case=3.01 we = somewhat different, though. Although there are a few highly
need to include higher moments in order to achieve the sameonnected nodes in the systé¢hubsg, from where a walker
level of accuracy, sincé, captures only part of the behav- can be directed to previously unsampled areas of the net-
ior. The fourth-order truncatio, seems to be quite succes- work, the largest percentage of the nodes has a very small
ful over almost four decades, and describes a significant nomumber of links, e.g.k=1 or k=2. A walker that reaches
exponential part of the curve quite well. such a node will return at the next step to its former position.
In Fig. 5 | present the survival probabilitc=0.01) in The character of a scale-free network as a substrate for ran-
different scale-free networks and in regular lattices. We carlom walks, thus, cannot be described as purely infinite di-
see that asy increases the survival probability becomesmensional. The dimensionality can be considered as a local
higher. Since the number of connections between the nodgxoperty which is modified according to the area of the net-
decreases witly and we have seen that the average value ofvork where the walker lies in. Depending on the valueypf
the number of sites visited also decreases, the walkers withe area sampled depends on how connected a system can be
spend more time in smaller network regions. This has a draand how easy it is for a random walker to visit new nodes.
matic influence ond and as we can see in the figure the For sparse networks, for example, the revisitation probability
difference in the survival probability between networks of increasestogether with the network diamejeand leads to
v=2 andy=3.5 can be two orders of magnitude, even onlylarger deviations of the above law.

®(n,c)
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V. SUMMARY Rosenstock approximatipfior y<<3 can be also expected in
the case of these networks, since the heuristic arguments
In this work | presented numerical results &&), (S)),  supporting the Donsker-Varadhan expresgig. (7)] do not
and trapping in scale-free networks, which are well-studiecapply here. Although a walk can still be compact, large trap-
processes in many other systems. free regions do not exist on such a network. The main reason
Mean squared displacement was found to range from sys the small average path length between any two nodes of
perlinear diffusion to sublinear diffusion as we varied the structure. For any trap distribution, there are not any
while the network coverage increases almost linearly witmetwork areas where a walker can spend a lot of time without
time for all y values examined. The Rosenstock approximameeting a trap, since the connectivity of the network allows
tion is adequate for predicting the survival probability in theit to easily escape to a different neighborhood, where traps
range 2<y<3, but for highery it cannot account for the may exist in a larger local concentration. Wher>3,
non-exponential character of the survival probability decaythough, the importance of the hubs in a network diminishes,
with time. In this case it was found that the cumulant expanand the behavior resembles more that of regular low-
sion can fit quite accurately the observed behavior. dimension lattices, with prominent nonexponential decays
The mean-field charactéexhibited by the validity of the even at early times.
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