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Critical adsorption and Casimir torque in wedges and at ridges
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Geometrical structures of confining surfaces profoundly influence the adsorption of fluids upon approaching
a critical pointT, in their bulk phase diagram, i.e., for(T-T.)/T.— 0. Guided by general scaling consid-
erations, we calculate, within the mean-field theory, the temperature dependence of the order parameter profile
in a wedge with opening angle< = and close to a ridgéy> ) for T= T, and in the presence of surface
fields. For a suitably defined reduced excess adsorption,t— +0) ~I'.(y)[t|#~2” we compute the universal
amplitudesl".(y), which diverge ad’.(y— 0) ~1/vy for small opening angles, vary linearly closeys = for
y<r, and increase exponentially far— 27r. There is evidence that, within the mean-field theory, the ratio
I'+(y)/T_(y) is independent ofy. We also discuss the critical Casimir torque acting on the sides of the wedge
as a function of the opening angle and temperature.
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I. INTRODUCTION mixtures near their demixing critical point. In both cases the

Boundaries induce deviations of the local structural propSubstrate potential ofdthe conglmfng cohntaur;]er ]ylva_(ljls and lthe
erties of condensed matter from their corresponding buHE“'SS'”tQ' mtertac:lo?r? uebt? tt e fact t attt '?h u'ﬁ p?rtlc es
values. Typically the width of such boundary layers is pro'?;lcnenﬁelzgnaectri?]geoneihseucgrgs%grlxﬁngsgr d%r pzrgn(;é:é\f sur-
portional to the b_u_Ik correlation lengt Near a continuous sity or concentration differengeAs a consequence, in this
bulk phqse transition at a temperatre T, the correlation case even aboVE, there is a nonvanishing order parameter
length d|\ier9Ves.accord'|ng to a power 1@(t=(T-To)/Tc  rofile which decays to zero foF=T, upon approaching
—*0)=&lt| W'th+a universal b';r'lk exponentand nonuni- e pylk, i.e., for increasing normal distanze: = from the
versal amplitudeg; whose ratiof,/ &, is universal, t00. For  gyrface atz=0. For T<T, this profile attains the nonzero
the three-dimensional Ising universality class-0.63 and ya|ye of the bulk order parameter for- . Following early
§o/ £9=2[1], whereas within the mean-field theory, which is ¢a|culations on magnetic systems by Binder and Hohenberg
valid for spatial dimensionsl=4, v=1/2, andéo/£,=\2.  [2], this so-called critical adsorption was first examined in
The nonuniversal amplitude, are typically in the order of  detail by Fisher and de Gennfgj and has since been ana-
the range of the interaction potential of the ordering degreeg,zed for many systems both theoreticaly—6] and experi-
of f_reedom, i.e., a few angstroms. T_he correlat;on length Ismentally [7], and a fair agreement between theory and ex-
defined as the scale of the exponentially decaying two-poingeriment has been fouri@,9].

correlation function~e™""%. Surface order above the bulk critical temperature can also
The local critical properties near planar confining surfacege due to spontaneous symmetry breaking caused by en-
have been studied theoretically and experimentally in detailygnced surface couplings between the ordering degrees of
It has turned out, that each bulk universality class splits Ugreedom, e.g., spins in magnetic systems. The transition to
into three possible surface universality classes denoted afjs state from the disordered state is usually denoted as the
ordinary, special, and normal transitions. Each of them givegxtraordinary transition. Bray and Moof&0] predicted an
rise to distinct surface critical phenomena. The type ofequivalence between the normal and the extraordinary tran-
boundary conditions determines in which surface universalsjtions that was later proved by Burkhardt and DigHl]. In
ity class a given system belongs. The ordinary transition recontrast to the ordinary transition in magnetic systems, the
quires the absence of surface fields, the special transition iorresponding extraordinary transition has been investigated
characterized by the absence of a surface field, too, but al§g z |esser extent. Extending and improving earlier work
by suitably tuned, enhanced surface couplings between ﬂﬁZ—lEj, Diehl and Smock{16] have carried out a field-
ordering degrees of freedom, and the normal transition repheoretic renormalization-group calculation in & €¢imen-
resents systems whose surfaces are exposed to surface fielgigns for the extraordinary transition in semi-infinite systems
As indicated by the name, thg _Iatter one is the generic cas@elonging to the Ising universality clags7] computing the
For example the normal transition applies to one-componeryrder parameter profile to one-loop order. The results are in
fluids near their liquid-vapor critical point, or to binary liquid fgjr agreement with those obtained by Monte Carlo simula-
tions [9].
These studies are devoted to the case of planar surfaces.
*Permanent address: Department of Physics, University of VeszOnly very carefully treated solid surfaces are atomically flat;
prém, P.O. Box 158, H-8201 Veszprém, Hungary. Electronic adgenerically, however, they exhibit corrugations. Besides
dress: palagyig@almos.vein.hu these random deviations from the flat topography, there is
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nowadays an abundance of experimental technifL&gshat Critical adsorption in a wedge has been studied by Hanke
allow one to endow solid surfaces with precise lateral geoet al.[30]. Within the mean-field theory the order parameter
metrical structures, ranging from the micron scale down tdrofile was calculated exactigt the critical point. Through
tens of nanometerdnter alia, such solid surfaces are used gpy interpolation scheme between exact results5@ and the
within the context of microfluidic devicefl9] in order to . oon field results corresponding =4, angle dependent

guide fluids along such structures. The fluids perfectly fill . 001 oxnonents of the order parameter and those govern-
this laterally structured environment and thus fully exhibit . . . .
g the decay of two-point correlation functions were ob-

the strong structural changes associated with that. In thig! :
context it is of interest what kind of structures appear in thd@ined ford=3 as well. The present study extends these in-
fluid if it is brought, say, close to a demixing transition and is Vestigations into various directions.

exposed to geometrically structured substrates. If the charac- First, we analyze the temperature dependence off critical-
teristic sizes of the lateral structures are comparable with thgy for critical adsorption in a wedge. General scaling prop-
correlation length, which in fluids reaches typically up to aerties for the order parameter profile and the excess adsorp-
few thousand angstroms closeTg one can expect a strong tion are discussed and the corresponding scaling functions
influence on the aforementioned critical adsorption phenomare calculated within the mean-field theory. This analysis is
ena. carried out above and beloW, including a systematic study

Theoretically this raises the issue of how the local criticalof the dependence on the opening anglef the wedge. This
properties depend on trshapeof the boundaries. A typical covers also the casg> w describing critical adsorption near
manmade structure is a series of grooves with various shapes

of the cross section, e.g., wedgelike. The first step in theif* ridge. .
investigation is the study of a single wedge, which already S€cond, as a new feature, we study the Casimir torque
shows new features and gives new insight into the influenc&Cting on the sides of the wedge or ridge. The confinement
of geometry on critical behavior. The Ordinary transition of modifies the fluctuation spectrum of the critical fluctuations
the isotropioN-vector model at an edge has been investigate@nd the order parameter profiles. This leads to a dependence
by Cardy[20] within the framework of the mean-field theory, of the free energy of the critical medium on the shape of and
the renormalization group, ane expansion. Subsequently the distance between the confining boundaries, which results
the two-dimensional wedggorner geometrywas studied in an effective force acting on them. Thus the physical origin
by exact calculations, mainly for Ising modg1], and by o this force, originally predicted by Fisher and de Gennes
conformal mapping at the bulk critical temperatU2]. 31 for two parallel plates immersed into a binary liquid mix-
New edge and corner exponents were found that depend lre near its continuous demixing transition, is analogous to

the opening angley of the wedge. More recently similar the Casimir force acting on conducting plates in vacuum due

findings of Monte Carlo simulations of the ordinary transi- ) .
tion of the three-dimensional Ising modi23] have been to the confinement of quantum mechanical vacuum fluctua-

reported, in accordance with high temperature series expations of the electromagnetic fie[@1]. The Casimir force is
sions[24]. The angle dependence of the critical wedge ex-governed by universal scaling functiof&2] and is superim-
ponents can be attributed to the fact that the wedge geometPsed on the noncritical background forces, which in the
lacks a length scale and thus is invariant under rescaling. Thease of fluids are given by dispersion forces. Recent experi-
opening angle is therefore a marginal variable in a renormalments[33] have confirmed corresponding theoretical predic-
ization transformation, anghayenter into the expressions for tions for the plate geometri34]. For curved surfaces the
the exponents. The same will happen for all other scaleeritical Casimir force plays an important role in the floccu-
invariant shapes of the boundar{@%]. However, for a given lation of colloidal particles suspended in a solvent undergo-
opening angle, the values of the critical exponents are exng a continuous phase transitifdb]. In the present context
pected to be universal and independent of microscopic dethe free energy of the critical medium depends on the open-
tails. According to recent Monte Carlo simulations of three-ing angley; its derivative with respect toz amounts to the
dimensional Ising models with edges and corf@&, angle critical Casimir torque acting on the sides of the wedge or
dependent critical exponents are observed at the ordinanydge. If the substrate forming the wedge or ridge is com-
transition, whereas the surface transition seems to be nonurposed of soft materials like, e.g., membranes, this critical
versal. The critical exponents in this latter case appear t€asimir torque is expected to give rise to elastic deforma-
depend on the strengths of the local couplings, in analogtions. It might also be experimentally accessible by suitable
with exact results obtained for the two-dimensional Isingforce microscopy with moveable sidewalls of a wedgelike
model with defect lineq27]. Critical adsorption has also structure.
been studied in general dimensiodson curved surfaces The paper is organized as follows. In Sec. Il we discuss
[28]. the general scaling properties of the order parameter profiles
Since critical adsorption changes the composition of a biand the excess adsorption. The scaling functions are deter-
nary liquid mixture close to its surface, mechanical proper-mined within the mean-field theory and analyzed in detail in
ties, such as the local viscosity and the mutual diffusion coSec. Ill. Section IV focuses on the free energy of the con-
efficient will also vary in space. So we expect variousfined fluid and the critical Casimir torque resulting from its
phenomena, such as flow properties in porous media, thengle dependence. Section V summarizes our findings. In the
spreading properties of droplets, surface chemical reactiong\ppendix we discuss how the excess adsorption in a wedge
the permeability of membranes, e{@9], to be influenced or at a ridge decomposes into surface and line contributions
significantly by critical adsorption. with two possible experimental realizations.
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Il. GENERAL SCALING PROPERTIES OF ORDER //\
PARAMETER PROFILES AND EXCESS ADSORPTION // o o\ />/
Since fluids can fill a container of arbitrary shape, in the T 7

present context of critical systems exposed to substrates / /:oo‘ 5 %45 % 2
shaped as wedges we consiflaids close to their bulk criti- .

cal pointT. This can be either a liquid-vapor critical point or
a demixing critical point in the case of binary liquid mix-
tures. The interaction of the container walls with the fluid
particles results in a spatial variation of the number densities
close to the boundaries. The deviation of the density of the
fluid, or of the concentration of one of its two components in
the case of binary liquid mixtures, from the corresponding
bulk value atT; is chosen as the local order parameter de-
scribing the phase transition.

The order parameter profimf’z(g“,t) near aplanar inter-
face and close to the critical temperatiigtakes the follow-
ing scaling form[8,9,14,16,38

moA¢ 0 =atPPYA e, t=(T-T)Te, (1)

for distances{ = o perpendicular to the interface and suffi- ridge
ciently large compared to a typical microscopic length
&(t—0)=¢5|t|™ is the bulk correlation length above) or FIG. 1. Awedge and a ridge with opening anglexposed to a

below (-)T;, 8 and v are the standard bulk critical expo- binary liquid mixture. The system is translationally invariant in the
nents, and is the reduced temperature. The scaling functionssubspace parallel to the edge. Within a plane orthogonal to the edge
Pf’z(gizg/gi) are universal once the nonuniversal bulk am_thg polar coordinates areand 4. The linear extensions of the con-
plitudesa and £ are fixed, whera is the amplitude of the ~fining surfaces arg, ands, .

bulk order parametem™?({=o,t—07)=alt|f=my(t). With

the prefactors fixed as those of theue correlation length /2 T 2 /2

defined by the exponential decay of the bulk two-point cor- ) :J (M5 ==, 1)]dg

relation function in real space, one find®"?(x) 0

=1, P%e0)=0, PY(¢ —o0)-1~eE, PYA(f,—o0)~ et _ f x
hs o Al * +agglt| PY2(20) = PY(¢ = =) L.
and Pilz(é—*o)—cié“:ﬁ/ [16], so that §0|| U—/gi[ + (g_) + ({_ )] g_
M2(£,t = 0) = ac(¢1E) A, B “@

: - . Upon approachingl, the first integral remains finite and
Any other choice for the definition of the correlation length yields a nonuniversal constant, which is subdominant to the

. ; ; 2
gal?dosbt;ﬁ/;%?:ﬁn:};)nqig;;h?eﬁ:!:]guwghcgr?ﬁg d S#_%?Sthjr: derinerging second term. The second integral leads to the well
q gec. known power-law singularity OF:/Z(I—>O) for d<4:

scores that the scaling functions are universal, but that thelir

form depends on the definition of the correlation length. The t[E
amplitudes of the scaling functions are fixed by the require- 2t —o0)= atsg, . d<4, (5)
ment P*/?(s)=1. Accordingly the numbers, are universal : “v-

surface amplitudes which are definition depend@&it ] ) .

Close toT, the total enrichment at the interface of, say, Where the numbers, are universal with their values depend-
the A particles as compared to ti particles of a binary INg on the definitions of the bulk order parameter and the
liquid mixture is given by the excess adsorption, which is ancorrelation length. Imi=4 one finds upon inserting the mean-

. A : - - /2 :
experimentally accessible integral quantity. For a planar suif€ld expression forP, = (see Ref.[16]) into Eq. (4) that
face, one has I'Y'“(t) diverges logarithmically. This result can be reconciled

with Eqg. (5) by noting thatl“‘j_,‘j’2 actually needs additive
- o P P renormalization leading t{8]
1= [ o -ne= =0k @
0 [t]F -1

The scaling behavior df%(t) has been discussed in RES] v-B

in detail. The ¢ integration can be split into the intervals  In the wedge or ridge geometriFig. 1) the order param-
{> o and O< (=<0, and for large/ the order parameter pro- eter profile depends on the radial distamcEom the apex,
file mf’z(g,t) can be replaced by E@l), which gives on the polar angl®, and on the opening anghe so that the

I'7%(t — 0) = a¢ig. . d<=a4. (6)
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x’+=x'/§+

FIG. 2. The scaling functioR, of the order parameter profile in
a wedge of opening angtg=/2 with the edge located at the back
of the figure atx’=¢=0 {x’=r cosé, {=r sinf [see Figs. 1 and
14(a)]}. The positions of the walls of the wedge coincide with the
coordinate axes as indicated here with broad lines. The values of
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FIG. 3. Projection of the contour lines of the scaling functian

at which contour lines are drawn are multiples of 0.1 and rangef the order parameter profile in a wedge of opening angle

from 0.1 to 1.0.
variation of the profile is two-dimensional with correspond-
ing generalized scaling functions

m.(r,t;y) = alt|PP.(r/£,, 6 7). 7

=7/2 onto the(x},{,) plane. The edge is locateddt=/,=0. The
curves correspond to values Bf ranging from 0.1 to 0.6 with an
increment of 0.1 from top to bottom. The inset shows that the maxi-
mal curvaturex of the contour lines, occurring on the bisecter,
depends linearly on the values Bf corresponding to the contour
lines within the range oP, values considered here.

As before, the scaling functions are universal once the non-

universal bulk amplitudea and &; are fixed, where is the
amplitude of the bulk order parameter and the amplituifes
are prefactors of therue correlation length as in the case of
the infinite planar wall. One findg30] with r,=r/§&, that
P_(r_=oc,0)=1, P.(r,=«,0)=0, P(r.—«,0)-1
~ eSO (g< /[2), P.(r,—,0) ~eSNO+(g< /2),
P.(r.—0,0)=%.(0,y)r;”", and

P.(r.,0— 0) =c.:P"=cy(r, sino) ", (8)

where,=r, sin 6 (see Fig. 1 The amplitudes of the scaling
functions are again fixed by the requireméhtr=c, ) =1.

by considering only one half of the wedge or the ridgee
Eqg. (9)], and by suitably subtracting and adding the order
parameter profil@ﬁ“’z(gzr sin 6,t) of a fluid in contact with

an infinite planar wall in the integrand of ELO) [compare
Egs. (3)(6) and the Appendik The surface term is deter-
mined solely by the order parameter profile of a semi-infinite
system exposed to a flat substrate

L =T74(). (12

The line contribution, on the other hand, depends on the

The numbersc, are the universal surface amplitudes of thechoice of the volume of integration in E(LO) as shown in

scaling function of the infinite planar wallEq. (2)], and
‘¢.(6,y) are universal functions. Both, andc, depend on

the Appendix. The differences are caused by the different
shapes of the boundaries far away from the apex. This gains

the definition of the correlation length. The scaling functionssignificance for the interpretation of possible experiments

also reflect the symmetry of present the geometry
Pi(ry, 0;7) = Pere, y= 6;7). 9)

We define theexcessadsorption for this geometry con-
fined by surfaces of linear extensiosisin the plane perpen-
dicular to the edge ansg in the translationally invariant di-
rections(see Fig. 1 as

i(sl,s,t;y)=f dir[m.(r,t; ) = my(1)], (10)
\

where the integral is taken over a macroscopic volwhe
occupied by the liquid. According to the Appendix this ex-

carried out for wedges or edges with finite depth. Two such
experimental setups are described in the Appendix. For our
present case of wedges and ridges with half-infinite walls, we
consider the line contribution to be the specific contribution
arising from the change of the order parameter profile caused
by the apex alone

12 o0
FF(t,7)=2fy dﬂf dr r[m.(r, 6,t; 5) — m’2({(r, 6),0)].
0 0

(13

Guided by the description of the adsorption on a planar

cess adsorption decomposes into a surface contribution thaiall (i.e., y=) one can consider a third choice for the vol-
scales with the actual surface area of the confining wall&imeV such that its boundaries are perpendicular to the walls

(s Lq(‘H)) and a line contribution that scales with the exten-

(d-2)

sion in the invariant direction |

137]:
Tu(s,,8,t9) =TE(b)s, §92 + Ti(t, y)s 2 + O(s ).
(11

, .e., a line ind=3]

of the wedge or ridg¢38]. This choice and its implications
are discussed in the Appendix, too.

Based on Eq(7) I'j(t,y) [Eq. (13)] takes on the scaling
form

TE(t,) = ags [t1F 2T (y) (14)

Due to the symmetry of the system one can determine the
amplitudesl'; and T’} for the wedge and the ridge explicitly with the universal amplitude functions
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— vz o 11 (1 o 5
Ly =2 do| drorfPu(rs,0;y) = PL(Lu(rs, 0)], m(r,0,7)=——+{—~=—10+0(6°), (19
0 0 - re \er 6
(150  [B(r,7=0,D(r,7)=0]. This result agrees with the direct
expansion of the mean-field profile obtained fer0 [30]. In
where £.(r.,6)=r. sin 6. We note that the integral in Eq. terms of the scaling functiorB, this implies[see Eq(8)]:

(15) is finite ford=4, i.e.,I', does not carry a factor propor- i
tional to 1/(v- ) asI';’? does[compare Eq(6)]. As one can Pi(ry,0—0)=c,
see from Eqs(6) and(14), the subdominant line contribution

to the excess adsorption carries a more singular temperature (209
dependence than the leading planar surface term. Thus the _
scaling properties of the order parameter profile completel _ 1 1,
fix thegfupnctri)onal form of the exc%ss criticalpadsorptionpup toy P(r-.6—0)= C‘r_ sin 6 1- 1—2r_02 * 0(04)]

the dependence of the universal amplitudg$y) on the (20b)
opening angle. Since this dependence cannot be inferred _

from general scaling arguments, it must be determined exwith c,=y2 andc_=2 [8].

plicitly. This will be carried out within the mean-field theory ~ We use a numerical methd85,39 to minimize Eq.(16)

in the following section. This is possible because as state#ith respect to the order parameter profile at a fixed tempera-
abovel, () is finite for d=4. ture, which is then subsequently varied. For computational

purposes we choose suitably shaped finite volulgs for
different opening angleg of the wedgegw) or ridge(r). We

1
1-=r26%2+0(6% |,
r.singl~ 6" ()]

lll. SCALING FUNCTIONS WITHIN refrain from describing this choice of volumes here, because
THE MEAN-FIELD THEORY it does not matter in the calculation of the universal ampli-
A. Order parameter profiles tude functionsl’.(y). The choice of the volume is relevant

) o _only for that line contribution to the excess adsorption that
~ The standard Ginzburg-Landau Hamiltonian for describ-gepends only on the order parameter profile close to an infi-
ing critical phenomena in confined geometrie$4sb]: nite planar wall and thus is independent of the opening angle
of the wedge(see the Appendix As the temperature is
H{(ﬁ}:f dV{E(V b)2+ 1’¢2+ £¢4}’ (16) changed. we rescale the size of the. volumg, in_ accqr—
V(1) 2 2 24 dance with the change of the correlation lengthé,t™. This
way we control the finite size effects caused by the finiteness
with a scalar order parameter fiefdr), supplemented by the of V. dictated by computational necessity. The finite size
boundary condition¢=+x at the surfaces of the wedge effects manifestthemselves even close to those boundaries of
(ridge) corresponding to the critical adsorption fixed pointthe chosen volume that are far away from the walls of the
[11]. The parameter is proportional to the reduced tempera- wedge because of using approximate boundary conditions at
turet, u is the coupling constant, and the integration runsthese boundariegésee latey. By effectively increasing the
over the volumeV,,,, of the wedge(ridge) (see Fig. L  rescaledvolume upon approaching, the values of the pro-
Within the mean-field theoryT:t/(ég)z for T>T, and files at fixed spatial points within this rescaled volume con-

= ‘%|t|/(§6)2 for T<T, with &5/ £5=12. verge to a limiting value. o
After functional minimization one obtains for the order W& choose a two-dimensional grid j) and calculate the
parametem=u/12(¢) the differential equation deviation of the order parameter profile from the known pro-

file at T=T, at the given grid points. The profile near the
confining surfaces of the wedgadge) is fixed according to
Eq.(19). (The grid points are lined up parallel to the walls of
wherem=m(r, 0, 7 y). Since the scaling functions in E¢) the wedge.At the surfaces of the finite volumé, that_are_ _
have the limiting behavior shown in Eq2), where =v f_urther away from the_ walls of_ the wedge, we p_rescrlbe ini-
=1/2 within the mean-field approximation, in order to derive tial values of the profile. Keeping these values fixed we then
a boundary condition for the numerical calculation of theCalculate new values of the profile inside the volume using
order parameter close to the surfaces of the wedge,d.e., the method of steepest descent. Having obtained the new

—0 for r fixed, we seek a solution for EGL7) in the form values for the profile close to these surfaces, we change the
profile at these surfaces proportionally to the change in their

neighborhood, if it changes significantly in the direction per-
+B(r,7) + C(r,n 0+ DO%r,7) + O(6° pendicular to the surfacéthe general cageor set it equal to
that in neighboring layers if the profile is approximately con-
(18)  stant close to these surfacdsr example far away from the
edges of the wedges parallel to the confining walls of the
for #<1 (suppressing the: dependence in the notatipand  wedge. The rules for the iteration according to the method
obtain for both7>0 andr<0: of steepest descent in the space of the parameters

Am= rm+ 2m°, (17)

Alr,7)

m(r, 0,7) =
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20 T
-— Bv| yE
~c+(e,y)r . T=35

-r,5in
! “A, 0 e ¥

Py

r ¢}

FIG. 5. The scaling functiorP, of the order parameter along
arcs of different radir, centered at the edge of a wedge of opening
angle y=m/2. The curves correspond to valuesreffrom 1 to 5
with increments of 1 from top to bottom. The curves are symmetric
around 9=y/2=m/4 and diverge asc,r;”")¢#" for 6—0. For
r.=1 the comparison with the asymptotic behavigfr, sin 6)Alv
a; = m(rj, 6;,0) — m(ry;, 6;,7) (21 for <y/2 and c,[r,sin(y-60)]7#" for §>y/2 is shown as a
dashed curvésee Eq(8)].

FIG. 4. The scaling functiorP, of the order parameter as a
function of the distance, from the edge of a wedge of opening
angle y=m/2. The curves correspond to valueséfanging from
5° to 25° with an increment of 5° from top to bottom.

are
N IH(a;) an infinite planar Wa||ZA+(0—>O,y):\f‘§ and A_(—0,y)
a"=al" -« —Lﬁai- o (22)  =2. The dependence @4.(6,y) on ¢ is weak. The latter
LY

values are valid fod=<30°, beyond which the prefactors of

wherex is a convergence parameter. With this method it isthe €xponential functions increase withUpon approaching

not necessary to calculate the Hamiltonian itself but only itdh® walls of the wedge vertically, i.e., fér—0 or y with r,
derivative. The method has been described in detail in RefdiX€d [See Eq(8) and Fig. § the divergence of the profile has
[35,39, so here we only want to point out that the diver- & POWer law form. _ ,

gence of the profile close to the walls of the wedge causes a 1€ limiting behaviors of the scaling functioRs close to
divergence in the derivative of the Hamiltonian, too. This cantn® €dge of the wedge. — 0) are described by the ampli-
be avoided, if one takes into account the known form of thedude functionst,(6, ) [see the paragraph following E()
divergence of the profile close to the edges of the wddge ~ and Fig. 4:
Eqg. (19)]. To this end we writey; as a product of two terms,

one of which we choose to be such that when multiplied by

the profile close to the boundariés the calculation of the
derivative it cancels the divergences of the profi[sge Eq.
(19)], yielding a smooth gradient in the parameter space.
approximate the integrand of the gradientHf¢} [see Eq.
(16)] by a sum of delta functions positioned at the grid
points, so that the integral reduces to a simple sum over the
points; for each opening angleis optimized separately for
best convergence.

P.(r. — 0,6) =8.(6,y)r."". (23

These functions are plotted for=7/2 in Fig. 6. According
to Eq. (8), close to the walls of the wedge, i.e., f6—0
Wehese functions are given By (60— 0,y)=c.(sin§) A"

The scaling function of the order parameter profile at a
ridge [see Eqgs(7)—«9)] with an opening angle of 260° is
Fhown in Figs. 7 and 8. One can easily see that the contour
lines rapidly become parallel to the walls of the ridge as one
moves along them further away from the edge. As one moves

The scaling function of the order parameter profile in a - - :
. . .~ “along the bisector of the ridge away from the edge, the maxi-

wedge[see Eqs(7)—(9)] with an opening angle of 90° is ; :
shown in Figs. 2-5. One can easily see that the contour Iineré1al curvaturex of the contour lines decreasesig. 8). «

quickly become parallel to the walls of the wedge as we
move away from the edgeee Figs. 2 and)3This is espe- 1
cially apparent as we approach the walls. As one moves or,
along the bisector of the wedge, the maximal curvatuced
the contour lines decreases shargig. 3). This underscores
that in terms of theescaledvariables, to a good approxima-
tion the effects of the edges are spatially localized. The maxi-
mal curvaturex depends linearly on the values Bf corre- :
sponding to the contour lines within the rangeRaf values ol—ps 3 o8
analyzed in Fig. 3. 6

Along radial directions, i.e., foé=const(Fig. 4) the scal- FIG. 6. The
ing function exhibits a power law limiting behavior close to =[P, (rs, OF"], _o in
the walls in accordance with E¢S) and the paragraph pre- , t—0:x). The solid line corresponds to the function
ceding it. For large . the behavior crosses over into an ex- ¢ (sing)#» (t>0) [see Eq. (8] and the dotted line to
ponential decay: P,(r,—=,0;7)=A.(0,7)e""? P_(r_ ¢ (sinp)#" (t<0), which are valid in the asymptotic regimg
—,0;7)-1=A_(0,y)e"- "% where near the walld. re- .0, but provide a surprisingly good description throughout the
duce to the amplitudes of the exponential decay away fronwhole angle range € < 7/4=0.785.

C,0,y=m/2)

——— g

amplitude  functions TC.(6,y=7/2)
a wedge of opening angley (t>0:
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0.5 23— -2 &*ﬁ

Iii b e 10 0.4 S 1
2 - \\
0 _..—‘W?’ = . 10 X= x/{;+ 0 Ql 3 3 X'+=x'/§+
£=t/8,

z= z/§+

FIG. 9. Contour levels of the integrand of the integral that de-
termines the amplitude of the reduced excess adsorptiohfof,
[see Eqs(15) and(24)] in a wedge of opening angle=m/2 with
the edge located at the back of the figure =»t=¢=0
(x"=r cos#, {=r sin #). The walls of the wedge, indicated by broad
lines, coincide with the coordinate axes. The value®pat which
contour lines are drawn increase with multiples of 0.1 and range

. . from 0.05 to 1.05.
depends linearly on the valu€s characterizing the contour

lines and thus has similar limiting behaviors close to theeffect of the wedaeridae) geometry via its universal ampli-
edge of the ridge and far from it as a functionref at least géridge) g y P

within the range studied in the inset of Fig. 8. tude functiongEq. (15)]. In order to calculate this quantity

Comparing the order parameter profiles in a wedge or at ye use the fact that the integral in ) can be rewritten

ridge with the profile near a planar wall, one can visualize
the wedge or ridge as being formed by breaking the planar
wall into two halves, which in the case of a wedge are
brought closer to each other, and in the case of the ridge are
taken further apart. Close to the edge of the wedge this in-
creases the values of the profiles, while close to the edge of — .
a ridge these values are decreased as compared to the proffgere F(P.) is the area enclosed by the contour lines of
near a planar wall. P.=P.(rs,0;7) -P?[L(rs, 0)] (see Fig. 9. Based on these
areas one is left with a one-dimensional integration to obtain

I'y numerically. Furthermore, exploiting the observation that

the geometrical shapes formed by the contour lines are simi-
The presentation of the full order parameter distributionjar to one another for small and large areas, respectively, and

requires to keep track of four variables; 6, t, and y.  ysing the limiting behavior of the scaling functions, we ap-

Ther(_aforg itis advantageous_ to conS|dgr a]so the excess roximateF(P,) for small values oP, in terms of powers of
sorption in wedges and at ridges, which is experimentall = =

relevant and provides reduced information depending only’:: and for largeP, in terms of powers of ItP.). These
ont and y [Eq. (10)]. We are particularly interested in the @pproximate power laws are calculated based on different

line contribution[see Eqs(11) and(13)] characterizing the intervals inP. chosen as ever narrowing slices of that inter-
val in P, in which the numerical data lie. The narrowing

3 0'7_. : intervals approach the small and Ia@alimit, respectively.
K / With these power law approximations for different intervals

FIG. 7. The scaling functiof., of the order parameter profile at
a ridge of opening angle=260° with the edge perpendicular to the
(X4,z,) plane and located at,=z,=0 [see Figs. 1 and cf. Fig.
14(b)]. The positions of the walls of the ridge are indicated here
with broad lines. The values &, at which contour lines are drawn
are multiples of 0.1 and range from 1.0 to Qt@p to bottom).

T.(y)= f (PP, (24)
0

B. Excess adsorption

| in P, we obtain a series of approximate integrals for those
02 03 | intervals, for which due to practical limitations there are no

E numerical datgfor small and large values di), and take
the limit. This enables us to carry out the integral in E2f})

numerically for the whole range from,=0 to P,=c.

This integration leads to the universal amplitudﬁéy) as
shown in Fig. 10. For small opening angteshey diverge as

I'.(y—0)~1/y, vary linearly close toy= for y<m, and

FIG. 8. Projection of the contour lines of the scaling functitin  their absolute values increase rapidly fer- . Numerical

of the order parameter profile in a ridge of opening angte260°  evidence suggests that this latter increase is exponéghtial
onto the(x,,z.) plane. The projection is shown only on one side of ng divergencedsee Fig. 11].

the bisector of the ridge, which coincides here with thaxis. The s ey
wall of the ridge is indicated with a broad line. The edge is located Strikingly, the reduced excess adsorptioy) above the

atx,=z,=0. The curves correspond @,=0.1, 0.5, and 1.0 from critical temperature appears to be proportional to the reduced

top to bottom. The inset shows that the maximal curvatucd the ~ €xcess adsorptioh_(y) below the critical temperature. We
contour lines occurring on the bisector is a linear functionPef  have calculated their ratio for seven opening angles ranging
within the range considered here. from 20° to 240° and found

10
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-12

0.5 1 15
¥R

FIG. 12. One choice for the volum¥ of integration in the
definition of the excess adsorptipgq. (10)] with its cross section
in the plane perpendicular to the invariant directions.

FIG. 10. The amplitude of the line contribution to the excess
adsorption fot >0 [Egs.(14) and(15)] as a function of the opening
angley. The full line is a fit through the dater). The inset shows
that overiwide ringE+(y) ~1.62/(y/ ). T (m)=0 by definition.

Note thatl",(y) < [[(27- ). excess adsorption, which captures the effect of the wedges

and ridges, is the sum of the contributions of single wedges
L of opening angley,, and of single ridges of opening angle
I'.(y)/T_(y) =1.137 +0.0086, (25) % =2m= v, sharing the same temperature dependétfite”.
Thus the amplitudé™}" of the combined contribution of one
i.e., their ratio appears to be independentyof wedge and a neighboring ridge forming the basic building

Ratios of the amplitudes of the excess adsorption abovklock of the array is given &§"=T".(y,)+I (). This
and belowT, have been investigated for the case of a planagluantity may be viewed as a function gf-y,=27-2y,
wall theoretically[8], experimentally[7], and using Monte =2(7—,), Which characterizes the roughness of the surface.
Carlo simulationg[9]. The values obtained experimentally F‘fr(%—VW) is plotted in Fig. 11 for(t>0). One can see that
for the ratios of the amplitudes for the planar cas®an 5| values are negative, i.e., the total excess adsorptaa-
value: 1.19+0.0% agree rather well with the result of the tjye to a planar substrate with the same area as the actual one
Monte Carlo simulationg1.11); the corresponding mean of the corrugated surfagés decreased by the line contribu-
field value is 142 [8]. tion. This demonstrates that the decrease in adsorption for a
The angular dependence of the reduced excess adsorptigage with y, = 27— y,, dominates the increase due to the cor-

shows that for large angles, i.e., for a ridge, the absomt?esponding_wedge with opening anglg (see Fig. 19 The

values are larger than for small angles, i.e., for a Wedgeé\mplitudel“‘iVr varies quadratically for small roughness and

I'.(y)<|T'+(27-1y)|. One can calculate the excess adsorptiorbxponemia”y for large roughness.

at a periodic array of wedges and ridgese, cf. Fig. 1Bif In Ref. [28] the total excess adsorption has been calcu-

their edges are sufficiently far apart from each other so thaated for curved surfaces. For a curved membrane with both

their influences do not interferesee part B of the Appen-  sides exposed to a fluid near criticality, the sum of the excess

dix). The result expressed by E@A9) in the Appendix adsorptions on the two sides per unit area was found to be

shows that in this limiting case the line contribution to the|arger for spherical regions of the membrane and smaller for
cylindrical regions as compared to that for flat regions. Since

0 the cylindrical regions may be viewed as rounded wedges
5 ; ey and ridges, this latter finding exhibits the same qualitative
";'o o trend as found here for the periodic array of wedges and
5 5508 ridges.
g Inl(y-vw)/m] 4
.2 R
'; or \ IV. FREE ENERGY OF THE CONFINED FLUID
2 0.? 3 ;/5 AND CASIMIR TORQUE
Yy Twl' T s ) . .
05 i 75 In the previous chapters we have investigated structural
O T properties, i.e., order parameter profiles of critical fluids in

FIG. 11. The amplitud&"}" of the line contribution to the excess
adsorption of the basic unit of one wedge of opening angl@nd
one ridge of opening angle,=27— v, in an array of effectively
independent wedges and ridges as a functiotypf y,)/ 7, which
characterizes the roughness of the surfegae, cf. Fig. 18 The
dashed lines are fits. The insets show the behaviors in the limiting
cases on a log-log scale and a log-linear scale for small and large

jll FIG. 13. Afluid is bounded by a substrate shaped as a periodic
roughness, respectively. They indicate thff[(y: =) — 0]~ (%  array of wedges and ridges with a finite defthThe total volume
-w)? and thatI'¥" increases as efdy.— )/ 7% up to (% of the fluid V,o; can be naturally decomposed into subvolumes of the
— v T=2. type shown in Fig. 12.
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wedges and close to ridges. In the following we comment on IV(Y) 4 g a, 2er s +(5)
their thermodynamic properties based on the free energy of, + =~ T(&ﬁ) - o[t D)
Blc Y a(l-a)(2-a)
such systems.
The volumeV(y) of the system shown in, cf., Fig. 1for o —(d-2) aaf(y)/& 0% 20
another possible choice see, cf. Fig,) 1z bounded by the ~L(&) Ca(l-q)2 —a|)|t|
walls of the wedge or ridge, which in turn end in the linear 0
edge forming the vertex. Accordingly in the thermodynamic + 9 fhacd T, 7’)} (30)
limit the total free energyr decomposes into a bulk, a sur- ay '

face, and a line contribution . I . .
With the bulk contribution known independently, this mea-

surement provides access to the universal amplitude func-
F(T;y) = V() fp(T) + SKT) + L{(T,y), (26)  tions &f(y) by focusing on the thermal singularity [t|>~
=|t|*=]t|®6%in d=3, sincedv=2-a. The singular contribu-
wheref,(T) is the bulk free energy densitfi(T) is the sur- Fion to M can be called a critical Casimir torque. Fpr fluids
face free energy density, arfdT, y) is the line free energy mformatl(_)n about the background term can be obtained from
density.Sis the total surface area of the wall in contact with Eq. (A7) in Ref.[42] and from Refs[43-43.

the fluid, L is the length of the edge. Each of the three terms Within mean-field theory 2= =1 so that the singular line
in the free energy and thus the total free energy itself ar ontribution becomes indistinguishable from the analytical

. (b.s) ! . — background contribution. Thus our present approach renders
surrc;s of a_smgularl pi.[fsin (tthy)]’.wh!fh c;)?r':alnbs }Ee th[_er | only the sum of these two contributions without the possibil-
moqn{?_ag_'f_rs')r}‘::l’_u arlole:_nlg anea\::;:m')c/ l())ackero un d Ccr(');ﬁ?_ ity to isolate the amplitude functiore (). As indicated by
pomnt t= I Y vt grou " the pole~1/(1-«;) for d—4, inclusion of Gaussian fluc-

bution [fgi’lp_(T, 7?]' tuations beyond the simple mean-field theory is expected to
The leading singular part of the total free energy can b&enerate a term-t Inlt| due to the resonance of the singular
written in the form(see, e.g., Ref45,40,41): contribution ~1/(1-a;)t2™ with an analytical background
term ~t [46]. The amplitude of the singular termt In|t|
Fi, LY V(y) at - woulij allow one to retrieve at !east the mear}—fie]d expression
KeT, = (§§)d - a(l-a)(2 _a)|t| for ai—(_y). However, thls.technlcally challenging inclusion of
Gaussian fluctuations is beyond the scope of the present

S a; e work.
+ (gg)d—l B adl-ay(2 _as)|t| ° A suitable approach to ol_)tain the change of the free_ en-
ergy upon varying the opening angle of the wedge or ridge
+ L | a(v) 20| (27 involves calculating the field theoretical stress tensor. Analo-
(&2 al-a)2 -a|)|t| - (27) gously to the free energy density, the corresponding torque

requires additive renormalization up to second order in tem-

) - peraturgl47]. We have followed this route within the present
Here a=0.11 is the bulk specific heat exponemis=x  mean-field theory without isolating the critical Casimir
+v, o =a+2v, anda; andag are universal bulk and surface torque. We have found that this combined torque diverges as
amplitudes. The bulk contribution dependS tr|V|a”y @n”a M ~ 1/;},2 for small Y, and it appears to be a linear function
the geometry(y), whereas the surface contribution is inde- of 1/4* within the angle range betweey=20° and y
pendent ofy. The line contribution carries a nontrivial de- =2g0°.
pendence ory via the universal amplitude functiorsg(y).

The background contribution takes on the form V. SUMMARY
. In the present study of critical adsorption in wedges and
FoacdT.Y) _ V(Y) ) S . 0 close to ridgegsee Fig. 1 we have obtained the following
T et dfbacl(r) + +\d— fback(T) + +\d— 1:back H
KeTe (&) (&)1 (&)42 main results.
(1) We have discussed the scaling properties of the order
X(T, 7). (28)

parameter profilen.(r,t;y)=alt|PP.(r/&,,6;y) in terms of
the bulk correlation lengtl, =&t/ above and below the
If one of the sidewalls is moveable around the vertex withcritical point T, with t=(T-T.)/T.. The universal scaling
the far end suspended at, say, a force microscope, the torqfienctions P.(r/&., 6;y) diverge according to a power law
close to the walls of the wedge or ridge, and decay exponen-
tially far away from the wall§Eq. (8)].
(29) B (2) In the thermodynamic limit the excess adsorption
dvy I'.(s,,s,t;y) [EqQ. (10)] for volumes with linear extensions
s, ands, (see Figs. 12 and }4lecomposes into a surface
exerted by the fluid in the wedge or ridge on its sidewalls iscontribution that scales with the actual surface area of the
experimentally accessible confining walls[s ﬁ(ld—2>] and a line contribution that scales

M= — IF(T;y)
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with the extension in the invariant directiofg™ ] [see Eq. In the following we first analyze the excess adsorption for
(11)] as described in detail in the Appendix. The line contri-a single macroscopic wedge or ridgh, which will be fol-
bution is the specific contribution arising from the influencelowed by a discussion of the excess adsorption for two pos-
of the edge on the order parameter profile. Its amplitudéible experimental realizatiorj&2) and (3)].

[f(t,y) has the scaling forrﬂﬂi(tif)=a§§2|t|ﬁ‘2”i(y) with

the universal amplitude functioris,(y) [Eq. (15)] carrying
the dependence on the Opening ang_'e a. First choice of the volume of integration

(3) We calculate the above scaling functions within the oy first choice forV is shown in Fig. 12 for the case of
mean-field theorysee Eqs(16) and(17)] using a numerical 3 wedge. This choice is inspired by the idea that the single
algorithm both above and below the critical temperatfwe  \vedge or ridge considered here is ultimately a member of a
a wedge see Figs. 2 and 5, for a ridge see Figs. 7 anth&  periodic array. With this polygonal cross section and a simi-
amplitude functions of the power law divergence of the pro-arly constructed one for the ridge, one can cover the total
file close to the wall§Eq. (8)] are shown in Fig. 6. volume V,, of a fluid in contact with a surface formed as a

(4) Our numerical calculation also yields the experimen—periodic array of wedges and ridges in a natural wsge
tally relevant excess adsorption within the mean-field apig. 13). All the formulas explicitly stated later for the wedge
proximation. The universal amplitudds.(y) are shown in are valid for the ridge, too.

Fig. 10. For small opening angleg they diverge ad,(y The volumeV is symmetric with respect to the bisector
—.0)~1/v, vary linearly close toy= for y<, and their plang of the wedge, which allows us in the. following to
absolute values increase rapidly fgr> . Numerical evi- consider only one half of the wedge, and multiply the corre-

- : - : ding expression by a factor of 2.
dence suggests that this latter increase is exponential, bgPonding M . o
without divergencésee Fig. 11 The reduced excess adsorp- As indicated in Fig. 12 the volum# in Eq. (10) is finite

ion T b he critical b and thus the integral is finite, too. As a first step in carrying
tion I',(y) above the critical temperature appears to be prog, ;¢ the thermodynamic limit we keep the shapa/dfut shift

portional to the reduced excess adsorptituiy) below the  the upper boundarg=constto infinity. Sincem, approaches

critical temperature withl',(y)/I'_(y)=1.137+0.006. We m, exponentially, this extension of increasesl’, by an
have considered a wedge and a ridge together as forming tlexponentially small amount and thus does not contribute to
basic unit in a periodic arragsee Fig. 13 The total excess the two leading terms under consideration in Ed). [In the
adsorption relative to that of a planar substrate with the samspirit of the thermodynamic limit one first increasédefore
area as the actual one of the corrugated suiflage(A10)]is  one can possibly consider the lintit=0. Therefore these
decreased by the line contributigsee Fig. 1L arguments are not impaired by a power law decaynpfz

(5) The variation of the free energy of the system with —«,t=0) in the thermodynamic limi}. For the resulting
the opening angle of the wedge or ridge gives rise to a torqueemi-infinite strip Eq(10) can be rewritten in the following
acting on the sidewall§Eq. (29)]. The free energy decom- form by adding and subtracting the order parameter profile
poses into a singular contribution exhibiting scaljsge Eq. m:f’z(g:r sin @,t) of a fluid in contact with an infinite planar
(27)], and an analytic background contributifieqg. (28)]. In wall in the integrandsee Figs. 1 and 32
d=3 the critical Casimir torque varies as(y)|t|” with uni- .
versal amplitude functiong(y). This cusplike temperature - ) = ocd-2 sL/ 2+ /tan(2)

. L , . - Tu(sisptiy) =25 dg

singularity is expected to be experimentally accessible via 0 ¢/tany2)
suitable force microscopy. The theoretical calculation of the

1. A single macroscopic wedge or ridge

corresponding amplitude functions remains as a challenge. xdx'{m[r(x’, ), 0(x",¢).t; ]
wof2 4=2 * s, /2+¢/tan(y/2)
-m“({,H)}+ 25 f dZ
ACKNOWLEDGMENTS ' 0 ¢/tany2)
G.P. is indebted to F. Schlesener and M. Krech for many xdx [m=(z,t) - my(®)], (A1)
helpful discussions that settled numerous technical and -
physical questions. where x' =r cosf=z coqy/2)+x sin(y/2) is the coordinate

measured from the apex parallel to the nearest wall of the
wedge and/=r sin #=zsin(y/2)-xcogy/2) is the normal
distance from the nearest wall of the wedgee Fig. 12
In the inner integral of the first term the upper integration
In this appendix we discuss how the excess adsorption itimit can be shifted to infinity, i.e.s, — +%, with an addi-
a wedge or at a ridge decomposes into surface and line cotion of only exponentially small corrections to the integral,
tributions[see Eqs(11)~(13)]. In the definition of the excess becausem, approachesn;’? exponentially forx’ — +o at
adsorption[Eq. (10)] one considers a finite volumé of in-  fixed ¢. Thus the first term in EqA1) approaches a constant
tegration that is enlarged to fill the total volume of the wedgefor s, — +o and this constant involves an unlimited integral
or ridge in the thermodynamic limit. As shown later for three over the whole half of the wedge. Expressed in terms of
examples, the expression for the line tdisnch as Eq(13)]  cylindrical coordinates this term yields the line contribution

actually depends on the choice of the shape of the voMme T(t,7)s®? in Egs.(11) and(13).

APPENDIX: DECOMPOSITION OF THE
EXCESS ADSORPTION
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FIG. 15. A third choice for the volum¥ of integration in the
definition of the excess adsorpti¢kq. (10)] for a wedge with its
cross section in the plane perpendicular to the invariant directions.

term the upper integration limits of both integrals can be
shifted to infinity, i.e.,s, —, with an addition of only ex-
ponentially small corrections to the integral, becanseap-
proachesm’? exponentially forx’ — + at fixed £, andm,
attains its bulk value exponentially far— +o at fixed x'.
Thus for the first term the limis, — oo exists and is finite
with the two-dimensional integral covering the whole half of

FIG. 14. A second choice for the volunweof integration in the : N X .
definition of the excess adsorptiéEg. (10)] for a wedge(a) and a the wedge. Expressed in terms ofdc:‘glmdncal coordinates this
T ) [see Eqs(11) and

ridge (b) with its cross section in the plane perpendicular to theterm yields the line ternfl‘(t,y)s](l
invariant directions. (13)] as for the previous choice of the volume.

The inner integral in the second term can be carried out,
because the integrand is independentxo6f This yields

As the integrand of the second term in E41) does not

depend onx’, the inner integration simply yields a factor @  prefactor SL/Z—é[tan.(y/Z)+(1/tan-y/2)].:%{si
s, /2. The outer integral then yield§”? in Eq. (3). Together —(4/siny)}. The first term of this prefactor gives rise to the
with Eq. (12) this verifies Eq(11). surface contribution in Eqg3), (11), and(12), if one shifts
the upper integration limit of th& integration to infinity with
b. Second choice of the volume of integration the addition of exponentially small corrections. After multi-

plying this prefactor by 2, its second term gives rise, how-

Our second choice of the shape of the voluvhas shown : L ) ;
ever, to another line contribution with the amplitude

in Fig. 14a) corresponds to the one used in R&7], where
liquids confined by two opposing structured walls have been

studied; in this geometry one cannot infinitely extend the L -4 (%

volume in the £ direction. On the other hand in the case of Ity = m dme=(g, 1) - my(t)]d¢, (A3)
the ridge as shown in Fig. 1), starting out from a finite 0

volumeV, the upper boundary of the volunie=cons} can

be shifted to + as well as the two vertical boundariés where the upper limit of integration has also been shifted to

infinity with an exponentially small correction. We note that

=zxcons) to + with only exponentially small corrections to this additional line t d d h d i
the integral in Eq(10), because in the directiorrs— and Nis additional line term depends on the order parameter pro-
file at a planar substrate only. Due to the extra fagtor the

x— o for z fixed the order parameter attains its bulk value. . : o P .
exponentially. As for the previous choice also for the presenlrmegrand’ the integral in E¢A3) IS finite ford=4 in spite of
geometries Eq(10) can be rewritten by adding and subtract- M’ “({—0) ~£* in this case, i.e.I'. does not carry a factor
ing the order parameter profite”’2({=r sin ,t) of a fluid in  Proportional to 1{»-p) asI';’*> does[compare Eq(6)].
contact with an infinite planar wall in the integratgke Fig.

14): c. Third choice of the volume of integration
~ g [Bu/asiny [si/27¢tan(yi2) Our third choice of the shape of the volurdeas shown in
Ii(s1,8,t7) =25 o dZ o2 Fig. 15 is motivated by an extension of the natural geometry
¢/1an2) for a fluid bounded by an infinite planar waly=). In that
xdx'{my[r(x’,2),0(x',0),t; y] - my%(¢, 1)} planar case it is straightforward to choose a volume, in which
s, /dsiny s, /2~ tar(2) the bounding walls<’ =X=£constare perpendicular to the
+ 2§d‘2f ng substrate walkz=0. If we bisect this volume in the middle
0 {/tan(yl2) with the planex=0 perpendicular to the outer walls and fold
" 3 the half-planesx<0,z=0 andx>0,z=0 partly along the
XA Tm,5(4,1) = my(D)], (A2) line x=0=z while keeping the outer boundari€s =cons}

where as beforet’ =r cosé is the coordinate parallel to the perpendicular to the wall, the wedge is formeee Fig. 15
wall, andZ=r sin # normal to it[see Fig. 14a)]. In the first  This procedure shows that in the general wedge geometry
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there will be a missing volume as compared to the planarections. After multiplying this prefactor by 2, its second
case, and the substrate potentials stemming from the walls ¢érm gives rise, however, to another line contribution with
the wedge are superimposed. the amplitude

This choice of volume is inspired by subdividing the

grand potential) of the fluid into volume, surface, and line ., 2
contributions I'ity) = —f dmi(& ) -my(H]de  (A6)
_ _ tan2” ©
Q=-pV+ys, s+ dys?, (A4) 2
where p denotes the bulk pressure of the fluig="s
+tan(y/ 2) y,4c With 7, as the planar wall-fluid surface tension :[cos?(y/Z)]fF(t, 7), (A7)

of a semi-infinite system, angl,,; as the fluid-vacuum sur-

face tension introduced by the outer boundari€s)=my)  where the upper limit of integration has also been shifted to
+2Tyac fluids™ Tvac fluid IS the line contribution which consists  infinity with an exponentially small correction. We note that
of the line tensionr(y) due to the apex of the wedge and of thjs additional line term depends on the order parameter pro-
the two line contributions 2, n,iqs due to the intersections file at a planar substrate only. Due to the extra fa¢tor the

of the outer boundaries with the substrates forming théntegrand, the integral in EgA3) is finite for d=4 in spite of
wedge, and the line contributiofy, 5, due to the intersec- m?2({—0)~ L in this case, i.el", does not carry a factor

tion of these boundaries with each other at the top corner of - . _ /2
the volumeV. For a one-component liquid with chemicalogggg)]omonal o 1(v=p) asI',™ does[compare Eqs(6) and

potential u and number density(r) one has(a/du)(( Thus in the thermodynamic limit the three choices of the

- — o 1ddr = (e d-2 d-2 ; N
*+PV)==I\p(r) ~ ppldr=—(s, 5" Ts*+5 1)), which pro integration volumé/ yield the same surface contributiofi$

vides the decomposition of the excess adsorption into & sufy he excess adsorption but different subdominant line con-
face(I'gy) and a line(I'}) contribution. tributions [:

As for the previous two choices &f, in the general case
of an order parameter distributian(r) one can obtain the
excess adsorption directly by suitably adding and subtracting f d% m,(x) = Vm, + SI; + LI + O(s'f (A8a)
in the expression for the adsorption the order parameter pro- v
file mf’z(gzr sin 6,t) for a semi-infinite system with a planar
wall. This leads tgsee Fig. 15 and compare Eqél) and  with
(A2)]:

vI2 0
T o [[SL/EEOR 5/ T =T} (ty) =2 f do f drr{m.(r,6,t;7)
Fi(sl,ﬁ\,t;y)zzg‘j Zf dgf I Il . .

0 {/tan(y2)

R :
XX (mlr(x',£),00¢',9).t ] - mE2(E, ) s (0.0, choice 1, (ASD)

d-2 s, /2tan(y/2) s /2 A . ay )
+ 25 d¢ I} =T7,(ty) =T}ty +T}(t,y), choice Il, (A8c)
0 £/ tan(y/2) ' '

xdx'[mz(¢,t) - my(0)], (A5) and

where as befora&’ =r cosé is the coordinate parallel to the . + v .
wall, andZ=r sin 6 normal to it(see Fig. 1% In tphe first term I =T (ty) =T (t,y) + IT (), choice I,

the upper integration limits of both integrals can be shifted to (A8d)
infinity, i.e., s, —, with an addition of only exponentially

small corrections to the integral, becamsgapproaches?  \.ith S:Sﬁ?_zil-:%?_z,l:f given by Eq.(A3), andlili given
exponentially forx’ — +2 at fixed{, andm. attains its bulk  py Eq.(A7). Experiments cannot be carried out for infinitely
value exponentially fof — + at fixedx’. Thus for the first  geep wedges. Instead they can be carried out for either a

term the limit s, —o exists and is finite with the two- periodic array of wedges or for a single wedge of finite depth
dimensional integral covering the whole half of the wedge.carved out from a wide planar surface. In both cases addi-
Expressed in terms of cylindrical coordinates this term yieldsjona| ridges must be formed giving rise to their own adsorp-
the line terml’j (t, 7)3(‘(1_2) [see Eqgs(11) and(13)] as for the  tion properties. Therefore experiments on such systems give
previous two choices of the volume. access only to certain combinations of wedge and ridge ex-
The inner integral in the second term can be carried outgcess adsorptions, whose corresponding line contributions
because the integrand is independentxbf This yields a carry the relevant additional information about the nonplanar
prefactor(s, /2)—¢/tan(y/2). The first term of this prefactor substrate geometry. The actual choice of the corresponding
gives rise to the surface contribution in E@8), (11), and integration volume depends on the actual experimental setup
(12), if one shifts the upper integration limit of thigintegra-  (compare, e.g., Fig. 13; see Subsecs).Z/&e results of this
tion to infinity with the addition of exponentially small cor- subsection show that the line contributions depend on such
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details even in the thermodynamic limit. In the following
two subsections it turns out that the choices | and Il will
enter into the expressions for the excess adsorption on a pe-
riodic array of wedges and ridges and on a single deep
wedge, respectively.

2. Periodic array of wedges and ridges

In this subsection we consider a substrate with a periodi%arFlG' 16. A fluid is bounded by a substrate shaped as a wedge

. ; A d out of an infinite pl Il. The total vol f the fluid
series of edges and wedges as depicted in Fig. 13. There is ved out of an INnie planar wa © foa’ VOIme of The Tl

. - ; . ﬁgn be decomposed into the numbered subvolumes that emerge
variety of experimental techniques to create such k'”‘?' 0 aturally due to subvolumes 3 and 5 used for describing a single

surface morphology. If the opening angle of the wedgeg is iqge first choice of the volume of integratiofia)] and a single
the opening angle of the ridges isr2 y. Here we focus on  yedge [second choice of the volume of integratiofib)]
the limiting case that the depth of the wedgdd (egpeciively.

=s, coqvy/?2) is sufficiently large, so that the deviations of
the profiles close to the edges of the wedges and ridges,
respectively, from the profile of a fluid exposed to an infinite
planar substrate do not influence each other. As appareﬂlo
from Figs. 12 and 13, this case corresponds to the first choic]g?o
of the volume of integration for the single wedge or ridge
and thus leads to the following decomposition of the exces
adsorption[see Eq(A8b)]:

’

For the first volume there is no line contribution resulting
m the integral over the difference of the actual profile

m that in front of an infinite planar wath;’?, because this
difference is exponentially small in the thermodynamic limit.
There is also no surface term, because this first volume
touches the substrate only at one point. However, following
similar considerations as for a single wedge or ridge, this

. . volume gives rise to a line contributigeee Eq(A8a)] to the
f d% ML (X,t; %) = Vigimp(t) + Sod (1) + LING I (t, %) excess adsorptiofEq. (10)] due to the deviation ofn;’?
Viot from m, with amplitudes
+ NI (8, 7)1 + O(s 1) (A9)
o AT Y - o0/2
with the total surface of the substra,=Ns, s' 2 where Iat,y) =ta Y f M (¢,1) — my(t)]d¢,
N=N,+N, is the number of segments of lengsh,I'5(t) 0
=I'74t) [see Eq.(3)], L=s]"2,N,=N, are the numbers of (A11)

wedges and ridges, respectively, and
where we have shifted the=constboundary to 40 with an
exponentially small correction to the integral.

w2 [ e .
IE [t w ]zzfy " def dr r[mYO(r, 6,t; Yr) In the thermodynamic limi(s, , s} —) the adsorption
WO 0 0 £ o profile m, in the second volume will tend exponentially to
that of a fluid exposed to an infinite planar waff’2. Thus it
/2 *
— Mo, 60).)], (A10)  gypplies a surface term with the amplitudeHt) =T'7/(t)
! d-2

[see Eq(3)] for the areas’ s, “. We note that this subvolume
2 when extended to infinity in thezidirection overlaps with
the other half of the wedge, but this results in only an expo-
nentially small correction to the excess adsorption, because
the profile m, approaches the bulk valug, exponentially
with the distance, from the wall. The subvolume two does
_ ) not generate a line contribution.

3. A single wedge embedded into a planar wall The third volume gives the same contributiof&g.

In this subsection we consider a single wedge of openingA8a)] to the excess adsorption as a single ridge of opening
angle y carved out of a planar surface, thus producing als@ngle (37— 1y)/2 with the first choice of volume of integra-
two ridges of opening anglé87—7)/2 (see Fig. 16 Due to  tion shown in Fig. 12, i.e., a surface term with the amplitudes
the symmetry of the configuration we consider only half of [s(t)=T'7'%(t) for an areas, s'2 [see Eq(3)] and line term
the wedge and focus on the case thais sufficiently large  amplitudesl; (t, y,=(37-)/2) [see Eq.(A10)]. Note that
so that the ridges and the wedge do not influence each otheéhe volume of integration can be extended to infinity in the
One half of the total volume of the fluid is decomposed intodirection parallel to the bisector of the ridge even though in
six numbered subvolumes as shown in Fig. 16. We calculatthis case there is an overlap with the other half of the wedge,
the excess adsorptidieq. (10)] separately for each one of because this results in only an exponentially small correction
the subvolumes by adding and subtracting the profile of do the excess adsorption as the profile approaches the
fluid exposed to an infinite planar warr[‘_f’2 in the integral of  bulk value m, exponentially in this direction further away
the order parameter as in Subsecs. 1/2. from the ridge.

where v, is the opening angle of the wedge, ang=27
— Y- This is in accordance with Eq&32)<36) of Ref. [37],
where a different coordinate system was upégj.
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Similarly to subvolume 1, subvolume 4 does not generate g
a line term resulting from the integral over the difference of d™% m.(x,t;y)
the actual profilem, from m°_f’2. There is also no surface Vot
term, but similar considerations as for a single wedge or = VioiMp(t) + Sl 5 (1)
ridge show that this subvolume gives rise to a line contribu- r
tion to the excess adsorption with amplitudes of the form + LI Tt v) + 205 [t 7, = (37 = 7,)/2]

. - » 1 1

+ _Nian™ Y Y o120 5 14 N MY

[Ta(t,7) [tan—4 +tan§} fo dm(g,1) - my(t)]dg, o sing 222
(A12) 2

X f LML) - my(t)dg | +O(s).  (A13)
0

once we have shifted the=0 boundary to ¢« with an ex-
ponentially small correction to the integral. ) o ,

The fifth subvolume together with its counterparxat0 ~ AS in the case of a periodic array of wedges and ridges the
gives the same contributiorf&qg. (A8c)] to the excess ad- line contribution to the excess adsorption contains a combi-

sorption as a wedge of opening angjewith the second nation of wedge an_d ridge terms. Since d|f_“ferent comb_ma_-
; . : B . tions thereof enter into the excess adsorption of a periodic
choice of the volume of integration shown in Fig.(&4i.e.,

. . o ol2 array and of a single embedded wedge, measurements of
a surface termd\i\gth amplitudels () =I';™(t) [see Eq.(B)] both of them provide independent information. However,
for the areas, s, and the line term amplitudel;(t,y)  these configurations do not allow one to access the ridge and

from Eq. (A8c). wedge contributions individually. In the case of a single em-
Finally, subvolume 6 yields only an exponentially small pedded wedge the line contribution to the excess adsorption
contribution to the excess adsorption. contains in addition the first moment of the order parameter
Adding up all contributions to the excess adsorption inprofile of a semi-infinite planar system, which can be deter-
this geometry one obtains mined independently from the knowledge maf’3(¢).
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