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Characteristics of the limit cycle of a reciprocating quantum heat engine
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After starting a reciprocating heat engine it eventually settles to a stable mode of operation. A first principle
guantum heat engine also approaches this stable limit cycle. The studied engine is based on a working medium
consisting of an ensemble of quantum systems composed of two coupled spins. A four-stroke cycle of opera-
tion is studied, with twdsochorebranches where heat is transferred from the hot/cold baths anddiabats
where work is exchanged. The dynamics is generated by a completely positive map. It has been shown that the
performance of this model resembles an engine with intrinsic friction. The quantum conditional entropy is
employed to prove the monotonic approach to a limit cycle. Other convex measures such as the quantum
distance display the same monotonic approach. The equations of motion of the engine are solved for the
different branches and are combined to a global propagator that relates the state of the engine in the beginning
of the cycle to the state after one period of operation of the cycle. The eigenvalues of the propagator define the
rate of relaxation toward the limit cycle. A longitudinal and transverse mode of approach to the limit cycle is
thus identified. The entropy balance is used to explore the necessary conditions which lead to a stable limit
cycle. The phenomena of friction can be identified with a zero change in the von Neumann entropy of the
working medium.
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[. INTRODUCTION The present paper is a continuation of a series of studies

A reciprocating four-stroke engine when started up will On @ four-stroke quantum engifié—g]. The models studied
settle after a few cycles to a limiting smooth cycle of opera-Veré based on a first principle quantum description of the
tion. The present theoretical analysis is devoted to the chaflynamics. The previous studies showed that the model en-
acterization of the transition period from the state when thedin€ displays the irreversible characteristics of common real
engine is started up to the sequence of states characterizi at engines operating in finite t|m_e._The per_fo_rmance of the
the periodic steady state termed the limit cycle. The procesgUantum engine was found to be limited by finite heat trans-
has similarities to the approach to thermodynamical equilibI€!- In addition quantum performance limitations on the adia-
rium of an initially displaced state. This relaxation to equi- Patic branches mimicked very closely macroscopic friction
librium is accompanied by entropy production signifying the Phénomendy’]. In addition to the conceptual importance of
irreversible character of the process. Entropy is produced offt@ntum heat engines, direct realization of quantum heat
the approach to the limit cycle but unlike an equilibrium PUMPS has become important in approaching the absolute
state entropy continues to be produced also when the lim@€r® in the field of ultracold matter and the process of puri-
cycle has been reached. Ication In quantum information processiri§]. Reversmg

The approach to a limit cycle is based on the concept of &€ current engine to produce a quantum heat pump will be
basin of attraction where the limit cycle is located at its mini-d€alt with in a subsequent study.
mum. The basin of attraction is set by external and internal The quantum discrete heat engine is composed of a quan-
constraints. Dissipative forces cause the system to settfe!™ working fluid, a hot and a cold bath, and an external
down to the minimum of such a basin. A first principle study l€/d which can alter the energy levels of the working me-
needs to determine the equations of motion governing thg!um. The control parameters are t_he time allocations on the
dynamics of the engine. For this purpose, the framework oflifferent branches, the total cycle time, and the extreme val-
open quantum systems is employiid2]. The key point is  U€S of the exte_rnal field. A_II four branches are de_scnbed by
that the dynamics of the engine is governed by a completelfiu@ntum equations of motion. The thermodynamical conse-
positive map[3]. Then the limit cycle becomes a fixed point duences can therefore be derived frpm first principles. A
of this map. In order to determine if the approach to the limitminimum set of three thermodynamical observables was
cycle is monotonic, a measure of distance between the actuf?und which were sufficient to characterize the performance
state of the engine and the final limiting cycle has to beof the engine. With two additional variables, the state of the
defined. Such a measure of distance between two quantuworking fluid could also be characteriz¢8]. Knowledge of
states is not obvious due to the possibility that the two statethe state is necessary in order to evaluate the entropy and the
do not commute. In analogy to linear response theory it isnternal temperature, variables which are necessary to estab-
expected that, “close enough” to the limit cycle, all distancelish a thermodynamic perspective.
measures should show the same relaxation rate toward the The intuitive notion is that the limit cycle is characterized
target limit cycle. This prediction is consistent with the re- by the external constraints and internal properties of the en-
sults of the present study. Nevertheless, at a large distanggne. The following questions naturally arise: How do the
from the limit cycle only the quantum measures show acontrol parameters characterize the approach to the limit
monotonic approach. cycle? Can conditions be found for the nonexistence of a
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limit cycle? What are the irreversible properties of the limit associated with lack of knowledge or dispersion of the sys-
cycle? The present paper is devoted to the study of thesem[10,1]. The entropy associated with a measurement of

issues in the context of quantum thermodynamics. an observabléA) with N possible outcomes becomes

N
Il. QUANTUM THERMODYNAMICAL OBSERVABLES .
Q Si=~2 pinp;, (@)
AND THEIR DYNAMICS i

In th_e field of quantur_n therm_odynamics, thermod;_/nami-where pj=tr{lsji)} and Isj is the j projection operator of the
cal variables are associated with quantum mechanical ob- - N

o i . operatorA=>Na:P., and where the spectral decomposition
servables. An observab{@) is defined as the following sca- p 19T . P ) P
A _ (Al =aj|¢y), Py=|#){¢]) was utilized. Looking for the
I:ar product between the operatarand the density operator observable for which a complete measurement maximizes
p- the information on the state is equivalent to minimizing the
entropy with respect to all possible observables. This process

A= (A -p) =tdATH
(A)=(Ap)=tHAp}. (1) leads to the von Neumann entropy
The dynamics of the quantum thermodynamical observables S= “ins
are described by completely positive maps within the formu- =-tipinp}, (5)

lation of quantum open systenfis,2]. The dynamics is gen- and the optimum operator that minimizes dispersion com-
erated by the Liouville superoperator, which in the Heisenytes with the statp.

berg picture becomes The distance from a reference stgig; is a key compo-
_ A nent in the study of the approach to the equilibrium or to the
A=L* (A) + IA ) steady state. The conditional entropy is associated with the

lack of information on the statp, subject to the knowledge
of a reference statp,.;. The conditional entropy associated

where L is a generator of a completely positive mafit) with a measurement of a particular observable becomes

=€, The generatof. can be decomposed to the unitary and
dissipative contributionC* = £,,+ L. The second term in

Eq. (2) dA/dt addresses the possible explicit time depen-
dence of the operator. Atomic units are used throughout the A
paper(i=1, kg=1). whereq;=tr{P,p}. The conditional entropy is bound from
The thermodynamical construction follows Gibbs by above and positive:
seeking a minimum set of variables associated with the quan-
Sa(P) = Sa(plpre) = 0. (7)

tum orthogonal operatokB,}. This set should be sufficient
to completely determine the state of the sysfern addition  The value zero is reached only Whpe prer.
the set should be closed for the dynamics, i.e., for the opera-
tion of £*. Any cycle of a heat engine can be decompo:sedto
into a sequence of four completely positive maps defining
the different branches. Eventually this sequence closes upon S(P|Prer) = = tr{p(IN p=1n Prep)}. (8)
itself. A thermodynamical description therefore means that _ _ S

the set of variables should be closed for the dynamics during(P|Prer) =0 when the two states become indistinguishable.
all branches of the operation. In equilibrium statistical me-

chanics the energy of a subsystem is sufficient to determine B. Conditions for the monotonic approach to the limit

its state. In the present nonequilibrium example, additional cycle

variables(B,) are required to define the state of the working  Lindblad [12] has proven that the conditional entropy de-
fluid. The set of time dependent expectation valbés are  creases if a completely positive map is applied to both the

Si@line) == pin L. (6)
J ]

Maximizing Eq.(6) with respect to the operatafx leads
an entropy measure which depends only on the two states:

used to reconstruct the density operator: statep and the reference stafger.
~ 1. ~ S(i’|i’ref) = S(mu—bref)v (9)
p==1+> bBy, 3 , iy : ,
N k where7 is a completely positive map. An interpretation of

) o A A~ Eq. (9) is that a completely positive map reduces the distin-
where the expansion coefficients become (B, (Bi-Bj)  guishability between two states. This observation has been
=tr{BlBj}=5kj, tr{B,}=0, andN is the size of the Hilbert employed to prove the monotonic approach to equilibrium,
space. provided that the reference stgig; is the only invariant of
the mappind7, i.e., 7p,ei=pPrer [13,14.

The same reasoning can prove the monotonic approach to
the limit cycle. The mapping imposed by the cycle of opera-

Thermodynamic measures require the knowledge of théion of a heat engine is a product of the individual evolution
state of the syster. Entropy, the most common measure, is steps along the branches composing the cycle of operation

A. Quantum entropy
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(cf. Sec. IV Q. Each one of these evolution steps is a com- N No —
pletely positive map, so that Fhe .total evolutiofy,. that _ Da(p,q) = arcco E Xjy; | =arcco E PV |-
represents one cycle of operation is also a completely posi- =1 =1

tive map. If then a statpy; is found that is a single invariant (11)

of Usyo 1.€.,UsyPic=Pic, then any initial stat@,; will mono- o
tonically approach the limit cycle. Based on E8), a mono- For quantum systems E¢L1) corresponds to the statistical
tonically decreasing series bound from below converges to distance associated with a measurement of an opeﬁator
limit For two commuting states the statistical distance becomes
the arccos of the scalar product of the square roots of the
density operators.

D(P, pres) = arccostr{p*'?p2). (12)
where (g, represents a sequential mapping of the cytle o 1o noncommuting states, the distari2gp, pre;) has to

S(PinitlPrc) = SUcyPinitl Pic) = SUeyinitl Pic) =0, (10)

times. :
The largest eigenvalue of;,. with a value of 1 is asso- be redefined agLe]
ciated with the invariant limit cycle stai,,.=1p, the Do o) = NinftrfOW = W) (W = W) 13
fixed point ofi,,. The other eigenvalues determine the rate P.Prer) Vinfr{( 1= WIWi=Wo) ), (19
of approach to the limit cyclécf. Sec. V A. where the infimum is taken over all Hilbert-Schmidt opera-

The conditional entropy has been criticized as a measur®rs that describe all the possible operators satisfying
of distance since it is not symmetric jnand p,.; and there- L
fore does not form a metric. For this reason other measures WiW;=p, WoW,=pe, (14)

are employed. An . _ . : o
and W,;W,>0. This definition of distance is symmetric in

P, Pres and therefore forms a metr[d8,19:

C. Thermodynamic quantum distance

As N 125 1

The concept of a statistical distance between different D prer) \/N[l tr\/(p prei(p)), (3
pure quantum systems was introduced by Wooftesswho  whereN is the size of the Hilbert space.
followed Fischer'q16] idea to measure distance in probabil-
ity space. In[17] the concept of distinguishability for neigh-
boring mixed quantum states is described. Hulta8F com- Once the limit cycle has been reached, any observable is
puted explicitly the distance between two-dimensionalcyclic, including the entropy. This is the result of the fact that
density operators, and gave a general formula for théhe state of the system is completely determined by a finite
N-dimensional distance. A detailed and clear review on thenaumber of expectation values which are cyclic. This means
subject has been presented by Didsi and Salafhéh that entropy change in the complete cycle is zero or the total
internal entropy production of the working medium is zero.

The external entropy production is positive for the limit
cycle. It is a measure of the irreversible dissipation to the hot

Statistical distance is associated with the size of the staand cold baths:
tistical fluctuations occurring in a measurement that distin-
guishes one state from another. Two outcomes are distin- ASH= _<% +%) (16)
guishable in a given number of trials, provided that the T T¢
difference in actual probabilities is larger than the size Ofwherth,c is the heat dissipated to the hot/cold bath apg
typical fluctuation. The maximal number of d|st|ngwshableIS the bath temperature.
states that can be found between two probability distribu-
tions has been suggested by Woottdrs| to define the dis- Ill. THE QUANTUM MODEL
tance between these two states.

Consider two probability distributionp and q obtained
from the same complete measurement of two quantum stat
p andp [cf. Eg.(6)]. In order to define a distance between
p and g a continuous curve is sought connecting the two
distributions. Taking advantage of normalization and tha
probabllltles are positive, a change of variable is usqd be d dt Hamiltoni t and a dissipati
=\p; and yJ_\qJ The new variables allow a geometric in- can- e decomposed to a Hamiltonian part and a dissipative
terpretation for they define points on &hdimensional unit art
sphere, sincesMx’=3'y?=1. The statistical distance be- L* =L+ L, (17)
tweenp andq then becomes the shortest distance on the
surface of this unit sphere between the points defined by thethere”£, A—|[H A] The main feature of the Hamiltonian is
vectorsx andy. This shortest distance is equal to the anglethat the external control part does not commute with the
between the unit vectors andy, given by inertial internal part.

D. Entropy production

1. Wootters distance

The present study is based on a four-stroke quantum heat
ggglne model corresponding to the Otto cycle. The cycle is
composed of twasochoreswhere the working medium is in
contact with the hot/cold baths and the external field is con-

tant and twoadiabatswhere the external field is varying.
he motion is generated by the Liouville operatdmwhich
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A s - Wa o))
H =Hint + Hex(1), (18) 12+ T 'F
~ ~ < Sh
and[HintrHext]7&0- 1 CJ. Tha }B\
The specific choice of working medium is composed of N 4 _ B
an ensemble of noninteracting coupled two-spin systems A 0.8 . A
. . . . 2! D
identical to the model studied in ReB]. Tab
0.6
F Se
0.4 Je
The Hamiltonian 4 6 8 o 0 12 1
The single particle Hamiltonian is chosen to be propor-
tional to the polarization of a two-level systeffiLS): o, FIG. 1. (Color onling The cycle of the heat engine in the
The operatorsr,, y, & are the Pauli matrices. For this sys- (@, Se) plane. The upper tilted linered) indicates the energy en-
tem, the external Hamiltonian will be tropy of the working medium in equilibrium with the hot bath at

temperaturd, for different values of the field. The lower tilted line
ﬁext: 27324(t) (oL ® 12411 o?) = w(t)él, (19)  (blug indicates the energy entropy in equilibrium with the cold bath

at temperaturd@.. The rectangle cycle has an infinite time allocation
and the external control fiele(t) is chosen to be in the  on all branches. It reaches the equilibrium point with the hot bath
direction. The uncontrolled interaction Hamiltonian is cho- (point E) and equilibrium point with the cold batpoint F). The
sen to be restricted to the coupling of pairs of spin atomsinner cycle ABCD is a typical cycle with the time allocations
Therefore the working fluid consists of noninteracting pairsm=2.5, 71,,=0.01,7.=3, 7,,b=0.01. The external parameters
of TLS's. For simplicity, a single pair can be considered. Theare  ®,=5.083 64,0,=12.6355,J=2, T,=7.5,T,=1.5,I',=I;
thermodynamics oM pairs then follows by introducing a =0.3423,7=7.=0.
trivial scale factor. Accordingly, the uncontrolled part be-

comes
~ _ - 2 A - ~ the baths, termeddiabats This cycle is a quantum analog of
=932 1 a1 2y — ,
Hint o, ® 03— 6y ® &7) = IBy. (200 the Otto cycle.
J scales the strength of the interaction. Whén-0, the The four strokes of the cycle with the corresponding pa-
model represents a working medium with noninteracting atfameters are as followsSee Fig. 1
oms[5]. (1) Isochore A—B: The field is maintained constaiat

The commutation relatiorﬁél,éz]:v’ﬁiés leads to the =@ While the working_ medium is in contact with the hot
. - . bath of temperaturg&,, with heat conductanck, and dephas-

def|n|t|0p 01‘ Bg’: The apalyms showf8] that the set of op- ing parametery,, for a period of 7,

eratorsB;,B,,B;, and| forms a closed subalgebra of the (2) Adiabat B— C: The field changes linearly frona, to

total Lie algebra of the combined sysAterrl. The Hamiltoniany, in a time period ofr,.

expressed in terms of the operat@s,B,,B; in the polar- (3) Isochore G- D: the field is maintained constari

ization representation becomes =w, while the working medium is in contact with the cold
R R R bath of temperaturé, with heat conductancE, and dephas-
H = w(t)B; + JB,. (21 ing parametery, for a period ofr..

) - — R (4) Adiabat D— A: The field changes linearly from, to
The eigenvalues dfl are 0, €)/12 whereQQ=\w?*+J. The 4, in a time period oOfr,y,
closed Lie algebra of the s@B,} means that it is also closed Figure 1 displays a typical trajectory of the cycle in the
for the propagation generated by the Hamiltonjam). plane defined by the external field and the entré@ySg).
The statep [cf. Eq. (3)] of the working medium is com-

pletely reconstructed by the s{i&k},kzl, 5, of five opera-

IV. THE CYCLE OF OPERATION, tors[8]. The set of the three operatdss, B,,B; is sufficient
THE QUANTUM OTTO CYCLE to describe the energy changes during the cycle of operation.
. o ) The mapl/ relates the initial values of these operators to
The operation of the heat engine is determined by thger fina| values for each of the engine branches. Implicitly
properties of the working medium and the coupling to they,.s map is obtained by solving a set of coupled inhomoge-
hot and cold baths. The cycle of operation is defined by the o5 equations of motion for each brarféh An explicit

external controls which include the variation in time of the description of the map is obtained by adding the identity

field with the periodic propertyw(t) =w(t+7) wherer is the . . .

total cycle time synchronized with the contact times on theoperaton which t.ransforms the mhomogeneous equatlo'ns to
different branches of the cycle. The cycle studied is com? close_zd set of linear CO'TIPIEM equations. The equation
posed of two branches where the working medium is in conof motion of the two additional operatoBs, andBs form a

tact with the hot/cold baths and the field is constant, termednear first order inhomogeneous equation depending on the
isochores|In addition, there are two branches where the fieldtime dependence of the closed &t B,,B3, andl. As a

w(t) varies and the working medium is disconnected fromresult they form an additional’22 block in the map.
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A. Propagators on theisochores A(t) - OAOT, (23)
The dynamical map/(ry;,) on theésochoresis generated _ - ) -~
by both the Hamiltonian and the dissipative Lindblad gen- where U=exlia(t)ByJexdi ax(t)B,lextlias(t)B;], and the
erators representing the interaction with the bath. The44 coefﬂzlents al(dt) 'nC|bUCLe th; eﬁegt O,fA t'_:_nhe ordering. hTIhed
- S A B - rocedure is described in endix is approach leads
bl.OCk of _the map is first so_lved for the s8¢, B, B3, andl. {30 the exphcn result forp?he propagator pgf the set
Since w is constant on thésochoresa closed form of the

propagatoi/() for both hot and cold baths is obtainggl: BbB%BB!"
CoC3 —S3C1+C39S; €381 +535 0

C CyCy + S C,—C 0
U(7) U(t) = 2S3 C3C1 + 5355  $35C; —C3§; ,
- C,S; C,Cq 0
Xo?+cF  wI(X-c) Js T
K > K > K— bi41-¢e'" 0 0 0 1
QO Q Q (24
wJ(X-c)  XFP+cw? wS o . . _
[ KTz Kz Ky b3{1-e7") where s;=sin(ay), $,=siN(a,), $3=siN(a3), ¢;=c0gay), C;
' =cogay), cz=cogas). The coefficientsy can either be inte-
_ KJ_S Kw_s Kc 0 grated numericallyjsee Eq.(A5)] or closed form solutions
Q Q can be obtained for specific functional formswa(ft) [8]. The
0 0 0 1 operatorsB4 and 85 commute with the Hamiltonian, and
(22) therefore are constant on thadiabats
where K=exg-(I'+2y0%)7}, X=exp2yQ?7), c=cos C. The global propagator
X(\ZQT) s=sin(y2Q 1), beq‘-(w/\ZQF)(kT kl), bsd The propagator of the cycle represents the completely

—(J/\ZQF)(kT kl). Finally y is the dephasing constant, positive map of the initial expectation values to the final ones
=Ty, IS the time spent on the cold/hagochore and I’ after the operation of one cycle. The propagator is then con-
=k1 +k| is the heat conductance to the cold/hot bath. Thestructed as a sequential product of the individual propagators
corresponding bath temperattifg,, enters through the de- On the different branches

tailed balance relatiok /k | =2 The block containing Ueye= Uny Urss Una Ussh (25)
B, and B can now be solved as aX2 set of coupled . .
inhomogeneous equations of Motifs. An analytic form has been obtained for the propagators on

the isochores[Eq. (22)]. For theadiabatsthe form of Eq.
(24) has been used, which is parametrically dependent on the
a parameters.

B. Propagators on theadiabats Table | summarizes all the control parameters defining the

. . . L ycle.
The propagator on thadiabatsis more involved. This is The global map enables us to solve for the operator ex-

due to the explicit time dependence of the Hamiltonian. Usyectation values from their initial values. These expectation
ing the Lie algebra of the set QBk} operators it is always values serve to reconstruct the density operggee Eq(3)]

possible[20] to describe the propagator as [8]
|
Lohbs 0 0 L
V2 2 V2 N2
1 by by
f— + = — —
) 0 RN > 0 0 .
Pp= ,
p 0 0 2 0 b 0
4 2 2
b2 b 1 bl b5
—=+i—= 0 0 e
V2 Y 4 2 2
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0.4 13 B %=0.01 7003
1. 036 - Tab=Tba=0.02 Ll Tv=Ta=(.02

Tab=Tba=20.

*3.V4

FIG. 2. The limit cycle in the field entropy variablés,Sg).
Two initial states represented by points are indicated by one with
the field value ofwy,. The sequence of branches starting from a cold

initial temperature are shown with circles around the numbers. Th% EIG; 3'f Thfh d;§t§tr1ceD|(pn,plcz ar;_d th? energ;: tdl('jstancle
working medium of the engine is put in contact with the hot bath e(Pn, prc) from the limit cycle as a function of accumulated cycles

for a time duration ofr, and heats up. For time,, the frequency n. Four example are shown numbered from 1 to 4. The correspond-

changes fromw, to w, (branch 2. Cooling due to contact with the |n|g |n5t_art§ sgov\;] tgel."m't.cﬁ?let":j tge energy ednttroﬁt% and o
cold bath is found on branch 3. For clarity the arrows do not reach;2n€- 1he dashed fines indicated Bycorrespond 1o he energy
the values ofw, and w,. The sequence of branches starting from ad'StancePE(p”’p'C)' Cyclgs 1 and 3 are Wlthpm dephasing. Cycles
hot initial temperature is shown with diamonds around the numbersz; ;gg 4A|”ncludle dephasdln% on tim)choreswnh_lsyh:h0.0I a”f%
The working medium of the engine is put in contact with the hot™ ="~ *" cycles spenc the same time on #sechores (=1
bath for a time duration ofy, and cools down to branch 2. The =0.6). The time on thediabatsvaries from very short, cycles 1 and
contact with the cold branch further cools the engibeanch 3 2, to very long, cycles 3 and 4.

After going through approximately three cycles of the engine, the

two paths appear to converge to the same limit cycle, indicated by N = 1 by bs

the ABCD rectangle. 374 \’E 2"

where the indexp stands for the direct product spin repre-

sentation. Diagonalizing the density opergigr(see Appen- ra = 1 . D . bs 27
dix B) leads to the eigenvalues @f which define the von 474 VE 2’

Neumann probabilities:
where D=1b2+b3+b3. Functionals of the density operator

A= 1_ R_ + E‘ such as entropy are calculated by the spectral thegsem
V2 2 Appendix A).
}\2 = } + b_i - b_5,
4 2 2 V. LIMIT CYCLES
TABLE I. Summary of notation. The heat engine’s limit cycle is completely determined by

the external control parameters. This means that, irrespective

T, Temperature of the cold bath of the initial state of the working medium, after running the.
engine through many cycles of the control sequence, a limit

Th Temperature of the hot bath cycle is approached. This can be observed in Fig. 2 which

Wy Value of the external field at the cold isochore  demonstrates that starting from two initial conditions, the

wp Value of the external field at the hot isochore  engine settles to the same limit cycle, which is the fixed

J Internal coupling constant point at the bottom of the basin of attraction.

I Heat transfer coupling constant to the cold bath

'y Heat transfer coupling constant to the cold bath

Ye Dephasing constant on the cold bath A. Approach to the limit cycle

Th Dephasing constant on the hot bath The time scale of the approach of the engine to the limit

Te Time allocation on the colisochore cycle is related to the number of accumulated cyclethat

H Time allocation on the hdsochore are required for the variables of the engine to approach their

Tab Time allocation on the cold-to-hatdiabat asymptotic values. The different measures employed for this

Tha Time allocation on the hot-to-colddiabat task are defined in Sec. Il. The energy distadggpy, pic)

Eg. (11) and quantum distanc®(p,,p,.) Eq.(15) were used
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as measures and are shown in Fig. 3. The referencestate
can be chosen on any point on the engine’s trajectory, for
example on point#A,B,C,D or between them. The same
point on the trajectory is used to define the state inrithe
iterationp,,. It was found that the distances do depend on the
choice of the chosen point on the cycle’s trajectory.
Explicitly, the quantumdistanceD(p,,,p,.) [EQ. (15) for
the current working mediujrbecomes

D(i)nai’lc)
= V2{1 [z + Aa(Mhg(io) + Vhg(mhg(lo) +VZal}, 251
(28) 3
where the normalization is chosen to lHe2 and the eigen- P s
values\ are the eigenvalues of the density operator defined
in Eq. (27) and
YD,\2 [%Dp)\2 2SS 3 10
{14=Q% \/ ( \,En) +( 2{) +2x.9Y, (29 (421,270, +T 422,77,

FIG. 4. Logarithms(basee) of the eigenvalues of the global

where 2 is the scalar product between tffg} components: propagatoif,. Upper panelu, as a function of the accumulated

L. 3 relaxationl',7,+ "7, the sum of the products of the coupling to the
2q=(b, b = E b;(n)b(lc), (30) heat/cold bathsl',,¢, with the time allocation on the corresponding
j=1 isochore 7. The eigenvalue is independent of the time allocation

N e 1 _ _ fi on theadiabats Lower panelu,3 as a function of the accumulated
and x= V1A, 2r—§+b_5, y=2(r-x)/D, Y‘ilc+qyn' and " dephasindT'y+ 2,02 7+ (T +27.02) 7. The points on the graphs
nally Q is the generalized scalar produ@=r,-rc+q [Dis  represent different choices of parameters and time allocation on the
defined following Eq.(27)] and is different for the limit pranches.

cycle or cyclen. Additional computational details are given
in Appendix B 2.

The distance to the limit cycle can also be associated wit
the conditional entropy:

ectation value of the limit cycle. The decay rate to the limit
ycle depends on the eigenvalues that are smaller than 1. The
eigenvalueu; <1 was found to be real and as expected its
eigenvector does not include a component of the identity
)'n[MUC)] + No(n)In[A,(lc)] operator. Figure 4 shows the dependence of the eigenvalues
w of the global operator on the time spent on thechores
and on the coupling constants. The relationship is well fitted
)'”D\l(lc)]] (B py u,=eTwm*Ten) which means thak, is independent of
the dephasing ratg,.. Thereforeu, can then be interpreted
which becomes zero whep), approaches the limit cycle.  as the relaxation rate per cycle in the direction defined by the
In all cases studied the quantum distanBép,,pic) limit cycle vector. The eigenvalugg,;=|u,/e'? are com-
monotonically approaches zero with the increase in the nunplex. Their amplitude can be fitted to|uyyq
bern of accumulated cyclesee Fig. 3 This was found also =g (T m+Te )7l This suggests thatys represents
to be true for the conditional entropy as predicted by Edihe rate of decay in a direction perpendicular to the direction
(10). The energy distancBe(py, pic) as in case &in Fig. 3, of the limit cycle vector. The phasé of w3 is an accumu-
shows a nonmonotonic periodic oscillations in the approachipted phase. It was found to be linearly related to the time
to the limit cycle. With sufficient dephasing the density op- gjiocated on theadiabats The last two eigenvalues associ-

erator is almost diagonal in the energy representation an ; 5 - —
therefore the two distances convergeD(p,,pi) gtgi)gw[tgq?%%logﬁd?;; gp FSES becomeis=pus and us

=Delp n:P 'C.) (see cases 2 and 4 in Fig..3 . The above analysis reveals that the rate of approach to the
Examining the measures of approach to the _I|m|t CYCle jimit cycle is determined by the accumulated dissipation on

Egs.(28) and(31), it is found that they have similar fgnc- the hot and coldsochores The eigenvalugs, plays the role

tional dependence on the expectation values of the s&jof of the longitudinal relaxation analog to Ty, while the ei-

operators. In particular the two functionals contain the scalagenvaluesu,,; play the role of the transverse relaxation or

productg. This indicates that all quantum convex functionals 1/T,.

of p will relax to the limit cycle at the same rate.

The dynamics of the set of operat({é} is determined by

the eigenvalues of thglobal operatorif,,, Eq. (25). The The fact that the limit cycle is closed imposes a strict
eigenvector with the eigenvalue pf,=1 represents the ex- periodic constraint on all properties of the working medium.

—
I

2
SEAPSERTRE {(r -
Ic

J—
I

D]+ 1+ 2

Ic

B. Properties of the limit cycle
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FIG. 5. The energy entrop§e and the von Neumann entrogy FIG. 6. Three cycles corresponding to the minimal cycle time 1,

as a function of the field for a limit cycle with time allocations on  zero power output 2, and positive power output 3. The time alloca-
the adiabats(7y,= 74,=0.03 and on the coldsochore(7,=0.6). No  tions on theisochoresare as follows. On cycle 17,=0.32, 7,
time is allocated on the hasochore 7,=0. Notice the horizontal =0.64; on cycle 2, 7,=0.581,7.=1.1602; and on cycle 3,
line representing the von Neumann entropy. Other parameters arg=1.5,7,=3.6. The common parameter values on all three
J=2,T=7.5,T.=1.5, w,=5.083638 7 w,=12.635485'.=1.7. cycles are Ta5=0.05, 7,,=0.06,J=2, I,=1.0048 I,
The entropy production of the cycle §5'=1.889x 1072 and the  =0.106 62,w,=12.635 45 ,»,=5.083 638 7 T,=7.5, T,=1.5.

power output is negativ@®=-4.293x 1072,

loss of phase increases the von Neumann entropy. Therefore,
The periodicity of the energy entropy and the von Neumannhere is a point on the colifochorewhere the decrease in
entropy is a key to understanding the cycle performance. the energy entropy is exactly compensated by the entropy
increase due to dephasing. This scenario defines the stable
1. Minimal cycle time limit cycle. This cycle cannot produce useful work. It repre-
A limit cycle can come about only if the total internal Sents a device which converts work from the mdiabatsto

entropy changes on the four branches sum up to zero. THeeat dissipated in the co!d bath in accordance with the sec-
question is what combinations of control parameters, such #1d law of thermodynamics. o
the time allocations lead to a stable limit cycle? This ques- Figure 6 shows three cycles with time allocated to all
tion can be addressed by searching for the opposite condanches of the engine. The first cycle 1 is an extension of
tions that do not allow a limit cycle to be closed. As was the cyclg in Fig. 5. I_t h_as minimal contact W|th_the hot bath.
described in Sec. Il B, a limit cycle is obtained only when The position of the limit cycle on thew, Sg) plotis as far as
there is a single invariant of the propagatfy,. An extreme possible from the cold equilibrium point. This position maxi-
case is when no time is allocated to the hot and ¢sith- ~ Mizes the negative energy entropy change on the isoith-
ores(7.=7,=0). By construction the maf,y, is unitary and ~ Ore. Cycle 2 corresponds to a zero work cycle. The work
all eigenvalues are modulus 1. Thus any initial state willgenerated by extracting heat from the hot bath and ejecting it
oscillate indefinitely without settling to a limit cycle. The into the cold bath is balanced by the work against friction.
next step in the investigation is to allocate some time to thd NiS cycle defines the minimum operational cycle time.
cold isochore 7.# 0, adding a dissipative branch. Cycle 3 is a typical cycle with positive work output.
Analyzing the eigenvalues @, shows the expected in- A search was carried out for time allocations where the
variant eigenvalugi,=1. All other eigenvalues are smaller cycle does not close and therefore no limit cycle exists. In
than 1, meaning that a limit cycle exists. The entropy picturedéneral it was very difficult to find such conditions. These
is more surprising: The change of the von Neumann entropgtyPical cases with extremely small time allocations, were
AS,ya 0N the twoadiabatsis zero(see Fig. 5 for any point ~ characterized by a nonuniqueness of the limit cycle. For
on the cycle trajectory. Therefore the only way the cycle carslightly longer time allocations a unique limit cycle was
be closed is that the change of the von Neumann entropy ofpund which does not represent an engine. The reason is that
the dissipative coldsochoreis also zero. A complementary the cooling on the coldsochorewas not sufficient to dissi-
picture is obtained by analyzing the energy entrSpyalong ~ Pateé the energy increase on tagiabats As a result addi-
the trajectory. If the twaadiabatsare not inverses of each tional cooling was required on the hisbchore The onset
other, then the evolution after a sequence of webabats Where heat is transferred by the engine from the hot to the
(point D— AB — C) will lead to an increase i (see Fig. cold bath was termed in the analogous engine based on a
5). To close the cycle, this increase should be compensatg@ienomenological description of frictid6], as the minimal
by a decrease in the energy entropy on the dstthore  cycle time(cf. cycle 1 in Fig. 6. Additional time allocation
How do these seemingly contradictory entropy balances cov@s required to reach the onset of a positive work outgiut
exist? The answer is hidden in the double role the cold batkYcle 2 in Fig. 6.
plays in the entropy changes. If the state of the working
medium(point C in Fig. 5 is hotter than the temperature of
the cold bath, heat will transfer from the working medium to  The position of the limit cycle is determined by the bal-
the cold bath, and thus decrease the liquid’'s entropy. On thance of entropy. Since on the adiabatic branches the von
other hand the contact with the bath forces dephasing. Thisleumann entropy is constant, the increase in the entropy of

2. Entropy production
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the working medium on the hasochoreshould be exactly an eigenvaluguy=1 and its eigenvector is expressed via the

compensated for on the coisochore expectation values d;,B,,Bs, andl in the limit cycle.
Examining the entropy changes on the Fesichore one Quantum measures were developed to characterize the ap-
can compare the external entropy productiat§= proach to the limit cycle: the conditional entropy and the

~Qn/Ty to the internal change. Schiogl sugges@d,23 o ,anum distance. These measures show a monotonic ap-

that the universal entropy production is related to the d'ﬁer'proach to the limit cycle. The projected measures such as the

ence in thg conditional entropy associated with the equmb—energy distance or energy conditional entropy can show an
rium state: : - .
oscillatory approach to the limit cycle. Close to the limit
A§:SE(i)A|i)eq(Th)) - Se(PglPed Th) (32)  cycle the rate of approach of all measures converge to the
same value. The quantum distance was always larger than
the probability distance associated with the measurement of

isochore pg is the state at point B at the end of the hot energy. Dephasing eroded the deviation between the two dis-
isochore andpe((Ty,) is the equilibrium state at point E. Us- tances

ing the fact that the equilibrium density operator is diagonal Longitudinal and transverse modes of approach to the

T Etr/“-?— f?: ;gyE repggs?;lzzgcmé :c-(fr?(PMPeq(Th)):SE(p W limit cycle were identified. The rate of approach is associated
Al Th Ba.(39 with the eigenvalues of the propagator. The eigenvalye

wherep, is the state at point A on the beginning of the hot

. . 9 determines the longitudinal relaxation ratg. exponentially
AS; = Se(pp) — Selpe) - T (33 depends on the accumulated energy relaxation on the hot and
h cold isochoresu, e 'hm*Tc®) The transverse rate of ap-
since Q,=(Eg~E,) (Z is the partition function proach is associated with the eigenvalyes. Their magni-

The full quantum characteristics representing the deviatude depends on the accumulated dephasing on the hot and
tion of the density operator from the energy representationq|q isochores| M2/3|oce-[(rh+yhnﬁ)m+(rc+yCQ§)TC]_ The phasap
are obtained by the conditional entropy of uys is linear in the time allocatiom,,+ 7,,. The depen-
o o . A o dence of the rate of relaxation on other parameters such as
ASy = S(Palped Tn) = S(PelPed Tn) = S(ba) = S(ps) = 7"~ the internal spin coupling was found to be weak.
h
(34)

For very long cycle times and sufficient time allocation on
the isochoresthe system is diagonal in the energy represen- When no time is allocated to the hot and caddchores
tation. As a result Eq34) and Eq.(32) are equivalent. The 7,=7.=0 then the evolution is unitary and the modulus of all
difference between the internal entropy productio® and  eigenvalues of the propagator becomes 1. As a result no
the externahS¥'=-0, /T, represents the entropy increase in unique limit cycle can be found. For very short times allo-
the working medium. The same measures can be applied gated to theisochores two eigenvalues of the cycle propa-
the coldisochore Summing the entropy changes on the twogator became equal to 1. Again no limit cycle is obtained
branches leads to equality between the changes in externainder these conditions. Therefore there exists &1 range

B. Can conditions be found for nonexistence of the limit cycle?

and internal entropy production: of time allocation on thésochoregfor which no unique limit
cycle can be closed.
A$1+AS;——(%+%) (35
Co\T, T/

. . . C. What are the irreversible properties of the limit cycle?
since the von Neumann entrodyis constant on thedia- brop y

bats_ The energy entropy Is not constant on m@labats_ Heat transport between the working medium and the baths
leading to a different relation for energy entropy production:is 5 common source of irreversibility for all realistic heat
On 9. e e engines. If this is the only source of entropy generation the
AS;+AS =~ Tt T )tASm*AS:m (36 engine is classified as endoreversif#8,24, meaning that
h ¢ entropy is generated only on the interface and that the inter-
whereASE, is the change in energy entropy on théiabat  nal operation is reversible. The dissipative forces accompa-
This can be interpreted as the entropy generation on theying heat transfer were found to be sufficient to drive a

adiabats quantum two-level endoreversible heat engine to a limit
cycle[5].
VI. CONCLUSIONS Friction is an additional source of irreversibility for all
Summarizing the study is best carried out by addressingealistic heat engines. It is characterized by an internal en-
the questions raised in the Introduction. tropy production. The heat generated by friction eventually

has to be disposed of in the cold bath. The performance of
A. How do the control parameters characterize the approach the present first principle quantum engine has been shown to
to the limit cycle? be limited by a frictionlike phenomend6]. The key to un-
The existence of a limit cycle is subject to there being aderstanding the quantum origin of friction lies in the differ-
unigue invariant of the global propagator. The invariant hasnce between the energy entrofy and the von Neumann
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entropysS. Since the von Neumann entropy is constant on thetion to Eq.(A1) for any operatoH which can be written as

adiabatsthe model can be classified as endoreversipé®  j jinear combination of the operators in the closed Lie alge-

Eq. (39)]. Following the engines gycle by observing its en- bralil(t):E“;lh-(t)éi, where theh;(t) are scalar functions of

ergy changes shows characteristics of entropy generation on 1= _ i -

the adiabats[see Eq(36)]. t. In such a case the unitary evolution operdikit) can be
The most illuminating case which characterizes the irrefepresented in the product form

versible character of the heat engine due to its nonadiabatic

dynamics is a cycle composed of tveaiabatsand only a

cold isochoreas displayed in Fig. 5. External work is con- - m -

verted to internal heat which is dissipated to the cold bath. U =T exdai()By]. (A3)

The only phenomenon that fits this behavior is friction. Sur- k=1

prisingly, the von Neumann entropy for the complete cycle . .
trajectory is constant. This is in contrast to a power—The product form Eq(A3) substitutes the time dependent

producing cycle where the von Neumann entropy changes ofperator equatioAl) with a set of scalar differential equa-

the isochores A detailed analysis of the von Neumann en- 10NS for the functionsey(t). Writing the unitary evolution
tropy change on the colsochoreperformed in the energy CPerator explicitly leads to

representation unravels the picture. A decrease in the entropy

of diagonal elements, equivalent 1aSg, due to cooling of

the working medium is exactly compensated by an entropy  (y exp(i al(rt)é1>exp(ia2—(rﬂl§z)exp<ia3—9)é3>.
increase due to dephasing, i.e., loss of the nondiagonal ele- / V2 V2

ments. It seems therefore that friction is the result of the
interplay between the unitary evolution on tadiabatsand

the dissipative dynamics on the coisbchore Friction is The \s‘E factor is introduced for technical reasons. Based on

found OU'V when the state of the quantum engine c_iewate'tshe group structur¢20] Eq. (A1) leads to the following set
from a diagonal energy representation. Such dynamics are & Jitterential equations for the coefficients

consequence of the nonadiabatic operation conditions caused
by the noncommutability of the working medium Hamil-
tonian at different points along the cycle trajectory. These . .
observations are the basis for a quantum control of friction = \2w(t) + V2 \(M)
which will be presented in a future study. coday)

(A4)

[
. = _ /2] sin
a,=V2Jcoday), az= 23 sin(e)
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APPENDIX B: THE DENSITY OPERATORS

APPENDIX A: ANALYTICAL SOLUTION OF THE 1. Functions of the density Operators
PROPAGATOR ON THE ADIABATS 12

a. Computation ofp;,

andIn p,
The analytic solution for the propagator on tidiabatsis

based on the Lie group structure of tf®} operators. The First pp, £q.(26), is diagonalized by the unitary matrices

_ _ - S Qp. Qf;
unitary evolution operatod(t) for an explicitly time depen- PP
dent Hamiltonian is obtained from the Schrddinger equation

_ (b tiby) 0 0 +/B*b)

—ithO(t)zﬁ(t)O(t), U =1. (A1) V2D(D +by) 2D
0 10 0
The propagated set of operators becomes Qp= 0 01 0 , (B1)
N " A . N (b, +ib3) (D -by)
= f(t) = ——== 00 /- ¥
B(t) =U(1)B(O)U'(t) = () B(0), (A2) 2D(D-by) 2D

and is related to the superevolution operdig(t). Based on
the group structure Wei and Norma@20] constructed a so- leading to
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1B 0 0 0
4 \2
1 b, bs
f— + —
o 0 2752 0 0 A
Qppr = = Pun (B2
1 b, b
0 - 0
4 2 2
. . 1,0, b
4 2 2

whereD=1bZ+b5+b3, and\; are the eigenvalues @ which are the von Neumann probabllmme Eq(27)].
The elgenvalues op1/2 become)\l’2 3%, A3 and\} From Eq.(B2) one hasp,=Q/p,Qp thereforep ”=Qlp.

pPun
and Inpp Qpln pvnQp Explicitly, ’
)\l/2+ )\1/2 b ()\1/2 )\i/Z) 0 0 (bz _ ibs)(7\411/2‘ )\1/2)
2 2D 2D
0 N2 0 0
~1/2 2
= B3
Pp 0 0 )\%/2 0 (B3)
2D 2 2D
and
In )\4+|n )\1+ b1(|n )\4_In )\1) 0 0 (b2_|b3)(|n )\4_In )\1)
2 2D 2D
na 0 In\, O 0 B4)
np,= .
Pr 0 0 Inis 0
(b2 + |b3)(|n )\4 - In )\1) 0 0 In )\4 + |I’] )\1 _ bl(ln )\4 - In )\1)
2D 2 2D

1/2

b. Computation ofpg'~ and In p,

To getg in the energy picturg), is transformed by the matri€ which diagonalized the Hamiltoniaisee[8]). Denoting
Q=V?+F, u=\(Q-w)/29Q, andX V(Q+w)/2Q, C becomeq8]

-+ 00 x
o= 0 100 (B5)
"l o 010
x 00 u
Observing thaCC=1 leads top,=Cp,C,
4 0V2 2 \,2 Q\'Z Q\'
1 by by
A 0 2" %2 0 0 6
= B
Pe . . 1 b, b . , (B6)
4 o 2
_ik)_?’_J_t):l'+wb2 0 0 }'l'i,—'i'g
V2 Q\'Z Q\' 4 OV2 2

whereE=wb;+Jb,. In equilibrium, the off-diagonal elements vanish.

pp—CpeC and thereforepvn szpr QpCpeCQT It follows that the diagonalizing matrices @ becomeQ.=Q,C and
Ql=CQ/. As a resultp*=Qlp}1°Q. and Inpe) =QLIN(P,n)Qe. Explicitly,
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NP+ BN -0 _ (AF*=\i?)(wb, - Ib, +iQby)

0 O
2 2DQ) 2DQ)
0 N2 0 0
¢ 0 0 A2 0
_ OGN (eby =3k —i0by) o NN BN
2DQ 2 2DQ
and
|n )\4+|n )\1_ E(In )\4_|n )\1) 0 0 _ (ln )\4_|n )\1)(&)b2“Jb1+|Qb3)
2 2D 2DQ
o 0 N\, O 0 ©8)
n = .
Pe 0 0 Inhs 0
n)\4_n)\l Wy — 1_| 3 n)\4+ n)\l n)\4_n)\1
( In Xy (why — Jb; —iQby) 0 0 I | . E( InX\y)
2DQ) 2 2DQ)

Any function of the density matrix can be computed by the diagonalizing vectors of the density matrix.

2. Additional details of quantum distance

In Sec. V A, a closed form expression was obtained for the quantum distand@8Edror the computation the polarization
frame p, was used.

The operatoM =(p)2p,(p)Y/2 required in Eq(15) is first computed:

by(n) (bz(n) .bg(n)> (b2(|c) .b3(IC)>
+ Y + X, 0O O — — | Y+ —i—|X
Q=7 (r+x R R A
o 0 A, O 0 (59)
- 0 0 A, 0
b,(n) .bg(n)) (bz(k:) .b3(|C)> by(n)
— +i— |Y+ +i X, 0 O - —=(Y+x
( 22 2 ) Q-7 (V%)

where the notation of Eq$28), (29), and(30), was used, and wherd, =A% n)x3%(Ic) and Az=AY4n)rL(c).
Calculation of D(p,,, pc) requires the value of {x I\7I}. The matrix representation ofl breaks up into two internal and
external 2< 2 submatrices. Denoting the eigenvalues of the extdvhal submatrix by;, one has

YD, \? D¢ \?
{14=Q% \/( \’,En) + <_X2,Elc> +2x,9Y. (B10)
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