PHYSICAL REVIEW E 70, 046107(2004
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We address the interaction of fast moving cracks in stressed materials with microcracks on their way,
considering it as one possible mechanism for fluctuations in the velocity of the main @nadpective
whether the microcracks are existing material defects or they form during the crack evolWmranalyze
carefully the dynamicéin two space dimensionsf one macrocrack and one microcrack, and demonstrate that
their interaction results in &rge andrapid velocity fluctuation, in qualitative correspondence with typical
velocity fluctuations observed in experiments. In developing the theory of the dynamical interaction we invoke
an approximation that affords a reduction in mathematical complexity to a simple set of ordinary differential
equations for the positions of the crack tips; we propose that this kind of approximation has a range of
usefulness that exceeds the present context.
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I. INTRODUCTION approximate methodology is not established in a controlled

Classical linear elasticity fracture mechanics provideg@shion, requiring therefore simulational support. Indeed, we
clear cut predictions for the dynamical evolution of cracks inWill offer in this paper lattice simulations to back the analytic
stressed materials. Consider a crack in an infinite mediurgonsiderations. We will show that the correspondence is ex-
under a tensile load at infinity. Such a crack is expected tgellent.
remain straight, and to exhibit a tip velocity that increases In Sec. Il we introduce the problem at hand, being an
monotonically towards the Rayleigh wave spepdReality  infinite two-dimensional stressed material with one macro-
shows that this is but a pipe dream. When the crack velocitgrack and one collinear microcrack of lengthin Sec. 11l we
exceeds a finite fraction afy the velocity of typical cracks describe the approximate method of solution, motivating it
exhibits wild fluctuations, the crack surfaces lose theirby the exactly soluble cases of straight and bifurcating
smoothness and the mean velocity never asymptotes towardgacks. The section culminates with approximate equations
cr The fundamental understanding of the discrepancy beof motion for the tips of the macrocrack and microcrack. In
tween the prediction of the classical theory and experiment§ec. IV we describe the solution of the model problem,
remains an open problem of considerable interest and impostressing the velocity of the tip of the macrocrack. We show
tance. that the net result of the interaction is a rapid and large up

A number of studie§1-8| point towards a close corre- and down fluctuation in this velocity, in correspondence with
spondence between the onset of velocity fluctuations and thide observed fluctuations in dynamical crack propagation.
appearance of secondary damage like microcrgagpear- Section V provides a simulational support to the approximate
ing ahead of the tip microscopic side branches, etc. Conicaltheory; by performing lattice simulations we study the same
markings which are observed on crack surfaces offer a goomodel problem and compare the results. The close corre-
indication that microcracks exist before the arrival of thespondence between approximate theory and simulations
crack, although it is not determined whether the former stentends support to the former. Section VI offers a summary and
from material imperfections or from stress instabilities. Theconclusions.
fact that the density of conical markings increases during the
crack evolution5] suggests that the level of stress is respon- II. THE PROBLEM

sible in some way for the activation of the microcracks. The ) ) o
aim of this paper is to explore the connection between ve- 1he problem that we want to consider is sketched in Fig.

locity fluctuations and the putative existence of microcrackst- Ve consider a macrocrack and a microcrack that at a given
ahead of the crack tip. To this aim we study the dynamicafime extend along the intervalsL,0] and[¢_,¢.], respec-
interaction between a macrocrack and a microcrack and fdively. The distance between them is givendyThe length

cus on the velocity of the tip of the former under the influ-

ence of the latter. L !

To actually solve exactly the dynamical equations for the -
displacement field with boundary condition on both macro- D
crack and microcrack up to coalescence is a very taxing
quest. Building upon experience in the field we will propose
here an approximate methodology that will allow us to write FIG. 1. The geometric configuration of the model problem. The
down ordinary differential equations for the positions of the macrocrack and the microcrack extend along the interjvells 0]
tips of both macrocrack and microcrack. While sensible, theand[¢_, ¢,], respectively, with./¢>1.
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of the microcrack is¢=¢,-€_. We expect on physical 1 : ' ' ' : '
grounds that the microcracks in typical materials are at mos 0.9t
of the size of the process zone, and therefore we alway:
consider the limit¢/L— 0. 0.8r
The aim of the calculation is to determine the simulta- 0.7f
neous motion of the three crack tifthe macrocrack tip, the
inner and outer tips of the microcracis a function of time. o 0.61

In full generality this entails the general solution of the field £ 0.5}
equations for an arbitrary motion, specifically the determina-
tion of the dynamicstress intensity factors at the crack tips
and then to apply a fracture criterion to obtain the actual 0.3r
dynamics. We cannot offer an exact solution to this problem. 0.2}
Instead, we will introduce an approximate method that pro-
vides analytic insight to the problem. 0.11

0.4f

1 1 2 2 '
lIl. APPROXIMATE METHOD OF SOLUTION 0 5 0 CF;‘St/L0 0 5 %0
To motivate our approximate methodology we will recall
some exact classical results obtained for idgabde
straight dynamical cracks and more recent results pertainin
to (mode lll) bifurcating cracks.

FIG. 2. The predicted velocity increase as a function of normal-
ized time(wherel, is the crack length at initiatignfor a mode |
&ack under uniform constant load at infinity, E@).

static stress intensity factor is a much easier task than the

evaluation of its dynamical counterpart, since it requires so-
As said above, linear elasticity fracture mechanics produtions of bi-Laplace equations with boundary conditions.

vides exact solutions for straight cracks under mode | loadRewriting Eq.(2) in the light of this result one obtains

ing. The stress fieldy;(r, 6,t), measured in polar coordinates 1

relative to the tip, is expected to have a universal form in the T(v) = =A@k )KL (4)

vicinity of the crack tip[9], E

A. Motivation I: Ideal straight cracks

S1(6,v(t)) A further serendipitous simplification arises from numerical
ayj(r,0,t) = K|(v(t).|-(t))—”,r- (1)  evaluations of the combinatiofy (v)k(v), showing that it is
\Gu well approximated by9]

Hereu(t) andL(t) are the time-dependent crack velocity and 20N 4
length, respectivelyE}j(o,v) are known universal functions AWK ) ~ 1 -vics. )

[9], andK,(v,L) is the “stress intensity factor” which is pre- This approximation leads to an ordinary differential equation
dicted to depend on the instantaneous crack velocity antbr the crack length. If one asserts that the fracture enErgy
length only. For notational simplicity we drop thedepen- is v independent this differential equation becomes explicit,

dence. At each moment in time the velocity is expected dL(t Er
plane stress conditionso be determined by the energy bal- dL® ~ cR{l - —2} ) (6)
ance equatiof9] dt [K(L(®)]

1 It should be stressed again that the decomposition property
I'(v)= EA|(U)K|2(U,L)- (2)  of the dynamic stress intensity factq. (3)] is essential in

deriving this basic equation. This equation predicts a mono-

The left-hand sidéLHS) here is the fracture energy and the tonic increase in the tip velocity asymptoting towarcis

right-hand side(RHS) is the energy release rate into the There is no crack motion as long as the stress intensity factor

crack tip region, resulting from a path integral over the en-does not exceed a material dependent threshold

ergy flux. E is Young’s modulus and\(v) is a mode | uni- s — ,

versal function. The exact result that we refer to is the de- Ki(L(1) < VEI' no crack motion. ()

composition of the dynamic stress intensity fackqtv,L)  For the sake of illustration we show in Fig. 2 the solution of

for a semi-infinite crack under time independent loading, inthis equation for the simple cas&(L(t))=o"\7L(t)/2,

the form[9-11 whereo™ is the load at infinity.

Ki(v,L) =k (0)K{(L), ()

where k/(v) is a universal function ob and K{(L) is the
stress intensity factor of static crack of lengthL under the The bifurcation of fast cracks is observed in many experi-
same loadingwhenL is large enough to be considered asments, and understanding it theoretically is a problem of
semi-infinite. This important result is the basis of the clas- some importance in the theory of fracture. One interesting
sical theory of straight crack motion. The calculation of theproblem that was addressed recerjtly] in this context is

B. Motivation Il: bifurcating cracks
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the determination of the stress intensity factors at the tips of Eil'(‘9+vv+(t))

symmetrically branched cracks in terms of the stress inten- 0ij(ry, 0u,1) = Ki-_J’_T_’ (12)

sity factor prior to branching. Referend&?2] presented a V2t

solution to this problem for mode Iilantiplang conditions.  whereK, are again the stress intensity factors that depend on
In this solution the stress intensity fackor at the tips of two  all the time dependent functiorst), €.(t),vy(t),v.(t) and
symmetric branches emerging from a macrocrack at a velognaybe other derivatives.

ity v’ and creating an angles relative to the macrocrack Our basic approximation is now motivated by the two
line, was given in the form examples, Egs(3) and (10); we assume that the dynamic
stress intensity factors can be decomposed according to

K'= \J”l _U,/CS H33()\,U,/CS)K0. (8)
KM =~ k| (UM)Kﬁﬂ(L(t)!€+(t)!€—(t))1

Here V1-v'/cs is the mode Il universal function, whose

mode | counterpart ik (v), cs is the shear wave sped, is Ky = k() KS(L(L), €4(1), €_(1),
the stress intensity factor of the macrocrack prior to branch-
ing andHa3(\,v’/cy) carries the information regarding the K_ = k(0 )KS(L(Y), €,(t), €_(1)). (13)

dynamic interaction. Note that the macrocrack velocitis

absent here as in the branching scenario adopted ifR&f. Here the universal functiok(v) is the samefunction ap-

the macrocrack stops suddenly before branching and a statfrearing in Eq.(3) and all the stress intensity factors with
stress distribution is established behind a wave front travelsuperscrips refer to the solution of thetatic problem with a

ing at the characteristic wave speed|f the decomposition frozen geometry which is given by the crack tip positions
in Eqg. (3) is of some generality then we expect the mainL(t),€.(t). On physical grounds we expect this approxima-
interaction effect to be contained in te&tic stress intensity tion to be good whe /L — 0, and to lose its validity as this
factors for the bifurcated configuration given Bys(\,0)K,.  ratio increases. The numerical simulations presented in Sec.

Indeed, Fig. 4 in Ref[12] shows that the ratio V lend a strong support to this expectation.
The advantage of this approximation is that it leads to
Has(\v'/cy) ordinary differential equations for the tip positions in much
Has(\,0) © the same way that E@6) followed from Eq.(3),
is very close to unityup to £5% for all the values o and dL—(t) ~ CR|:1 - Er ,
v'lcs. Therefore, we conclude that even for this complex dt [KM(L(1), €.(), €-(1))]? ]
configuration the dynamic stress intensity factor admits an )
approximate decomposition in the form of a product of its de_(t) El
static counterpart and a universal function of the local crack dt ~Crl1- [KS(L(D),€,(),6_ ()]’
tip velocity, N
e T e de.(t) El
K" = V1 -v'lcg Has(\,0)Ko. 10 = - i
VT Hedh 0% 1o at CR{l oo e

This re_sult suggests _that a very good approximation for .th%Ne turn now to the analysis of this set of equations and their
dynamicstress intensity factor can be obtained by calcuIat|ngmnsequenceS

the static stress intensity factor for the same instantaneous
configuration and a knowledge of a universal velocity func-
tion characteristic of the local symmetry conditions at the
crack tip. A. The static problem

IV. SOLUTION OF THE MODEL

A prerequisite to the solution of the set of equatigh4)
C. The decomposition approximation for our problem is the calculation of the static stress intensity factors for a
For advancing the problem posed in this paper we need tgen_eral configgration of two c_oIIinear cracks. We _employ the
consider the stress field in the vicinity of three crack tips. In2vailable solution for two collinear cracks consisting of seg-

the vicinity of the tip of the macrocrack we wrifa the local ments a< X< b a;nd c<x<d with b<c under a remote
polar coordinategr,,, ) around that tip mode | loadingo™. The o, component of the stress tensor
Mo along the cracks line, outside the cracks, is giver[18]

S (0w, om(t
0 1 ) = Ky 2L 2D 1) g X0 = s <2x2—(a+b+c+d)x+ab+cd—(d—b)

V27 2G(x)
whereKy, is the stress intensity factor that in principle de- X(c - a) E(m)). (15)
pends on the positions and velocities of all the t|ps., K (m)
L(t),€.(t),um(t),v:(t)] and maybe other derivatives. Near Here
the tips of the microcrack we write similarfyn local polar
coordinateqr., 6.) around each tip G(x) = J(x—a)(x—b)(x—c)(x—d),
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FIG. 3. Th lized . . ity factSHE FIG. 4. The three crack tip velocities for an interaction event
- 3. The normalized static stress intensity facl@9 asa o 4 macrocrack traveling at an initial velocity =0.6Zy inter-

function ofA.. The normalization factor i3r°.°\e“ﬂ-L/2, which is the acts with a collinear microcrack of length=5 positioned at\=5.
stress intensity factor of the macrocrack in the absence of the Mithe figure shows the normalized velocitieke as a function of the

crocrack. We fixed’,=1 and varied{_. Note that the stress inten-
sity factors obeK, < K_< Ky, and thatk,, — ¢ 7L /2 as the ratio
€/A decreases, as expected.

normalized timecgt/ .

unity whenA —0, since also in that limit we remain with

one crack. This last fact is not easily seen in Fig. 3 since the
- w (16) upturn towards unity is very rapid, occurring just before coa-
(d=b)(c-a)’ lescence.
andE andK are the complete elliptic integrals of the first _
and second kind14]. The stress intensity factor at any one B. The dynamic problem
of the tips is obtained by taking the limit Using the static stress intensity factors E(3) in Egs.
. (14) we can solve numerically for the dynamics of the three
Ki :XI'LT;_\’Z”(X_Xi)Uyy(X'O)’ (170 {ip positions. An example of the ensuing dynamics is exhib-
' ited in Fig. 4. We note that what is seen in this picture is
wherex; is any one of positions of the tips. typical to all the conditions that we have considered: the

In order to adapt the general configuration to our macromacrocrack is first accelerated, then the left tip of the micro-
crack and microcrack configuration we set-L, b=0, ¢ crack meets the fracture criterion EJ) and accelerates to-
={_, d=¢,. Taking the limits in Eq(17), under the assump- wards the macrocrack; after some time lag, the right tip
tion L>¢, we can extract the stress intensity factors at themeets the fracture criterion and starts to move and attains at
three tips[15] coalescence a lower velocity than the original macrocrack.

To connect to velocity fluctuations observed in experi-
Kw ~ \/ZM ment we reinterpret the data in Fig. 4 as they would be seen
KN C_K(1-€1¢,)’ by an observer. We are physically motivated by the fact that
as a result of a finite measurement resolution, below a critical
K_ €, EQ-¢_1¢,) 1 separationA. the macrocrack tip and the outer tip of the
KN = ZK(l —0e,) - Jedt-1| microcrack are indistinguishable and the measured velocity

is a result of some averaging. For the sake of illustration, we
define the experimental velocity,, as

Um for A> A,
Vexpt=

HereKN= ¢*\7L/2 is the nominal stress intensity factor of (om+0,)/2 for & < Ac.
the macrocrack in the absence of the microcrack and serves Figure 5 shows the experimental velocity, during an
here as the scale of the three stress intensity factors. In Fig.i8teraction event. The rise in velocity after the steep decline
we present the three stress intensity factors as a function dé$ the second of Eqg19). The last branch in which the

A. In this example we kept the macrotip latand the right  velocity returns to the precollision value is out of the scope
microtip at¢, fixed while ¢ was changed. We note that the of the present model and had been added by hand for the
stress intensity factor of the macrocrack goes to the singleake of illustration. The point to stress is that the dynamic
crack resul{unity in the reduced coordinates of Fig.\8hen interaction event generates a typical large and rapid velocity
¢/A—0. Similarly, the stress intensity factor & goes to  “fluctuation” and that any other reasonable definitiorvgfy

K, {(1_ E(1—€_/€+)) 1

— =~ . 18
KN K(1-¢_/¢,) \"1—€_l€j 18

(19
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0.9 ' : ' ' : : : by replacing the continuum by a square lattice of mass points
0.85| | interacting via Born springs. The symmetry about the mid-
line allows us to use a half-lattice with boundary conditions
0.8 U(X, —y) =Uy(X,Y), Uy(X,=y)=-uyX,y). There are springs
0.75} connecting both nearest-neighbor and next-nearest-neighbor
& 0l points, with the relative spring constants adjusted to give
e isotropic elasticity at quadratic order.
>® 065" The most difficult part of the computation is the equili-
0.6 bration of the initial crack. The crack propagation itself hap-
) pens at relatively high speéd finite fraction of the speed of
0.55! sound. However, the equilibration proceeds at a rate con-
05k trolled by the longest wave lengths in the problem. Since the
operator that stems from linear elasticity is fourth-order in
0.45- spatial derivatives, the time to relax the lattice scale¥Vés
in real time units. Since the computational cost of a single

04 : : ' : ' ' '
0 02 o4 06 08, 1 12 14 16  ypdate of the entire lattice scales A&, it is clear that a

R simple relaxation algorithm is prohibitive. However, the lack
of an intrinsic scale in linear elasticity comes to the rescue,
as the problem is ideally suited for a multigrid approach
[24,25. The main idea is that we are trying to solve what is,
at the longest and most troublesome scales, a continuum
elasticity problem. We are free to solve this problem using

ny latticization we choose. We can obtain good information

n the large-scale structure of the solution very cheaply us-
ing a very coarse lattice, and use a fine lattice to obtain the
§hort-scale information we are still missing.

FIG. 5. The normalized experimental velocity,/cr as a
function of the normalized timegt/€. The experimental velocity
was calculated according to EA.9) with A.<¢.

will have a qualitatively similar outcome. It should be noted
that we do not consider here the effect of the nucleation o
the microcrack on the macrocrack velocity. Physically we
expect this effect to produce a sudden deceleration of th

macr%crgck prrilor to the effeclt sh0\f/1vn in Flig.' 5 this ishex-l In practice, we begin with the formulation of the problem
pected since the energy supply to the crack tip region should, 1o original fine lattice. Instead of solving this problem

be partitioned between the nucleation process of the microdirectly we coarsen the grid by a fixed factor. The crack

crack and the fracture process of the macrocrack. This eﬁe%ngth of course, also shrinks by the same fagtopractice
will be t‘?ke” into account in future work wherg our current e choose the scale factor to keep the crack length as close
model will be coupled to a reasonable nucleation theory. as possible to an integer number of lattice uni&his for-
mulates a new problem. We solve this new problem in the
V. SIMULATIONAL SUPPORT same way, by reformulating it on a yet coarser lattice. The
Since our reduction to ordinary differential equations restoarsest lattice we choose is one in which the crack is a few

on the assumptiorof the product structurél3) for the dy- lattice sites long, since any further coarsening would remove

namic stress intensity factors, we must test the quality of thd€ crack altogether. This coarsest problem is solved by re-

approximation by numerical simulations. We employ lattice!@xation. The solution is then lifted to the next finer lattice
simulations as described below. via bicubic spline interpolatiofi25]. This actually amounts

to extrapolation for the lattice points in the fine lattice which
are not contained in the coarse half-lattice. The interpolation
introduces some amount of high spatial frequency noise,
Lattice models[16—223 provide a convenient, concrete, which we eliminate by performing a moderate number of
and physically sensible method of realizing crack dynamicsrelaxation sweeps. We thus proceed up the chain until we
The material is represented by a lattice of mass points corhave a solution on the original fine scale. This solution is
nected by Hookean springs. Fracture is achieved when much better than the original, typically the largest residual
spring exceeds a certain critical extension. In certain specigunbalanced force on a massas been reduced by 2—-3 orders
cases, analytic solutions for static and steadily moving cracksf magnitude.
can be obtained. In general, the model can be easily simu- We now refine the solution by writingjx'y:ug'y+u§'y,
lated. A major advantage of this class of models is that thevhereu, is the solution we have found to date. The residual
process zone is quite small, on the order of a few latticefield satisfies an inhomogeneous equation, where the inho-
spacings. Thus, already on scales of 50 or so lattice spacingsiogeneity is the residual resultant forces on each lattice
continuum dynamics is very well realized. It has been re-mass. We then invoke our whole multigrid apparatus on this
cently demonstrate[23] that the universality assumption un- new inhomogeneous problem. This procedure reduces the
derlying linear elastic fracture mechanics, namely, that theesidual by typically another order of magnitude. Another
instantaneous crack velocity is only a function of the stresgew rounds of this game give us solutions with residuals of
intensity factor at that moment, is extremely well satisfied byorder 10° or less. As we are interested in cracks that propa-
the lattice dynamics. gate along the midline, we allow only bonds that cross the
For our present purposes, we use the machinery devehidline to break. We start with a square lattice whitt
oped in Ref.[23]. We solve the equilibrium elastic problem =801 under fixed-displacement loading at the top and bot-

A. Lattice simulations
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FIG. 6. The simulation data dfvy/cg as a function ofL are FIG. 7. The simulation data afy/cg as a function ofL are

shown by the circles and the linear fit for these data is shown by thghown by the circles and the analytic approximation predictions are
solid line. It is clear that the functional form suggested by @@  shown by the solid line. In this simulation we uske- 245 (the
indeed describes the single crack dynamics in the lattice simulationength of the macrocrack in the interaction regiamd ¢=10. The
The fit is consistent with the assumptions since the slef@very  analytic approximation predicted the simulated data up to an error
close to 1. of 6.5%, even though the ratio/¢ was not very large.

tom, with bonds broken according to the desired initial con- To direct'y test our product structure approximation, Eqs
figuration, Fig. 1. At this point, we manually break the bond (13) we used the value g8 obtained by the linear fit and
at the end of the macrocrack, and monitor the subsequeRerformed lattice simulation where a macrocrack interacts
sequence of bond breakings. with a collinear microcrack. We encounter a difficulty in the
simulations since the microcrack tips were trapped even
when the stress intensity factor exceeds the material thresh-
In order to test the quality of the product structure ap-old (7). This known phenomenon of lattice trapping is an
proximation we should first show that the analytic equationartifact of the lattice structure; to overcome it we fixed the
(6) for the dynamics of aingle macrocrack describes cor- microcrack tips also in the analytic calculation. An example
rectly the corresponding dynamics in the lattice simulationsof the comparison between the simulation data and the ana-

B. Results of lattice simulations

Multiplying Eq. (6) by L we obtain lytic approximation is shown in Fig. 7. We found that our
v analytic approximation agrees with the simulated data, with
L—M:aL+,3, (20 deviations that are typically small. The largest errors are
Cr smaller than about 6% —7% even fof ¢~ 25. For larger

wherea is predicted to equal 1. The paramefrelates the ratios, whic_:h is.the expected physical regime, we expect bet-
material properties and boundary conditions of the latticd®’ @pproximations. Note that the fact that the analytic ap-
experiment to those in the continuum model. We simulated ®roximation overestimates the velocity of the macrocrack is
single crack propagating without any additional damage, an§xPected on physical grounds. Our product structure ap-
measurea,, /g as a function ot.. Next we fitted the data to Proximation relies on the fact that for short distances the
Eq. (20). Figure 6 shows that the functional form given by mforr_natlon on the positions of the craclf tips, cgrned by
Eq. (20) describes well the single crack dynamics in the |at-€lastic waves, flovv_s_ almost instantly even if the typu;al prack
tice simulation. Moreover, we found that=1; thus our pro- ~Propagation velocities are of the order of. In reality it
cedure appears internally consistent. It should be noted thadkes finite time for the stresses to reorganize themselves
notwithstanding the excellent agreement evidenced in Fig. giccording to the new crack tip positions and generally the
there are a number of uncontrolled approximations at plafn€rgy release rate is lower than in our approximation.
here. First, the functional form in Eq20) is based on the ~ The main conclusion of this section is that the product
assumption of a constant fracture energy. In fact, the fracturgtructure approximation, Eq¢l3), gives very good predic-
energy for our theoretical “lattice” material has been calculions for the model problem studied here. We propose to
lated, and it is not constant. Second, the simulation employtérpret this in a broader way, and to test the applicability of
constant displacement boundary conditions in a finite strighiS @pproximation in other contexts.

(though, in order to mimic infinite medium, we specialized

for time; that do not allow wave intergctions with the_ outer VI. SUMMARY AND CONCLUSIONS

boundariegy and the theory assumes fixed stress at infinity.

The excellence of the fit despite all this is somewhat unex- This study has two aims; on the one hand, we are inter-
pected, and bears further study. ested in the velocity fluctuations seen in dynamical crack
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propagation, and proposed here that the linear- To further connect the interaction model to experimental
elastodynamics interactions with microcracks may very wellobservations one should couple our theory to a physically
be responsible for them. We did not address the reasons fefiotivated model that will determine the conditions for mi-
the existence of the microcracks—these may be thbrimi-  crocracks nucleation. Such a model will potentially predict
tio or get born by the high stresses near the tip of the adme annearance of distributed damage in the process zone and
vancing cracks. On the other hand, we are after smphﬁeﬁe interaction with the macrocrack may be related to the

methods of analysis of crack propagation in nontrivial envi- C o
ronments. The technical difficulty of solving the full dynami- roughness of crack surfaces and the periodicity of the veloc-

cal equations calls for approximate methods that work. WitH fluctuations.
the motivation presented in Sec. Ill we demonstrated how

the assumption of the product structure for the stress inten-

sity factors reduces the dynamics to a set of ordinary differ-

ential equations that are easily solved. The gratifying agree-

ment with the lattice simulations emboldens us to propose This work had been supported in part by the European
this as an approach that may find applications in other con€ommission through a TMR grant and by the Israel Science
texts of interest. Only future work will help to strengthen or Foundation founded by the Israel Academy of Sciences and
delineate the usefulness of this approach. Humanities.
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