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After starting a reciprocating heat engine it eventually settles to a stable mode of operation. A first principle
quantum heat engine also approaches this stable limit cycle. The studied engine is based on a working medium
consisting of an ensemble of quantum systems composed of two coupled spins. A four-stroke cycle of opera-
tion is studied, with twoisochorebranches where heat is transferred from the hot/cold baths and twoadiabats
where work is exchanged. The dynamics is generated by a completely positive map. It has been shown that the
performance of this model resembles an engine with intrinsic friction. The quantum conditional entropy is
employed to prove the monotonic approach to a limit cycle. Other convex measures such as the quantum
distance display the same monotonic approach. The equations of motion of the engine are solved for the
different branches and are combined to a global propagator that relates the state of the engine in the beginning
of the cycle to the state after one period of operation of the cycle. The eigenvalues of the propagator define the
rate of relaxation toward the limit cycle. A longitudinal and transverse mode of approach to the limit cycle is
thus identified. The entropy balance is used to explore the necessary conditions which lead to a stable limit
cycle. The phenomena of friction can be identified with a zero change in the von Neumann entropy of the
working medium.
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I. INTRODUCTION

A reciprocating four-stroke engine when started up will
settle after a few cycles to a limiting smooth cycle of opera-
tion. The present theoretical analysis is devoted to the char-
acterization of the transition period from the state when the
engine is started up to the sequence of states characterizing
the periodic steady state termed the limit cycle. The process
has similarities to the approach to thermodynamical equilib-
rium of an initially displaced state. This relaxation to equi-
librium is accompanied by entropy production signifying the
irreversible character of the process. Entropy is produced on
the approach to the limit cycle but unlike an equilibrium
state entropy continues to be produced also when the limit
cycle has been reached.

The approach to a limit cycle is based on the concept of a
basin of attraction where the limit cycle is located at its mini-
mum. The basin of attraction is set by external and internal
constraints. Dissipative forces cause the system to settle
down to the minimum of such a basin. A first principle study
needs to determine the equations of motion governing the
dynamics of the engine. For this purpose, the framework of
open quantum systems is employed[1,2]. The key point is
that the dynamics of the engine is governed by a completely
positive map[3]. Then the limit cycle becomes a fixed point
of this map. In order to determine if the approach to the limit
cycle is monotonic, a measure of distance between the actual
state of the engine and the final limiting cycle has to be
defined. Such a measure of distance between two quantum
states is not obvious due to the possibility that the two states
do not commute. In analogy to linear response theory it is
expected that, “close enough” to the limit cycle, all distance
measures should show the same relaxation rate toward the
target limit cycle. This prediction is consistent with the re-
sults of the present study. Nevertheless, at a large distance
from the limit cycle only the quantum measures show a
monotonic approach.

The present paper is a continuation of a series of studies
on a four-stroke quantum engine[4–8]. The models studied
were based on a first principle quantum description of the
dynamics. The previous studies showed that the model en-
gine displays the irreversible characteristics of common real
heat engines operating in finite time. The performance of the
quantum engine was found to be limited by finite heat trans-
fer. In addition quantum performance limitations on the adia-
batic branches mimicked very closely macroscopic friction
phenomena[7]. In addition to the conceptual importance of
quantum heat engines, direct realization of quantum heat
pumps has become important in approaching the absolute
zero in the field of ultracold matter and the process of puri-
fication in quantum information processing[9]. Reversing
the current engine to produce a quantum heat pump will be
dealt with in a subsequent study.

The quantum discrete heat engine is composed of a quan-
tum working fluid, a hot and a cold bath, and an external
field which can alter the energy levels of the working me-
dium. The control parameters are the time allocations on the
different branches, the total cycle time, and the extreme val-
ues of the external field. All four branches are described by
quantum equations of motion. The thermodynamical conse-
quences can therefore be derived from first principles. A
minimum set of three thermodynamical observables was
found which were sufficient to characterize the performance
of the engine. With two additional variables, the state of the
working fluid could also be characterized[8]. Knowledge of
the state is necessary in order to evaluate the entropy and the
internal temperature, variables which are necessary to estab-
lish a thermodynamic perspective.

The intuitive notion is that the limit cycle is characterized
by the external constraints and internal properties of the en-
gine. The following questions naturally arise: How do the
control parameters characterize the approach to the limit
cycle? Can conditions be found for the nonexistence of a
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limit cycle? What are the irreversible properties of the limit
cycle? The present paper is devoted to the study of these
issues in the context of quantum thermodynamics.

II. QUANTUM THERMODYNAMICAL OBSERVABLES
AND THEIR DYNAMICS

In the field of quantum thermodynamics, thermodynami-
cal variables are associated with quantum mechanical ob-

servables. An observablekÂl is defined as the following sca-

lar product between the operatorÂ and the density operator
r̂:

kÂl = sÂ · r̂d = trhÂ†r̂j. s1d

The dynamics of the quantum thermodynamical observables
are described by completely positive maps within the formu-
lation of quantum open systems[1,2]. The dynamics is gen-
erated by the Liouville superoperator, which in the Heisen-
berg picture becomes

Â

.

= L * sÂd +
] Â

] t
, s2d

whereL is a generator of a completely positive map:Tstd
=eLt. The generatorL can be decomposed to the unitary and
dissipative contributionsL* = LH

* +LD
* . The second term in

Eq. (2) ]Â /]t addresses the possible explicit time depen-
dence of the operator. Atomic units are used throughout the
papers"=1, kB=1d.

The thermodynamical construction follows Gibbs by
seeking a minimum set of variables associated with the quan-

tum orthogonal operatorshB̂kj. This set should be sufficient
to completely determine the state of the systemr̂. In addition
the set should be closed for the dynamics, i.e., for the opera-
tion of L*. Any cycle of a heat engine can be decomposed
into a sequence of four completely positive maps defining
the different branches. Eventually this sequence closes upon
itself. A thermodynamical description therefore means that
the set of variables should be closed for the dynamics during
all branches of the operation. In equilibrium statistical me-
chanics the energy of a subsystem is sufficient to determine
its state. In the present nonequilibrium example, additional

variableskB̂kl are required to define the state of the working

fluid. The set of time dependent expectation valuesbW std are
used to reconstruct the density operator:

r̂ =
1

N
Î + o

k
bkB̂k, s3d

where the expansion coefficients becomebk =kB̂kl , sB̂k·B̂ jd
=trhB̂k

†B̂ jj=dkj , trhB̂kj=0, and N is the size of the Hilbert
space.

A. Quantum entropy

Thermodynamic measures require the knowledge of the
state of the systemr̂. Entropy, the most common measure, is

associated with lack of knowledge or dispersion of the sys-
tem [10,11]. The entropy associated with a measurement of

an observablekÂl with N possible outcomes becomes

SÂ = − o
j

N

pjlnpj , s4d

wherepj =trhP̂jr̂j and P̂j is the j projection operator of the

operatorÂ =o j
Na jP̂j, and where the spectral decomposition

sÂ uf jl=a juf jl , P̂j = uf jlkf jud was utilized. Looking for the
observable for which a complete measurement maximizes
the information on the state is equivalent to minimizing the
entropy with respect to all possible observables. This process
leads to the von Neumann entropy

S = − trhr̂ ln r̂j, s5d

and the optimum operator that minimizes dispersion com-
mutes with the stater̂.

The distance from a reference stater̂ref is a key compo-
nent in the study of the approach to the equilibrium or to the
steady state. The conditional entropy is associated with the
lack of information on the stater̂, subject to the knowledge
of a reference stater̂ref. The conditional entropy associated
with a measurement of a particular observable becomes

SÂsr̂ur̂refd = − o
j

pjln
pj

qj
, s6d

whereqj =trhP̂jr̂refj. The conditional entropy is bound from
above and positive:

SÂsr̂d ù SÂsr̂ur̂refd ù 0. s7d

The value zero is reached only whenr̂= r̂ref.

Maximizing Eq. (6) with respect to the operatorÂ leads
to an entropy measure which depends only on the two states:

Ssr̂ur̂refd = − trhr̂sln r̂ − ln r̂refdj. s8d

Ssr̂ u r̂refd=0 when the two states become indistinguishable.

B. Conditions for the monotonic approach to the limit
cycle

Lindblad [12] has proven that the conditional entropy de-
creases if a completely positive map is applied to both the
stater̂ and the reference stater̂ref:

Ssr̂ur̂refd ù SsTr̂uTr̂refd, s9d

whereT is a completely positive map. An interpretation of
Eq. (9) is that a completely positive map reduces the distin-
guishability between two states. This observation has been
employed to prove the monotonic approach to equilibrium,
provided that the reference stater̂ref is theonly invariant of
the mappingT, i.e., Tr̂ref= r̂ref [13,14].

The same reasoning can prove the monotonic approach to
the limit cycle. The mapping imposed by the cycle of opera-
tion of a heat engine is a product of the individual evolution
steps along the branches composing the cycle of operation
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(cf. Sec. IV C). Each one of these evolution steps is a com-
pletely positive map, so that the total evolutionUcyc that
represents one cycle of operation is also a completely posi-
tive map. If then a stater̂lc is found that is a single invariant
of Ucyc, i.e.,Ucycr̂lc= r̂lc, then any initial stater̂init will mono-
tonically approach the limit cycle. Based on Eq.(9), a mono-
tonically decreasing series bound from below converges to a
limit

Ssr̂initur̂lcd ù SsUcycr̂initur̂lcd ù SsUcyc
n r̂initur̂lcd ù 0, s10d

whereUcyc
n represents a sequential mapping of the cyclen

times.
The largest eigenvalue ofUcyc with a value of 1 is asso-

ciated with the invariant limit cycle stateUcycr̂lc=1r̂lc, the
fixed point ofUcyc. The other eigenvalues determine the rate
of approach to the limit cycle(cf. Sec. V A).

The conditional entropy has been criticized as a measure
of distance since it is not symmetric inr̂ and r̂ref and there-
fore does not form a metric. For this reason other measures
are employed.

C. Thermodynamic quantum distance

The concept of a statistical distance between different
pure quantum systems was introduced by Wootters[15] who
followed Fischer’s[16] idea to measure distance in probabil-
ity space. In[17] the concept of distinguishability for neigh-
boring mixed quantum states is described. Hübner[18] com-
puted explicitly the distance between two-dimensional
density operators, and gave a general formula for the
N-dimensional distance. A detailed and clear review on the
subject has been presented by Diósi and Salamon[19].

1. Wootters distance

Statistical distance is associated with the size of the sta-
tistical fluctuations occurring in a measurement that distin-
guishes one state from another. Two outcomes are distin-
guishable in a given number of trials, provided that the
difference in actual probabilities is larger than the size of
typical fluctuation. The maximal number of distinguishable
states that can be found between two probability distribu-
tions has been suggested by Wootters[15] to define the dis-
tance between these two states.

Consider two probability distributionsp and q obtained
from the same complete measurement of two quantum states
r̂ andr̂ref [cf. Eq. (6)]. In order to define a distance between
p and q a continuous curve is sought connecting the two
distributions. Taking advantage of normalization and that
probabilities are positive, a change of variable is used:xj

=Îpj and yj =Îqj. The new variables allow a geometric in-
terpretation for they define points on anN-dimensional unit
sphere, sinceo j

Nxj
2=o j

Nyj
2=1. The statistical distance be-

tween p and q then becomes the shortest distance on the
surface of this unit sphere between the points defined by the
vectorsx andy. This shortest distance is equal to the angle
between the unit vectorsx andy, given by

DÂsp,qd = arccosSo
j=1

N

xjyjD = arccosSo
j=1

N

Îpj
ÎqjD .

s11d

For quantum systems Eq.(11) corresponds to the statistical

distance associated with a measurement of an operatorÂ.
For two commuting states the statistical distance becomes
the arccos of the scalar product of the square roots of the
density operators.

Dsr̂,r̂refd = arccosstrhr̂1/2r̂ref
1/2jd. s12d

For two noncommuting states, the distanceDsr̂ ,r̂refd has to
be redefined as[18]

Dsr̂,r̂refd = Îinf trhsŴ1 − Ŵ2dsŴ1 − Ŵ2d*j, s13d

where the infimum is taken over all Hilbert-Schmidt opera-
tors that describe all the possible operators satisfying

Ŵ1Ŵ1
* = r̂, Ŵ2Ŵ2

* = r̂ref, s14d

and Ŵ1
*Ŵ2.0. This definition of distance is symmetric in

r̂ ,r̂ref and therefore forms a metric[18,19]:

Dsr̂,r̂refd = ÎNf1 − trÎsr̂d1/2r̂refsr̂d1/2g, s15d

whereN is the size of the Hilbert space.

D. Entropy production

Once the limit cycle has been reached, any observable is
cyclic, including the entropy. This is the result of the fact that
the state of the system is completely determined by a finite
number of expectation values which are cyclic. This means
that entropy change in the complete cycle is zero or the total
internal entropy production of the working medium is zero.

The external entropy production is positive for the limit
cycle. It is a measure of the irreversible dissipation to the hot
and cold baths:

DScyl
ext= − SQh

Th
+

Qc

Tc
D , s16d

whereQh/c is the heat dissipated to the hot/cold bath andTh/c
is the bath temperature.

III. THE QUANTUM MODEL

The present study is based on a four-stroke quantum heat
engine model corresponding to the Otto cycle. The cycle is
composed of twoisochoreswhere the working medium is in
contact with the hot/cold baths and the external field is con-
stant and twoadiabatswhere the external field is varying.
The motion is generated by the Liouville operatorL which
can be decomposed to a Hamiltonian part and a dissipative
part:

L * = LH
* + LD

* , s17d

whereLH
* Â = ifĤ ,Âg. The main feature of the Hamiltonian is

that the external control part does not commute with the
inertial internal part.
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Ĥ = Ĥ int + Ĥextstd, s18d

and fĤ int ,ĤextgÞ0.
The specific choice of working medium is composed of

an ensemble of noninteracting coupled two-spin systems
identical to the model studied in Ref.[8].

The Hamiltonian

The single particle Hamiltonian is chosen to be propor-
tional to the polarization of a two-level system(TLS): ŝz

j .
The operatorsŝz,ŝx,ŝy are the Pauli matrices. For this sys-
tem, the external Hamiltonian will be

Ĥext= 2−3/2vstdsŝz
1

^ Î 2 + Î 1
^ sz

2d ; vstdB̂1, s19d

and the external control fieldvstd is chosen to be in thez
direction. The uncontrolled interaction Hamiltonian is cho-
sen to be restricted to the coupling of pairs of spin atoms.
Therefore the working fluid consists of noninteracting pairs
of TLS’s. For simplicity, a single pair can be considered. The
thermodynamics ofM pairs then follows by introducing a
trivial scale factor. Accordingly, the uncontrolled part be-
comes

Ĥ int = 2−3/2Jsŝx
1

^ ŝx
2 − ŝy

1
^ ŝy

2d ; JB̂2. s20d

J scales the strength of the interaction. WhenJ→0, the
model represents a working medium with noninteracting at-
oms [5].

The commutation relationfB̂1,B̂2g=Î2iB̂3 leads to the

definition of B̂3. The analysis shows[8] that the set of op-

eratorsB̂1,B̂2,B̂3, and Î forms a closed subalgebra of the
total Lie algebra of the combined system. The Hamiltonian

expressed in terms of the operatorsB̂1,B̂2,B̂3 in the polar-
ization representation becomes

Ĥ = vstdB̂1 + JB̂2. s21d

The eigenvalues ofĤ are 0, ±V /Î2 whereV=Îv2+J2. The

closed Lie algebra of the sethB̂kj means that it is also closed
for the propagation generated by the Hamiltonian(21).

IV. THE CYCLE OF OPERATION,
THE QUANTUM OTTO CYCLE

The operation of the heat engine is determined by the
properties of the working medium and the coupling to the
hot and cold baths. The cycle of operation is defined by the
external controls which include the variation in time of the
field with the periodic propertyvstd=vst+td wheret is the
total cycle time synchronized with the contact times on the
different branches of the cycle. The cycle studied is com-
posed of two branches where the working medium is in con-
tact with the hot/cold baths and the field is constant, termed
isochores. In addition, there are two branches where the field
vstd varies and the working medium is disconnected from

the baths, termedadiabats. This cycle is a quantum analog of
the Otto cycle.

The four strokes of the cycle with the corresponding pa-
rameters are as follows.(See Fig. 1).

(1) Isochore A→B: The field is maintained constantv
=vb while the working medium is in contact with the hot
bath of temperatureTh with heat conductanceGh and dephas-
ing parametergh for a period ofth.

(2) Adiabat B→C: The field changes linearly fromvb to
va in a time period oftba.

(3) Isochore C→D: the field is maintained constantv
=va while the working medium is in contact with the cold
bath of temperatureTc with heat conductanceGc and dephas-
ing parametergc for a period oftc.

(4) Adiabat D→A: The field changes linearly fromva to
vb in a time period oftab.

Figure 1 displays a typical trajectory of the cycle in the
plane defined by the external field and the entropysv ,SEd.

The stater̂ [cf. Eq. (3)] of the working medium is com-

pletely reconstructed by the sethB̂kj ,k=1, 5, of five opera-

tors [8]. The set of the three operatorsB̂1,B̂2,B̂3 is sufficient
to describe the energy changes during the cycle of operation.
The mapU relates the initial values of these operators to
their final values for each of the engine branches. Implicitly
this map is obtained by solving a set of coupled inhomoge-
neous equations of motion for each branch[8]. An explicit
description of the map is obtained by adding the identity

operatorÎ which transforms the inhomogeneous equations to
a closed set of linear coupled 434 equations. The equation

of motion of the two additional operatorsB̂4 and B̂5 form a
linear first order inhomogeneous equation depending on the

time dependence of the closed setB̂1,B̂2,B̂3, and Î . As a
result they form an additional 232 block in the map.

FIG. 1. (Color online) The cycle of the heat engine in the
sv ,SEd plane. The upper tilted line(red) indicates the energy en-
tropy of the working medium in equilibrium with the hot bath at
temperatureTh for different values of the field. The lower tilted line
(blue) indicates the energy entropy in equilibrium with the cold bath
at temperatureTc. The rectangle cycle has an infinite time allocation
on all branches. It reaches the equilibrium point with the hot bath
(point E) and equilibrium point with the cold bath(point F). The
inner cycle ABCD is a typical cycle with the time allocations
th=2.5, tba=0.01,tc=3, tab=0.01. The external parameters
are va=5.083 64,vb=12.6355,J=2, Th=7.5, Tc=1.5, Gh=Gc

=0.3423,gh=gc=0.
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A. Propagators on the isochores

The dynamical mapUstc/hd on theisochoresis generated
by both the Hamiltonian and the dissipative Lindblad gen-
erators representing the interaction with the bath. The 434

block of the map is first solved for the setB̂1,B̂2,B̂3, and Î .
Since v is constant on theisochoresa closed form of the
propagatorUstd for both hot and cold baths is obtained[8]:

Ustd

=1
K

Xv2 + cJ2

V2 K
vJsX − cd

V2 K
Js

V
b1

eqs1 − e−Gtd

K
vJsX − cd

V2 K
XJ2 + cv2

V2 − K
vs

V
b2

eqs1 − e−Gtd

− K
Js

V
K

vs

V
Kc 0

0 0 0 1

2 ,

s22d

where K=exph−sG+2gV2dtj , X=exps2gV2td , c=cos
3sÎ2Vtd , s=sinsÎ2Vtd , b1

eq=−sv /Î2VGdsk↑−k↓ d , b2
eq

=−sJ/Î2VGdsk↑−k↓ d. Finally g is the dephasing constant,
t=tc/h is the time spent on the cold/hotisochore, and G
=k↑ +k↓ is the heat conductance to the cold/hot bath. The
corresponding bath temperatureTc/h enters through the de-
tailed balance relationk↑ /k↓ =e−V/TÎ2. The block containing

B̂4 and B̂5 can now be solved as a 232 set of coupled
inhomogeneous equations of motion[8].

B. Propagators on theadiabats

The propagator on theadiabatsis more involved. This is
due to the explicit time dependence of the Hamiltonian. Us-

ing the Lie algebra of the set ofhB̂kj operators it is always
possible[20] to describe the propagator as

Âstd = ÛÂÛ†, s23d

where Û=expfia1stdB̂1gexpfia2stdB̂2gexpfia3stdB̂3g, and the
coefficientsaistd include the effect of time ordering. The
procedure is described in Appendix A. This approach leads
to the explicit result for the propagator of the set
B̂1,B̂2,B̂3, Î :

Uastd =1
c2c3 − s3c1 + c3s2s1 c3s2c1 + s3s1 0

c2s3 c3c1 + s3s2s1 s3s2c1 − c3s1 0

− s2 c2s1 c2c1 0

0 0 0 1
2 ,

s24d

where s1=sinsa1d , s2=sinsa2d , s3=sinsa3d , c1=cossa1d , c2
=cossa2d , c3=cossa3d. The coefficientsa can either be inte-
grated numerically[see Eq.(A5)] or closed form solutions
can be obtained for specific functional forms ofvstd [8]. The

operatorsB̂4 and B̂5 commute with the Hamiltonian, and
therefore are constant on theadiabats.

C. The global propagator

The propagator of the cycle represents the completely
positive map of the initial expectation values to the final ones
after the operation of one cycle. The propagator is then con-
structed as a sequential product of the individual propagators
on the different branches

Ucyc= Uab Uisc Uba Uish. s25d

An analytic form has been obtained for the propagators on
the isochores[Eq. (22)]. For theadiabats the form of Eq.
(24) has been used, which is parametrically dependent on the
a parameters.

Table I summarizes all the control parameters defining the
cycle.

The global map enables us to solve for the operator ex-
pectation values from their initial values. These expectation
values serve to reconstruct the density operator[see Eq.(3)]
[8]

r̂p =1
1

4
+

b1

Î2
+

b5

2
0 0

b2

Î2
− i

b3

Î2

0
1

4
+

b4

Î2
−

b5

2
0 0

0 0
1

4
−

b4

Î2
−

b5

2
0

b2

Î2
+ i

b3

Î2
0 0

1

4
−

b1

Î2
+

b5

2

2 , s26d
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where the indexp stands for the direct product spin repre-
sentation. Diagonalizing the density operatorr̂p (see Appen-
dix B) leads to the eigenvalues ofr̂ which define the von
Neumann probabilities:

l1 =
1

4
−

D
Î2

+
b5

2
,

l2 =
1

4
+

b4

Î2
−

b5

2
,

l3 =
1

4
−

b4

Î2
−

b5

2
,

l4 =
1

4
+

D
Î2

+
b5

2
, s27d

where D=Îb1
2+b2

2+b3
2. Functionals of the density operator

such as entropy are calculated by the spectral theorem(see
Appendix A).

V. LIMIT CYCLES

The heat engine’s limit cycle is completely determined by
the external control parameters. This means that, irrespective
of the initial state of the working medium, after running the
engine through many cycles of the control sequence, a limit
cycle is approached. This can be observed in Fig. 2 which
demonstrates that starting from two initial conditions, the
engine settles to the same limit cycle, which is the fixed
point at the bottom of the basin of attraction.

A. Approach to the limit cycle

The time scale of the approach of the engine to the limit
cycle is related to the number of accumulated cyclesn, that
are required for the variables of the engine to approach their
asymptotic values. The different measures employed for this
task are defined in Sec. II. The energy distanceDEsr̂n,r̂lcd
Eq. (11) and quantum distanceDsr̂n,r̂lcd Eq. (15) were used

TABLE I. Summary of notation.

Tc Temperature of the cold bath

Th Temperature of the hot bath

va Value of the external field at the cold isochore

vb Value of the external field at the hot isochore

J Internal coupling constant

Gc Heat transfer coupling constant to the cold bath

Gh Heat transfer coupling constant to the cold bath

gc Dephasing constant on the cold bath

gh Dephasing constant on the hot bath

tc Time allocation on the coldisochore

th Time allocation on the hotisochore

tab Time allocation on the cold-to-hotadiabat

tba Time allocation on the hot-to-coldadiabat

FIG. 2. The limit cycle in the field entropy variablessv ,SEd.
Two initial states represented by points are indicated by one with
the field value ofvb. The sequence of branches starting from a cold
initial temperature are shown with circles around the numbers. The
working medium of the engine is put in contact with the hot bath
for a time duration ofth and heats up. For timetba the frequency
changes fromvb to va (branch 2). Cooling due to contact with the
cold bath is found on branch 3. For clarity the arrows do not reach
the values ofva andvb. The sequence of branches starting from a
hot initial temperature is shown with diamonds around the numbers.
The working medium of the engine is put in contact with the hot
bath for a time duration ofth and cools down to branch 2. The
contact with the cold branch further cools the engine(branch 3)
After going through approximately three cycles of the engine, the
two paths appear to converge to the same limit cycle, indicated by
the ABCD rectangle.

FIG. 3. The distanceDsr̂n,r̂lcd and the energy distance
DEsr̂n,r̂lcd from the limit cycle as a function of accumulated cycles
n. Four example are shown numbered from 1 to 4. The correspond-
ing insets show the limit cycle in the energy entropySE and v
plane. The dashed lines indicated byE correspond to the energy
distanceDEsr̂n,r̂lcd. Cycles 1 and 3 are without dephasing. Cycles
2 and 4 include dephasing on theisochoreswith gh=0.01 andgc

=0.03. All cycles spend the same time on theisochoressth=tc

=0.6d. The time on theadiabatsvaries from very short, cycles 1 and
2, to very long, cycles 3 and 4.
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as measures and are shown in Fig. 3. The reference stater̂lc
can be chosen on any point on the engine’s trajectory, for
example on pointsA,B,C,D or between them. The same
point on the trajectory is used to define the state in thenth
iterationr̂n. It was found that the distances do depend on the
choice of the chosen point on the cycle’s trajectory.

Explicitly, the quantumdistanceDsr̂n,r̂lcd [Eq. (15) for
the current working medium] becomes

Dsr̂n,r̂lcd

= Î2h1 − fÎz1 + Îl2sndl3slcd + Îl3sndl3slcd + Îz4gj,

s28d

where the normalization is chosen to beN=2 and the eigen-
valuesl are the eigenvalues of the density operator defined
in Eq. (27) and

z1,4= Q ±ÎSYDn

Î2
D2

+ SxnDlc

Î2
D2

+ 2xnqY, s29d

where 2q is the scalar product between thehB̂j components:

2q = sbWn ·bW lcd = o
j=1

3

bjsndbjslcd, s30d

and x=Îl1l4, 2r = 1
2 +b5, y=2sr −xd /D , Y=r lc+qyn, and fi-

nally Q is the generalized scalar product:Q=rn·r lc+q [D is
defined following Eq.(27)] and is different for the limit
cycle or cyclen. Additional computational details are given
in Appendix B 2.

The distance to the limit cycle can also be associated with
the conditional entropy:

Ssr̂nur̂lcd = Ssr̂nd − FSrn −
Î2q

Dlc
Dlnfl1slcdg + l2sndlnfl2slcdg

+ l3sndlnfl3slcdg + Srn +
Î2q

Dlc
Dlnfl1slcdgG , s31d

which becomes zero whenr̂n approaches the limit cycle.
In all cases studied the quantum distanceDsr̂n,r̂lcd

monotonically approaches zero with the increase in the num-
bern of accumulated cycles(see Fig. 3). This was found also
to be true for the conditional entropy as predicted by Eq.
(10). The energy distanceDEsr̂n,r̂lcd as in case 1E in Fig. 3,
shows a nonmonotonic periodic oscillations in the approach
to the limit cycle. With sufficient dephasing the density op-
erator is almost diagonal in the energy representation and
therefore the two distances converge:Dsr̂n,r̂lcd
=DEsr̂n,r̂lcd (see cases 2 and 4 in Fig. 3).

Examining the measures of approach to the limit cycle,
Eqs. (28) and (31), it is found that they have similar func-

tional dependence on the expectation values of the set ofhB̂j
operators. In particular the two functionals contain the scalar
productq. This indicates that all quantum convex functionals
of r̂ will relax to the limit cycle at the same rate.

The dynamics of the set of operatorshB̂j is determined by
the eigenvalues of theglobal operatorUcyc, Eq. (25). The
eigenvector with the eigenvalue ofm0=1 represents the ex-

pectation value of the limit cycle. The decay rate to the limit
cycle depends on the eigenvalues that are smaller than 1. The
eigenvaluem1ø1 was found to be real and as expected its
eigenvector does not include a component of the identity
operator. Figure 4 shows the dependence of the eigenvalues
m of the global operator on the time spent on theisochores
and on the coupling constants. The relationship is well fitted
by m1=e−sGhth+Gctcd, which means thatm1 is independent of
the dephasing rategh/c. Therefore,m1 can then be interpreted
as the relaxation rate per cycle in the direction defined by the
limit cycle vector. The eigenvaluesm2/3= um2ue±if are com-
plex. Their amplitude can be fitted to um2/3u
=e−fsGh+ghVh

2dth+sGc+gcVc
2dtcg. This suggests thatm2/3 represents

the rate of decay in a direction perpendicular to the direction
of the limit cycle vector. The phasef of m2/3 is an accumu-
lated phase. It was found to be linearly related to the time
allocated on theadiabats. The last two eigenvalues associ-

ated with the block ofB̂4 and B̂5 becomem4=m1 and m5
=sm1d2 [Eqs.(57) and (59) of [8]].

The above analysis reveals that the rate of approach to the
limit cycle is determined by the accumulated dissipation on
the hot and coldisochores. The eigenvaluem1 plays the role
of the longitudinal relaxation analog to 1/T1, while the ei-
genvaluesm2/3 play the role of the transverse relaxation or
1/T2.

B. Properties of the limit cycle

The fact that the limit cycle is closed imposes a strict
periodic constraint on all properties of the working medium.

FIG. 4. Logarithms(basee) of the eigenvalues of the global
propagatorUcyc. Upper panel:m1 as a function of the accumulated
relaxationGhth+Gctc, the sum of the products of the coupling to the
heat/cold baths,Gh/c, with the time allocation on the corresponding
isochore, th/c. The eigenvalue is independent of the time allocation
on theadiabats. Lower panel:m2/3 as a function of the accumulated
dephasingsGh+2ghVh

2dth+sGc+2gcVc
2dtc. The points on the graphs

represent different choices of parameters and time allocation on the
branches.
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The periodicity of the energy entropy and the von Neumann
entropy is a key to understanding the cycle performance.

1. Minimal cycle time

A limit cycle can come about only if the total internal
entropy changes on the four branches sum up to zero. The
question is what combinations of control parameters, such as
the time allocations lead to a stable limit cycle? This ques-
tion can be addressed by searching for the opposite condi-
tions that do not allow a limit cycle to be closed. As was
described in Sec. II B, a limit cycle is obtained only when
there is a single invariant of the propagatorUcyl. An extreme
case is when no time is allocated to the hot and coldisoch-
oresstc=th=0d. By construction the mapUcyl is unitary and
all eigenvalues are modulus 1. Thus any initial state will
oscillate indefinitely without settling to a limit cycle. The
next step in the investigation is to allocate some time to the
cold isochore, tcÞ0, adding a dissipative branch.

Analyzing the eigenvalues ofUcyl shows the expected in-
variant eigenvaluem0=1. All other eigenvalues are smaller
than 1, meaning that a limit cycle exists. The entropy picture
is more surprising: The change of the von Neumann entropy
DSab/ba on the twoadiabatsis zero(see Fig. 5) for any point
on the cycle trajectory. Therefore the only way the cycle can
be closed is that the change of the von Neumann entropy on
the dissipative coldisochoreis also zero. A complementary
picture is obtained by analyzing the energy entropySE along
the trajectory. If the twoadiabatsare not inverses of each
other, then the evolution after a sequence of twoadiabats
(point D→AB→C) will lead to an increase inSE (see Fig.
5). To close the cycle, this increase should be compensated
by a decrease in the energy entropy on the coldisochore.
How do these seemingly contradictory entropy balances co-
exist? The answer is hidden in the double role the cold bath
plays in the entropy changes. If the state of the working
medium(point C in Fig. 5) is hotter than the temperature of
the cold bath, heat will transfer from the working medium to
the cold bath, and thus decrease the liquid’s entropy. On the
other hand the contact with the bath forces dephasing. This

loss of phase increases the von Neumann entropy. Therefore,
there is a point on the coldisochorewhere the decrease in
the energy entropy is exactly compensated by the entropy
increase due to dephasing. This scenario defines the stable
limit cycle. This cycle cannot produce useful work. It repre-
sents a device which converts work from the twoadiabatsto
heat dissipated in the cold bath in accordance with the sec-
ond law of thermodynamics.

Figure 6 shows three cycles with time allocated to all
branches of the engine. The first cycle 1 is an extension of
the cycle in Fig. 5. It has minimal contact with the hot bath.
The position of the limit cycle on thesv ,SEd plot is as far as
possible from the cold equilibrium point. This position maxi-
mizes the negative energy entropy change on the coldisoch-
ore. Cycle 2 corresponds to a zero work cycle. The work
generated by extracting heat from the hot bath and ejecting it
into the cold bath is balanced by the work against friction.
This cycle defines the minimum operational cycle time.
Cycle 3 is a typical cycle with positive work output.

A search was carried out for time allocations where the
cycle does not close and therefore no limit cycle exists. In
general it was very difficult to find such conditions. These
atypical cases with extremely small time allocations, were
characterized by a nonuniqueness of the limit cycle. For
slightly longer time allocations a unique limit cycle was
found which does not represent an engine. The reason is that
the cooling on the coldisochorewas not sufficient to dissi-
pate the energy increase on theadiabats. As a result addi-
tional cooling was required on the hotisochore. The onset
where heat is transferred by the engine from the hot to the
cold bath was termed in the analogous engine based on a
phenomenological description of friction[6], as the minimal
cycle time(cf. cycle 1 in Fig. 6). Additional time allocation
was required to reach the onset of a positive work output(cf.
cycle 2 in Fig. 6).

2. Entropy production

The position of the limit cycle is determined by the bal-
ance of entropy. Since on the adiabatic branches the von
Neumann entropy is constant, the increase in the entropy of

FIG. 5. The energy entropySE and the von Neumann entropyS
as a function of the fieldv for a limit cycle with time allocations on
theadiabatsstba=tab=0.03d and on the coldisochorestc=0.6d. No
time is allocated on the hotisochore; th=0. Notice the horizontal
line representing the von Neumann entropy. Other parameters are
J=2, Th=7.5, Tc=1.5, va=5.083 638 7,vb=12.635 485,Gc=1.7.
The entropy production of the cycle isDSu=1.889310−2 and the
power output is negativeP=−4.293310−2.

FIG. 6. Three cycles corresponding to the minimal cycle time 1,
zero power output 2, and positive power output 3. The time alloca-
tions on the isochoresare as follows. On cycle 1,th=0.32,tc

=0.64; on cycle 2, th=0.581,tc=1.1602; and on cycle 3,
th=1.5, tc=3.6. The common parameter values on all three
cycles are tab=0.05,tba=0.06,J=2, Gh=1.0048,Gc

=0.106 62,vb=12.635 45,va=5.083 638 7,Th=7.5, Tc=1.5.
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the working medium on the hotisochoreshould be exactly
compensated for on the coldisochore.

Examining the entropy changes on the hotisochore, one
can compare the external entropy productionDSh

ext=
−Qh/Th to the internal change. Schlögl suggested[21,22]
that the universal entropy production is related to the differ-
ence in the conditional entropy associated with the equilib-
rium state:

DSh
E = SE„r̂Aur̂eqsThd… − SE„r̂Bur̂eqsThd…, s32d

wherer̂A is the state at point A on the beginning of the hot
isochore, r̂B is the state at point B at the end of the hot
isochore, andr̂eqsThd is the equilibrium state at point E. Us-
ing the fact that the equilibrium density operator is diagonal
in the energy representation, i.e.,SE(r̂Au r̂eqsThd)=SEsr̂Ad
−EA/Th+ln Z, Eq. (32) takes the form

DSh
E = SEsr̂Ad − SEsr̂Bd −

Qh

Th
, s33d

sinceQh=sEB−EAd (Z is the partition function).
The full quantum characteristics representing the devia-

tion of the density operator from the energy representation
are obtained by the conditional entropy

DSh
u = S„r̂Aur̂eqsThd… − S„r̂Bur̂eqsThd… = Ssr̂Ad − Ssr̂Bd −

Qh

Th
.

s34d

For very long cycle times and sufficient time allocation on
the isochoresthe system is diagonal in the energy represen-
tation. As a result Eq.(34) and Eq.(32) are equivalent. The
difference between the internal entropy productionDSh

u and
the externalDSh

ext=−Qh/Th represents the entropy increase in
the working medium. The same measures can be applied to
the coldisochore. Summing the entropy changes on the two
branches leads to equality between the changes in external
and internal entropy production:

DSh
u + DSc

u = − SQh

Th
+

Qc

Tc
D , s35d

since the von Neumann entropyS is constant on theadia-
bats. The energy entropy is not constant on theadiabats,
leading to a different relation for energy entropy production:

DSh
E + DSc

E = − SQh

Th
+

Qc

Tc
D + DSba

E + DSab
E , s36d

whereDSab
E is the change in energy entropy on theadiabat.

This can be interpreted as the entropy generation on the
adiabats.

VI. CONCLUSIONS

Summarizing the study is best carried out by addressing
the questions raised in the Introduction.

A. How do the control parameters characterize the approach
to the limit cycle?

The existence of a limit cycle is subject to there being a
unique invariant of the global propagator. The invariant has

an eigenvaluem0=1 and its eigenvector is expressed via the

expectation values ofB̂1,B̂2,B̂3, and Î in the limit cycle.
Quantum measures were developed to characterize the ap-

proach to the limit cycle: the conditional entropy and the
quantum distance. These measures show a monotonic ap-
proach to the limit cycle. The projected measures such as the
energy distance or energy conditional entropy can show an
oscillatory approach to the limit cycle. Close to the limit
cycle the rate of approach of all measures converge to the
same value. The quantum distance was always larger than
the probability distance associated with the measurement of
energy. Dephasing eroded the deviation between the two dis-
tances.

Longitudinal and transverse modes of approach to the
limit cycle were identified. The rate of approach is associated
with the eigenvalues of the propagator. The eigenvaluem1
determines the longitudinal relaxation rate.m1 exponentially
depends on the accumulated energy relaxation on the hot and
cold isochoresm1~e−sGhth+Gctcd. The transverse rate of ap-
proach is associated with the eigenvaluesm2/3. Their magni-
tude depends on the accumulated dephasing on the hot and

cold isochoresum2/3u~e−fsGh+ghVh
2dth+sGc+gcVc

2dtcg. The phasef
of m2/3 is linear in the time allocationtab+tba. The depen-
dence of the rate of relaxation on other parameters such as
the internal spin couplingJ was found to be weak.

B. Can conditions be found for nonexistence of the limit cycle?

When no time is allocated to the hot and coldisochores
th=tc=0 then the evolution is unitary and the modulus of all
eigenvalues of the propagator becomes 1. As a result no
unique limit cycle can be found. For very short times allo-
cated to theisochores, two eigenvalues of the cycle propa-
gator became equal to 1. Again no limit cycle is obtained
under these conditions. Therefore there exists adt!1 range
of time allocation on theisochoresfor which no unique limit
cycle can be closed.

C. What are the irreversible properties of the limit cycle?

Heat transport between the working medium and the baths
is a common source of irreversibility for all realistic heat
engines. If this is the only source of entropy generation the
engine is classified as endoreversible[23,24], meaning that
entropy is generated only on the interface and that the inter-
nal operation is reversible. The dissipative forces accompa-
nying heat transfer were found to be sufficient to drive a
quantum two-level endoreversible heat engine to a limit
cycle [5].

Friction is an additional source of irreversibility for all
realistic heat engines. It is characterized by an internal en-
tropy production. The heat generated by friction eventually
has to be disposed of in the cold bath. The performance of
the present first principle quantum engine has been shown to
be limited by a frictionlike phenomenon[6]. The key to un-
derstanding the quantum origin of friction lies in the differ-
ence between the energy entropySE and the von Neumann
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entropyS. Since the von Neumann entropy is constant on the
adiabatsthe model can be classified as endoreversible[see
Eq. (35)]. Following the engine’s cycle by observing its en-
ergy changes shows characteristics of entropy generation on
the adiabats[see Eq.(36)].

The most illuminating case which characterizes the irre-
versible character of the heat engine due to its nonadiabatic
dynamics is a cycle composed of twoadiabatsand only a
cold isochoreas displayed in Fig. 5. External work is con-
verted to internal heat which is dissipated to the cold bath.
The only phenomenon that fits this behavior is friction. Sur-
prisingly, the von Neumann entropy for the complete cycle
trajectory is constant. This is in contrast to a power-
producing cycle where the von Neumann entropy changes on
the isochores. A detailed analysis of the von Neumann en-
tropy change on the coldisochoreperformed in the energy
representation unravels the picture. A decrease in the entropy
of diagonal elements, equivalent toDSE, due to cooling of
the working medium is exactly compensated by an entropy
increase due to dephasing, i.e., loss of the nondiagonal ele-
ments. It seems therefore that friction is the result of the
interplay between the unitary evolution on theadiabatsand
the dissipative dynamics on the coldisochore. Friction is
found only when the state of the quantum engine deviates
from a diagonal energy representation. Such dynamics are a
consequence of the nonadiabatic operation conditions caused
by the noncommutability of the working medium Hamil-
tonian at different points along the cycle trajectory. These
observations are the basis for a quantum control of friction
which will be presented in a future study.
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APPENDIX A: ANALYTICAL SOLUTION OF THE
PROPAGATOR ON THE ADIABATS

The analytic solution for the propagator on theadiabatsis

based on the Lie group structure of thehB̂j operators. The

unitary evolution operatorÛstd for an explicitly time depen-
dent Hamiltonian is obtained from the Schrödinger equation

− i
d

dt
Ûstd = ĤstdÛstd, Ûs0d = Î . sA1d

The propagated set of operators becomes

B̂

→
std = ÛstdB̂

→
s0dÛ†std = UastdB̂

→
s0d, sA2d

and is related to the superevolution operatorUastd. Based on
the group structure Wei and Norman[20] constructed a so-

lution to Eq.(A1) for any operatorĤ which can be written as
a linear combination of the operators in the closed Lie alge-

bra Ĥstd=o j=1
m hjstdB̂i, where thehistd are scalar functions of

t. In such a case the unitary evolution operatorÛstd can be
represented in the product form

Ûstd = p
k=1

m

expfakstdB̂kg. sA3d

The product form Eq.(A3) substitutes the time dependent
operator equation(A1) with a set of scalar differential equa-
tions for the functionsakstd. Writing the unitary evolution
operator explicitly leads to

Ûstd = expSi
a1std
Î2

B̂1DexpSi
a2std
Î2

B̂2DexpSi
a3std
Î2

B̂3D .

sA4d

The Î2 factor is introduced for technical reasons. Based on
the group structure[20] Eq. (A1) leads to the following set
of differential equations for the coefficientsa:

ȧ1 = Î2vstd + Î2JSsinsa1dsinsa2d
cossa2d D ,

ȧ2 = Î2J cossa1d, ȧ3 =
Î2J sinsa1d

cossa2d
. sA5d

APPENDIX B: THE DENSITY OPERATORS

1. Functions of the density operators

a. Computation ofr̂p
1/2 and ln r̂p

First r̂p, Eq. (26), is diagonalized by the unitary matrices
Qp,Qp

†:

Qp =1
−

sb2 + ib3d
Î2DsD + b1d

0 0 ÎsD + b1d
2D

0 1 0 0

0 0 1 0

sb2 + ib3d
Î2DsD − b1d

0 0 ÎsD − b1d
2D

2 , sB1d

leading to
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Qpr̂pQ
† =1

1

4
−

D
Î2

+
b5

2
0 0 0

0
1

4
+

b4

Î2
−

b5

2
0 0

0 0
1

4
−

b4

Î2
−

b5

2
0

0 0 0
1

4
+

D
Î2

+
b5

2

2 = r̂vn sB2d

whereD=Îb1
2+b2

2+b3
2, andli are the eigenvalues ofr̂ which are the von Neumann probabilities[see Eq.(27)].

The eigenvalues ofr̂1/2 becomel1
1/2, l2

1/2, l3
1/2, andl4

1/2. From Eq.(B2) one hasr̂p=Qp
†r̂vnQp; thereforer̂p

1/2=Qp
†r̂vn

1/2Qp,
and lnr̂p=Qp

†ln r̂vnQp. Explicitly,

r̂p
1/2 =1

l4
1/2 + l1

1/2

2
+

b1sl4
1/2 − l1

1/2d
2D

0 0
sb2 − ib3dsl4

1/2 − l1
1/2d

2D

0 l2
1/2 0 0

0 0 l3
1/2 0

sb2 + ib3dsl4
1/2 − l1

1/2d
2D

0 0
l4

1/2 + l1
1/2

2
−

b1sl4
1/2 − l1

1/2d
2D

2 sB3d

and

ln r̂p =1
ln l4 + ln l1

2
+

b1sln l4 − ln l1d
2D

0 0
sb2 − ib3dsln l4 − ln l1d

2D

0 ln l2 0 0

0 0 ln l3 0

sb2 + ib3dsln l4 − ln l1d
2D

0 0
ln l4 + ln l1

2
−

b1sln l4 − ln l1d
2D

2 . sB4d

b. Computation ofr̂e
1/2 and ln r̂e

To get r̂ in the energy picturer̂p is transformed by the matrixC which diagonalized the Hamiltonian(see[8]). Denoting
V=Îv2+J2, m=ÎsV−vd /2V, andx=ÎsV+vd /2V, C becomes[8]

C =1
− m 0 0 x

0 1 0 0

0 0 1 0

x 0 0 m
2 . sB5d

Observing thatCC= I leads tor̂e=Cr̂pC,

r̂e =1
1

4
−

E

VÎ2
+

b5

2
0 0 +

ib3

Î2
−

Jb1

VÎ2
+

vb2

VÎ2

0
1

4
+

b4

Î2
−

b5

2
0 0

0 0
1

4
−

b4

Î2
−

b5

2
0

−
ib3

Î2
−

Jb1

VÎ2
+

vb2

VÎ2
0 0

1

4
+

E

VÎ2
+

b5

2

2 , sB6d

whereE=vb1+Jb2. In equilibrium, the off-diagonal elements vanish.
r̂p=Cr̂eC and thereforer̂vn=Qpr̂pQp

†=QpCr̂eCQp
†. It follows that the diagonalizing matrices ofr̂e becomeQe=QpC and

Qe
†=CQp

†. As a result,r̂e
1/2=Qe

†r̂vn
1/2Qe and lnsred=Qe

†lnsr̂vndQe. Explicitly,
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r̂e
1/2 =1

l4
1/2 + l1

1/2

2
−

Esl4
1/2 − l1

1/2d
2DV

0 0 −
sl4

1/2 − l1
1/2dsvb2 − Jb1 + iVb3d

2DV

0 l2
1/2 0 0

0 0 l3
1/2 0

−
sl4

1/2 − l1
1/2dsvb2 − Jb1 − iVb3d

2DV
0 0

l4
1/2 + l1

1/2

2
+

Esl4
1/2 − l1

1/2d
2DV

2 sB7d

and

ln r̂e =1
ln l4 + ln l1

2
−

Esln l4 − ln l1d
2DV

0 0 −
sln l4 − ln l1dsvb2 − Jb1 + iVb3d

2DV

0 ln l2 0 0

0 0 ln l3 0

−
sln l4 − ln l1dsvb2 − Jb1 − iVb3d

2DV
0 0

ln l4 + ln l1

2
+

Esln l4 − ln l1d
2DV

2 . sB8d

Any function of the density matrix can be computed by the diagonalizing vectors of the density matrix.

2. Additional details of quantum distance

In Sec. V A, a closed form expression was obtained for the quantum distance, Eq.(28). For the computation the polarization
frame r̂p was used.

The operatorM̂ =sr̂d1/2r̂refsr̂d1/2 required in Eq.(15) is first computed:

M̂ =1
Q +

b1snd
Î2

sY + xnd 0 0 Sb2snd
Î2

− i
b3snd
Î2

DY + Sb2slcd
Î2

− i
b3slcd
Î2

Dxn

0 L2 0 0

0 0 L3 0

Sb2snd
Î2

+ i
b3snd
Î2

DY + Sb2slcd
Î2

+ i
b3slcd
Î2

Dxn 0 0 Q −
b1snd
Î2

sY + xnd
2 sB9d

where the notation of Eqs.(28), (29), and(30), was used, and where,L2=l2
1/2sndl2

1/2slcd andL3=l3
1/2sndl3

1/2slcd.
Calculation ofDsr̂n,r̂lcd requires the value of trhÎM̂ j. The matrix representation ofM̂ breaks up into two internal and

external 232 submatrices. Denoting the eigenvalues of the externalM̂ 1,4 submatrix byzi, one has

z1,4= Q ±ÎSYDn

Î2
D2

+ SxnDlc

Î2
D2

+ 2xnqY. sB10d
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