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Geometrical structures of confining surfaces profoundly influence the adsorption of fluids upon approaching
a critical pointTc in their bulk phase diagram, i.e., fort=sT−Tcd /Tc→ ±0. Guided by general scaling consid-
erations, we calculate, within the mean-field theory, the temperature dependence of the order parameter profile
in a wedge with opening angleg,p and close to a ridgesg.pd for T_Tc and in the presence of surface

fields. For a suitably defined reduced excess adsorptionḠ±sg ,t→ ±0d, Ḡ±sgdutub−2n we compute the universal

amplitudesḠ±sgd, which diverge asḠ±sg→0d,1/g for small opening angles, vary linearly close tog=p for
g,p, and increase exponentially forg→2p. There is evidence that, within the mean-field theory, the ratio

Ḡ+sgd / Ḡ−sgd is independent ofg. We also discuss the critical Casimir torque acting on the sides of the wedge
as a function of the opening angle and temperature.

DOI: 10.1103/PhysRevE.70.046114 PACS number(s): 64.60.Fr, 68.35.Rh, 68.43.Fg, 61.20.2p

I. INTRODUCTION

Boundaries induce deviations of the local structural prop-
erties of condensed matter from their corresponding bulk
values. Typically the width of such boundary layers is pro-
portional to the bulk correlation lengthj. Near a continuous
bulk phase transition at a temperatureT=Tc, the correlation
length diverges according to a power lawj±st=sT−Tcd /Tc

→ ±0d=j 0
±utu−n with a universal bulk exponentn and nonuni-

versal amplitudesj 0
± whose ratioj 0

+/j 0
− is universal, too. For

the three-dimensional Ising universality classn.0.63 and
j 0

+/j 0
−.2 [1], whereas within the mean-field theory, which is

valid for spatial dimensionsdù4, n=1/2, andj 0
+/j 0

−=Î2.
The nonuniversal amplitudesj 0

± are typically in the order of
the range of the interaction potential of the ordering degrees
of freedom, i.e., a few angstroms. The correlation length is
defined as the scale of the exponentially decaying two-point
correlation function,e−r/j.

The local critical properties near planar confining surfaces
have been studied theoretically and experimentally in detail.
It has turned out, that each bulk universality class splits up
into three possible surface universality classes denoted as
ordinary, special, and normal transitions. Each of them gives
rise to distinct surface critical phenomena. The type of
boundary conditions determines in which surface universal-
ity class a given system belongs. The ordinary transition re-
quires the absence of surface fields, the special transition is
characterized by the absence of a surface field, too, but also
by suitably tuned, enhanced surface couplings between the
ordering degrees of freedom, and the normal transition rep-
resents systems whose surfaces are exposed to surface fields.
As indicated by the name, the latter one is the generic case.
For example the normal transition applies to one-component
fluids near their liquid-vapor critical point, or to binary liquid

mixtures near their demixing critical point. In both cases the
substrate potential of the confining container walls and the
missing interactions due to the fact that the fluid particles
cannot penetrate the substrate give rise to the effective sur-
face fields acting on the corresponding order parameter(den-
sity or concentration difference). As a consequence, in this
case even aboveTc there is a nonvanishing order parameter
profile, which decays to zero forTùTc upon approaching
the bulk, i.e., for increasing normal distancez→` from the
surface atz=0. For T,Tc this profile attains the nonzero
value of the bulk order parameter forz→`. Following early
calculations on magnetic systems by Binder and Hohenberg
[2], this so-called critical adsorption was first examined in
detail by Fisher and de Gennes[3] and has since been ana-
lyzed for many systems both theoretically[4–6] and experi-
mentally [7], and a fair agreement between theory and ex-
periment has been found[8,9].

Surface order above the bulk critical temperature can also
be due to spontaneous symmetry breaking caused by en-
hanced surface couplings between the ordering degrees of
freedom, e.g., spins in magnetic systems. The transition to
this state from the disordered state is usually denoted as the
extraordinary transition. Bray and Moore[10] predicted an
equivalence between the normal and the extraordinary tran-
sitions that was later proved by Burkhardt and Diehl[11]. In
contrast to the ordinary transition in magnetic systems, the
corresponding extraordinary transition has been investigated
to a lesser extent. Extending and improving earlier work
[12–15], Diehl and Smock[16] have carried out a field-
theoretic renormalization-group calculation in 4−e dimen-
sions for the extraordinary transition in semi-infinite systems
belonging to the Ising universality class[17] computing the
order parameter profile to one-loop order. The results are in
fair agreement with those obtained by Monte Carlo simula-
tions [9].

These studies are devoted to the case of planar surfaces.
Only very carefully treated solid surfaces are atomically flat;
generically, however, they exhibit corrugations. Besides
these random deviations from the flat topography, there is
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nowadays an abundance of experimental techniques[18] that
allow one to endow solid surfaces with precise lateral geo-
metrical structures, ranging from the micron scale down to
tens of nanometers.Inter alia, such solid surfaces are used
within the context of microfluidic devices[19] in order to
guide fluids along such structures. The fluids perfectly fill
this laterally structured environment and thus fully exhibit
the strong structural changes associated with that. In this
context it is of interest what kind of structures appear in the
fluid if it is brought, say, close to a demixing transition and is
exposed to geometrically structured substrates. If the charac-
teristic sizes of the lateral structures are comparable with the
correlation length, which in fluids reaches typically up to a
few thousand angstroms close toTc, one can expect a strong
influence on the aforementioned critical adsorption phenom-
ena.

Theoretically this raises the issue of how the local critical
properties depend on theshapeof the boundaries. A typical
manmade structure is a series of grooves with various shapes
of the cross section, e.g., wedgelike. The first step in their
investigation is the study of a single wedge, which already
shows new features and gives new insight into the influence
of geometry on critical behavior. The ordinary transition of
the isotropicN-vector model at an edge has been investigated
by Cardy[20] within the framework of the mean-field theory,
the renormalization group, ande expansion. Subsequently
the two-dimensional wedge(corner geometry) was studied
by exact calculations, mainly for Ising models[21], and by
conformal mapping at the bulk critical temperature[22].
New edge and corner exponents were found that depend on
the opening angleg of the wedge. More recently similar
findings of Monte Carlo simulations of the ordinary transi-
tion of the three-dimensional Ising model[23] have been
reported, in accordance with high temperature series expan-
sions [24]. The angle dependence of the critical wedge ex-
ponents can be attributed to the fact that the wedge geometry
lacks a length scale and thus is invariant under rescaling. The
opening angle is therefore a marginal variable in a renormal-
ization transformation, andmayenter into the expressions for
the exponents. The same will happen for all other scale-
invariant shapes of the boundaries[25]. However, for a given
opening angle, the values of the critical exponents are ex-
pected to be universal and independent of microscopic de-
tails. According to recent Monte Carlo simulations of three-
dimensional Ising models with edges and corners[26], angle
dependent critical exponents are observed at the ordinary
transition, whereas the surface transition seems to be nonuni-
versal. The critical exponents in this latter case appear to
depend on the strengths of the local couplings, in analogy
with exact results obtained for the two-dimensional Ising
model with defect lines[27]. Critical adsorption has also
been studied in general dimensionsd on curved surfaces
[28].

Since critical adsorption changes the composition of a bi-
nary liquid mixture close to its surface, mechanical proper-
ties, such as the local viscosity and the mutual diffusion co-
efficient will also vary in space. So we expect various
phenomena, such as flow properties in porous media, the
spreading properties of droplets, surface chemical reactions,
the permeability of membranes, etc.[29], to be influenced
significantly by critical adsorption.

Critical adsorption in a wedge has been studied by Hanke
et al. [30]. Within the mean-field theory the order parameter
profile was calculated exactlyat the critical point. Through
an interpolation scheme between exact results ind=2 and the
mean-field results corresponding tod=4, angle dependent
critical exponents of the order parameter and those govern-
ing the decay of two-point correlation functions were ob-
tained ford=3 as well. The present study extends these in-
vestigations into various directions.

First, we analyze the temperature dependence off critical-
ity for critical adsorption in a wedge. General scaling prop-
erties for the order parameter profile and the excess adsorp-
tion are discussed and the corresponding scaling functions
are calculated within the mean-field theory. This analysis is
carried out above and belowTc, including a systematic study
of the dependence on the opening angleg of the wedge. This
covers also the caseg.p describing critical adsorption near
a ridge.

Second, as a new feature, we study the Casimir torque
acting on the sides of the wedge or ridge. The confinement
modifies the fluctuation spectrum of the critical fluctuations
and the order parameter profiles. This leads to a dependence
of the free energy of the critical medium on the shape of and
the distance between the confining boundaries, which results
in an effective force acting on them. Thus the physical origin
of this force, originally predicted by Fisher and de Gennes
[3] for two parallel plates immersed into a binary liquid mix-
ture near its continuous demixing transition, is analogous to
the Casimir force acting on conducting plates in vacuum due
to the confinement of quantum mechanical vacuum fluctua-
tions of the electromagnetic field[31]. The Casimir force is
governed by universal scaling functions[32] and is superim-
posed on the noncritical background forces, which in the
case of fluids are given by dispersion forces. Recent experi-
ments[33] have confirmed corresponding theoretical predic-
tions for the plate geometry[34]. For curved surfaces the
critical Casimir force plays an important role in the floccu-
lation of colloidal particles suspended in a solvent undergo-
ing a continuous phase transition[35]. In the present context
the free energy of the critical medium depends on the open-
ing angleg; its derivative with respect tog amounts to the
critical Casimir torque acting on the sides of the wedge or
ridge. If the substrate forming the wedge or ridge is com-
posed of soft materials like, e.g., membranes, this critical
Casimir torque is expected to give rise to elastic deforma-
tions. It might also be experimentally accessible by suitable
force microscopy with moveable sidewalls of a wedgelike
structure.

The paper is organized as follows. In Sec. II we discuss
the general scaling properties of the order parameter profiles
and the excess adsorption. The scaling functions are deter-
mined within the mean-field theory and analyzed in detail in
Sec. III. Section IV focuses on the free energy of the con-
fined fluid and the critical Casimir torque resulting from its
angle dependence. Section V summarizes our findings. In the
Appendix we discuss how the excess adsorption in a wedge
or at a ridge decomposes into surface and line contributions
with two possible experimental realizations.
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II. GENERAL SCALING PROPERTIES OF ORDER
PARAMETER PROFILES AND EXCESS ADSORPTION

Since fluids can fill a container of arbitrary shape, in the
present context of critical systems exposed to substrates
shaped as wedges we considerfluidsclose to their bulk criti-
cal pointTc. This can be either a liquid-vapor critical point or
a demixing critical point in the case of binary liquid mix-
tures. The interaction of the container walls with the fluid
particles results in a spatial variation of the number densities
close to the boundaries. The deviation of the density of the
fluid, or of the concentration of one of its two components in
the case of binary liquid mixtures, from the corresponding
bulk value atTc is chosen as the local order parameter de-
scribing the phase transition.

The order parameter profilem±
`/2sz ,td near aplanar inter-

face and close to the critical temperatureTc takes the follow-
ing scaling form[8,9,14,16,36]:

m±
`/2sz,td = autubP±

`/2sz/j±d, t = sT − Tcd/Tc, s1d

for distancesz*s perpendicular to the interface and suffi-
ciently large compared to a typical microscopic lengths.
j±st→0d=j 0

±utu−n is the bulk correlation length aboves+d or
below s−dTc, b and n are the standard bulk critical expo-
nents, andt is the reduced temperature. The scaling functions
P±

`/2sz±=z /j±d are universal once the nonuniversal bulk am-
plitudesa andj 0

± are fixed, wherea is the amplitude of the
bulk order parameterm−

`/2sz=` ,t→0−d=autub=mbstd. With
the prefactorsj 0

± fixed as those of thetrue correlation length
defined by the exponential decay of the bulk two-point cor-
relation function in real space, one findsP−

`/2s`d
=1, P+

`/2s`d=0, P−
`/2sz−→`d−1,e−z−, P+

`/2sz+→`d,e−z+

andP±
`/2sz±→0d=c±z ±

−b/n [16], so that

m`/2sz,t = 0d = ac±sz/j 0
±d−b/n. s2d

Any other choice for the definition of the correlation length
leads to a redefinition of the scaling functionsP±

`/2 such that
all observable quantities remain unchanged. This under-
scores that the scaling functions are universal, but that their
form depends on the definition of the correlation length. The
amplitudes of the scaling functions are fixed by the require-
ment P−

`/2s`d=1. Accordingly the numbersc± are universal
surface amplitudes which are definition dependent[8].

Close toTc the total enrichment at the interface of, say,
the A particles as compared to theB particles of a binary
liquid mixture is given by the excess adsorption, which is an
experimentally accessible integral quantity. For a planar sur-
face, one has

G±
`/2std =E

0

`

fm±
`/2sz,td − m±

`/2sz = `,tdgdz. s3d

The scaling behavior ofG±
`/2std has been discussed in Ref.[8]

in detail. Thez integration can be split into the intervals
z.s and 0øzøs, and for largez the order parameter pro-
file m±

`/2sz ,td can be replaced by Eq.(1), which gives

G±
`/2std =E

0

s

fm±
`/2sz,td − m±

`/2sz = `,tdgdz

+ aj 0
±utub−nE

s/j±

`

fP±
`/2sz±d − P±

`/2sz± = `dgdz±.

s4d

Upon approachingTc the first integral remains finite and
yields a nonuniversal constant, which is subdominant to the
diverging second term. The second integral leads to the well
known power-law singularity ofG±

`/2st→0d for d,4:

G±
`/2st → 0d = aj 0

±g±
utub−n

n − b
, d , 4, s5d

where the numbersg± are universal with their values depend-
ing on the definitions of the bulk order parameter and the
correlation length. Ind=4 one finds upon inserting the mean-
field expression forP±

`/2 (see Ref.[16]) into Eq. (4) that
G±

`/2std diverges logarithmically. This result can be reconciled
with Eq. (5) by noting that G±

`/2 actually needs additive
renormalization leading to[8]

G±
`/2st → 0d = aj 0

±g±
utub−n − 1

n − b
, d ø 4. s6d

In the wedge or ridge geometry(Fig. 1) the order param-
eter profile depends on the radial distancer from the apex,
on the polar angleu, and on the opening angleg, so that the

FIG. 1. A wedge and a ridge with opening angleg exposed to a
binary liquid mixture. The system is translationally invariant in the
subspace parallel to the edge. Within a plane orthogonal to the edge
the polar coordinates arer andu. The linear extensions of the con-
fining surfaces aresi ands'.
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variation of the profile is two-dimensional with correspond-
ing generalized scaling functions

m±sr,t;gd = autubP±sr/j±,u;gd. s7d

As before, the scaling functions are universal once the non-
universal bulk amplitudesa andj 0

± are fixed, wherea is the
amplitude of the bulk order parameter and the amplitudesj 0

±

are prefactors of thetrue correlation length as in the case of
the infinite planar wall. One finds[30] with r±=r /j± that
P−sr−=` ,ud=1, P+sr+=` ,ud=0, P−sr−→` ,ud−1
,e−sinsudr−su,g /2d, P+sr+→` ,ud,e−sinsudr+su,g /2d,
P±sr±→0,ud= c̃±su ,gdr±

−b/n, and

P±sr±,u → 0d = c±z ±
−b/n = c±sr± sinud−b/n, s8d

wherez±=r± sinu (see Fig. 1). The amplitudes of the scaling
functions are again fixed by the requirementP−sr =` ,ud=1.
The numbersc± are the universal surface amplitudes of the
scaling function of the infinite planar wall[Eq. (2)], and
c̃±su ,gd are universal functions. Bothc± and c̃± depend on
the definition of the correlation length. The scaling functions
also reflect the symmetry of present the geometry

P±sr±,u;gd = P±sr±,g − u;gd. s9d

We define theexcessadsorption for this geometry con-
fined by surfaces of linear extensionss' in the plane perpen-
dicular to the edge andsi in the translationally invariant di-
rections(see Fig. 1) as

G̃±ss',si,t;gd =E
V

ddrfm±sr,t;gd − mbstdg, s10d

where the integral is taken over a macroscopic volumeV
occupied by the liquid. According to the Appendix this ex-
cess adsorption decomposes into a surface contribution that
scales with the actual surface area of the confining walls
ss'si

sd−2dd and a line contribution that scales with the exten-
sion in the invariant directions[si

sd−2d, i.e., a line ind=3]
[37]:

G̃±ss',si,t;gd = Gs
±stds'si

sd−2d + Gl
±st,gdsi

sd−2d + Oss'
−1d.

s11d

Due to the symmetry of the system one can determine the
amplitudesGs

± andGl
± for the wedge and the ridge explicitly

by considering only one half of the wedge or the ridge[see
Eq. (9)], and by suitably subtracting and adding the order
parameter profilem±

`/2sz=r sinu ,td of a fluid in contact with
an infinite planar wall in the integrand of Eq.(10) [compare
Eqs. (3)–(6) and the Appendix]. The surface term is deter-
mined solely by the order parameter profile of a semi-infinite
system exposed to a flat substrate

Gs
±std = G±

`/2std. s12d

The line contribution, on the other hand, depends on the
choice of the volume of integration in Eq.(10) as shown in
the Appendix. The differences are caused by the different
shapes of the boundaries far away from the apex. This gains
significance for the interpretation of possible experiments
carried out for wedges or edges with finite depth. Two such
experimental setups are described in the Appendix. For our
present case of wedges and ridges with half-infinite walls, we
consider the line contribution to be the specific contribution
arising from the change of the order parameter profile caused
by the apex alone

Gl
±st,gd = 2E

0

g/2

duE
0

`

dr rfm±sr,u,t;gd − m±
`/2

„zsr,ud,t…g.

s13d

Guided by the description of the adsorption on a planar
wall (i.e., g=p) one can consider a third choice for the vol-
umeV such that its boundaries are perpendicular to the walls
of the wedge or ridge[38]. This choice and its implications
are discussed in the Appendix, too.

Based on Eq.(7) Gl
±st ,gd [Eq. (13)] takes on the scaling

form

Gl
±st,gd = aj0

±2
utub−2nḠ±sgd s14d

with the universal amplitude functions

FIG. 2. The scaling functionP+ of the order parameter profile in
a wedge of opening angleg=p /2 with the edge located at the back
of the figure atx8=z=0 {x8=r cosu , z=r sinu [see Figs. 1 and
14(a)]}. The positions of the walls of the wedge coincide with the
coordinate axes as indicated here with broad lines. The values ofP+

at which contour lines are drawn are multiples of 0.1 and range
from 0.1 to 1.0.

FIG. 3. Projection of the contour lines of the scaling functionP+

of the order parameter profile in a wedge of opening angleg
=p /2 onto thesx+8 ,z+d plane. The edge is located atx+8=z+=0. The
curves correspond to values ofP+ ranging from 0.1 to 0.6 with an
increment of 0.1 from top to bottom. The inset shows that the maxi-
mal curvaturek of the contour lines, occurring on the bisector(•),
depends linearly on the values ofP+ corresponding to the contour
lines within the range ofP+ values considered here.
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Ḡ±sgd = 2E
0

g/2

duE
0

`

dr± r±fP±sr±,u;gd − P±
`/2

„z±sr±,ud…g,

s15d

where z±sr± ,ud=r± sinu. We note that the integral in Eq.

(15) is finite for d=4, i.e.,Ḡ± does not carry a factor propor-
tional to 1/sn−bd asG±

`/2 does[compare Eq.(6)]. As one can
see from Eqs.(6) and(14), the subdominant line contribution
to the excess adsorption carries a more singular temperature
dependence than the leading planar surface term. Thus the
scaling properties of the order parameter profile completely
fix the functional form of the excess critical adsorption up to

the dependence of the universal amplitudesḠ±sgd on the
opening angle. Since this dependence cannot be inferred
from general scaling arguments, it must be determined ex-
plicitly. This will be carried out within the mean-field theory
in the following section. This is possible because as stated

aboveḠ±sgd is finite for d=4.

III. SCALING FUNCTIONS WITHIN
THE MEAN-FIELD THEORY

A. Order parameter profiles

The standard Ginzburg-Landau Hamiltonian for describ-
ing critical phenomena in confined geometries is[4,5]:

Hhfj =E
Vwsrd

dVH1

2
s¹fd2 +

t

2
f2 +

u

24
f4J , s16d

with a scalar order parameter fieldfsrd, supplemented by the
boundary conditionf= +` at the surfaces of the wedge
(ridge) corresponding to the critical adsorption fixed point
[11]. The parametert is proportional to the reduced tempera-
ture t , u is the coupling constant, and the integration runs
over the volumeVwsrd of the wedge(ridge) (see Fig. 1).
Within the mean-field theoryt= t / sj 0

+d2 for T.Tc, and
t=−1

2utu / sj 0
−d2 for T,Tc with j 0

+/j 0
−=Î2.

After functional minimization one obtains for the order
parameterm=Îu/12kfl the differential equation

Dm= tm+ 2m3, s17d

wherem=msr ,u ,t ;gd. Since the scaling functions in Eq.(1)
have the limiting behavior shown in Eq.(2), where b=n
=1/2 within the mean-field approximation, in order to derive
a boundary condition for the numerical calculation of the
order parameter close to the surfaces of the wedge, i.e.,u
→0 for r fixed, we seek a solution for Eq.(17) in the form

msr,u,td =
Asr,td

u
+ Bsr,td + Csr,tdu + Du 2sr,td + Osu 3d

s18d

for u!1 (suppressing theg dependence in the notation) and
obtain for botht.0 andt,0:

msr,u,td =
1

r

1

u
+ S 1

6r
−

tr

6
Du + Osu 3d, s19d

fBsr ,td;0, Dsr ,td;0g. This result agrees with the direct
expansion of the mean-field profile obtained fort=0 [30]. In
terms of the scaling functionsP± this implies[see Eq.(8)]:

P+sr+,u → 0d = c+
1

r+ sinu
F1 −

1

6
r+

2u 2 + Osu 4dG ,

s20ad

P−sr−,u → 0d = c−
1

r− sinu
F1 −

1

12
r−

2u 2 + Osu 4dG
s20bd

with c+=Î2 andc−=2 [8].
We use a numerical method[35,39] to minimize Eq.(16)

with respect to the order parameter profile at a fixed tempera-
ture, which is then subsequently varied. For computational
purposes we choose suitably shaped finite volumesVwsrd for
different opening anglesg of the wedgeswd or ridgesrd. We
refrain from describing this choice of volumes here, because
it does not matter in the calculation of the universal ampli-

tude functionsḠ±sgd. The choice of the volume is relevant
only for that line contribution to the excess adsorption that
depends only on the order parameter profile close to an infi-
nite planar wall and thus is independent of the opening angle
of the wedge(see the Appendix). As the temperature is
changed we rescale the size of the volumeVwsrd in accor-
dance with the change of the correlation lengthj=j0t

−n. This
way we control the finite size effects caused by the finiteness
of Vwsrd dictated by computational necessity. The finite size
effects manifest themselves even close to those boundaries of
the chosen volume that are far away from the walls of the
wedge because of using approximate boundary conditions at
these boundaries(see later). By effectively increasing the
rescaledvolume upon approachingTc, the values of the pro-
files at fixed spatial points within this rescaled volume con-
verge to a limiting value.

We choose a two-dimensional gridsi , jd and calculate the
deviation of the order parameter profile from the known pro-
file at T=Tc at the given grid points. The profile near the
confining surfaces of the wedge(ridge) is fixed according to
Eq. (19). (The grid points are lined up parallel to the walls of
the wedge.) At the surfaces of the finite volumeVwsrd that are
further away from the walls of the wedge, we prescribe ini-
tial values of the profile. Keeping these values fixed we then
calculate new values of the profile inside the volume using
the method of steepest descent. Having obtained the new
values for the profile close to these surfaces, we change the
profile at these surfaces proportionally to the change in their
neighborhood, if it changes significantly in the direction per-
pendicular to the surfaces(the general case), or set it equal to
that in neighboring layers if the profile is approximately con-
stant close to these surfaces(for example far away from the
edges of the wedges parallel to the confining walls of the
wedge). The rules for the iteration according to the method
of steepest descent in the space of the parameters
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aij = msr ij ,ui j ,0d − msr ij ,ui j ,td s21d

are

aij
sn+1d = aij

snd − kU ] Hsaijd
] aij

U
aij

snd
, s22d

wherek is a convergence parameter. With this method it is
not necessary to calculate the Hamiltonian itself but only its
derivative. The method has been described in detail in Refs.
[35,39], so here we only want to point out that the diver-
gence of the profile close to the walls of the wedge causes a
divergence in the derivative of the Hamiltonian, too. This can
be avoided, if one takes into account the known form of the
divergence of the profile close to the edges of the wedge[see
Eq. (19)]. To this end we writeaij as a product of two terms,
one of which we choose to be such that when multiplied by
the profile close to the boundaries(in the calculation of the
derivative) it cancels the divergences of the profiles[see Eq.
(19)], yielding a smooth gradient in the parameter space. We
approximate the integrand of the gradient ofHhfj [see Eq.
(16)] by a sum of delta functions positioned at the grid
points, so that the integral reduces to a simple sum over these
points; for each opening anglek is optimized separately for
best convergence.

The scaling function of the order parameter profile in a
wedge [see Eqs.(7)–(9)] with an opening angle of 90° is
shown in Figs. 2–5. One can easily see that the contour lines
quickly become parallel to the walls of the wedge as we
move away from the edge(see Figs. 2 and 3). This is espe-
cially apparent as we approach the walls. As one moves
along the bisector of the wedge, the maximal curvaturek of
the contour lines decreases sharply(Fig. 3). This underscores
that in terms of therescaledvariables, to a good approxima-
tion the effects of the edges are spatially localized. The maxi-
mal curvaturek depends linearly on the values ofP+ corre-
sponding to the contour lines within the range ofP+ values
analyzed in Fig. 3.

Along radial directions, i.e., foru=const(Fig. 4) the scal-
ing function exhibits a power law limiting behavior close to
the walls in accordance with Eq.(8) and the paragraph pre-
ceding it. For larger± the behavior crosses over into an ex-
ponential decay: P+sr+→` ,u ;gd=A+su ,gde−r+ sin u , P−sr−

→` ,u ;gd−1=A−su ,gde−r− sin u, where near the wallsA± re-
duce to the amplitudes of the exponential decay away from

an infinite planar wall:A+su→0,gd=Î8 and A−su→0,gd
=2. The dependence ofA±su ,gd on u is weak. The latter
values are valid foru&30°, beyond which the prefactors of
the exponential functions increase withu. Upon approaching
the walls of the wedge vertically, i.e., foru→0 or g with r±
fixed [see Eq.(8) and Fig. 5] the divergence of the profile has
a power law form.

The limiting behaviors of the scaling functionsP± close to
the edge of the wedgesr±→0d are described by the ampli-
tude functionsc̃±su ,gd [see the paragraph following Eq.(7)
and Fig. 4]:

P±sr± → 0,ud = c̃±su,gdr±
−b/n. s23d

These functions are plotted forg=p /2 in Fig. 6. According
to Eq. (8), close to the walls of the wedge, i.e., foru→0
these functions are given byc̃±su→0,gd=c±ssinud−b/n.

The scaling function of the order parameter profile at a
ridge [see Eqs.(7)–(9)] with an opening angle of 260° is
shown in Figs. 7 and 8. One can easily see that the contour
lines rapidly become parallel to the walls of the ridge as one
moves along them further away from the edge. As one moves
along the bisector of the ridge away from the edge, the maxi-
mal curvaturek of the contour lines decreases(Fig. 8). k

FIG. 4. The scaling functionP+ of the order parameter as a
function of the distancer+ from the edge of a wedge of opening
angleg=p /2. The curves correspond to values ofu ranging from
5° to 25° with an increment of 5° from top to bottom.

FIG. 5. The scaling functionP+ of the order parameter along
arcs of different radiir+ centered at the edge of a wedge of opening
angleg=p /2. The curves correspond to values ofr+ from 1 to 5
with increments of 1 from top to bottom. The curves are symmetric
aroundu=g /2=p /4 and diverge assc+r+

−b/ndu−b/n for u→0. For
r+=1 the comparison with the asymptotic behaviorc+sr+ sinud−b/n

for u,g /2 and c+fr+ sinsg−udg−b/n for u.g /2 is shown as a
dashed curve[see Eq.(8)].

FIG. 6. The amplitude functions c̃±su ,g=p /2d
=fP±sr± ,udr±

b/ngur±→0 in a wedge of opening angleg st.0:
+ , t,0: 3 d. The solid line corresponds to the function
c+ssinud−b/n st.0d [see Eq. (8)] and the dotted line to
c−ssinud−b/n st,0d, which are valid in the asymptotic regimeu
→0, but provide a surprisingly good description throughout the
whole angle range 0,u,p /4.0.785.
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depends linearly on the valuesP± characterizing the contour
lines and thus has similar limiting behaviors close to the
edge of the ridge and far from it as a function ofr±, at least
within the range studied in the inset of Fig. 8.

Comparing the order parameter profiles in a wedge or at a
ridge with the profile near a planar wall, one can visualize
the wedge or ridge as being formed by breaking the planar
wall into two halves, which in the case of a wedge are
brought closer to each other, and in the case of the ridge are
taken further apart. Close to the edge of the wedge this in-
creases the values of the profiles, while close to the edge of
a ridge these values are decreased as compared to the profile
near a planar wall.

B. Excess adsorption

The presentation of the full order parameter distribution
requires to keep track of four variables:r , u , t, and g.
Therefore it is advantageous to consider also the excess ad-
sorption in wedges and at ridges, which is experimentally
relevant and provides reduced information depending only
on t and g [Eq. (10)]. We are particularly interested in the
line contribution[see Eqs.(11) and (13)] characterizing the

effect of the wedge(ridge) geometry via its universal ampli-
tude functions[Eq. (15)]. In order to calculate this quantity
we use the fact that the integral in Eq.(15) can be rewritten
as

Ḡ±sgd =E
0

`

FsP̄±ddP̄±, s24d

where FsP̄±d is the area enclosed by the contour lines of

P̄±=P±sr± ,u ;gd−P±
`/2fz±sr± ,udg (see Fig. 9). Based on these

areas one is left with a one-dimensional integration to obtain

Ḡ± numerically. Furthermore, exploiting the observation that
the geometrical shapes formed by the contour lines are simi-
lar to one another for small and large areas, respectively, and
using the limiting behavior of the scaling functions, we ap-

proximateFsP̄±d for small values ofP̄± in terms of powers of

P̄±, and for largeP̄± in terms of powers of lnsP̄±d. These
approximate power laws are calculated based on different

intervals inP̄± chosen as ever narrowing slices of that inter-

val in P̄± in which the numerical data lie. The narrowing

intervals approach the small and largeP̄± limit, respectively.
With these power law approximations for different intervals

in P̄± we obtain a series of approximate integrals for those
intervals, for which due to practical limitations there are no

numerical data(for small and large values ofP̄±), and take
the limit. This enables us to carry out the integral in Eq.(24)
numerically for the whole range fromP̄±=0 to P̄±=`.

This integration leads to the universal amplitudesḠ±sgd as
shown in Fig. 10. For small opening anglesg they diverge as

Ḡ±sg→0d,1/g, vary linearly close tog=p for gøp, and
their absolute values increase rapidly forg.p. Numerical
evidence suggests that this latter increase is exponential[but
no divergence(see Fig. 11)].

Strikingly, the reduced excess adsorptionḠ+sgd above the
critical temperature appears to be proportional to the reduced

excess adsorptionḠ−sgd below the critical temperature. We
have calculated their ratio for seven opening angles ranging
from 20° to 240° and found

FIG. 7. The scaling functionP+ of the order parameter profile at
a ridge of opening angleg=260° with the edge perpendicular to the
sx+,z+d plane and located atx+=z+=0 [see Figs. 1 and cf. Fig.
14(b)]. The positions of the walls of the ridge are indicated here
with broad lines. The values ofP+ at which contour lines are drawn
are multiples of 0.1 and range from 1.0 to 0.1(top to bottom).

FIG. 8. Projection of the contour lines of the scaling functionP+

of the order parameter profile in a ridge of opening angleg=260°
onto thesx+,z+d plane. The projection is shown only on one side of
the bisector of the ridge, which coincides here with thez+ axis. The
wall of the ridge is indicated with a broad line. The edge is located
at x+=z+=0. The curves correspond toP+=0.1, 0.5, and 1.0 from
top to bottom. The inset shows that the maximal curvaturek of the
contour lines occurring on the bisector is a linear function ofP+

within the range considered here.

FIG. 9. Contour levels of the integrand of the integral that de-
termines the amplitude of the reduced excess adsorption forT.Tc

[see Eqs.(15) and (24)] in a wedge of opening angleg=p /2 with
the edge located at the back of the figure atx8=z=0
sx8=r cosu , z=r sinud. The walls of the wedge, indicated by broad

lines, coincide with the coordinate axes. The values ofP̄+ at which
contour lines are drawn increase with multiples of 0.1 and range
from 0.05 to 1.05.
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Ḡ+sgd/Ḡ−sgd = 1.137 ± 0.006, s25d

i.e., their ratio appears to be independent ofg.
Ratios of the amplitudes of the excess adsorption above

and belowTc have been investigated for the case of a planar
wall theoretically[8], experimentally[7], and using Monte
Carlo simulations[9]. The values obtained experimentally
for the ratios of the amplitudes for the planar case(mean
value: 1.19±0.04) agree rather well with the result of the
Monte Carlo simulations(1.11); the corresponding mean
field value is 1/Î2 [8].

The angular dependence of the reduced excess adsorption
shows that for large angles, i.e., for a ridge, the absolute
values are larger than for small angles, i.e., for a wedge:

Ḡ±sgd, uḠ±s2p−gdu. One can calculate the excess adsorption
at a periodic array of wedges and ridges(see, cf. Fig. 13) if
their edges are sufficiently far apart from each other so that
their influences do not interfere(see part B of the Appen-
dix). The result expressed by Eq.(A9) in the Appendix
shows that in this limiting case the line contribution to the

excess adsorption, which captures the effect of the wedges
and ridges, is the sum of the contributions of single wedges
of opening anglegw and of single ridges of opening angle
gr =2p−gw sharing the same temperature dependenceutub−2n.

Thus the amplitudeḠ±
wr of the combined contribution of one

wedge and a neighboring ridge forming the basic building

block of the array is given asḠ±
wr=Ḡ±sgwd+Ḡ±sgrd. This

quantity may be viewed as a function ofgr −gw=2p−2gw
=2sp−gwd, which characterizes the roughness of the surface.

Ḡ+
wrsgr −gwd is plotted in Fig. 11 forst.0d. One can see that

all values are negative, i.e., the total excess adsorption(rela-
tive to a planar substrate with the same area as the actual one
of the corrugated surface) is decreased by the line contribu-
tion. This demonstrates that the decrease in adsorption for a
ridge withgr =2p−gw dominates the increase due to the cor-
responding wedge with opening anglegw (see Fig. 10). The

amplitudeḠ+
wr varies quadratically for small roughness and

exponentially for large roughness.
In Ref. [28] the total excess adsorption has been calcu-

lated for curved surfaces. For a curved membrane with both
sides exposed to a fluid near criticality, the sum of the excess
adsorptions on the two sides per unit area was found to be
larger for spherical regions of the membrane and smaller for
cylindrical regions as compared to that for flat regions. Since
the cylindrical regions may be viewed as rounded wedges
and ridges, this latter finding exhibits the same qualitative
trend as found here for the periodic array of wedges and
ridges.

IV. FREE ENERGY OF THE CONFINED FLUID
AND CASIMIR TORQUE

In the previous chapters we have investigated structural
properties, i.e., order parameter profiles of critical fluids in

FIG. 10. The amplitude of the line contribution to the excess
adsorption fort.0 [Eqs.(14) and(15)] as a function of the opening
angleg. The full line is a fit through the datas+d. The inset shows

that over a wide rangeḠ+sgd<1.62/sg /pd. Ḡ+spd=0 by definition.

Note thatḠ+sgd, uḠ+s2p−gdu.

FIG. 11. The amplitudeḠ+
wr of the line contribution to the excess

adsorption of the basic unit of one wedge of opening anglegw and
one ridge of opening anglegr =2p−gw in an array of effectively
independent wedges and ridges as a function ofsgr −gwd /p, which
characterizes the roughness of the surface(see, cf. Fig. 13). The
dashed lines are fits. The insets show the behaviors in the limiting
cases on a log-log scale and a log-linear scale for small and large

roughness, respectively. They indicate thatḠ+
wrfsgr −gwd→0g,sgr

−gwd2 and that Ḡ+
wr increases as exphfsgr −gwd /pg3j up to sgr

−gwd /p=2.

FIG. 12. One choice for the volumeV of integration in the
definition of the excess adsorption[Eq. (10)] with its cross section
in the plane perpendicular to the invariant directions.

FIG. 13. A fluid is bounded by a substrate shaped as a periodic
array of wedges and ridges with a finite depthD. The total volume
of the fluidVtot can be naturally decomposed into subvolumes of the
type shown in Fig. 12.
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wedges and close to ridges. In the following we comment on
their thermodynamic properties based on the free energy of
such systems.

The volumeVsgd of the system shown in, cf., Fig. 12(for
another possible choice see, cf. Fig. 14) is bounded by the
walls of the wedge or ridge, which in turn end in the linear
edge forming the vertex. Accordingly in the thermodynamic
limit the total free energyF decomposes into a bulk, a sur-
face, and a line contribution

FsT;gd = VsgdfbsTd + SfssTd + LflsT,gd, s26d

where fbsTd is the bulk free energy density,fssTd is the sur-
face free energy density, andf lsT,gd is the line free energy
density.S is the total surface area of the wall in contact with
the fluid,L is the length of the edge. Each of the three terms
in the free energy and thus the total free energy itself are
sums of a singular partffsing

sb,s,ldst ,gdg, which contains the ther-
modynamic singularities in the vicinity of the bulk critical
point t=sT−Tcd /Tc→0, and an analytic background contri-
bution ffback

sb,s,ldsT,gdg.
The leading singular part of the total free energy can be

written in the form(see, e.g., Refs.[5,40,41]):

Fsing
± st,gd
kBTc

=
Vsgd
sj0

±ddF−
ab

±

as1 − ads2 − ad
utu2−aG

+
S

sj0
±dd−1F−

as
±

ass1 − asds2 − asd
utu2−asG

+
L

sj0
±dd−2F−

al
±sgd

als1 − alds2 − ald
utu2−alG . s27d

Here a.0.11 is the bulk specific heat exponent,as=a
+n , al =a+2n, andab

± andas
± are universal bulk and surface

amplitudes. The bulk contribution depends trivially ong via
the geometryVsgd, whereas the surface contribution is inde-
pendent ofg. The line contribution carries a nontrivial de-
pendence ong via the universal amplitude functionsal

±sgd.
The background contribution takes on the form

Fback
± sT,gd
kBTc

=
Vsgd
sj0

±dd fback
sbd sTd +

S

sj0
±dd−1 fback

ssd sTd +
L

sj0
±dd−2 fback

sld

3sT,gd. s28d

If one of the sidewalls is moveable around the vertex with
the far end suspended at, say, a force microscope, the torque

M = −
] FsT;gd

] g
s29d

exerted by the fluid in the wedge or ridge on its sidewalls is
experimentally accessible

M±

kBTc
= −

] Vsgd
] g

sj0
±d−dF−

ab
±

as1 − ads2 − ad
utu2−a + fback

sbd sTdG
− Lsj0

±d−sd−2dF−
] al

±sgd/] g

als1 − alds2 − ald
utu2−al

+
] fback

sld sT,gd
] g

G . s30d

With the bulk contribution known independently, this mea-
surement provides access to the universal amplitude func-
tions al

±sgd by focusing on the thermal singularity,utu2−al

= utun= utu0.63 in d=3, sincedn=2−a. The singular contribu-
tion to M can be called a critical Casimir torque. For fluids
information about the background term can be obtained from
Eq. (A7) in Ref. [42] and from Refs.[43–45].

Within mean-field theory 2−al =1 so that the singular line
contribution becomes indistinguishable from the analytical
background contribution. Thus our present approach renders
only the sum of these two contributions without the possibil-
ity to isolate the amplitude functionsal

±sgd. As indicated by
the pole,1/s1−ald for d→4, inclusion of Gaussian fluc-
tuations beyond the simple mean-field theory is expected to
generate a term,t lnutu due to the resonance of the singular
contribution,1/s1−aldt2−al with an analytical background
term ,t [46]. The amplitude of the singular term,t lnutu
would allow one to retrieve at least the mean-field expression
for al

±sgd. However, this technically challenging inclusion of
Gaussian fluctuations is beyond the scope of the present
work.

A suitable approach to obtain the change of the free en-
ergy upon varying the opening angle of the wedge or ridge
involves calculating the field theoretical stress tensor. Analo-
gously to the free energy density, the corresponding torque
requires additive renormalization up to second order in tem-
perature[47]. We have followed this route within the present
mean-field theory without isolating the critical Casimir
torque. We have found that this combined torque diverges as
M ,1/g2 for small g, and it appears to be a linear function
of 1/g2 within the angle range betweeng=20° and g
=280°.

V. SUMMARY

In the present study of critical adsorption in wedges and
close to ridges(see Fig. 1) we have obtained the following
main results.

(1) We have discussed the scaling properties of the order
parameter profilem±sr ,t ;gd=autubP±sr /j± ,u ;gd in terms of
the bulk correlation lengthj±=j0

±utu−n above and below the
critical point Tc with t=sT−Tcd /Tc. The universal scaling
functions P±sr /j± ,u ;gd diverge according to a power law
close to the walls of the wedge or ridge, and decay exponen-
tially far away from the walls[Eq. (8)].

(2) In the thermodynamic limit the excess adsorption

G̃±ss' ,si ,t ;gd [Eq. (10)] for volumes with linear extensions
s' and si (see Figs. 12 and 14) decomposes into a surface
contribution that scales with the actual surface area of the
confining wallsfs'si

sd−2dg and a line contribution that scales
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with the extension in the invariant directionsfsi
sd−2dg [see Eq.

(11)] as described in detail in the Appendix. The line contri-
bution is the specific contribution arising from the influence
of the edge on the order parameter profile. Its amplitude

Gl
±st ,gd has the scaling formGl

±st ,gd=aj0
±2

utub−2nḠ±sgd with

the universal amplitude functionsḠ±sgd [Eq. (15)] carrying
the dependence on the opening angleg.

(3) We calculate the above scaling functions within the
mean-field theory[see Eqs.(16) and(17)] using a numerical
algorithm both above and below the critical temperature(for
a wedge see Figs. 2 and 5, for a ridge see Figs. 7 and 8). The
amplitude functions of the power law divergence of the pro-
file close to the walls[Eq. (8)] are shown in Fig. 6.

(4) Our numerical calculation also yields the experimen-
tally relevant excess adsorption within the mean-field ap-

proximation. The universal amplitudesḠ+sgd are shown in

Fig. 10. For small opening anglesg they diverge asḠ+sg
→0d,1/g, vary linearly close tog=p for gøp, and their
absolute values increase rapidly forg.p. Numerical evi-
dence suggests that this latter increase is exponential, but
without divergence(see Fig. 11). The reduced excess adsorp-

tion Ḡ+sgd above the critical temperature appears to be pro-

portional to the reduced excess adsorptionḠ−sgd below the

critical temperature withḠ+sgd / Ḡ−sgd=1.137±0.006. We
have considered a wedge and a ridge together as forming the
basic unit in a periodic array(see Fig. 13). The total excess
adsorption relative to that of a planar substrate with the same
area as the actual one of the corrugated surface[Eq. (A10)] is
decreased by the line contribution(see Fig. 11).

(5) The variation of the free energy of the system with
the opening angle of the wedge or ridge gives rise to a torque
acting on the sidewalls[Eq. (29)]. The free energy decom-
poses into a singular contribution exhibiting scaling[see Eq.
(27)], and an analytic background contribution[Eq. (28)]. In
d=3 the critical Casimir torque varies asal

±sgdutun with uni-
versal amplitude functionsal

±sgd. This cusplike temperature
singularity is expected to be experimentally accessible via
suitable force microscopy. The theoretical calculation of the
corresponding amplitude functions remains as a challenge.
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APPENDIX: DECOMPOSITION OF THE
EXCESS ADSORPTION

In this appendix we discuss how the excess adsorption in
a wedge or at a ridge decomposes into surface and line con-
tributions[see Eqs.(11)–(13)]. In the definition of the excess
adsorption[Eq. (10)] one considers a finite volumeV of in-
tegration that is enlarged to fill the total volume of the wedge
or ridge in the thermodynamic limit. As shown later for three
examples, the expression for the line term[such as Eq.(13)]
actually depends on the choice of the shape of the volumeV.

In the following we first analyze the excess adsorption for
a single macroscopic wedge or ridge(1), which will be fol-
lowed by a discussion of the excess adsorption for two pos-
sible experimental realizations[(2) and (3)].

1. A single macroscopic wedge or ridge

a. First choice of the volume of integration

Our first choice forV is shown in Fig. 12 for the case of
a wedge. This choice is inspired by the idea that the single
wedge or ridge considered here is ultimately a member of a
periodic array. With this polygonal cross section and a simi-
larly constructed one for the ridge, one can cover the total
volumeVtot of a fluid in contact with a surface formed as a
periodic array of wedges and ridges in a natural way(see
Fig. 13). All the formulas explicitly stated later for the wedge
are valid for the ridge, too.

The volumeV is symmetric with respect to the bisector
plane of the wedge, which allows us in the following to
consider only one half of the wedge, and multiply the corre-
sponding expression by a factor of 2.

As indicated in Fig. 12 the volumeV in Eq. (10) is finite
and thus the integral is finite, too. As a first step in carrying
out the thermodynamic limit we keep the shape ofV but shift
the upper boundaryz=constto infinity. Sincem± approaches

mb exponentially, this extension ofV increasesG̃± by an
exponentially small amount and thus does not contribute to
the two leading terms under consideration in Eq.(11). [In the
spirit of the thermodynamic limit one first increasesV before
one can possibly consider the limitt→0. Therefore these
arguments are not impaired by a power law decay ofm±sz
→` ,t=0d in the thermodynamic limit.] For the resulting
semi-infinite strip Eq.(10) can be rewritten in the following
form by adding and subtracting the order parameter profile
m±

`/2sz=r sinu ,td of a fluid in contact with an infinite planar
wall in the integrand(see Figs. 1 and 12):

G̃±ss',si,t;gd = 2si
d−2E

0

`

dzE
z / tansg/2d

s' / 2+z / tansg/2d

3dx8hm±†rsx8,zd,usx8,zd,t;g‡

− m±
`/2sz,tdj+ 2si

d−2E
0

`

dzE
z / tansg/2d

s' / 2+z / tansg/2d

3dx8fm±
`/2sz,td − mbstdg, sA1d

where x8=r cosu=zcossg /2d+x sinsg /2d is the coordinate
measured from the apex parallel to the nearest wall of the
wedge andz=r sinu=zsinsg /2d−x cossg /2d is the normal
distance from the nearest wall of the wedge(see Fig. 12).

In the inner integral of the first term the upper integration
limit can be shifted to infinity, i.e.,s'→ +`, with an addi-
tion of only exponentially small corrections to the integral,
becausem± approachesm±

`/2 exponentially forx8→ +` at
fixed z. Thus the first term in Eq.(A1) approaches a constant
for s'→ +` and this constant involves an unlimited integral
over the whole half of the wedge. Expressed in terms of
cylindrical coordinates this term yields the line contribution
Gl

±st ,gdsi
sd−2d in Eqs.(11) and (13).
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As the integrand of the second term in Eq.(A1) does not
depend onx8, the inner integration simply yields a factor
s' /2. The outer integral then yieldsG±

`/2 in Eq. (3). Together
with Eq. (12) this verifies Eq.(11).

b. Second choice of the volume of integration

Our second choice of the shape of the volumeV as shown
in Fig. 14(a) corresponds to the one used in Ref.[37], where
liquids confined by two opposing structured walls have been
studied; in this geometry one cannot infinitely extend the
volume in the +z direction. On the other hand in the case of
the ridge as shown in Fig. 14(b), starting out from a finite
volumeV, the upper boundary of the volumesz=constd can
be shifted to +̀ as well as the two vertical boundariessx
= ±constd to ±` with only exponentially small corrections to
the integral in Eq.(10), because in the directionsz→` and
x→ ±` for z fixed the order parameter attains its bulk value
exponentially. As for the previous choice also for the present
geometries Eq.(10) can be rewritten by adding and subtract-
ing the order parameter profilem±

`/2sz=r sinu ,td of a fluid in
contact with an infinite planar wall in the integrand(see Fig.
14):

G̃±ss',si,t;gd = 2si
d−2E

0

s' / 4sin g

dzE
z / tansg/2d

s' / 2−z tansg/2d

3dx8hm±frsx8,zd,usx8,zd,t;gg − m±
`/2sz,tdj

+ 2si
d−2E

0

s' / 4sin g

dzE
z / tansg/2d

s' / 2−z tansg/2d

3dx8fm±
`/2sz,td − mbstdg, sA2d

where as beforex8=r cosu is the coordinate parallel to the
wall, andz=r sinu normal to it [see Fig. 14(a)]. In the first

term the upper integration limits of both integrals can be
shifted to infinity, i.e.,s'→`, with an addition of only ex-
ponentially small corrections to the integral, becausem± ap-
proachesm±

`/2 exponentially forx8→ +` at fixedz, andm±
attains its bulk value exponentially forz→ +` at fixed x8.
Thus for the first term the limits'→` exists and is finite
with the two-dimensional integral covering the whole half of
the wedge. Expressed in terms of cylindrical coordinates this
term yields the line termGl

±st ,gdsi
sd−2d [see Eqs.(11) and

(13)] as for the previous choice of the volume.
The inner integral in the second term can be carried out,

because the integrand is independent ofx8. This yields
a prefactor s' /2−zftansg /2d+s1/ tang /2dg= 1

2hs'

−s4/singdzj. The first term of this prefactor gives rise to the
surface contribution in Eqs.(3), (11), and(12), if one shifts
the upper integration limit of thez integration to infinity with
the addition of exponentially small corrections. After multi-
plying this prefactor by 2, its second term gives rise, how-
ever, to another line contribution with the amplitude

Ĝl
±st,gd =

− 4

sing
E

0

`

zfm±
`/2sz,td − mbstdgdz, sA3d

where the upper limit of integration has also been shifted to
infinity with an exponentially small correction. We note that
this additional line term depends on the order parameter pro-
file at a planar substrate only. Due to the extra factorz in the
integrand, the integral in Eq.(A3) is finite for d=4 in spite of

m±
`/2sz→0d,z−1 in this case, i.e.,Ĝ± does not carry a factor

proportional to 1/sn−bd asG±
`/2 does[compare Eq.(6)].

c. Third choice of the volume of integration

Our third choice of the shape of the volumeV as shown in
Fig. 15 is motivated by an extension of the natural geometry
for a fluid bounded by an infinite planar wallsg=pd. In that
planar case it is straightforward to choose a volume, in which
the bounding wallsx8;x= ±constare perpendicular to the
substrate wallz=0. If we bisect this volume in the middle
with the planex=0 perpendicular to the outer walls and fold
the half-planesx,0,z=0 and x.0,z=0 partly along the
line x=0=z while keeping the outer boundariessx8=constd
perpendicular to the wall, the wedge is formed(see Fig. 15).
This procedure shows that in the general wedge geometry

FIG. 14. A second choice for the volumeV of integration in the
definition of the excess adsorption[Eq. (10)] for a wedge(a) and a
ridge (b) with its cross section in the plane perpendicular to the
invariant directions.

FIG. 15. A third choice for the volumeV of integration in the
definition of the excess adsorption[Eq. (10)] for a wedge with its
cross section in the plane perpendicular to the invariant directions.
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there will be a missing volume as compared to the planar
case, and the substrate potentials stemming from the walls of
the wedge are superimposed.

This choice of volume is inspired by subdividing the
grand potentialV of the fluid into volume, surface, and line
contributions

V = − pV+ ḡss'si
d−2 + t̄sgdsi

d−2, sA4d

where p denotes the bulk pressure of the fluid,ḡs=gs
+tansg /2dgvac with gs as the planar wall-fluid surface tension
of a semi-infinite system, andgvac as the fluid-vacuum sur-
face tension introduced by the outer boundaries;t̄sgd=tsgd
+2tvac,fluid,s+tvac,fluid is the line contribution which consists
of the line tensiontsgd due to the apex of the wedge and of
the two line contributions 2tvac,fluid,s due to the intersections
of the outer boundaries with the substrates forming the
wedge, and the line contributiontvac,fluid due to the intersec-
tion of these boundaries with each other at the top corner of
the volumeV. For a one-component liquid with chemical
potential m and number densityrsrd one hass] /]mdsV
+pVd=−eVfrsrd−rbgddr =−ss'si

d−2Gs+si
d−2Gld, which pro-

vides the decomposition of the excess adsorption into a sur-
face sGsd and a linesGld contribution.

As for the previous two choices ofV, in the general case
of an order parameter distributionmsrd one can obtain the
excess adsorption directly by suitably adding and subtracting
in the expression for the adsorption the order parameter pro-
file m±

`/2sz=r sinu ,td for a semi-infinite system with a planar
wall. This leads to[see Fig. 15 and compare Eqs.(A1) and
(A2)]:

G̃±ss',si,t;gd = 2si
d−2E

0

s' / 2tansg/2d
dzE

z / tansg/2d

s' / 2

3dx8hm±frsx8,zd,usx8,zd,t;gg − m±
`/2sz,tdj

+ 2si
d−2E

0

s' / 2tansg/2d
dzE

z / tansg/2d

s' / 2

3dx8fm±
`/2sz,td − mbstdg, sA5d

where as beforex8=r cosu is the coordinate parallel to the
wall, andz=r sinu normal to it(see Fig. 15). In the first term
the upper integration limits of both integrals can be shifted to
infinity, i.e., s'→`, with an addition of only exponentially
small corrections to the integral, becausem± approachesm±

`/2

exponentially forx8→ +` at fixedz, andm± attains its bulk
value exponentially forz→ +` at fixedx8. Thus for the first
term the limit s'→` exists and is finite with the two-
dimensional integral covering the whole half of the wedge.
Expressed in terms of cylindrical coordinates this term yields
the line termGl

±st ,gdsi
sd−2d [see Eqs.(11) and(13)] as for the

previous two choices of the volume.
The inner integral in the second term can be carried out,

because the integrand is independent ofx8. This yields a
prefactorss' /2d−z / tansg /2d. The first term of this prefactor
gives rise to the surface contribution in Eqs.(3), (11), and
(12), if one shifts the upper integration limit of thez integra-
tion to infinity with the addition of exponentially small cor-

rections. After multiplying this prefactor by 2, its second
term gives rise, however, to another line contribution with
the amplitude

Ǧl
±st,gd =

− 2

tan
g

2

E
0

`

zfm±
`/2sz,td − mbstdgdz sA6d

=fcos2sg/2dgĜl
±st,gd, sA7d

where the upper limit of integration has also been shifted to
infinity with an exponentially small correction. We note that
this additional line term depends on the order parameter pro-
file at a planar substrate only. Due to the extra factorz in the
integrand, the integral in Eq.(A3) is finite for d=4 in spite of

m±
`/2sz→0d,z−1 in this case, i.e.,Ǧ± does not carry a factor

proportional to 1/sn−bd asG±
`/2 does[compare Eqs.(6) and

(A3)].
Thus in the thermodynamic limit the three choices of the

integration volumeV yield the same surface contributionsGs
±

to the excess adsorption but different subdominant line con-
tributionsGl

±:

E
V

ddx m±sxd = Vmb + SGs
± + LGl

± + Oss'
−1d sA8ad

with

Gl
± = Gl,I

± st,gd = 2E
0

g/2

duE
0

`

dr rfm±sr,u,t;gd

− m±
`/2szsr,ud,tdg, choice I, sA8bd

Gl
± = Gl,II

± st,gd = Gl,I
± st,gd + Ĝl

±st,gd, choice II, sA8cd

and

Gl
± = Gl,III

± st,gd = Gl,I
± st,gd + Ǧl

±st,gd, choice III,

sA8dd

with S=s'si
d−2,L=si

d−2,Ĝl
± given by Eq.(A3), andǦl

± given
by Eq.(A7). Experiments cannot be carried out for infinitely
deep wedges. Instead they can be carried out for either a
periodic array of wedges or for a single wedge of finite depth
carved out from a wide planar surface. In both cases addi-
tional ridges must be formed giving rise to their own adsorp-
tion properties. Therefore experiments on such systems give
access only to certain combinations of wedge and ridge ex-
cess adsorptions, whose corresponding line contributions
carry the relevant additional information about the nonplanar
substrate geometry. The actual choice of the corresponding
integration volume depends on the actual experimental setup
(compare, e.g., Fig. 13; see Subsecs. 2/3). The results of this
subsection show that the line contributions depend on such
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details even in the thermodynamic limit. In the following
two subsections it turns out that the choices I and II will
enter into the expressions for the excess adsorption on a pe-
riodic array of wedges and ridges and on a single deep
wedge, respectively.

2. Periodic array of wedges and ridges

In this subsection we consider a substrate with a periodic
series of edges and wedges as depicted in Fig. 13. There is a
variety of experimental techniques to create such kind of
surface morphology. If the opening angle of the wedges isg,
the opening angle of the ridges is 2p−g. Here we focus on
the limiting case that the depth of the wedgesD
=s' cossg /2d is sufficiently large, so that the deviations of
the profiles close to the edges of the wedges and ridges,
respectively, from the profile of a fluid exposed to an infinite
planar substrate do not influence each other. As apparent
from Figs. 12 and 13, this case corresponds to the first choice
of the volume of integration for the single wedge or ridge
and thus leads to the following decomposition of the excess
adsorption[see Eq.(A8b)]:

E
Vtot

ddx m±sx,t;gd = Vtotmbstd + StotGs
±std + LfNwGlw

± st,gwd

+ NrGlr
± st,grdg + Oss'

−1d sA9d

with the total surface of the substrateStot=Ns'si
d−2, where

N=Nw+Nr is the number of segments of lengths' ,Gs
±std

=G±
`/2std [see Eq.(3)], L=si

d−2,Nw=Nr are the numbers of
wedges and ridges, respectively, and

Glwsrd
± ft,gwsrdg = 2E

0

gwsrd/2

duE
0

`

dr rfm±
wsrd

„r,u,t;gwsrd…

− m±
`/2

„zsr,ud,t…g, sA10d

where gw is the opening angle of the wedge, andgr =2p
−gw. This is in accordance with Eqs.(32)–(36) of Ref. [37],
where a different coordinate system was used[48].

3. A single wedge embedded into a planar wall

In this subsection we consider a single wedge of opening
angleg carved out of a planar surface, thus producing also
two ridges of opening angless3p−gd /2 (see Fig. 16). Due to
the symmetry of the configuration we consider only half of
the wedge and focus on the case thats' is sufficiently large
so that the ridges and the wedge do not influence each other.
One half of the total volume of the fluid is decomposed into
six numbered subvolumes as shown in Fig. 16. We calculate
the excess adsorption[Eq. (10)] separately for each one of
the subvolumes by adding and subtracting the profile of a
fluid exposed to an infinite planar wallm±

`/2 in the integral of
the order parameter as in Subsecs. 1/2.

For the first volume there is no line contribution resulting
from the integral over the difference of the actual profilem±
from that in front of an infinite planar wallm±

`/2, because this
difference is exponentially small in the thermodynamic limit.
There is also no surface term, because this first volume
touches the substrate only at one point. However, following
similar considerations as for a single wedge or ridge, this
volume gives rise to a line contribution[see Eq.(A8a)] to the
excess adsorption[Eq. (10)] due to the deviation ofm±

`/2

from mb with amplitudes

Ĝl,1
± st,gd = tan

p − g

4
E

0

`

zfm±
`/2sz,td − mbstdgdz,

sA11d

where we have shifted thez=constboundary to +̀ with an
exponentially small correction to the integral.

In the thermodynamic limitss' , s'8 →`d the adsorption
profile m± in the second volume will tend exponentially to
that of a fluid exposed to an infinite planar wallm±

`/2. Thus it
supplies a surface term with the amplitudesGs

±std=G±
`/2std

[see Eq.(3)] for the areas'8 si
d−2. We note that this subvolume

2 when extended to infinity in the +z direction overlaps with
the other half of the wedge, but this results in only an expo-
nentially small correction to the excess adsorption, because
the profile m± approaches the bulk valuemb exponentially
with the distancez from the wall. The subvolume two does
not generate a line contribution.

The third volume gives the same contributions[Eq.
(A8a)] to the excess adsorption as a single ridge of opening
angles3p−gd /2 with the first choice of volume of integra-
tion shown in Fig. 12, i.e., a surface term with the amplitudes
Gs

±std=G±
`/2std for an areas'si

d−2 [see Eq.(3)] and line term
amplitudesGlr

± (t ,gr =s3p−gd /2) [see Eq.(A10)]. Note that
the volume of integration can be extended to infinity in the
direction parallel to the bisector of the ridge even though in
this case there is an overlap with the other half of the wedge,
because this results in only an exponentially small correction
to the excess adsorption as the profilem± approaches the
bulk value mb exponentially in this direction further away
from the ridge.

FIG. 16. A fluid is bounded by a substrate shaped as a wedge
carved out of an infinite planar wall. The total volume of the fluid
can be decomposed into the numbered subvolumes that emerge
naturally due to subvolumes 3 and 5 used for describing a single
ridge [first choice of the volume of integration(1a)] and a single
wedge [second choice of the volume of integration(1b)],
respectively.
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Similarly to subvolume 1, subvolume 4 does not generate
a line term resulting from the integral over the difference of
the actual profilem± from m±

`/2. There is also no surface
term, but similar considerations as for a single wedge or
ridge show that this subvolume gives rise to a line contribu-
tion to the excess adsorption with amplitudes of the form

Ĝl,4
± st,gd = Ftan

p − g

4
+ tan

g

2
GE

0

`

zfm±
`/2sz,td − mbstdgdz,

sA12d

once we have shifted thex=0 boundary to +̀ with an ex-
ponentially small correction to the integral.

The fifth subvolume together with its counterpart atx.0
gives the same contributions[Eq. (A8c)] to the excess ad-
sorption as a wedge of opening angleg with the second
choice of the volume of integration shown in Fig. 14(a), i.e.,
a surface term with amplitudesGs

±std=G±
`/2std [see Eq.(3)]

for the areas'si
d−2, and the line term amplitudesGl,II

± st ,gd
from Eq. (A8c).

Finally, subvolume 6 yields only an exponentially small
contribution to the excess adsorption.

Adding up all contributions to the excess adsorption in
this geometry one obtains

E
Vtot

ddx m±sx,t;gd

= Vtotmbstd + StotGs
±std

+ L3Glw
± st,gwd + 2Glr

± ft,gr = s3p − gwd/2g

+ 41 1

cos
gw

2

−
1

singw
−

1

2
tan

gw

2 2
3E

0

`

z„m±
`/2sz,td − mbstd…dz4 + Oss'

−1d. sA13d

As in the case of a periodic array of wedges and ridges the
line contribution to the excess adsorption contains a combi-
nation of wedge and ridge terms. Since different combina-
tions thereof enter into the excess adsorption of a periodic
array and of a single embedded wedge, measurements of
both of them provide independent information. However,
these configurations do not allow one to access the ridge and
wedge contributions individually. In the case of a single em-
bedded wedge the line contribution to the excess adsorption
contains in addition the first moment of the order parameter
profile of a semi-infinite planar system, which can be deter-
mined independently from the knowledge ofm`/2szd.
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