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Nonequilibrium statistical mechanics of anharmonic crystals with self-consistent
stochastic reservoirs
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We consider ad-dimensional crystal with an arbitrary harmonic interaction and an anharmonic on-site
potential, with a stochastic Langevin heat bath at each site. We develop an integral formalism for the correla-
tion functions that is suitable for the study of their relaxatiome decay as well as their behavior in space.
Furthermore, in a perturbative analysis, for the one-dimensional system with weak coupling between the sites
and small quartic anharmonicity, we investigate the steady state and show that Fourier’s law holds. We also
obtain an expression for the thermal conductifigr arbitrary next-neighbor interactionand give the tem-
perature profile in the steady state.
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I. INTRODUCTION short, it is unclear whether Fourier’s law holds or not in such

: . ..anharmonic models. It is worth recalling that other results
We are surrounded by phenomena involving nonequilib-

. . . also indicate that the opinion that the sole anharmonicity of
rium processes, but our understanding of such systems—

: ! . 8he on-site potential shall ensure normal heat conductivity in
the number of models that permit detailed caIcuIatlons—ls,some commonly used models is wrofg]

very limited. In particular, a simple way of finding the prop- The harmonic crystal model with next-neighbor interac-

erties in the steady states is unknown: e.g., a rigorous derfjo s and a heat bath at each site has been recently analyzed

vation O.f the(EhenomenologiﬁalF_ourier’sdla\I/v rf]rom a mit-) in [10]. It is proved, for a uniquely fixed temperature profile
croscopic - anharmonic Hamiltonian model has not eerFeading to the steady statgiven the temperatures at the
established up to novisee[1,2] for a review. It makes the

. : . o .. boundariey that the heat current satisfies Fourier’s law. For
"’!”a'ys's of simple dynamical models describing nonequiliby,e case of more intricate interactiotiatense and beyond
flum processes a pro_blem .Of Interest. _ . next-neighbor sites for a chain with some few sites, some

A comrr_]only_studle_d microscopic _model IS the I-_|am|I- results presented ii1] indicate that there is a “strange” heat
tonian chain(or its d-dimensional versionof N interacting flux in the harmonic networkand the authors claim that the
oscillators coupled to heat baths at each site or at the bound—
a.ries_ only and its anharmonic version with small quartic ONhe chain, the direction of the heat fluxes caningenera)
site Interactions. . be supposed from the temperature of the heat baths.

For the harmonic case of the model with thermal reser- In the present paper, also with the aim of studying the

. i " namics of simple microscopic models in order to under-
was calculated ifi3] a long time ago. There, it is shown that @y P P

e . stand properties of nonequilibrium systems, we study the an-
the heat current is independent of the length of the chain, aMfarmonic version of this crystal with a stochastic Langevin

so Fourier's Iavy does not hold. The' tempera’Fure profile $heat bath at each sitgnodel named as crystal with self-
also computed ifi3]: the temperature is essencially constant,, qistent reservoiyswe describe an approach and obtain
in the interior of the chain, but decreases exponentially closg, jntegral formalism suitable for the study of the correlation

to the hqtter bath and increases close to the opposite end. "?unctions (of the d-dimensional system with quite general
the profile has the lowest temperature near the hottest resq iteraction$. Furthermore, using perturbative calculations,

voir and the highest temperature near the coldest reservoll . o \veak coupling between the sites and a weak anhar-

Rlonic potential, we showfor the one-dimensional systg¢m
that Fourier’s law still holds. That is, we shaat least up to

positivity of entropy prod_uction inS). Ngmerical results first order in the perturbative computatjathat Fourier’s law
strongly suggest that Fourier's law holds in such a ¢&sa, is valid for this microscopic anharmonic Hamiltonian model.

but in the opposite direction, a perturbative analy$ \ye 5150 obtain an expression for the thermal conductivity

shows that the heat current does not depend on the size of they . ey neighbor interactions which may arbitrarily change
system. Also in the perturbative stufBj, as in the harmonic along the chaipand give the temperature profile in the

case[31, the temperature profil_eji.scardilzg the i—zxponential steady state. For the simpler case of next-neighbor interac-
decay in the bulk of the chajris in the *wrong” way: the jons constant along the chain, our resultensidering the
hottest temperature is near the coldest bath and vice versa. harmonic modglcoincide with those of the harmonic case
recently described if10].
The rest of the paper is organized as follows. In Sec. Il we
*Electronic address: emmanuel@fisica.ufmg.br present the model and some expressions for the energy cur-
"Electronic address: rfalcao@fisica.ufmg.br rent. The integral formalism for the correlation functions is

esults persist under weak anharmonic perturbatianside

results. The existence of steady states is provéd]iand the
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developed in Sec. lll. In Sec. IV, in a perturbative computa- lll. INTEGRAL FORMALISM FOR THE CORRELATION
tion, we analyze the energy current in the steady state and FUNCTIONS
Fourier’s law. In Sec. V we argue about the reliability of the

. . For convenience, we introduce the phase-space veftor
perturbative results and present some concluding remarks.

=(q,p) with 2N coordinates and write the equation for the
dynamics(2) as
I1l. MODEL AND INITIAL CONSIDERATIONS

Let us introduce the model to be analyzed here and some $=-AP-NP(P)+ o, @
expressions for the energy current. We consider the stochagthereA=(A+7) ando are N X 2N matrices given by
tic Langevin dynamics of an anharmonic crystal—i.e., a sca-
lar field lattice model with unbounded spin variables in a A°:< 0 _|> :(0 0) o= (0 0 ) (8)
d-dimensional lattice space box C 79 with a stochastic M T ) J 0/ Vor7)
heat bath at each site. Precisely, we take a systeh as-

cillators with the Hamiltonian | above is the uniN X N matrix, J is theN X N matrix for the

two site interactionJ; [see Eq.(1)], and M, I', and 7 are

N 1 N N diagonal NX N matrices: M;=Mé;, I';j={6;, and 7,
H(q,p) = >, E[pjz+ quz]+§ > qdg + 2 \P(g), =T;8;. Here 7 are independent white noise®,(¢4) is a
=1 i#1=1 =1 2NX 1 matrix with P’'(¢);=0 for j=1,... N, and
W PG
where M >0, P gives the anharmonic on-site perturbation Pl(#)i= T fori=N+1,....A. 9)
[e.g.,P(qj):qf], and we consider the time evolution given _ N _ _ _
by the stochastic differential equations To describe the dynamics we first consider the system
without the coupling among the sites and without the an-
dg=pgdt, j=1,... N, harmonic perturbatiofi\ =0) (interactions which we include

in a second step Then the(straightforwarg solution of Eq.
oH P . (7) above withJ=0, =0 is the Ornstein-Uhlenbeck process
dp]:_adt_gp]dt‘l"yjl dBJ, le, ,N, (2) given by
J
t
whereB; are independent Wiener processes—ad&;/dt are H(t) = e“AO¢(0) + f dse‘(“s)Aom;(s). (10)
independent white noisesés the heat bath coupling, and 0
¥;=2(T;, whereT; is the temperature of thigh heat bath.
To describe the energy current in the system, we write th
local energy of the spioscillatop j as

gor simplicity we take #(0)=0. The covariance of this
Gaussian process evolves as

e 9% (s9), t=s,

1 1
H, =Zp?+UD(q) + = UP(q; - () () =C(t,5) = T (11
i(a,p) = S p; + U(q) 2% U -a), (V) (s))o e (< )
where the expression fad™® and U@ follows immediately " i
from Eq. (1) andE}\':lHj:H. Then, we have C(t,1) :f dsesNg2es? (12
0
dH;(t
<_djt(_)> =(R(1) —(Fj< = Fj>), (4) Itis easy to sege.qg., diagonalizing\’) that
where () denotes the expectation with respect to the noise
distribution and exp(— tA%) = e 92 cosHtp) (I O)
0 I
(Ri(1) = &(T; = (p}) (5
gives the energy flux from thgh reservoir to thgth site. ¢
The energy current inside the system is given/&ywhere tanh(tp) 5' -l
0+ p ML ¢ (13
~ p
Fie=2 VUG- )= 3 -M =2

1>
[and a similar expression follows for the transpose
+p exp—tA%)], where | is the NXN unit matrix, etc.:
= V U(2) — . pl_l. 6 ] y y p
Fm=2 (@-a) 2 © =[(£12)2-M]¥2 [we assume that{/2)°>M>0]. In this
. _ simple caséof J=0, A=0), ast— o we have a convergence
In particular, in the steady state we halH;(t)/dty=0. We  to equilibrium (any single site is isolatgcand the stationary
will turn to these expressions to discuss Fourier’s law later.state is Gaussian, with mean zero and covariance

I<j
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T t 1 t
< T [— 0 Z(t) = ex fudB——fuzds
CZJ dseg?e s = M : (14 . p( 0 2Jo
0
07 = exp— F1(() + F1(4(0)) = NF(b(1) + \Fo($(0))}
t t
where, again7 is a diagonal matrix with element; (in X ex _f WJ(qb(s))ds—f AW, ((s))ds
short, for any site we have a Gibbs measure at temperature 0 0
T). ¢
To introduce the coupling interactions and the anharmonic _f AW, 5(4(s))ds (17)
potential, we use a tool of the general theory of stochastic 0

differential equations—namely, the Girsanov theofégj. It

gives a measurg for the new proces§’) as a “perturbation”  with

of the measureuc associated with the process wif=0,

A=0. Precisely, for any measurable stt it states that  Fy(¢(1) = % ") T (1), Fo(b(1) = 3P (d)i(D) i(D),
p(A)=Ey(1,Z(1)), where E, is the expectation fopu (the

process withl=0, A=0), 1, denotes the characteristic func- i 0 of -1
tion, and Wi(&(9) = ¥, #i(9) T;j A d(S) + S AG v ~Tij #5(9)

t 1t +5¢jr(s)JIiy;1ﬁj¢j(s),
Z(1) :ex;{f udB- §J uzds), 2 :
0 0

AW, ((9) = N, ' (9P ()i(DAL  ki(S)

1/2 ’

Y2 = — Jid— NP (), (15) o 1, 4
AR P (G SAA(S + TP (D),
(the inner products above are RtY). From Eq.(8) and the
expression above far, note thaty; is nonvanishing only for
i>N(.e.,ie[N+1,N+2,...,N]). In what follows we will

use the following index notatiom:for index values in the set And so. for the ex : P .
) ) , pectations, considering the process with
[N+1,N+2,...,N], j for values in the seftl, 2, ... NJ, and coupling between sites and anharmonic perturbation, we

k for values in[1,2,...,N]. . . have, e.g., for the two-point function,
For clearness, let us rewrite the stochastic equations for

the initial procesgwith J=0, A\=0) as

AW, ((S) = Ny P (8)i(9) T ().

(u(t) o, (tp) = f du(t) &,()Z(duc(d), tt <t.
(18

0 P ) The formula above, a Feynman-Kac-type integral repre-
deh = - Ajhdt+ % °dB, i e [N+1,...,N], (16)  sentation, is suitable for the study of genenapoint corre-
lation functions: for the analysis of their time decaglax-
where the sum ovet (in [1,2...,2]) is assumed abov@s  ation properties space behavior, etc. In particular, we will
well as the obvious sum over some indices in what follpws analyze the energy current in the steady state, a problem that
Turning to the terms irZ(t) we have involves  the investigation of terms such as
lim_..(i(t) ¢;(1)); see Eq(6).

dd)] = —A?kd)kdt, ] € [11 e lN]!

udB = ¥ 2% *dB

= 7 Y2u(de + At
=[- y-‘l T — 771)\7;/( #);1(de; + P\ Hdt) To study the heat flow in the steady state we need to

benme A Tk ’ analyze the two-point correlation functions given by formula
(6). The averages over the stationary distributions will be
obtained as the limit

IV. HEAT FLOW AND FOURIER’S LAW

which follows from Egs.(15) and (16) above. We still use
the 1td6 formula to write the terms witt¢, as

— Ty = — OF, - 7 T AL, (huct,) = M b (1)t (1)) = lim f $uD$,OZ(Oduc($).
. We will establish the conditions for the convergence to the
Fi(o) = Ty steady state later.
To carry out the computation, note théft,s), given by
With similar manipulations we obtain Egs.(11)—«14), may be written agfor t>s)
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C(t,s) = exd - (t - s)A%]C + O(exd - (t + 9)/2]), dots mean Wick order with respect to the Gaussian measure

M-
and the effects of the second term on the right-hand side of We will make a perturbative analysis; i.e., we will assume
the equation above disappear in the correlation formula inthat the coupling between two sitek, and the anharmonic
the limit of t— oo, potential coefficienh are small. Hence, up to first orderJdn
For the anharmonic interaction we choose, for ease oéind \, after (considerable but straightforwgrdalculations
computation, 77(¢)i(s):a4/4:¢i4_,\,(s):, where the vertical we have

M[jv*'NU NTuN quT ]§u N,o fOI‘UE[N+1 Z\l],ve[l,...,N],

(duby) =1 2L (19)

Tu-NOup foruv e [N+1,...,NJ.

Note that we are indeed considering a system with an anhaequations above E@24). Namely, we obtain

monic on-site potentialsee Eqs(17) and (18)], but in the 11 1\ 1 1 1

correlation expressioni$or the index sites aboyehe term of T=Ty+ (J— =+ e+ —> (_ + =+ .4 _)
1

order\ is zero(after the calculations J2 In-1/ VL Jp Jy-1
For simplicity we Wi_II restrict the analysis of the energy X(Ty=Ty), (25)
current to one-dimensional systems only. From E&).we
have which determines the temperature profile in the steady state.
Note that it is a monotonic function, oriented in the “right”
= T )(¢ ¢r+N) way: the hottest temperature is near the hottest bath and vice
JHNr ¢] ¢r versa
r>j .
For the energy current we get
rell,...N], (20) J(To=Ty =
where(Fj) denotes de energy flow between sjitand the =J(Tis1— T
sitesr (with r >j) connected by the interactiqfi. Using the (Ty=Ty)
results described in Eq19) above we obtain = s 11 ,
(x7J+N r
(Fiay=2 (T =T). (21) 1
r>j 2§M ﬁ:(% j-++‘]i) X (26)
Let us analyze, in particular, the case of next-neighbor Lo N1
interactions only. In such a case, that is, Fourier’s law still holds. For the simpler case of the
same interaction between two any next-neighbor sites—i.e.
F = (F_)= 2 (‘7J+NJ+1) (Ti1-T)). (22) Ji=J,=---=Jy_1—we have, for the thermal conductivity,
j—jr1 = Vi< 2(M j+1
(j1+N 2)
The condition{dH;/dt)=0, which characterizes the sta- X=d=— = (27)
. ) ) 2(M
tionary state, together with expressiof® and (5) and _ _ _
(R(1))=0 [which comes from Eqg5) and(19)], leads to For comparison, ir10] the authors treat the linear dy-
namical problem—i.e., Eq.7)—with A=0 and
Fr2=Fo 3= F30= 0 = Fneron (23) 0 -1
l.e., using the notatiod; = (Jj.n j+1)?/ 2{M, = (q, e )

J(T=Tp) =3T3 - Tp)

D= (—A+17) = (= 84y~ S1j + (2+19)5,)),
=J3(T4 = Ty) T "

(28)
- and obtain(in a nonperturbative approach
=JIn-1(Tn = Tn-) - (24) 2 1
. . i =— , . 29
It is easy to see that given the temperatures at the bound X L2412+ 24 +1A)] (29

aries, T, and Ty, and nonvanishind,,J,, ... ,Jy-1, there ex-
ists a unique solutioii,, T, ..., Ty-1 for the linear system of In our casegconsidering the samé of [10]), we have
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0 - of the relaxation to equilibrium of some nonconservative sto-
A= (J FM g ) chastic Langevin systenj43-17. There, the time decay of
the two- and four-point functions is analyzed in detail. A
o _ o, perturbative study is carried out within the integral formal-
I= 0= Gy~ G1g)y M=MGy, M= (2+ V), ism in the regimes of low and high temperature. In the low-
(30) temperature region, for the system with a weak anharmonic
potential and a bare masthe coefficient of the local qua-
and so our formulg27) above becomes dratic term) large enough, it is proved that the perturbative
(- w?)? W2 analysis is not naive: e.g., the rigorous results des'cribed in
X= 202 + ) ? - (4+27) (31)  [14] show that the complete treatment of the four-point func-
tion adds only small corrections to the behavior obtained by
Considering that our computation was carried out in a perthe perturbative calculations presentedi8]. Using similar
turbative approach with small but M not small (see the techniquegcluster expansions, ejove expect to prove the
comments at the final sectipai.e., »? small, v large—we  results about the behavior of the correlations presented here

have in Eq.(29) (for smallX\, nonzeroM and{, andT; not large. The pertur-
14 bative analysis of our system with all the reservoirgdit-
(20 212 ~ iy ferent buj high temperaturéi.e., with the perturbative pa-
W4+ V2<1+2v2) V2. rameter given by 1T; instead of \) shall be possible

. . . following procedures similar to those described 1] and
_That is, our computation, when restricted to the case treate ferences therein.
in [10], leads to the same _result. . . Another interesting open problem is the behavior of the
_In short, we have show(in a perturbative analysis: Up 10 qygtem in the limit of the coupling with the interior heat bath
first order in\ andJ) that Fourier’s law still holds for the aken to zero: note that, to face this problem, we must make
harmonic crystal with self-consistent reservoirs when a smalﬁhe coupling with the héat bath at the ends c')f the chain dif-
nor)harmonic on-site perturbation is introduced in the interTerent from the coupling at the interior sité® be taken to
action. zero, and so the formula for the thermal conductivity, Eq.
(31) (obtained for identic couplingswill change. In such a
V. CONCLUDING REMARKS case, as we have mentioned bef@emparg 6] and[7] with

The approach presented here establishes an integral re&)S-])’ itis not clear if Fourier's law is or is not valid.

resentation for the correlation functions—say, a Feynman-
Kac-type formalism. That is, in some sense, we map the
stochastic problem on a noncanonical field theory. Such an This work was partially supported by CNPq and CAPES
approach is inspired by previous works considering the studyBrazil).
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