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We address the interaction of fast moving cracks in stressed materials with microcracks on their way,
considering it as one possible mechanism for fluctuations in the velocity of the main crack(irrespective
whether the microcracks are existing material defects or they form during the crack evolution). We analyze
carefully the dynamics(in two space dimensions) of one macrocrack and one microcrack, and demonstrate that
their interaction results in alarge and rapid velocity fluctuation, in qualitative correspondence with typical
velocity fluctuations observed in experiments. In developing the theory of the dynamical interaction we invoke
an approximation that affords a reduction in mathematical complexity to a simple set of ordinary differential
equations for the positions of the crack tips; we propose that this kind of approximation has a range of
usefulness that exceeds the present context.
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I. INTRODUCTION

Classical linear elasticity fracture mechanics provides
clear cut predictions for the dynamical evolution of cracks in
stressed materials. Consider a crack in an infinite medium
under a tensile load at infinity. Such a crack is expected to
remain straight, and to exhibit a tip velocity that increases
monotonically towards the Rayleigh wave speedcR. Reality
shows that this is but a pipe dream. When the crack velocity
exceeds a finite fraction ofcR the velocity of typical cracks
exhibits wild fluctuations, the crack surfaces lose their
smoothness and the mean velocity never asymptotes towards
cR. The fundamental understanding of the discrepancy be-
tween the prediction of the classical theory and experiments
remains an open problem of considerable interest and impor-
tance.

A number of studies[1–8] point towards a close corre-
spondence between the onset of velocity fluctuations and the
appearance of secondary damage like microcracks(appear-
ing ahead of the tip), microscopic side branches, etc. Conical
markings which are observed on crack surfaces offer a good
indication that microcracks exist before the arrival of the
crack, although it is not determined whether the former stem
from material imperfections or from stress instabilities. The
fact that the density of conical markings increases during the
crack evolution[5] suggests that the level of stress is respon-
sible in some way for the activation of the microcracks. The
aim of this paper is to explore the connection between ve-
locity fluctuations and the putative existence of microcracks
ahead of the crack tip. To this aim we study the dynamical
interaction between a macrocrack and a microcrack and fo-
cus on the velocity of the tip of the former under the influ-
ence of the latter.

To actually solve exactly the dynamical equations for the
displacement field with boundary condition on both macro-
crack and microcrack up to coalescence is a very taxing
quest. Building upon experience in the field we will propose
here an approximate methodology that will allow us to write
down ordinary differential equations for the positions of the
tips of both macrocrack and microcrack. While sensible, the

approximate methodology is not established in a controlled
fashion, requiring therefore simulational support. Indeed, we
will offer in this paper lattice simulations to back the analytic
considerations. We will show that the correspondence is ex-
cellent.

In Sec. II we introduce the problem at hand, being an
infinite two-dimensional stressed material with one macro-
crack and one collinear microcrack of length,. In Sec. III we
describe the approximate method of solution, motivating it
by the exactly soluble cases of straight and bifurcating
cracks. The section culminates with approximate equations
of motion for the tips of the macrocrack and microcrack. In
Sec. IV we describe the solution of the model problem,
stressing the velocity of the tip of the macrocrack. We show
that the net result of the interaction is a rapid and large up
and down fluctuation in this velocity, in correspondence with
the observed fluctuations in dynamical crack propagation.
Section V provides a simulational support to the approximate
theory; by performing lattice simulations we study the same
model problem and compare the results. The close corre-
spondence between approximate theory and simulations
lends support to the former. Section VI offers a summary and
conclusions.

II. THE PROBLEM

The problem that we want to consider is sketched in Fig.
1. We consider a macrocrack and a microcrack that at a given
time extend along the intervalsf−L ,0g and f,−,,+g, respec-
tively. The distance between them is given byD. The length

FIG. 1. The geometric configuration of the model problem. The
macrocrack and the microcrack extend along the intervalsf−L ,0g
and f,−,,+g, respectively, withL /,@1.

PHYSICAL REVIEW E 70, 046107(2004)

1539-3755/2004/70(4)/046107(7)/$22.50 ©2004 The American Physical Society70 046107-1



of the microcrack is,;,+−,−. We expect on physical
grounds that the microcracks in typical materials are at most
of the size of the process zone, and therefore we always
consider the limit, /L→0.

The aim of the calculation is to determine the simulta-
neous motion of the three crack tips(the macrocrack tip, the
inner and outer tips of the microcrack) as a function of time.
In full generality this entails the general solution of the field
equations for an arbitrary motion, specifically the determina-
tion of the dynamicstress intensity factors at the crack tips
and then to apply a fracture criterion to obtain the actual
dynamics. We cannot offer an exact solution to this problem.
Instead, we will introduce an approximate method that pro-
vides analytic insight to the problem.

III. APPROXIMATE METHOD OF SOLUTION

To motivate our approximate methodology we will recall
some exact classical results obtained for ideal(mode I)
straight dynamical cracks and more recent results pertaining
to (mode III) bifurcating cracks.

A. Motivation I: Ideal straight cracks

As said above, linear elasticity fracture mechanics pro-
vides exact solutions for straight cracks under mode I load-
ing. The stress fieldsi jsr ,u ,td, measured in polar coordinates
relative to the tip, is expected to have a universal form in the
vicinity of the crack tip[9],

si jsr,u,td = KI„vstd,Lstd…
oi j

I
„u,vstd…
Î2pr

. s1d

Herevstd andLstd are the time-dependent crack velocity and
length, respectively,oi j

I su ,vd are known universal functions
[9], andKIsv ,Ld is the “stress intensity factor” which is pre-
dicted to depend on the instantaneous crack velocity and
length only. For notational simplicity we drop thet depen-
dence. At each moment in time the velocity is expected(for
plane stress conditions) to be determined by the energy bal-
ance equation[9]

Gsvd =
1

E
AIsvdKI

2sv,Ld. s2d

The left-hand side(LHS) here is the fracture energy and the
right-hand side(RHS) is the energy release rate into the
crack tip region, resulting from a path integral over the en-
ergy flux. E is Young’s modulus andAIsvd is a mode I uni-
versal function. The exact result that we refer to is the de-
composition of the dynamic stress intensity factorKIsv ,Ld
for a semi-infinite crack under time independent loading, in
the form [9–11]

KIsv,Ld = kIsvdKI
ssLd, s3d

where kIsvd is a universal function ofv and KI
ssLd is the

stress intensity factor of astatic crack of lengthL under the
same loading(when L is large enough to be considered as
semi-infinite). This important result is the basis of the clas-
sical theory of straight crack motion. The calculation of the

static stress intensity factor is a much easier task than the
evaluation of its dynamical counterpart, since it requires so-
lutions of bi-Laplace equations with boundary conditions.
Rewriting Eq.(2) in the light of this result one obtains

Gsvd =
1

E
AIsvdfkIsvdKI

ssLdg2. s4d

A further serendipitous simplification arises from numerical
evaluations of the combinationAIsvdkI

2svd, showing that it is
well approximated by[9]

AIsvdkI
2svd < 1 − v/cR. s5d

This approximation leads to an ordinary differential equation
for the crack length. If one asserts that the fracture energyG
is v independent this differential equation becomes explicit,

dLstd
dt

< cRF1 −
EG

fKI
s
„Lstd…g2G . s6d

It should be stressed again that the decomposition property
of the dynamic stress intensity factor[Eq. (3)] is essential in
deriving this basic equation. This equation predicts a mono-
tonic increase in the tip velocity asymptoting towardscR.
There is no crack motion as long as the stress intensity factor
does not exceed a material dependent threshold

KI
s
„Lstd… , ÎEG no crack motion. s7d

For the sake of illustration we show in Fig. 2 the solution of
this equation for the simple caseKI

s(Lstd)=s`ÎpLstd /2,
wheres` is the load at infinity.

B. Motivation II: bifurcating cracks

The bifurcation of fast cracks is observed in many experi-
ments, and understanding it theoretically is a problem of
some importance in the theory of fracture. One interesting
problem that was addressed recently[12] in this context is

FIG. 2. The predicted velocity increase as a function of normal-
ized time(whereL0 is the crack length at initiation) for a mode I
crack under uniform constant load at infinity, Eq.(6).
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the determination of the stress intensity factors at the tips of
symmetrically branched cracks in terms of the stress inten-
sity factor prior to branching. Reference[12] presented a
solution to this problem for mode III(antiplane) conditions.
In this solution the stress intensity factorK8 at the tips of two
symmetric branches emerging from a macrocrack at a veloc-
ity v8 and creating an anglelp relative to the macrocrack
line, was given in the form

K8 = Î1 − v8/cs H33sl,v8/csdK0. s8d

Here Î1−v8 /cs is the mode III universal function, whose
mode I counterpart iskIsvd, cs is the shear wave speed,K0 is
the stress intensity factor of the macrocrack prior to branch-
ing andH33sl ,v8 /csd carries the information regarding the
dynamic interaction. Note that the macrocrack velocityv is
absent here as in the branching scenario adopted in Ref.[12]
the macrocrack stops suddenly before branching and a static
stress distribution is established behind a wave front travel-
ing at the characteristic wave speedcs. If the decomposition
in Eq. (3) is of some generality then we expect the main
interaction effect to be contained in thestaticstress intensity
factors for the bifurcated configuration given byH33sl ,0dK0.
Indeed, Fig. 4 in Ref.[12] shows that the ratio

H33sl,v8/csd
H33sl,0d

s9d

is very close to unity(up to ±5%) for all the values ofl and
v8 /cs. Therefore, we conclude that even for this complex
configuration the dynamic stress intensity factor admits an
approximate decomposition in the form of a product of its
static counterpart and a universal function of the local crack
tip velocity,

K8 < Î1 − v8/cs H33sl,0dK0. s10d

This result suggests that a very good approximation for the
dynamicstress intensity factor can be obtained by calculating
the static stress intensity factor for the same instantaneous
configuration and a knowledge of a universal velocity func-
tion characteristic of the local symmetry conditions at the
crack tip.

C. The decomposition approximation for our problem

For advancing the problem posed in this paper we need to
consider the stress field in the vicinity of three crack tips. In
the vicinity of the tip of the macrocrack we write[in the local
polar coordinatessrM ,uMd around that tip]

si jsrM,uM,td = KM
oi j

I
„uM,vMstd…
Î2pr

, s11d

whereKM is the stress intensity factor that in principle de-
pends on the positions and velocities of all the tips[i.e.,
Lstd ,,±std ,vMstd ,v±std] and maybe other derivatives. Near
the tips of the microcrack we write similarly[in local polar
coordinatessr± ,u±d around each tip]

si jsr±,u±,td = K±
oi j

I
„u±,v±std…
Î2pr

, s12d

whereK± are again the stress intensity factors that depend on
all the time dependent functionsLstd ,,±std ,vMstd ,v±std and
maybe other derivatives.

Our basic approximation is now motivated by the two
examples, Eqs.(3) and (10); we assume that the dynamic
stress intensity factors can be decomposed according to

KM < kIsvMdKM
s
„Lstd,,+std,,−std…,

K+ < kIsv+dK+
s
„Lstd,,+std,,−std…,

K− < kIsv−dK+
s
„Lstd,,+std,,−std…. s13d

Here the universal functionkIsvd is the samefunction ap-
pearing in Eq.(3) and all the stress intensity factors with
superscripts refer to the solution of thestaticproblem with a
frozen geometry which is given by the crack tip positions
Lstd ,,±std. On physical grounds we expect this approxima-
tion to be good when, /L→0, and to lose its validity as this
ratio increases. The numerical simulations presented in Sec.
V lend a strong support to this expectation.

The advantage of this approximation is that it leads to
ordinary differential equations for the tip positions in much
the same way that Eq.(6) followed from Eq.(3),

dLstd
dt

< cRF1 −
EG

fKM
s
„Lstd,,+std,,−std…g2G ,

d,−std
dt

< cRF1 −
EG

fK−
s
„Lstd,,+std,,−std…g2G ,

d,+std
dt

< cRF1 −
EG

fK+
s
„Lstd,,+std,,−std…g2G . s14d

We turn now to the analysis of this set of equations and their
consequences.

IV. SOLUTION OF THE MODEL

A. The static problem

A prerequisite to the solution of the set of equations(14)
is the calculation of the static stress intensity factors for a
general configuration of two collinear cracks. We employ the
available solution for two collinear cracks consisting of seg-
ments a,x,b and c,x,d with b,c under a remote
mode I loadings`. The syy component of the stress tensor
along the cracks line, outside the cracks, is given by[13]

syysx,0d =
s`

2Gsxd
S2x2 − sa + b + c + ddx + ab+ cd− sd − bd

3sc − ad
Esmd
K smd

D . s15d

Here

Gsxd = Îsx − adsx − bdsx − cdsx − dd,
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m=
sd − cdsb − ad
sd − bdsc − ad

, s16d

and E and K are the complete elliptic integrals of the first
and second kind[14]. The stress intensity factor at any one
of the tips is obtained by taking the limit

Ki = lim
x→xi

Î2psx − xidsyysx,0d, s17d

wherexi is any one of positions of the tips.
In order to adapt the general configuration to our macro-

crack and microcrack configuration we seta=−L, b=0, c
=,−, d=,+. Taking the limits in Eq.(17), under the assump-
tion L@,, we can extract the stress intensity factors at the
three tips[15]

KM

KN <Î,+

,−

Es1 − ,−/,+d
K s1 − ,−/,+d

,

K−

KN < FS,+

,−

Es1 − ,−/,+d
K s1 − ,−/,+d

− 1D 1
Î,+/,− − 1

G ,

K+

KN < FS1 −
Es1 − ,−/,+d
K s1 − ,−/,+dD 1

Î1 − ,−/,+
G . s18d

HereKN;s`ÎpL /2 is the nominal stress intensity factor of
the macrocrack in the absence of the microcrack and serves
here as the scale of the three stress intensity factors. In Fig. 3
we present the three stress intensity factors as a function of
D. In this example we kept the macrotip atL and the right
microtip at ,+ fixed while , was changed. We note that the
stress intensity factor of the macrocrack goes to the single
crack result(unity in the reduced coordinates of Fig. 3) when
, /D→0. Similarly, the stress intensity factor at,+ goes to

unity when D→0, since also in that limit we remain with
one crack. This last fact is not easily seen in Fig. 3 since the
upturn towards unity is very rapid, occurring just before coa-
lescence.

B. The dynamic problem

Using the static stress intensity factors Eqs.(18) in Eqs.
(14) we can solve numerically for the dynamics of the three
tip positions. An example of the ensuing dynamics is exhib-
ited in Fig. 4. We note that what is seen in this picture is
typical to all the conditions that we have considered: the
macrocrack is first accelerated, then the left tip of the micro-
crack meets the fracture criterion Eq.(7) and accelerates to-
wards the macrocrack; after some time lag, the right tip
meets the fracture criterion and starts to move and attains at
coalescence a lower velocity than the original macrocrack.

To connect to velocity fluctuations observed in experi-
ment we reinterpret the data in Fig. 4 as they would be seen
by an observer. We are physically motivated by the fact that
as a result of a finite measurement resolution, below a critical
separationDc the macrocrack tip and the outer tip of the
microcrack are indistinguishable and the measured velocity
is a result of some averaging. For the sake of illustration, we
define the experimental velocityvexpt as

vexpt; HvM for D . Dc,

svM + v+d/2 for D , Dc.
s19d

Figure 5 shows the experimental velocityvexpt during an
interaction event. The rise in velocity after the steep decline
is the second of Eqs.(19). The last branch in which the
velocity returns to the precollision value is out of the scope
of the present model and had been added by hand for the
sake of illustration. The point to stress is that the dynamic
interaction event generates a typical large and rapid velocity
“fluctuation” and that any other reasonable definition ofvexpt

FIG. 3. The normalized static stress intensity factors(SIFs) as a
function of D. The normalization factor iss`ÎpL /2, which is the
stress intensity factor of the macrocrack in the absence of the mi-
crocrack. We fixed,+=1 and varied,−. Note that the stress inten-
sity factors obeyK+,K−,KM and thatKM →s`ÎpL /2 as the ratio
, /D decreases, as expected.

FIG. 4. The three crack tip velocities for an interaction event
when a macrocrack traveling at an initial velocityvM =0.62cR inter-
acts with a collinear microcrack of length,=5 positioned atD=5.
The figure shows the normalized velocitiesv /cR as a function of the
normalized timecRt /,.
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will have a qualitatively similar outcome. It should be noted
that we do not consider here the effect of the nucleation of
the microcrack on the macrocrack velocity. Physically we
expect this effect to produce a sudden deceleration of the
macrocrack prior to the effect shown in Fig. 5; this is ex-
pected since the energy supply to the crack tip region should
be partitioned between the nucleation process of the micro-
crack and the fracture process of the macrocrack. This effect
will be taken into account in future work where our current
model will be coupled to a reasonable nucleation theory.

V. SIMULATIONAL SUPPORT

Since our reduction to ordinary differential equations rests
on theassumptionof the product structure(13) for the dy-
namic stress intensity factors, we must test the quality of the
approximation by numerical simulations. We employ lattice
simulations as described below.

A. Lattice simulations

Lattice models[16–22] provide a convenient, concrete,
and physically sensible method of realizing crack dynamics.
The material is represented by a lattice of mass points con-
nected by Hookean springs. Fracture is achieved when a
spring exceeds a certain critical extension. In certain special
cases, analytic solutions for static and steadily moving cracks
can be obtained. In general, the model can be easily simu-
lated. A major advantage of this class of models is that the
process zone is quite small, on the order of a few lattice
spacings. Thus, already on scales of 50 or so lattice spacings,
continuum dynamics is very well realized. It has been re-
cently demonstrated[23] that the universality assumption un-
derlying linear elastic fracture mechanics, namely, that the
instantaneous crack velocity is only a function of the stress
intensity factor at that moment, is extremely well satisfied by
the lattice dynamics.

For our present purposes, we use the machinery devel-
oped in Ref.[23]. We solve the equilibrium elastic problem

by replacing the continuum by a square lattice of mass points
interacting via Born springs. The symmetry about the mid-
line allows us to use a half-lattice with boundary conditions
uxsx,−yd=uxsx,yd, uysx,−yd=−uysx,yd. There are springs
connecting both nearest-neighbor and next-nearest-neighbor
points, with the relative spring constants adjusted to give
isotropic elasticity at quadratic order.

The most difficult part of the computation is the equili-
bration of the initial crack. The crack propagation itself hap-
pens at relatively high speed(a finite fraction of the speed of
sound). However, the equilibration proceeds at a rate con-
trolled by the longest wave lengths in the problem. Since the
operator that stems from linear elasticity is fourth-order in
spatial derivatives, the time to relax the lattice scales asW4,
in real time units. Since the computational cost of a single
update of the entire lattice scales asW2, it is clear that a
simple relaxation algorithm is prohibitive. However, the lack
of an intrinsic scale in linear elasticity comes to the rescue,
as the problem is ideally suited for a multigrid approach
[24,25]. The main idea is that we are trying to solve what is,
at the longest and most troublesome scales, a continuum
elasticity problem. We are free to solve this problem using
any latticization we choose. We can obtain good information
on the large-scale structure of the solution very cheaply us-
ing a very coarse lattice, and use a fine lattice to obtain the
short-scale information we are still missing.

In practice, we begin with the formulation of the problem
on the original fine lattice. Instead of solving this problem
directly, we coarsen the grid by a fixed factor. The crack
length, of course, also shrinks by the same factor(in practice,
we choose the scale factor to keep the crack length as close
as possible to an integer number of lattice units). This for-
mulates a new problem. We solve this new problem in the
same way, by reformulating it on a yet coarser lattice. The
coarsest lattice we choose is one in which the crack is a few
lattice sites long, since any further coarsening would remove
the crack altogether. This coarsest problem is solved by re-
laxation. The solution is then lifted to the next finer lattice
via bicubic spline interpolation[25]. This actually amounts
to extrapolation for the lattice points in the fine lattice which
are not contained in the coarse half-lattice. The interpolation
introduces some amount of high spatial frequency noise,
which we eliminate by performing a moderate number of
relaxation sweeps. We thus proceed up the chain until we
have a solution on the original fine scale. This solution is
much better than the original, typically the largest residual
(unbalanced force on a mass) has been reduced by 2–3 orders
of magnitude.

We now refine the solution by writingux,y=ux,y
0 +ux,y

1 ,
whereu0 is the solution we have found to date. The residual
field satisfies an inhomogeneous equation, where the inho-
mogeneity is the residual resultant forces on each lattice
mass. We then invoke our whole multigrid apparatus on this
new inhomogeneous problem. This procedure reduces the
residual by typically another order of magnitude. Another
few rounds of this game give us solutions with residuals of
order 10−9 or less. As we are interested in cracks that propa-
gate along the midline, we allow only bonds that cross the
midline to break. We start with a square lattice withW
=801 under fixed-displacement loading at the top and bot-

FIG. 5. The normalized experimental velocityvexpt/cR as a
function of the normalized timecRt /,. The experimental velocity
was calculated according to Eq.(19) with Dc!,.
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tom, with bonds broken according to the desired initial con-
figuration, Fig. 1. At this point, we manually break the bond
at the end of the macrocrack, and monitor the subsequent
sequence of bond breakings.

B. Results of lattice simulations

In order to test the quality of the product structure ap-
proximation we should first show that the analytic equation
(6) for the dynamics of asingle macrocrack describes cor-
rectly the corresponding dynamics in the lattice simulations.
Multiplying Eq. (6) by L we obtain

L
vM

cR
= aL + b, s20d

wherea is predicted to equal 1. The parameterb relates the
material properties and boundary conditions of the lattice
experiment to those in the continuum model. We simulated a
single crack propagating without any additional damage, and
measuredvM /cR as a function ofL. Next we fitted the data to
Eq. (20). Figure 6 shows that the functional form given by
Eq. (20) describes well the single crack dynamics in the lat-
tice simulation. Moreover, we found thata<1; thus our pro-
cedure appears internally consistent. It should be noted that,
notwithstanding the excellent agreement evidenced in Fig. 6,
there are a number of uncontrolled approximations at play
here. First, the functional form in Eq.(20) is based on the
assumption of a constant fracture energy. In fact, the fracture
energy for our theoretical “lattice” material has been calcu-
lated, and it is not constant. Second, the simulation employs
constant displacement boundary conditions in a finite strip
(though, in order to mimic infinite medium, we specialized
for times that do not allow wave interactions with the outer
boundaries), and the theory assumes fixed stress at infinity.
The excellence of the fit despite all this is somewhat unex-
pected, and bears further study.

To directly test our product structure approximation, Eqs.
(13), we used the value ofb obtained by the linear fit and
performed lattice simulation where a macrocrack interacts
with a collinear microcrack. We encounter a difficulty in the
simulations since the microcrack tips were trapped even
when the stress intensity factor exceeds the material thresh-
old (7). This known phenomenon of lattice trapping is an
artifact of the lattice structure; to overcome it we fixed the
microcrack tips also in the analytic calculation. An example
of the comparison between the simulation data and the ana-
lytic approximation is shown in Fig. 7. We found that our
analytic approximation agrees with the simulated data, with
deviations that are typically small. The largest errors are
smaller than about 6% –7% even forL /,<25. For larger
ratios, which is the expected physical regime, we expect bet-
ter approximations. Note that the fact that the analytic ap-
proximation overestimates the velocity of the macrocrack is
expected on physical grounds. Our product structure ap-
proximation relies on the fact that for short distances the
information on the positions of the crack tips, carried by
elastic waves, flows almost instantly even if the typical crack
propagation velocities are of the order ofcR. In reality it
takes finite time for the stresses to reorganize themselves
according to the new crack tip positions and generally the
energy release rate is lower than in our approximation.

The main conclusion of this section is that the product
structure approximation, Eqs.(13), gives very good predic-
tions for the model problem studied here. We propose to
interpret this in a broader way, and to test the applicability of
this approximation in other contexts.

VI. SUMMARY AND CONCLUSIONS

This study has two aims; on the one hand, we are inter-
ested in the velocity fluctuations seen in dynamical crack

FIG. 6. The simulation data ofLvM /cR as a function ofL are
shown by the circles and the linear fit for these data is shown by the
solid line. It is clear that the functional form suggested by Eq.(20)
indeed describes the single crack dynamics in the lattice simulation.
The fit is consistent with the assumptions since the slopea is very
close to 1.

FIG. 7. The simulation data ofvM /cR as a function ofL are
shown by the circles and the analytic approximation predictions are
shown by the solid line. In this simulation we usedL<245 (the
length of the macrocrack in the interaction region) and,=10. The
analytic approximation predicted the simulated data up to an error
of 6.5%, even though the ratioL /, was not very large.
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propagation, and proposed here that the linear-
elastodynamics interactions with microcracks may very well
be responsible for them. We did not address the reasons for
the existence of the microcracks—these may be thereab ini-
tio or get born by the high stresses near the tip of the ad-
vancing cracks. On the other hand, we are after simplified
methods of analysis of crack propagation in nontrivial envi-
ronments. The technical difficulty of solving the full dynami-
cal equations calls for approximate methods that work. With
the motivation presented in Sec. III we demonstrated how
the assumption of the product structure for the stress inten-
sity factors reduces the dynamics to a set of ordinary differ-
ential equations that are easily solved. The gratifying agree-
ment with the lattice simulations emboldens us to propose
this as an approach that may find applications in other con-
texts of interest. Only future work will help to strengthen or
delineate the usefulness of this approach.

To further connect the interaction model to experimental
observations one should couple our theory to a physically
motivated model that will determine the conditions for mi-
crocracks nucleation. Such a model will potentially predict
the appearance of distributed damage in the process zone and
the interaction with the macrocrack may be related to the
roughness of crack surfaces and the periodicity of the veloc-
ity fluctuations.
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