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We present an exact functional characterization of linear delay Langevin equations driven by any noise
structure defined through its characteristic functional. This method relies on the possibility of finding an
explicitly analytical expression for each realization of the delayed stochastic process in terms of those of the
driving noise. General properties of the transient dissipative dynamics are analyzed. The corresponding inter-
play with a color Gaussian noise is presented. As a full application of our functional method we study a model
for population growth with non-Gaussian fluctuations: the Gompertz model driven by multiplicative white shot
noise.
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[. INTRODUCTION note that independently of the type of fluctuations, a linear

Since the pioneering work of Langevin, stochastic differ-d€lay Langevin equation is inherently a non-Markovian pro-
ential equationg1,2] have become a powerful tool for the €€SS: _ . .

study of systems where fluctuations play a fundamental role, The study of non-Markovian Langevin equations have re-

The basic idea of this approach consists in adding explicithF€ived a lot of attentiorj32-40. From a rigorous point of

random elements in the proper system evolution, and then t§€W: these equations can only be completely characterized
fter knowing the full Kolmogorov hierarchiji,?], i.e., any

characterize the statistical properties of the nonequilibriunf'®' o . ; ;
dynamics by averaging the evolution over a set of noise ref"Joint probability, or equivalently any-time correlation.
alizations. For physical systems provided with a thermody-A" this information is encoded in the characteristic func-
: R ; e ional [1,2] of the process. In fact, this object allows one to
namical equilibrium state, fluctuation and dissipation appeatr et then-characteristic function of the process, from which

in a linked way as dema_nde_d by the ﬂuctuqmon d'SS'p."’lt'.or‘gnyn-joint probability follows from an inverse Fourier trans-
theorem[3]. Except for this situation, fluctuations and dissi- form, and anyn-time moment or cumulant follow from an

pation can _be considered as indepgndent elements_, Whoﬁ?derivative operation.
characteristics depend on each particular physical situation. |, 5 set of previous work§41-43 we have presented a
Thus, the fluctuations in general may be non-Gaussian angrgcedure to get the characteristic functional of processes
the dissipative dynamics introduces arbitrary correlation efgefined by linear stochastic Langevin equations with local
fects or memory contributions. and nonlocal dissipation. Then, this procedure can also be
Memory effects can be rigorously derived by using pro-applied in the present context. Functional techniques have
jector operator technique—7]. This method applies for also been introduced by other authors for studying disor-
linear subsystems embedded in a bigger one. Neverthelessgered system$§44,45 and stochastic equations with multi-
in general it is not possible to use this procedure, and thelicative noise[46].
memory contributions follows from a phenomenological de- In this paper we will apply our functional technique to
scription. In fact, in many natural and physical situations, thestudy the transient and stationary properties of linear delay
memory effects arise as a consequence of an intrinsic deldyangevin equations driven by arbitrary noises defined
mechanism, which implies that the dissipative evolution dethrough their characteristic functional. The basic idea con-
pends on the state of the system in a shifted previous timesists in obtaining an explicit expression for the realizations of
Remarkable examples of this situation arise in physics, biolthe delay stochastic process in terms of the dissipative delay
ogy, physiology, etc[8—18. This particular signature in the Green function, and then to get the characteristic functional
dissipative dynamics motivated the study of differential de-of the stochastic process, in terms of that of the driving
lay equationg19,2Q and delay Langevin equations. An ex- noise. As a full application, we will characterize the Gomp-
act analytic treatment of these equations is in general exertz growth mode[29,3Q driven by non-Gaussian fluctua-
tremely difficult. Nevertheless, some progress was achievetions.
in the characterization of linear stochastic evolutif2s-3] The paper is organized as follows. In Sec. Il we review
driven by Gaussian fluctuations. One of the goals of thehe functional method for the characterization of memorylike
present paper is to go, in this analysis, beyond the Gaussidrangevin equations. In Sec. Il we obtain the Green function
fluctuations. corresponding to the linear delay evolution. Then the differ-
As was previously mentioned, non-Gaussian fluctuatiorent dynamical behaviors of this function are analyzed. The
appears in a natural way in many situations of interest. Thusnterplay between the delay dissipation and a color Gaussian
the characterization of linear delay Langevin equations in th@oise is presented. In Sec. IV we apply our formalism to
presence of any kind of fluctuations is of great value. Wecharacterize the distributions associated to the Gompertz
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model of population growth driven by white shot noise. In | 1
Sec. V we give the conclusions. P({u;titit) = 2mn f dkl“'Jdkn
n
Il. FUNCTIONAL CHARACTERIZATION ; ) n
X - U: StEL).
OF GENERALIZED LINEAR LANGEVIN EQUATIONS eXp( 'g; kJuJ)G“ (bl 9

In a previous work{43] we have presented a functional The p-characteristic functiomﬁ”)({kj,tj}?zl) follows from
method to characterize equations of the form

g : G ({kj,ty) = Gulks(®D), (10)
au(t) = —f dt’ d(t—t")u(t’) + &(v). (1) where the functiorks(t) must be taken as
0
Our method relies in knowing the characteristic functional of Kol) Zha St =t + o + koL =) (19
the noise Thus, using these last two equations and E@)s{8), we get
o0 n
Gy([k(®)]) = <eXpi f dt k(t)f(t)>, 2 G ({k;, ) = exn{iz kj<u(tj)>0}G§([y(t)]): (12
0 i=1

wherek(t) is an arbitrary test functiori; --) means an aver- where the functiory(t) reads

age over noise realizations, and the knowledge of the Green n

function of the dissipative dynamics corresponding to the =S Ot - kAt —t 13
evolution(1). Thus, for each realization of the noise, we can v ,2:‘1 (G = OKA®G =0 (13

express the processt) as )
On the other hand, anytime moments can be calculated by

t differentiation of then-characteristic function as
u(t) = (U)o + | dv At-t)e), 3 o
0 o 9 "G ()
(ultpulty) - ut)) = (=1)" — =2 =~~~ :
where A(t) is the dissipative Green function, and we have 1082 n k=0
defined (14)
{u(t))o=A(t)u(0). (4) In the next section, we will apply this method to characterize

) linear delay Langevin equations driven by arbitrary noise
With these elements, we have demonstrated that the charagyctures.

teristic functional of the proces(t) Stationary spectral propertiesn general, for arbitrary
- noise and arbitrary memory kernels, it is not possible to
G (k)] ={ exp f dt k(t)u(t) ), (5)  Quarantee that the dynami¢$) converges to a stationary
0 state. Nevertheless, if a stationary state exists, it must be
) independent of the initial condition. Thus, a necessary con-
can be written as dition to reach a stationary state is
Gu([k(®)]) = Gy (kDG V)], (6) limA(t) — 0. (15)
t—oo
where

In addition to this condition, clearly a stationary state can
arise only if the driving noise is stationary:

CukOD = exp{ 1l . "“)<“(t)>°} 0 (EHE* (@)= Ho-0)S0). 16

Here, &) represents the noise in a Fourier domain and

and the functiore(t) is defined as S ]
S{w) is its power spectrum. By assuming that the process

°° u(t) converges to a stationary state,
z(t):f dt’ k(t")A(t" —t). (8)
t (U@)u* () = o= 0")Sy(w), (17)
These results follow after inserting E€B) in the definiton  from Eq.(1) it is simple to express the power spectrjiw)
Eqg. (5) and reordering the order of the time integrals. of the processi(t) as
We remark that the characteristic functional allows us to _ 2
characterize in a complete form the non-Markovian process Si(@) = S(w)|A(@)]* (18)

ut). In fact, any n-joint probability distribution  Thijs formula allows us to characterize the spectral properties
P{u;, tj}j2) = Pr(ug,ty; Uy, 1o, ... s Uy, ty) can be obtained by of the stationary process in terms of the noise power spec-
inverse Fourier transform of the characteristic functiontrum and the Fourier transfor(w) of the dissipative Green
GL”)({kj YL, as function.
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lll. DELAY LANGEVIN EQUATIONS (U)o = (1), t e [~ T,0]. (28)
_ Delay Langevin equations are a special case of the evolusn the other hand, the Laplace transform of the Green func-
tion Eq.(1). By assuming the kernel tion A(t) is
d(t)=a dt)-b st-T), (19 - 1
. : AS)=—"—+- (29
where,a and b are real constants, the stochastic evolution (s+a-be™®’)

results in . L . .
This expression is equivalent to the evolution

d
—u(t) = —au(t) + bu(t —T) + &(t). 20 d
iV = 7 AU+ bult=T) + &0 (20 G MO=-arO +bAC-T), (30
The particularity of this equation comes from the delayed ith the initial diti
contributionu(t-T). Unlike usual differential equations, de- WIth the initial conditions
layed equations must be supplied with an initial value func- At)=0,te[-T,00 and A(0)=1. (31
tion
Thus, all information about the prefunctiap(t) is carried
ut) = e(t), t e [~ T,0]. (21)  out by the averaggu(t)),. In fact, notice that the Green

The interval[-T,0] is called preinterval ana(t) is called function satisfies the same equation(a)),, but it must be

the prefunction. Due to this functional dependence, the treagolved with the null prefunction.

ment of the averaged evolution is a little different when com-

pared Wi}h those.corresponding to nondelayed ker[@}s A. Delay Green function
As we will show, in the present case the Green function that

propagates the noise is different from that corresponding to !N order to apply our functional formalism, we need an
the mean value. explicit expression for the delay Green functidit). This

. ~ o function was first derived in Refl21]. Here, in order to
m - st
By denoting the Laplace transform &)=/odt e1(1), clarify the procedure, we present a deduction by using a
from Eq.(20) we get

similar technique. First, by proposing a solution of the form

SUs) - u(0) = - alli(s) + be®TTTU(s) + (s, )]+ &(9), A(t) = €2A(1), (32

(22) from Eq.(30), the functionA(t) evolves as

where we have used

. EK(t) =b* A(t-T). (33)
f dt €Stu(t-T) =eSTu(s) + ¢(s,T)]. (23) dt
0 Here, the renormalized constant reads
Here, the functionp(s,T) is defined by b* = pedT. (34)
o(sT) = J ° dt (1) (24) Note thaFK(t) corresponds to the delay Green function of
T Eqg. (30) in the casea=0. In order to solve Eq(33), we

) o propose the following ansatz:
From Eq.(22), the solution of Eq(20), for each realization

of the noise, reads _ s
" A =2 AM™), (35)
m=0
u(t):<u(t)>o+f dt’ At —t")E&t). (25) - _ _
0 where the functionsA\(™(t) are non-null only in the time
intervalmT<t<(m+1)T. Thus, the evolution of the set of

This expression will allow us to apply the previously ob- L — ;
P PRl b y functions A™M(t) results in

tained results for the characteristic functionalugf). Here,

the function{u(t)), is defined through its Laplace transform d— _
My =p* AMI)
as GO = A=), (36)
~sT
U(s))o= u(0) +be™ ‘D(S’T). (26)  This infinite set of equations can immediately be integrated
s+a-besT as
By using EQ.(23), this last expression is equivalent to the _ _ t _
deterministic delay differential equation AM(t) = A™D(mT) +b* f dt A™Dt' -T). (37)
mT
d
d_t<u(t)>0: = a(u(t))o + b(u(t =T))o, (27)  The first term of this expression follows from the boundary
condition at the initial time of each interval, i.e\™(mT)
solved with the initial condition =AM™Y(mT). Taking into account thah@(t)=1, the hierar-
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chy of equationg37) can be solved iteratively. For tha sg(w)
function A™M(t), we get Si(w) = b2+ o2+ 20w S T]’ (43
_ m (b*)n In the next subsection we will analyze the stability of the
A= T(t -nmn". (38)  Green function, where these results apply.
n=0 :
Inse_rting this solution in Eq(35), and after noting th"’m is C. Stability and characteristic behaviors of the transient
the integer part oft/T), we get to the compact solution dissipative dynamics
o Int(t/T) (b* )" Here we will analyze different dynamical behaviors of the
A= D, ——(@t-nT)", (39)  delay Green function that arise by changing the values of the
o N parameters, b, andT.

. Of special interest are the stability properties, i.e., the
where Int---) denotes the integer part. Thus, the Green functparacterization of the set of values of the paramedets

tion Eq.(32) finally results and T that guarantee lim...A(t)=0. As our expression Eq.
(40) is a particular solution of the deterministic delay evolu-

Int(t/T) n-at-nT) . . : ) .
A= S b\"e [a(t-nT)]" (40) tion Eq. (30), the stability analysis of the Green function is
=0 n! ' equivalent to the stability analysis of that delay evolution

equation. It is knowrj19,20,26,27 that a necessary and suf-
This expression gives us the desired delay Green function digient condition for the stability of any solution of E(30)
a sum of shifted Poisson functiofie®(at)"/n!] weighted is

by the dimensionless parametér/a) to the powem. Note a

that the number of terms in this sum increases linearly in cos‘l(—)

time with a rate 1T. T<T.= —"? (44)
By constructionA(t) is a continuous function. On the ¢ p?-a?

other hand, it is simple to realize that at tintemT, the nth This i lity defi the d in of stability. wh bound
derivative of the Green function is discontinuous. In contrast, IS Inéquality denines the domain or stabiiity, whose bound-

any other derivative is continuous. As we will see explicitly aries, in the planéa, b), are given by the line
below, these properties imply that for longer times the Green a=b (45)
function becomes more and more smooth.

Inserting the solution40) in Eq. (25), and after some and the curve defined parametrically as
algebra, the solution for each noise’s realization can be writ- a= —witan(wT) (46)
ten in the alternative way '

INt(Y/'T) b\n (0T b=-w/sin(wT), (47

u(t) =(u(t))o+ go (‘) fo dt where for a giverT, wT e (0,7); these two boundaries in-
, tersect at the poirt-1/T,-1/T) (see Fig. 1 in Ref[26] with
gat=nTt) a— —a). For the parametric boundary, the variablean be

X n! [a(t=nT-t)]" &(1). (42) identified with the frequency of a solution gxpt] of Eq.

(30), which implies the relation
This expression can also be obtained by iteratively integrat- I
ing Eq. (20). w=1\b"-a". (48)
In the casea=0, it is also possible to predict that for
B. Stationary spectrum 0>bT>-1/e any solution decays monotonously, and for

. . . . -1/e>bT>- i i i
As we will see in the next subsection, there is a set of 1/e>bT>~m/2 any solution develops a time oscillatory

parameter values in the spaca,b,T) that guarantee the gresva\%'m?;ﬁi?;yt[gﬁe domain, the solutions, for long times,
condition(15).lln this case, for stationary noisgs, the associ- In the next figures we will analyze the behavior of the
ated stochastic process to the delay Langevin equagon ﬁelay Green function in the domain of stability. In Fig. 1 we

reaches a stationary state whose spectral properties can pg o : : .
. ) plotted some different behaviors by choosing the pa-
characterized through Eq18). Therefore, using EA(29), 5 meterm andb over the boundaries of stability. In Figa,

with s=-iw, we get we have chosen the parameters just over the parametric
boundary, Egs(46) and (47), with T=1 andw=1, which

S0 =55 S{w) . . implies a=-0.642093 andh=-1.1884. In the first period of
a”+b”+ o + 2b{acod wT] + w sifwT]} time T the Green function is given b (t)=exgd -at]. After
(42) this first step, we notice that the Green function oscillates in
a regular way. This behavior agrees with the previous analy-
In the casea=0 we recuperate the known expressj@] sis of stability. Consistently, the frequency of the oscillations

046104-4



FUNCTIONAL CHARACTERIZATION OF LINEAR DELAY ... PHYSICAL REVIEW E 70, 046104(2004

0.5 T T

0.25 |

A{t)
o
-

-0.25

0 4 8 12 16 20

0 3000 6000

202} 1

Aft)

0.25

0 4 8 12 16 20 0 4 8 12
(c) time (d) time

FIG. 1. Delay Green functior\(t) as a function of time in arbitrary units. The parameters(ajea=—0.642093 b=-1.1884, values
consistent withw=1. (b) a=144.71,b=-144.505, values consistent with=3.12.(c) a=b=20, and(d), a=b=3; in all cases taking=1.

is given byw. Furthermore, we have checked that after theonly respond to the external noise perturbation within narrow
first interval T, and in the time regime of this plof(t) can  windows of time.
be very well adjusted by a trigonometric functigdotted In Fig. 1(c) we have chosen the parameters over the other
line), A(t)=Agcogwt+¢p], with Ag=1.9 and$,=0.35. In  boundary of stability, Eq45), with a=b=20 andT=1. The
general, an analytical adjustment can be only found when thbehavior is similar to that of the previous figure. However, in
behavior ofA(t) is smooth and regular. this case the peaks of the Green function are positive at all
In Fig. b) we have chose=1, andw=3.12 which times. In fact, we have checked that for-0, inside the
implies a=144.71 andb=-144.505. Note that in this case, domain of stability,A(t) is always positive. We remark that
the dissipative ratefa| and|b| are much larger than T/ In  increasing the value Gf=b, the peaks are narrowed, present-
consequence, after a fast exponential decay, the Green funiexg a structure similar to that of Fig(l).
tion over the first period of tim@ is approximately zero. At The main difference of behavior over the two boundaries
later times, the Green function presents a series of extremelppears in the long time regime. In fact, the upper boundary
narrow and sharp peaks. In the inset we show the first posif the domain of stability, Eqi45), can be associated with a
tive one. We have checked that the period of these oscillatingolution with frequencywv=0. Thus, we expect that at long
peaks is given by 2/w=2. As time increases, the pulses times the Green function becomes a nonoscillatory function.
become wider and smooth and the Green function becomeés order to check this change of behavior, in Figd)lwe
more and more smooth. This characteristic arises as a conseave chosem=b=3. Here, as the values of the dissipative
guence of the continuity of higher derivatives of the Greenconstants are smaller than in the previous case, only a few
function as time increases. At even higher tiniest showed peaks appear and the Green function, after a short transient,
in the ploY, A(t) becomes an oscillatory function whose be- seems to reach a stationary constant value without any oscil-
havior can be very well adjusted by a decaying trigonometridation.
function. In general, the rate of this decay is much bigger In the inset, we have plotted the Green function for higher
than the dissipative rates and b. This slow decay will be values of time. Consistently we found a monotonous decay
analyzed explicitly in the next examples. which can be fitted ad (t) = Agexp(—y,t) with A;=0.25 and
Whenw approaches the valuer2the absolute value gt ~ y,=1/4000. We notice that the rate of this exponential decay
andb grows indefinitely. In this situation, the interval over is much less than the dissipative ratesand b. This
which the Green function presents a narrow behavior alsasymptotic slowing down decayis characteristic of the
grows. We remark that this unusually sharp behavior implieboundaries of stability and it is also present for parameter
that the process(t) will be closedmost of the time, and will  values near of the boundary line.
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FIG. 2. Delay Green function\(t) as a function of time in arbitrary units. The parameters @e a=0.2, b=-1.6. (b) a=25,
b=-0.25.(c) a=3, b=-2.(d) a=1, b=0.45; in all cases taking=1.

In general, inside the domain of stability, the Green D. Nonwhite Gaussian noise
function have different behaviors that approximate the pre-
vious analyzed limits. In Fig. 2 we have plotted some of Here, we will apply our functional approach to character-
these characteristic behaviors. In Figa)2we have chosen ize the averaged delay dynamics when the driving noise is a
a=0.2,b=-1.6, andT=1. In this case, the Green function Gaussian one. A zero-mean Gaussian néisg with an ar-
presents a regular and damped oscillatory behavior whicHitrary correlation functionoy(7,, 7;) =(&(7,)&(7,)), is char-
after the first period of timeT, can be approximated by acterized by the functiondll]
A(t) = Agexp(—yot)codwpt+ ¢pp) (dotted ling with Ag=1,
v=1/22,Wy=1.666,py=1.07.

In Fig. 2b), the parameters were chosen as0.25, 1(” *
b=-0.25, andT=1. In this case, the Green function can be G[k(t)]) = EXP<— Ef def dry k(1)o7 Tl)k(71)>-
approximated in a rough way by matching two exponential 0 0
functions. (49

In other cases, the Green function does not show a regular
behavior, and it is not possible to find a simple analytical
approximation valid for all times. Therefore, one can notTherefore, from Eqs(6)~(8) the characteristic functional of
define a characteristic time scale for the decaying behavior ahe processi(t) results

the Green function. Some examples are shown in Hig), 2
where we have choseam=3, b=-2, T=1 and in Fig. 2d),

wherea=1, b=0.45, andT=1. —
We remark that in the case=0 the behavior of the Green Cullk®D = G, ([k®D
function is similar to those of Figs.(& and 2b). In fact, 1(~(~
when the local dissipation is zero, after the first step of time, X exp(— Ef f drydry k(TZ)k(Tl)Uu(TZle)>,
the Green function can be very well adjusted by a monoto- 0 -0
nous or oscillatory smooth decay. The main difference with (50)

the casea+ 0 is the behavior during the first step of tirfie
where instead of an exponential decay, it takes a constant
value A(t)=1. where
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FIG. 3. DispersionC(t) of the delay process(t) driven by a FIG. 4. DispersionC(t) of the delay process(t) as in Fig. 3.

Gaussian noise with an exponential correlation, as a function oHere the parameters of the Green functibnsey are T=1, a
time (arbitrary unitg. The parameters of the Green functionse) ~ =33.2064,b=33.3462, which are consistent with=3.05. From
are T=1, a=b=33. From top to bottom the parameters of the pottom to top, the parameters of the Gaussian color noiseyare
Gaussian color noise ane=0.25, 0.5, 1, and 2.5, in all cases taking =025, 0.5, 1, and 2.5, in all cases takiBg 1.
B=1. As initial prefunction we have used the null function.
In Fig. 4 we show the transient behavior ©ft) over the
rz 1 parametric boundary. We have chosérl1l and w=3.05,
oy(7o,7) = J dpf dg A(m— p)odp,A(r —q), which impliesa=33.2064 and=-33.3462. In this case, the
0 0 peaks of the Green function change their sign after each pe-
(51) riod. From bottom to top we have chosen0.25, 0.5, 1, and
2.5, in all cases takin@®=1. In opposition to the previous
is the correlation function of the process(t), i.e., case, here anincrease of the noise memory paramégeads
ou(m, 1) =U(m)u(r))—{(u(m)Xu(7)). As expected, the lin- to a faster increase of the dispersiBft). Furthermore, we
ear delay process(t) is Gaussian. note that when the characteristic time of the noise memory is

Now we will analyze the interplay between the delay dy-bigger than the time step, i.e., 1/y>T, during the occur-
namics and the noise properties. We will assume an exponefence of the negative pulses, the dispersit) diminishes.

tial correlation functionoy(r,,7)=B exp(— 7= ). Note We remark that the different dependencie<of) on the
that in the limitB—o, y—o, with B/(2y)=D this noise ratey are directly related with the sign of the Green peaks.
reduces to a white Gaussian noise with intenBity On the other hand, in the limit of a white noise, the behavior
In the next figures we will describe the averaged dynamof C(t) over each boundary is approximately the same. In
ics through the quadratic averaged valueu) fact, for the case ob-correlated Gaussian noise, it is simple
to realize that all information of the dissipative dynamics is
C(t) = (U?(t)) — (u(t))?. (52 introduced through the square of the delay Green function

A2(t) [see Eq(50) and(51) with o(7,, ) =D 87— 11)].
This object can be obtained from E1) as C(t)=o(t,t),

with the Green function\(t) defined by Eq(40). Of special IV. GOMPERTZ MODEL OF POPULATION
interest is the transient dynamics over the boundaries of sta- GROWTH
bility. In Fig. 3 we show the behavior @&(t) as a function of In this section we will apply our functional method to

time. For the Green functiofsee insetwe have chosema  characterize a model of population growth with delay. Any
=b=33 andT=1. The different curves correspond to differ- realistic model for population dynamics must present two
ent values of the noise memory parameter. From top to boteharacteristic behaviors. First, for small populations the dy-
tom, we have se¥=0.25, 0.5, 1, and 2.5, in all cases taking namics must grow in an exponential way; second, a satura-
B=1. As initial condition we have used a null prefunction tion effect must arise in such a way to stop the previous
o(t). behavior. The delay Gompertz modgd9,30 captures all
We note that by increasing the noise memory paramgter these dynamical properties in a simple way and also takes
the dispersion of the processt) grows with a smaller rate. into account that the growth rate depends on the history of
On the other hand, we note that the growing dynamics havéhe populations. This nonlinear model reads
a ladder structure, which is a direct consequence of the peak do) Qt-T)
structure of the Green functiof(t). As expected, in an in- ——= bQ(t)In[—*} + Q(1)&(t). (53
termediate regime&not shown in the plot C(t) loses the dt Q
ladder structure and in the asymptotic long time regime itHere, the constant is related with the maturation or the
reaches a stationary constant value. generation time, the consta@* controls the value of the
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saturation population, and scales the exponential growth 5
for small populations. The last term introduces multiplicative
fluctuations which are size dependent.
Now we will characterize the average behavior of this 4
model. As it is known[29,30,41, by using the transforma-
tion
3
Q(t) = Q* exp[u(t)], (59 g
the previous evolution reduces to a linear delay Langevin ' 2
equation
du(t
% =bu(t—T) + &(t). (55) 1
Thus, the population growth can be completely characterizec ‘
with our functional approackSec. l)). First, from the trans- 0 5 . 10 15
formation Eq.(54), it is possible to write any-moment of time
the populationQ(t) as FIG. 5. Average valudQ(t)) of the Gompertz model driven
— %N @ity () by a symmetrical white shot noise. From bottom to top we have
(Q(ty) -+ Q(ty)) = Q*Xe e, (56) chosenT=0.25, 0.5, 0.65, 0.75, 0.8, and 0.85, in all cases taking

The right term of this equality can be expressed in terms ob=-/2. The parameter of the noise gre0.15,A=1/(2p), and
the n-characteristic function of the processgt). Thus, by the saturation parameter @@*=1.
using our functional approach, E@.2), then-time moments

can finally be expressed in terms of the characteristic func- o
tional of the noisek(t) as G[k(D)]) = ex 2pf dt{co§Ak(t)]-1}|. (60
0
n
t)--- O(t.)) = O*Nex ult. G 1), The realizations of this noise consist in a series of arriving
Q- QM =Q E< ()0 [Cdlo®D o-Dirac peaks with amplitude A, wherep is the density of

(57) the arriving pulses in each direction. Notice that in the limit
A—0, p—o with A?p=D/2, this symmetrical white shot-

where(u(t)), is defined by Eq(27) with a=0, and we have noise converges to a Gaussian white noise with intensity co-

introduced the function efficientD, i.e., EQ.(49) with o(7y, 71) =D&~ 7).

Using Eq.(57), the first momentQ(t)) of the Gompertz

n .
gt) = - iE Ot - DAL - 1). (59) model can be written as
j=1

t
QM) =Q* exp{ ZPJ dr{cosHAA(7)] - 1]} . (61)

The delay Green functior\(t) is given by Eq.(40) after 0

taking a=0. ) o )
Also it is possible to obtain any-joint probability density ~ Here, in order to simplify the analysis we have assumed that
of the population model. In fact, by using the transformationthe prefunctionp(t) of the processi(t) is null, which implies
Eq. (54) any n-joint probability density ofQ(t) can be ob- that the prefunction oQ(t) is the constan@*. In Fig. 5 we
tained straightforwardly from the relation have plotteQ(t)) for different values of the time dela,
maintaining the noise parameters fixed. We found that by
P{Q;ti}=)dQy - -+ dQy = P{u;, ti}izpduy - -~ duy. (59)  increasingT, the saturation value of the proce€Xt) in-
Here, anyn-joint probability P({u; 'tj}?:l) follows from Eq. ~ Creases. In genera] the behavipr of the average value is simi-
9). lar to _that found with a Gaussian white noise. Neverth_eltlass,.
At this point, it is important to remark that the previous 2" object that develops strong non-Gaussian characteristics is

results are based in the change of variable(&4). All pos-  the one-time probability density. _ o
teriori calculations were obtained by using a normal deri- From EGs.(12) and(60), for the one-time characteristic

vative calculus. Therefore, in the case of white fluctuationsfunction of the procesa(t) we get

Eq. (53) must be interpreted as a Stratonovich-Langevin

t
equation[30]. GP(k,t) = exp{ 2p J dr{codAKA(D] - 1}}, (62)
0

White shot noise where, as in the previous equation, we have assumed that the
Now we will apply the previous results to the case inprefunction of the process(t) equals zero. This expression
which the fluctuations correspond to a symmetrical whiteallows us to get numerically the one-time probability density
shot noise[1,2,41-43. This noise is defined by the func- at any time by using a fast Fourier algorithm. AfteQ,t)
tional follows from Eq.(59).
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0.75

P(u)

g o5

0251

FIG. 6. Stationary distributiorP(Q) of the Gompertz model FIG. 7. Stationary distributiorP(Q) of the Gompertz model
driven by a symmetrical white shot noise for different delay times,driven by a symmetrical white shot noise for different delay times,
T=0.25(dotted ling, T=0.5 (dashed ling andT=0.85(full line), ~ T=0.25(dotted ling, T=0.5 (dashed ling andT=0.85(full line),
in all cases takingp=—/2. In inset(a) we show the corresponding in all cases taking=-m/2. In the inset we show the associated
Green functionsA(t). Inset(b) shows the associated distributions distributionsP(u). The noise parameters ape=5/4 andA=+2/5.
P(u). In all cases, the noise parameters are50 andA=0.1. The  The saturation parameter @*=1.
saturation parameter @*=1.

A(t) = Agexp - yot = T)Jcogwot — o, t>T. (64)
As in Ref.[29], we will characterize the stationary prob-
ability of the population siz&(t) for different values of the FOr T=1/4 we gety,=2.6,wo=0, $=0. ForT=1/2 we get
delay T and noise parameters. One of the most interestingo=1» Wo=2.4, ¢p=1.2. and forT=0.85 we gety;=0.143,
aspects to analyze are the effect of the non-Gaussian propé’¥0:1-75a ¢$o=0.967. Then, using our previous argument we

ties of the driving noise. expect a G_au_ssian in_duced _t?eha}v'(approxima';ely for
In Ref. [43], by analyzing a generalized Langevin equa-P> Yo In thl_s figure this condition is clearly_ satisfied, a_nd
tion, Eq. (1), with an exponential memory function the fj|str|but|onsP(Q) can _be associated W|_th a Gaussian
distribution for the underlying procesgt). In inset(b) we
d(t) = sexp- ], (63) show the corresponding stationary distributions of the pro-

cessu(t), which in fact, can be very well approximated by

and driven by a symmetrical white shot noise, we have foundPaussian distributions. Furthermore, we notice that the equi-
that the stationary state(u) develops strong non-Gaussian librium distribu_tions P(Q) Coincide.with those thained in
characteristics only when the rate of the arriving pulses oft€f-[29] by using a driving Gaussian white noise.. __

the noise is smaller than the characteristic decay rate of the IN Fig. 7 the noise parameters gie5/4 andA=y2/5,

corresponding Green function. This condition works both forVhich impliesD=1. Here, as the rate of the noise is smaller
the monotonous and oscillating regime of the Green functhan in the previous case, non-Gaussian characteristics for

tion. On the other hand, the amplitudeof the shot noise, the procesal(t) are manifest in the stationary distribution
introduces only a rescaling of the stationary distribution. WeP(Q)- In fact, we note that when the decay rate of the Green
expect that these results remain approximately valid in théunction is larger than the noise rafe a series of sharp
present case. In fact, as we will see, after the first period ofarrow peaks appear in the stationary distribution. This effect
time T, the delay Green function of Eq55) has a decay IS more pronounced for smaller values Bf which in the
behavior very similar to that obtained with an exponentialPresent example implies bigger values of the characteristic
kernel. decay rateyy.

In Fig. 6 we show a set of stationary distributioR&Q) We notice that th(_a peaks of the stationary digtribution
obtained for different delay time3 and maintaining the P(Q) appear at position®,=Q*exp[*pAl, wherep is an
noise parameters fixed. The noise parameterd\a@. 1 and arbitrary natural number. This result follows from the fact
p=50, which impliesD=1. The parameters of the Green that in the distribution of the associated procegy, the
function, Eq.(40), were chosen aa=0, andb=-7/2. The peaks appear at positiong=+pA [43]. This effect can be
different plots correspond td=1/4 (dotted ling, T=1/2  clearly seen in insetb), where we have plotted the associ-
(dashed ling and T=0.85 (full line). In inset(a) we show ated distributions(u).
the decay behavior of the corresponding delay Green func- In Fig. 8 we show a set of stationary distributid?&) by
tions. We have tested that after the first interfalthese maintaining fixed the time delaf=0.85[a=0, b=-7/2]
Green functions can be analytically approximated by the exand changing the noise parameteps;0.1 (dotted ling,
pression p=0.15 (dashed ling and p=0.25 (full line), in all cases
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'FIG. 8. Stationary distributiorP(Q) of the Gompertz model FIG. 9. Phase space of the stationary distribution of the Gomp-
driven by a Symmetr'.CaI white shot noise f(?r different noise param-ertz model. The curve divides the different regions where the un-
eters,p=0.1 (dotted ling, p=0.15(dashed ling andp=0.25(full  derlying processi(t) develops Gaussian and non-Gaussian charac-

line), in all cases takingA=1. In inset(a) we show the associated teristics. The circles correspond to the point obtained numerically
distributionsP(u). The parameters of the Green function, ingBt  (see text The vertical lines indicate the point, on tii/)[b|T
areT=0.85 andb=-m/2. The saturation parameter @ =1. axis, where the Green function changes its characteristic behavior

taking A=1. Here the characteristic decay rate of the Greer];Irom a monotonous decay to an oscillatory decay.

function is y,=0.143. Consistently, we found that non- )
trast with the previous figure, here only one peak is visiblethe second cumulant of the distributions is less than one,
In inset(a) we show the associated distributioR&), where  indicating that a Gaussian is approaching. We remark that by

the transition between Gaussian and non-Gaussian distrib§atisfying only this last condition, it is not possible to guar-
tions is clearly seen. antee the validity of a Gaussian approximation.

An important aspect to analyze is the set of values in the We have checked that the line that divides the two re-
space of the parametefs p, b, and T where the stationary gimes corresponds approximately to the points for which the
distribution P(Q) and the associated distributidfu) reflect  characteristic decay rate of the delay Green function is of the
the non-Gaussian structure of the driven noise. As mentionesg@me order as the rate of the arriving pulses, peéz,y,. In
previously, this problem is determined mainly by the rela-fact, note that in the limitb|T— 0 the boundary curve goes
tions between the decay rate of the Green function and thapproximately top/|b|~1. This limit corresponds to the
rate p of the driving Poisson noise. Furthermore, we noticenondelay caselr=0, where A(t)=expbt). Thus, the non-
that the influence of the constantcan always be taken into Gaussian effect appears for< vy~ |b|. Furthermore, the be-
account by a time rescaling=|b|t. On the other hand, the havior near this point can be understood by noting that for
shift amplitude # of the arriving pulse only introduces a small values ofbT, the Green function of Eq55) can be
rescaling of the full process. Thus, the four-dimensionalapproximated by\(t) =~exgbt/(1+bT)]. This result implies
space can be reduced to a two-dimensional space defined bylocal increasing of the characteristic decay rate of the
the rescaled parametesgb andbT. Green function with respect to the cabe0. Therefore, the

In Fig. 9 we have plotted the phase space structure of theoundary line has a positive slope ndar0.

Gompertz model, by showing the region of parameter values, On the other hand, in the limi2/#)|b|T—1 the Green

in the region of stability -w/2<<bT<0, where the stationary function oscillates without any decay. Thus, its characteristic
distributions depart from those obtained with a driving decay ratey, goes to zero, which implies that in this limit the
Gaussian white noise. In order to determine the points thadlynamics does not develop any non-Gaussian characteristic.
define the boundary line, for each set of parameter values, wiear the point(2/)|b|T=1, the Green function presents a
have approximated the associated distributiBis), in a ar-  non-null decay rate whose value increases by diminisfiing
bitrary interval around the origin < (0,¢), by a quadratic At intermediate values of2/#)|b|T the Gaussian-non-
polynomialP(u) = au?+ Bu+P(0). Then, it is simple to dem- Gaussian boundary line reach a maximum value. Clearly, this
onstrate that whernae/ 8| <1, the stationary distribution effect arise due to the different dependences of the decay rate
around the origin is dominated by a linear approximation. Inof the Green function near the boundary of stability,
this caseP(u) strongly departs from a Gaussian distribution (2/4)|b|T~0 and(2/)|b|T~ 1.

which are characterized by a null slope around the origin. In this plot, we have indicated with a vertical line the
The change of behavior of the slope around the origin can bealue |b|T=1/e, which corresponds to the point where the
clearly seen in the insets of Figs. 7 and 8. Furthermore, w&reen function of Eq(55) changes its characteristic behav-
have checked that when the conditiaz/ 8| > 1 is satisfied, ior from a monotonous decay to an oscillatory da&]. As
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can be seen from the plot, the kind of decay of the Greemensity and any-time moment or cumulant.
function does not have any influence in the phase space of By analyzing the dissipative transient dynamics over the
the parameters. boundaries of stability, we have found some amazing and
Finally, we want to comment on the difference among theinteresting characteristic behaviors. First, when the dissipa-
non-Gaussian propertiesf the stationary distributions ob- tive constants are much larger than the inverse of the delay
tained by choosing either an exponential kernel, ®§), or ~ time 1/T, the transient dynamics presents a kind of periodic
the delay kernel, Eq:19) [a=0]. As was touched on previ- closednesto the external perturbations. In this situation, the
ously, the main difference between the behaviors of the corSYStem only responds to the external world within small win-
responding Green functions appears in the first interval ofi®Ws Of time. On the other hand, over both boundary lines,

time T, where the delay Green function is constah(t)=1. In the long time regime, the Green function developua-
This property implies the absence of any dissipation in th sistationary statevhere it decays in an exponential way with

. ) "% rate much larger than the characteristic rate constants of the
time interval 0<t<T. In consequence, the non-Gaussia

s : X dissipative dynamics. Over the parametric boundary line,
peaks of the delay distributions are much higher that in th%qs_ (46) and (47), the decay is oscillatory and over the

case of the exponential kernel. In fact, in absence of dissip&;oundary linea=b the decay is monotonous.
tion the realizations of the proces§t) consist in a discrete As a concrete application of our formalism we have ana-
random walk over the sites,=+pA. Clearly, this enhanced |yzed the Gompertz model of population growth driven by a
effect is more pronounced when the delay tifés of the  symmetric white shot noise. This model can be mapped with
order of the characteristic time decay of the Green functiora linear delay Langevin equation, where our formalism ap-
A(Y). plies. We have shown that the non-Gaussian property of this
noise may lead to the occurrence of narrow peaks in the
V. SUMMARY AND CONCLUSIONS s;ationary population distri.bgt.ion. This §triking property.is
directly related to the possibility of obtaining non-Gaussian
We have presented a functional formalism that allows astationary distributions in the associated linear delay Lange-
full characterization of linear delay Langevin equations withvin equation. This last property arises when the average
arbitrary external fluctuations defined through its characterwaiting-time between the arrival of th&Dirac pulse of the
istic functional. This method relies on the possibility of ob- white shot noise is larger than the characteristic decay time
taining an explicit expression for the realizations of the delayof the delay Green function.
stochastic process in terms of the associated Green function Finally, we want to remark that our formalism opens the
of the linear problem. Then, the characteristic functional ofpossibility of studying linear delay process driven by arbi-
the delay process can be written in terms of that of the noistrary noises, such as radioactive noise, Levy noise, and Abel
and in terms of the delay Green function. From the characnoise [43]. In the last two cases, both noises may induce
teristic functional it is possible to get amyjoint probability  long-tail structures in the population distributions.
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