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Using the Wolff and geometric cluster Monte Carlo methods, we investigate the tricritical Blume-Capel
model in three dimensions. Since these simulations conserve the number of vacancies and thus effectively
introduce a constraint, we generalize the Fisher renormalization for constrained critical behavior to tricritical
systems. We observe that, indeed, the tricritical behavior is significantly modified under this constraint. For
instance, at tricriticality, the specific heat has only a finite cusp and the Binder ratio assumes a different value
from that in unconstrained systems. Since 3 is the upper tricritical dimensionality of Ising systems, we expect
that the mean-field theory correctly predicts a number of universal parameters in three dimensions. Therefore,
we calculate the partition sum of the mean-field tricritical Blume-Capel model, and accordingly obtain the
exact value of the Binder ratio. Under the constraint, we show that this mean-fieldtricritical system reduces to
the mean-fieldcritical Ising model. However, our three-dimensional data do not agree with this mean-field
prediction. Instead, they are successfully explained by the generalized Fisher renormalization mechanism.
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I. INTRODUCTION

In the development of the theory of critical phenomena
and phase transitions, a spin-1 Ising model known as the
Blume-Capel(BC) model has played an important role. This
model was originally introduced by Blume and Capel[1,2],
and the reduced Hamiltonian reads

H/kBT = − Ko
ki j l

sisj + Do
k

sk
2 ssi = ± 1,0d, s1d

where the sumk l is over all nearest-neighbor pairs of lattice
sites. The spins assume values ±1 and 0, and those in state 0
are referred to as vacancies. The abundance of vacancies is
governed by the chemical potentialD, which is also termed
the crystal field parameter. The phase diagram is sketched in
Fig. 1. For D→−`, the vacancies are excluded, and the
model(1) reduces to Onsager’s spin-1

2 model[3]. The critical
couping KcsDd is an increasing function ofD. For suffi-
ciently large chemical potential, the transition then becomes
first order, separating the vacancy-dominated phase from
those dominated by pluss+1d or minus s−1d spins. At the
joint point, these three coexisting phasessimultaneouslybe-
come identical, and this point is then called[4] the tricritical
point, denoted assKt ,Dtd in Fig. 1.

In two dimensions, the nature of critical singularities of
the BC model is now well established. For instance, as early
as in 1942, the exact expression of the free energy was ob-
tained by Onsager[3,5] for the spin-12 model. The universal
thermal and magnetic exponents areyt=1 andyh=15/8, re-
spectively. At the tricritical pointsKt ,Dtd, exact values of the
universal exponents follow from Baxter’s exact results for
the hard-square lattice gas[6,7], in the same universality
class as the tricritical Blume-Capel model; further, these ex-
ponents can be calculated from the Coulomb gas theory[8,9]
and are also included in predictions of the conformal field
theory [10,11]. The leading and subleading thermal expo-
nents at tricriticality are[6–12] yt1=9/5 andyt2=4/5, re-

spectively, and the magnetic ones areyh1=77/40 andyh2
=9/8, respectively.

In three dimensions, exact results are absent for the BC
model along the critical lineKcsDd, and investigations of
critical behavior have to depend on approximations such as
series ande expansions, and Monte Carlo simulations
[13–16]. However, the tricritical Ising model is somewhat
special, in the sense that it is one of the rare cases in three
dimensions that exact information is available about critical
singularities[4]. This is possible because3 is the upper tri-
critical dimensionality of Ising systems. As a consequence,
critical exponents can be exactly obtained from renormaliza-
tion calculations [17] of the Landau-Ginzburg-Wilson
Hamiltonian. The thermal and magnetic tricritical exponents
[4] areyt1=2 andyt2=1, andyh1=5/2 andyh2=3/2, respec-
tively.

An experimental example of tricritical phenomena in
three dimensions is the superfluid transition in3He-4He mix-
tures [4], which is sketched in Fig. 2. The transition at the
tricritical point is known as thel transition. In fact, the order
parameter in the3He-4He mixtures is a vector of two com-
ponents, so that the superfluid transition should in principle

FIG. 1. Sketch of the phase diagram of the BC model. The solid
line represents the critical line, which separates the para- and ferro-
magnetic phases; and the first-order transition is shown as a dashed
line. The two lines join at a tricritical point(black circle).
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be described by theOs2d model, the so-calledXY model.
Nevertheless, the renormalization calculations yield the same
critical exponents for theOsnd model withnù1, apart from
logarithmic corrections. Thus, in this sense, the BC model
(1) is still qualitatively applicable[4] at the l point. One
would then simply expect that the tricritical specific heatC is
divergent, with a critical indexa=2−d/yt1=1/2. However,
this expectation does not agree with the existing experimen-
tal results:C was observed[18] to have only afinite cusp
with a=−0.9s1d at thel point.

This lack of agreement is the result of an important dif-
ference between the systems in the aforementioned theoreti-
cal and experimental contexts. This is reflected by the dis-
tinction between Figs. 1 and 2, of which the first deals with
models in the spacesK ,Dd. In contrast, Fig. 2 uses the mole
fractionx of 3He as an independent parameter[18]. The frac-
tion x plays a similar role as the vacancy density in Eq.(1).
Therefore, a correct theoretical description of thel transition
in Fig. 2 should be based on a restricted partition sum with a
conserved number of vacancies. In other words, an external
constraint is imposed on the system(1). This constraint is of
the “annealed” type[19] since vacancies are allowed to
move freely over the lattice according to the Boltzmann dis-
tribution.

Constrained critical behavior has already been studied for
decades. As earlier as 1965, Syozi[20] introduced a deco-
rated Ising model on ad-dimensional lattice, which was
shown [21] to be intimately connected with annealed sys-
tems. The Syozi model can be exactly transformed into the
spin-12 model, and critical exponents of these two systems are
related as

as = − a/s1 − ad, bs = b/s1 − ad,

and ns = n/s1 − ad, … s2d

wherea and b are the standard critical indices for the spe-
cific heatC and the magnetization densitym for the spin-12
model, respectively, andn=1/yt is the inversion of the ther-
mal exponent; those with the subscript “s” are for the Syozi
model. It can be shown that the hyperscaling relations still
hold among the critical indicesas,bs, etc. In three dimen-
sions, the spin-12 model has 1.a.0, so that the specific
heatC of the Syozi model does not diverge at criticality. In

two dimensions,C of the spin-12 model is divergent in a
logarithmic scale sincea=0. For this marginal case,C of the
Syozi model reaches a finite cusp, also of a logarithmic na-
ture. Later, this was discussed in a more general context by
Essam and Garelick[22] and by Fisher[23]. It was pointed
out that relations(2) are not specific to the Syozi model, but
are more generally satisfied by equilibrium models with a
divergent specific heatsa.0d. Since then, the so-called
Fisher renormalization of constrained critical systems has
gained considerable acceptance[24–27].

A description of constrainedtricritical behavior was for-
mulated by Imry and his co-workers[28] in the context of
the renormalization group(RG) technique. Using thee ex-
pansion and a generalized Landau-Ginzburg-Wilson Hamil-
tonian, they found four distinct fixed points: the tricritical
Ising (TI), critical Ising (CI), renormalizedtricritical Ising
(RTI), and renormalizedcritical Ising (RCI) fixed points.
Renormalization flows deviating from TI can move into the
fixed point CI or RTI, and those from CI can end at the RCI
point. The critical exponents at these fixed points are related
as aRCI=−aCI / s1−aCId and aRTI=−aTI / s1−aTId, in agree-
ment with Eq. (2). For the spatial dimensionalitydù3,
points TI and RTI correspond to Gaussian and spherical fixed
points, respectively. Thus, one has the critical indicesaTI
=1/2 andaRTI=−aTI / s1−aTId=−1 in three dimensions. If
one assumes that constrained behavior of an annealed tric-
ritical system is governed by the fixed point RTI, the theo-
retical predictionaRTI=−1 is then in good agreement with
the experimental observation[18] a=−0.9s1d.

At the upper critical dimensionality, the mean-field theory
is generally believed to correctly describe some universal
aspects of phase transitions. Indeed, for the tricritical BC
model in three dimensions, a number of universal quantities,
including the thermal and magnetic exponentsyt1 and yh1,
can be exactly calculated[4] from a mean-field(MF) analy-
sis. In the present paper, we also perform some exact calcu-
lations for the MF BC model. Under the constraint that the
total number of vacancies is fixed, we show that thetricriti-
cal MF BC model reduces to thecritical MF Ising model.
However, this MF result is not what one would expect for the
tricritical BC model in three dimensions, since the constraint
should not change the universality class. Thus, the present
paper also takes another approach: following the basic ideas
in Ref. [23], we generalize the Fisher renormalization
mechanism for constrainedcritical behavior to tricritical sys-
tems. In particular, we derive finite-size scaling results based
on this generalized mechanism.

In addition to these theoretical analyses, we perform a
Monte Carlo study of the constrained three-dimensional(3D)
BC model. For systems with a conserved number of vacan-
cies, efficient simulations have become possible only after
the introduction of the geometric cluster method[29–31].
This algorithm was developed on the basis of spatial sym-
metries, such as Hamiltonian invariance under spatial inver-
sions and rotations. It moves groups of magnetic spins and
vacancies over the lattice in accordance with Boltzmann dis-
tribution, while the global magnetization and vacancy densi-
ties are conserved. Then, the aforementioned constraint can
be realized by a combination of the geometric method and

FIG. 2. The schematic phase diagram of a3He-4He mixture in
the plane of temperatureT and mole fractionx of 3He. The tem-
perature can be understood as the inverse coupling constant 1/K in
Eq. (1).
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the Wolff algorithm[32], which acts only on nonzero spins
and thus allows magnetization fluctuations.

The outline of the remaining part of this paper is as fol-
lows. Section II presents exact calculations of the tricritical
MF BC model, and the Fisher renormalization mechanism is
generalized to constrained tricritical systems in Sec. III. Sec-
tion IV presents our Monte Carlo results for the 3D BC
model, and a short discussion is given in Sec. V.

II. MEAN-FIELD BLUME-CAPEL MODEL

In this section, we perform an asymptotic analysis of the
finite mean-field BC model. On this basis, we hope to obtain
some exact results for universal parameters describing con-
strained behavior of the tricritical BC model in three dimen-
sions.

The mean-field version of a finite BC model(1) is ex-
pressed by the Hamiltonian

H/kBT = −
K

N
o
i=1

N

o
j=i+1

N

sisj + Do
k

sk
2 ssi = ± 1,0d, s3d

whereN is the total number of spins, and each spin is inter-
acting with each other spin. Then, the local Hamiltonian of
the ith spin, i.e., the terms in Eq.(3) involving that spin,
reads

Hi/kBT = − Ksim+ Dsi
2 +

K

N
si

2 with mN= o
i=1

N

si , s4d

wherem is the global magnetization density. The last term in
Eq. (4) vanishes as 1/N, and will be neglected. The tricritical
point [4] of this MF system can be calculated as follows.
According to the Boltzmann distribution, Eq.(4) determines
the statistical probabilityw of the local spinsi as

wssi = 1d =
1

z
eKm, wssi = 0d =

1

z
eD,

andwssi = − 1d =
1

z
e−Km, s5d

with a normalization factorz=eKm+eD+e−Km. Thus, the local
magnetizationksil and the global onem are related as

ksil = 2 sinhsKmd/fexpsDd + 2 coshsKmdg. s6d

At tricriticality, the stability criterion requires thatm
=0, ] ksil /]m=1, and]3ksil /]m3=0. From Eq.(6), solution
of these requirements yields the tricritical point asKt=3 and
Dt=2 ln 2, and the corresponding vacancy density asrv
=rvt=2/3.

A. Unconstrained systems

The Hamiltonian(3) depends only the numbers of down
spins and vacancies, which are denoted asNd andNv, respec-
tively. Expression of the partition sumZ in these variables
leads to

Z = o
Nd=0

N

o
Nv=0

N−Nd

csNd,NvdexpFK

2
NSN − Nv − 2Nd

N
D2

− SD +
K

2N
DsN − NvdG , s7d

where the combinatorial factorcsNd,Nvd counts the total
number of configurations withNd minus spins andNv vacan-
cies

CsNd,Nvd =
N!

Nd ! Nv ! sN − Nd − Nvd!
. s8d

After the substitution of the magnetization densitym=sN
−Nv−2Ndd /N and the vacancy densityrv=Nv /N in Eqs.(7)
and (8), one has

Z = 2N2E
0

1

dmE
0

1

drvcsm,rvdexpSK

2
Nm2 − DNs1 − rvdD

3f1 + Os1/Ndg, s9d

where we have replaced the sums in Eq.(7) by integrals over
the magnetization and vacancy densitym and rv, and ne-
glected correction terms of order 1/N. Substitution of the
tricritical values ofK and D, application of the Stirling’s
formula lnsN! d= sN+ 1

2
dln N−N, and Taylor expansion of

ln csm,rvd yield

ln csm,rvd = −
9

4
Nsdrv + m2d2 −

81

4
Ndrvm

4 −
27

2
Nsdrvd2m2

−
9

8
Nsdrvd3 −

81

10
Nm6 + NOfm8−2ksdrvdkg

+ ¯ sk = 0,1,2,3,4d s10d

wheredrv=rv−rvt represents fluctuations of the vacancies.
On this basis, the partition sum(9) can be written as

Z = fN2E
0

`

dm e−s81/10dNm6
f1 + NOsm8dgE

−`

`

dr̃ e−s9/4dNr̃2

3s1 + 63
8 Nm6 + NOsm8dd

= f8N2E
0

`

dm e−s9/40dNm6E
−`

`

dr̃ e−s9/4dNr̃2

3f1 + Os1/Ndg, s11d

where f and f8 are constants and we have introduced a new
variable r̃=drv+m2. The integration boundaries have been
extended to infinity, and this can be shown[33,34] to intro-
duce only an error decaying exponentially withN. Equation
(11) indicates that the tricritical fluctuations of the MF BC
model (3) consist of two parts: Gaussian(normal) fluctua-
tions of a combined variabler̃ and those of the magnetiza-
tion described by a weight exps−9Nm6/40d. The absence of
m2 andm4 in Eq. (11) is an essential characteristic of thef6

theory and the mean-field description of tricritical phenom-
ena. For later convenience, we rewrite Eq.(11) in the vari-
ablesxm=9Nm6/40 andxv=9Nr̃2/4 as
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Z = BsNdE
0

`

dxm xm
−5/6 e−xmE

0

`

dxv xv
−1/2 e−xvf1 + Os1/Î3Ndg,

s12d

whereBsNd is a function ofN. Then, substitution of theG
function Gszd=e0

`uz−1e−zdz yields the partition sum(11) as

Z = BsNdGs 1
6dGs 1

2d . s13d

In the study critical phenomena, several universal ratios
of finite-size scaling amplitudes, closely related to the quan-
tity originally introduced by Binder[35], play an important
role. Particularly, these dimensionless ratios are very useful
in Monte Carlo determinations of critical points. Here, we
consider two such ratios, which are defined on the basis of
fluctuations of the magnetizationm and vacancy densityrv
as

Qm =
km2l2

km4l
andQv =

ksdrvd2l2

ksdrvd4l
, s14d

with drv=rv−rvt, as mentioned earlier.
From the probability distribution implied by the partition

sum(12), the expectation values of the moments of the mag-
netization densitym are then obtained as

km2l =
BsNd

Z
E

0

`

dxm m2xm
−5/6e−xmE

0

`

dxv xv
−1/2 e−xv

= S 40

9N
D1/3Gs 1

2d
Gs 1

6d + OsN−2/3d,

km4l = S 40

9N
D2/3Gs 5

6d
Gs 1

6d + OsN−1d,

km6l = S 40

9N
DGs 7

6d
Gs 1

6d + OsN−4/3d,

and

km8l = S 40

9N
D4/3Gs 3

2d
Gs 1

6d + OsN−5/3d. s15d

Therefore, the dimensionless ratioQm is

Qm = G2s 1
2d / Gs 1

6dGs 5
6d + OsN−1/3d = 1

2 + OsN−1/3d, s16d

where we have used the formulaGs 1
2 +zdGs 1

2 −zd=p /
cosspzd, so thatG2s 1

2
d=p andGs 1

6
dGs 5

6
d=2p.

The exact value ofQv can be obtained as follows. From
the definitionr̃=drv+m2, one has

kdrvl = kr̃l − km2l,

ksdrvd2l = kr̃2l − 2kr̃lkm2l + km4l,

and

ksdrvd4l = kr̃4l − 4kr̃3lkm2l + 6kr̃2lkm4l − 4kr̃lkm6l + km8l.

s17d

At the tricritical point, one haskdrvl=0, so thatkr̃l=km2l. A
detailed calculation then yields

Qv
−1 = S− 3 + 6

km4l
km2l2 − 4

km6l
km2l3 +

km8l
km2l4DYS km4l

km2l2 − 1D2

,

s18d

so that

Qv
−1 = 9 − 1

6FGs 1
6d

Gs 1
2dG3

. 3.8348, s19d

andQv=0.2608… .
The aforementioned calculations implicitly yield the

mean-field thermal and magnetic exponents. Equation(4) in-
dicates that the mean-field quantitykm2l can be regarded as a
type of energy density. From the definition of the magnetic
susceptibilityx=Nkm2l, one has then the scaling behavior at
tricriticality km2l~Nỹt−1=N2ỹh−2. Here, we have introduced
the mean-field critical exponentsỹt and ỹh, which are related
to the standard leading thermal and magnetic exponents in
finite dimensions asyt1=dỹt andyh1=dỹh with dù3, respec-
tively. The above scaling formula gives the mean-field rela-
tion ỹt=2ỹh−1, which generally holds for mean-field sys-
tems. On this basis, Eq.(15) yields ỹt=2/3 andỹh=5/6 for
the tricritical MF BC model, so that one hasyt1=2 andyh1
=5/2 in three dimensions, in agreement with the existing RG
results[4].

B. Monte Carlo simulations

The mean-field calculations in the above subsection rely
on the limit N→`, and thus we have performed numerical
tests for finiteN. Using the standard Metropolis method,
which is adequate for this purpose, we simulated the uncon-
strained model(3) for D=Dt=2 ln 2 in the range 2.96øK
ø3.04. The system sizes were taken asN=100, 200, 400,
600, 800, and 1000. The MF result for the tricritical point is
confirmed by the clear intersection of theQm versusK data,
shown in Fig. 3 atK=3. Then we simulated precisely at the

FIG. 3. The Binder ratioQm of the MF BC model atDt

=2 ln 2 for 2.96øKø3.04. The data points areN=100 s+d ,200
s3d, 400 (!), 600 (q), 800 (n), and 1000(L).
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tricritical point sKt ,Dtd, with system sizes 10øNø16 000.
The sampled quantities include the magnetic susceptibility
x=Nkm2l, the vacancy densityrv, and the Binder ratiosQm

and Qv. Here, the quantityQv is defined by Eq.(14), but
drv=rv−rvt is replaced bydrv=rv−krvl for finite systems.
The latter definition ofQv is more natural in the sense that,
for finite-dimensional systems, the exact value ofrvt is gen-
erally unknown. Further, at tricriticality, since the quantity
krvl approachesrvt as N→`, these two definitions do not
have qualitative difference. The data forrv ,Qm, andQv are
shown in Table I. According to the least-squares criterion, we
fitted the Monte Carlo data by

xsNd = x0 + N2ỹh−1sx0 + x1N
ỹi + x2N

2ỹi + x3N
3ỹid,

rvsNd = rvt + Nỹt−1sp0 + p1N
ỹi + p2N

2ỹi + p3N
3ỹid,

QmsNd = Qmt + qm1N
ỹi + qm2N

2ỹi + qm3N
3ỹi ,

and

QvsNd = Qvt + qv1N
ỹi + qv2N

2ỹi + qv3N
3ỹi . s20d

The terms with the exponentỹi account for finite-size cor-
rections, withỹi =−1/3, as indicated from Eq.(16). Results
are given in Table II, where the estimation ofỹi was obtained
from the fit of Qm with Qmt fixed at 1/2. The theoretical
predictions and the numerical determinations are in fine
agreement. For clarity, the data forQv is shown in Fig. 4 as
Qv−qv2N

−2/3 versusN−1/3, with qv2 taken from the fit.
These exact results are not only theoretically interesting,

but also practically useful. For instance, the exact values of
Qmt andQvt are very helpful in a Monte Carlo determination
[36] of the tricritical point of BC models in three dimensions.

C. Constrained systems

For the MF BC model(3) with a conserved number of
vacancies, the reduced partition sum is obtained from Eq.(9)
by excluding the integration over vacancy fluctuations:

Z8 = N2E dmdrv,2/3csm,rvdexpSK

2
Nm2 − DNs1 − rvdD

3f1 + Os1/Ndg. s21d

It can be shown that, at the tricritical pointsKt ,Dtd, Eq. (21)
reduces to

Z8 = N2E dm e−s9/4dNm4
f1 + OsNm6dg, s22d

which characterizes thecritical mean-field Ising model
[17,33,34].

The reduction to thecritical MF Ising model can be fur-
ther understood as follows. In mean-field systems, each spin
interacts with each other spin. Only the number of vacancies,
not their positions, matters. One can then rearrange the labels
of the Ising spins and those of the vacancies, such that all
Ising spins are counted from 1 toN/3 and vacancies from
N/3+1 to N. Then, the constrained Hamiltonian reads

H/kBT = −
K8

N8
o
i=1

N8

+ 2DN8 o
j=i+1

N8

sisjssi = ± 1d, s23d

where the sum is now only overN8=N/3 Ising spins, and
K8=K /3 is the coupling constant in Eq.(23). For K=Kt=3,
Eq. (23) describes a MF critical Ising model withN8 spins,
and the critical point is atK8=Kc8=1. In this case, the Binder
ratio Qm assumes 4G2s 3

4
d /G2s 1

4
d=0.4569… [(33) and (34)].

TABLE I. Monte Carlo data forrv ,Qm, andQv for the MF BC model at the tricritical pointKt=3 and
Dt=2 ln 2. The numbers in parentheses represent the error margins in the last decimal place.

N 10 20 40 60 100 200 300

rv 0.53364(3) 0.54314(3) 0.55756(3) 0.56666(2) 0.57804(2) 0.59251(2) 0.60027(2)

Qm 0.45159(5) 0.45815(6) 0.46352(6) 0.46644(6) 0.46992(6) 0.47449(7) 0.47694(8)

Qv 0.40132(5) 0.36988(6) 0.34546(7) 0.33388(7) 0.32129(8) 0.30746(8) 0.30099(9)

N 400 600 1000 2000 4000 8000 16000

rv 0.60541(2) 0.61211(2) 0.61970(1) 0.62852(1) 0.63587(1) 0.64183(1) 0.64678(2)

Qm 0.47853(8) 0.4806(1) 0.4831(1) 0.4862(1) 0.4886(1) 0.4910(2) 0.4922(2)

Qv 0.29683(9) 0.2918(1) 0.2865(1) 0.2807(1) 0.2763(1) 0.2732(2) 0.2700(2)

TABLE II. Results of a least-squares analysis of the Monte Carlo data for the MF BC model at the
tricritical point Kt=3 andDt=2 ln 2. The numbers in parentheses represent the error margins in the last
decimal place.

ỹh ỹt ỹi rvt Qmt Qvt

Theory 5/6 2/3 −1/3 2/3 1/2 0.2608…

Fit 0.833(2) 0.667(2) −0.332s1d 0.66664(6) 0.4998(3) 0.2609(3)
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III. GENERALIZATION OF FISHER’S
RENORMALIZATION

As mentioned earlier, constrained critical phenomena can
be successfully explained by the Fisher renormalization
mechanism[23–27]. The basic idea of this mechanism is
straight-forward and fundamental. It is based on the thermo-
dynamic relation that, in the language of the BC model, the
vacancy densityrv and the chemical potentialD are conju-
gate parameters. Letf be the reduced free energy of the
unconstrained critical model as a function ofK andD. The
constraint equation is then expressed asrv=−]f /]D=const.
This yields the path of the constrained system in the param-
eter spacesK ,Dd, which appears to be singular at the critical
point. In this section, we follow a similar procedure and gen-
eralize the Fisher renormalization mechanism such that it can
describe constrained tricritical phenomena. In particular,
since the Monte Carlo simulations, which will be described
in Sec. IV, have to take place at finite systems, we shall first
focus on the finite-size scaling behavior of constrained tric-
ritical systems.

As a first step, we express the finite-size scaling formula
of the reduced free energyf of an unconstrained system[4]
near the tricritical point as

fst1,t2,Ld = L−dfsst1Lyt1,t2L
yt2d + fast1,t2d. s24d

Here,L is the linear system size, and it can also be recog-
nized as a scaling factor in the context of the renormalization
group theory. The leading and subleading thermal scaling
fields t1 andt2 represent the distance to the tricritical point at
t1= t2=0. The functionsfs and fa are singular and analytical
parts of the free energyf, respectively. We have neglected
irrelevant scaling fields and also suppressed magnetic scaling
fields in Eq.(24). For the BC model described by Eq.(1), the
thermal fieldst1 and t2 are analytic functions ofK and D.
Thus, differentiation of Eq.(24) with respect toD yields

− krvst1,t2dl =
] f

] D
= a1L

yt1−dfs
s1,0dst1Lyt1,t2L

yt2d + a2L
yt2−dfs

s0,1d

3st1Lyt1,t2L
yt2d + a1fa

s1,0dst1,t2d + a2fa
s0,1dst1,t2d,

s25d

wherea1=]t1/]D and a2=]t2/]D are constants. The super-

scriptssi , jd representi differentiations with respect tot1 and
j differentiations with respect tot2. Here, we mention that,
for finite systemsL, the conjugate quantity ofD is the ex-
pectation value of the vacancy densitykrvst1,t2dl instead of
rvst1,t2d itself. Under the constraintkrvst1,t2dl=krvs0,0dl,
Taylor expansion of Eq.(25) near the tricritical point leads to

0 = b1L
2yt1−dt1 + b2L

yt1+yt2−dt2 + b3t1 + b4t2, s26d

whereb1,b2,b3, andb4 are constants, andonly the leading
terms are kept in the expansions offs and fa. The constraint
equation(26) describes the approach of the constrained BC
model to the tricritical point in the parameter spacest1,t2d.
However, the analytic form of the path still depends on the
relative values ofyt1, yt2, andd, and so do the critical expo-
nents describing the constrained critical singularities for
t1,t2→0. It follows from Eq. (26) that, near the tricritical
point, the thermal fieldst1 and t2 are related as follows.

(1) For 2yt1−d.0 andyt1+yt2−d.0, the first two terms
in the right-hand side of Eq.(26) dominate asL→`, so that
one hasLyt1t1~Lyt2t2, i.e., t2@ t1 and K−Ktc< t2. Thus, the
leading thermal exponent of the constrained system is equal
to the subleading exponentyt2.

(2) For 2yt1−d.0 but yt1+yt2−d,0, one hasLyt1t1
~Ld−yt1t2. The leading exponent is renormalized asyt1→d
−yt1. This case was already correctly included as one of the
possible outcomes of Imry’s renormalization calculations
[28], as mentioned in Sec. I.

(3) For 2yt1−d,0, i.e., the unconstrained specific heat
does not diverge at tricriticality,t1 is linearly related tot2 as
t1~ t2, and no exponent renormalization occurs.

In short, for a system with a divergent specific heat at
tricriticality, critical exponents are renormalized under the
constraint; otherwise, no renormalization occurs. However,
since tricritical systems have two relevant thermal fieldst1
andt2, the tricritical renormalizations can appear in different
ways, depending on whether or notyt1+yt2.d.

Then the expression of the reduced free energyf8 of the
constrained tricritical BC model can be obtained by substi-
tution of the above renormalization in Eq.(24), which yields

f8st1,t2,Ld = L−dfs8st1L
yt18 ,t2L

yt2,1d + fa8st1,t2d, s27d

whereyt18 is equal toyt2, d−yt1, andyt1 for yt1+yt2.d, yt1
+yt2,d but 2yt1.d, and 2yt1,d, respectively.

Next, we consider the effect of the constraint in an infinite
system. We interpret the parameterL in Eq. (24) as a rescal-
ing factor that can be arbitrarily chosen. Thus, we may set
the rescaling factorL= t2

−1/yt2 for case 1 andL= t2
−1/sd−yt1d for

case 2, so that the thermal fieldst1 and t2 are related ast1
~ t2

yt2/yt1 and t1~ t2
sd−yt1d/yt1, respectively. Substitution of these

relation in Eq.(27) yields the constrained reduced free en-
ergy f8 of an infinite system as

f8st1,t2d ~ t1
2−a8Cst2/t1

fd. s28d

Here, the critical index is given bya8=2−d/yt18 and the
crossover exponent byf=yt2/yt18 , with yt18 given earlier, and
C represents an analytical function. For the caseyt18 =d−yt1,
one hasa8=−a / s1−ad, in agreement with Eq.(2).

FIG. 4. The Binder ratioQv of the MF BC model at tricriticality.
The dataQv−qv2N

−2/3 are shown vsN−1/3, whereqv2=0.26s2d was
taken from the fit.
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During the derivation of these scaling equations, we have
used Taylor expansions, for instance, of Eq.(25), and kept
only the leading terms. Therefore, in addition to those from
irrelevant thermal fields, we expect that new corrections are
induced by the constraint.

Constrained tricritical behavior in three dimensions

As generally expected at the borderline dimensionality for
mean-field-like behavior, logarithmic corrections to scaling
occur in tricritical BC systems(1) in three dimensions. This
has already been obtained in renormalization calculations of
the Landau-Ginzburg-Wilson Hamiltonian. Near the tricriti-
cal point, the reduced free energy of the 3D BC model reads
[4]

fst1,t2,h1,h2,v,Ld

= L−3fsst1L2,t2LL0
−2/5,h1L

5/2,h2L
3/2L0

−1/10,vL0
−1d

+ fast1,t2d, s29d

where the parameterv, also an analytical function ofK and
D, describes the leading irrelevant thermal field. For com-
pleteness, we have also included the leading and subleading
magnetic fieldsh1 andh2. The amplitudeL0=1+25v lnL ac-
counts for the aforementioned logarithmic corrections. Equa-
tion (29) indicates that these corrections occur not only in the
irrelevant fieldv but also in the subleading fieldst2 andh2.

It follows from Eq. (29) that the unconstrained specific
heatC in systems(1) is divergents2yt1−3.0d at tricritical-
ity, and thus the critical exponents are renormalized under
the constraint. However, the 3D tricritical BC model(1) is a
marginal case in the sense the critical exponentsyt1+yt2−3
=0, so that it is not immediately obvious how the renormal-
ization occurs. Taking into accountL0

−2/5 in Eq. (29) for the
subleading fieldt2, we conclude that in constrained systems
the leading thermal exponent is renormalized asyt18 =3−yt1
=1.

IV. MONTE CARLO SIMULATIONS

A. Unconstrained BC models

The tricritical BC model(1) has been investigated on sev-
eral three-dimensional lattices, and various techniques have
been developed, including the self-consistent Ornstein-
Zernike approximation[37] and Monte Carlo simulations
[36,38].

In comparison with the well-known Swendsen-Wang[39]
and Wolff [32] algorithms for the spin-12 Ising model, no
cluster algorithm has so far been developed to efficiently flip
between Ising spins and vacancies near the tricritical point.
Thus, Monte Carlo simulations of the unconstrained tricriti-
cal BC model(1) suffer from critical slowing down. Using a
combination of the Metropolis, Wolff, and aforementioned
geometric cluster[29–31] steps, we simulated the BC model
(1) on the simple-cubic lattice with periodic boundary con-
ditions. The fluctuations between vacancies and Ising spins
are realized by the standard Metropolis method; the Wolff
algorithm flips between +1 and −1 Ising spins; and the geo-
metric steps move groups of spins and vacancies over the

lattice. In this way, critical slowing down is significantly sup-
pressed. Making use of the exact values ofQm and Qv, as
calculated in Sec. II, we located[36] the tricritical point as
Kt=0.7133s1d and Dt=2.0313s4d; the expectation value of
the tricritical vacancy density isrvt=0.6485s2d, rather close
to the mean-field value 2/3. Consistency between these re-
sults and existing determinations[37,38], Kt=0.706s3d , Dt

=2.01s1d, andrvt=0.655s6d, exists within a margin of about
twice the quoted errors. Here, we have applied other tech-
niques, including a simultaneous analysis of various quanti-
ties for different systems such that parameters in common
appear only once[16]; the details of these numerical analy-
ses will be presented elsewhere[36].

For a comparison of constrained tricritical behavior, we
simulated the constrained BC model at the tricritical point
sKt ,Dtd, as determined earlier, with system sizes 6øLø32.
We sampled the magnetic susceptibilityx, the energy density
kel, the specific heatC, and the Binder ratios, etc., respec-
tively. Here, the energy densitykel was defined as nearest-
neighbor correlations, and the specific heatC reads

C = L3K2ske2l − kel2d, s30d

representing the strength of critical fluctuations ofkel. At
tricriticality, the scaling behavior of these quantities can be
derived from Eq.(29) as

x = x0 ~ L2yh1−3 = L2, kel − e0 ~ Lyt1−3 = L−1,

andC − c0 ~ L2yt1−3 = L, s31d

where the termsx0, e0, andc0 arise from the analytical part
of the free energy. The Monte Carlo data forx , kel, andC
are shown in Figs. 5, 6, and 7, respectively. The approximate
linearity for largeL in these figures confirms the tricritical
finite-size scaling behavior described by Eq.(31).

Apart from the conventional specific heatC, we also
sampled a related quantityCs on the basis of the Fourier
components ofesx,y,zd for systems of sizeL:

ekx,ky,kz
=

1

L3E
0

L

dx dy dz esx,y,zdexpf2pisxkx + yky + zkzd/Lg.

s32d

Obviously, e0,0,0 is just the global energy densitye; and
quantitiesekx,ky,kz

for kxÞ0, kyÞ0, orkzÞ0 represent spatial

FIG. 5. The unconstrained magnetic susceptibilityx of the 3D
BC model at tricriticality, shown vsL2yh1−3, with yh1=5/2.
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inhomogeneities ofesx,y,zd. Then, the quantityCs can be
defined in terms ofekx,ky,kz

for the smallest wave numbers as

Cs = L3K2ke−1,0,0e1,0,0+ e0,−1,0e0,1,0+ e0,0,−1e0,0,1l. s33d

The physical meaning ofCs can be gleaned in comparison
with the conventional specific heatC. First, as indicated by
Eqs. (30) and (33), both quantities represent fluctuation
strengths ofekx,ky,kz

, with kx=ky=kz=0 for C and ukxu+ ukyu
+ ukzu=1 for Cs. Second, bothC andCs can be expressed in
terms of a sum of energy-energy correlation functions. Thus,
we expect thatCs behaves as a specific-heat-like quantity,
and we refer to it as the structure factor of the specific heat
C. Then, the tricritical scaling behavior ofCs is also gov-
erned by Eq.(31), and this is confirmed by Fig. 8.

B. Constrained BC models

For the three-dimensional BC model(1) with a conserved
number of vacancies, we used a combination of the Wolff
and geometric cluster steps only. The chemical potentialD in
Eq. (1) becomes implicit and does not play a role in con-
strained Monte Carlo simulations. One particular feature is
that these simulationshardly suffer from critical slowing
down even near the tricritical point. This may be attributed to
the fact that the constrained specific heatC does not diverge
at tricriticality, as discussed later. Therefore, we extensively
simulated systems in the range 6øLø128. The coupling
constantK and the vacancy densityrv were set atKtc

=0.7133s1d andrtc=0.6485s2d [36], respectively. For a finite
system, however, the number of vacanciesNvt=L3rtc is not
an integer, so that the actual simulations took place atfNvtg
and fNvtg+1, where the brackets[] denote the integer part.
The value of a sampled quantity atNvt was obtained by a
linear interpolation betweenfNvtg and fNvtg+1.

The Monte Carlo data forx , kel, andC are shown in Figs.
9, 10, and 11, respectively. As illustrated by Figs. 5 and 9,
the magnetic exponent describing the divergence of the sus-
ceptibility x, i.e., yh1, remains unchanged under the con-
straint, which indicates that the constraint on vacancies does
not qualitatively influence magnetic quantities. However, the
critical behavior of energylike quantities is significantly
modified. In particular, the tricritical specific heatC is
strongly suppressed so that it only takes a finite value asL
→`. This constrained phenomenon is in agreement with the
generalized Fisher renormalization mechanism presented in
Sec. III. Further, from Eqs.(27) and (29), the quantitative
finite-size behavior ofkel andC at tricriticality is described
by

kel − e0 ~ Lyt18 −3 = L−2 andC − c0 ~ L2yt18 −3 = L−1, s34d

whereyt18 =3−yt1=1, as mentioned earlier. These theoretical
predictions, i.e., Eq.(34), are reflected by the approximate
linearity displayed by the data in Figs. 9 and 10. We fitted the
data forkel andC by

FIG. 6. The unconstrained energy densitykel of the 3D BC
model at tricriticality, vsLyt1−3, with yt1=2.

FIG. 7. The unconstrained specific heatC of the 3D BC model
at tricriticality, vsL2yt1−3, with yt1=2.

FIG. 8. The unconstrained structure factor of the specific heatCs

of the 3D BC model at tricriticality, vsL2yt1−3, with yt1=2.

FIG. 9. The constrained magnetic susceptibilityx of the 3D BC
model at tricriticality, vsL2yh1−3, with yh1=5/2.
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kel = e0 + e1L
yt18 −3s1 + b1/ln L + b2/L + b3/L

2d s35d

and

C = c0 + c1L
yt18 −3s1 + d1/ln L + d2/L + d3/L

2d, s36d

respectively. The logarithmic corrections from the irrelevant
fields are described by the terms with amplitudesb1 andd1.
The fits of kel and C yield that yt18 =0.99s2d and 1.02(2),
respectively, with error margins of two standard deviations.
This is consistent with the expectationyt18 =3−yt1=1. We
mention that Eqs.(35) and (36) are in fact neither complete
nor “correct” in describing the scaling behavior ofkel andC.
First, one has not taken into account the second relevant
thermal fieldst2, which can in principle introduce terms with
L0

−2/5 in the parentheses of Eqs.(35) and (36). Second, the
logarithmic corrections should be described by terms with
1/L0 instead of 1/ lnL. However, as indicated by the fits of
kel andC, this “bias” does not significantly affect the results
of yt18 due to the following reasons. The replacement of
1/ ln L by sln Ld−2/5 does not significantly change the result
for yt18 . Even neglecting the 1/ lnL term does not produce a
large change. It appears that logarithmic corrections are not
very serious in constrained tricritical systems. This is also
illustrated by the clean intersection of theQm data for K
=Kt=0.7133s1d and 0.645ørvø0.651, partly shown in Fig.
12. The data forQm in the range 6øLø128 were fitted by

QmsK,Ld = Qmt + o
k=1

4

srv − rvtdkLkyt18 + b1/ln L + b2/L + b3/L
2

+ csrv − rvtdLyt18 /L, s37d

wherervt is the tricritical vacancy density. The renormalized
thermal exponent was taken asyt18 =1, and we obtainb1
=0.066s5d and Qmt=0.687s6d, with two standard deviations
again. The value ofQmc is in agreement neither withQt
=1/2 for unconstrained systems nor with the mean-field
critical Ising valueQc=0.4567… .

The influence of the annealed constraint on tricritical spa-
tial fluctuations can be reflected by the constrained Monte
Carlo data forCs at the tricritical point, as shown in Fig. 13.
As in unconstrained systems,Cs diverges asCs~L as L
→`, so that the leading thermal exponentyt1 still governs
the scaling behavior ofCs. This is rather different from the
constrained behavior of the conventional specific heatC,
which is suppressed to be convergent at tricriticality. We fit-
ted the data forCs by

Cs = cs0 + cs1L
yt1−3s1 + ds1/ln L + ds2/L + ds3/L

2d, s38d

which yieldsyt1=1.995s8d, in fine agreement with the exact
value yt1=2. Therefore, one can conclude that the tricritical
spatial fluctuations remain unchanged under the constraint.

FIG. 10. The constrained energy densitykel of the 3D BC model
at tricriticality, vsL−2.

FIG. 11. The constrained specific heatC of the 3D BC model at
tricriticality, vs L−1.

FIG. 12. The constrained Binder ratioQm of the 3D BC model
for K=0.7133s2d, vs the vacancy densityrv. The data points are
L=16s+d ,203, 24 (!), 28 (q), 32 (n), and 36(L)

FIG. 13. The structure factorCs of the constrained specific heat
of the 3D BC model at tricriticality, vsL.
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V. DISCUSSION

Due to the geometric cluster algorithm, a full-cluster
simulation becomes possible for the tricritical BC model
with a conserved number of vacancies. We have performed
an extensive investigation of constrained tricritical behavior
in three dimensions, and observe the following.

(1) The leading finite-size scaling behavior of magnetic
quantities remains unchanged under the constraint. This is as
expected: the vacancy densityrv is conjugate to the chemical
potentialD, which contributes only to the thermal fieldst1
and t2.

(2) The critical behavior of energylike quantities is renor-
malized; particularly, the constrained specific heatC has only
a finite cusp at tricriticality. The leading thermal exponent
yt1=2 is renormalized asyt18 =3−yt1=1, while the second one
yt2=1 remains unchanged under the constraint.

(3) The constrained magnetic Binder ratio at tricriticality
is Qmt=0.687s6d, apparently different from the unconstrained
valueQmt=1/2.This is understandable because the universal
ratio Qm still depends on boundary conditions, and the aspect
ratios, etc., which influence magnetic correlation functions.
The constraint also belongs to this category.

(4) Structure factors such asCs, accounting for spatial
inhomogeneities of conventional quantities, display the same
scaling behavior as in unconstrained systems. This indicates
that the divergence of the spatial correlation length, one es-
sential characterization of critical phenomena, remains un-
changed under the constraint at least to a scale that is small
in comparison with system sizes. In this sense, one can con-
clude that the annealed constraint does not modify the uni-
versality class of a tricritical system.

As discussed in Sec. II, the constrained version of the
mean-field tricritical BC model displays a behavior which is
mean-field critical Ising-like. Apparently, this is different
from the three-dimensional constrained tricritical behavior
summarized above. This indicates that the mean-field theory
is not complete in describing universal critical phenomena
even at the upper critical dimensionality. For an uncon-
strained mean-field BC model, the vacancy fluctuations are
coupled to the Ising fluctuations. Then, the stability criterion
of the coupled fluctuations, depending on the value ofK and
D, yields distinct types of phase transitions: a line of critical
Ising points, a tricritical point, and a first-order transition
line. However, in constrained mean-field systems, the fluc-
tuations of vacancies are suppressed. Therefore, the presence
of vacanciesonly serves to reduce the number of Ising spins,
leading to a smaller effective interaction. As a consequence,

the whole line of phase transitions in the spacesK ,Dd, in-
cluding the tricritical point and the first-order transition, re-
duces to meanfieldcritical Ising-like under the constraint.
Since this does not agree with the constrained behavior of
the investigated short-range model, we arrive at the some-
what surprising result that mean-field theory does not de-
scribe the universal properties of the constrained tricritical
model at its upper critical dimensionality.

On the basis of the generalized Fisher renormalization
mechanism, as outlined in Sec. III, we finite-size analyzed
several tricritical quantities of the constrained BC model in
three dimensions. The agreement between the theoretical
predictions and the Monte Carlo results is quite satisfactory.
We emphasize that, although the present annealed constraint
leads to a change of the critical exponents, it does not modify
the universality class. In fact, the derivations in Sec. III make
essential use of the universal renormalization exponents.

The Fisher renormalization mechanism is rather straight-
forward and fundamental. Nevertheless, Imry’s renormaliza-
tion calculations[28] also give a correct prediction of the
critical index a for tricritical Osnd systemssnù1d in three
dimensions. However, we mention that the calculations in
Ref. [28] did not take into account the effect of the sublead-
ing thermal fieldyt2. It is then justified to ask the question
how to includeyt2 in these calculations.

A final remark follows. In a finite system, the vacancy
density rv need not be equal to its expectation valuekrvl,
although this difference vanishes asL→`. In the general-
ized Fisher mechanism for constrained tricritical behavior, it
is only required thatkrvst1,t2dl is equal tokrvs0,0dl. How-
ever, the Monte Carlo simulations take place withrv=rvt,
i.e., no fluctuation ofrv is allowed. In this sense, the con-
straint in our numerical studies is “stronger” than the one in
the generalized Fisher renormalization, although our present
numerical results do not reveal the consequences of this fact.
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