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Lattice restricted primitive models, where equally charged ions of a diansetge located at sites of a
simple cubic lattice with a lattice constaatare studied within the field-theoretic approach. We focus on the
transition between charge-disordered and charge-ordered phases/derl and o/a=2. By using
renormalization-group methods we show that at high concentrations of ions the transition is continuous for
ola=1, while for o/a=2 it is only first order, as found previously in simulations. Fora=1 the effect of
charge-density fluctuations on the positions of the continuous transition and the tricritical(PGiRt is
determined within a formalism developed in this work. The temperature and the concentration of ions at the
TCP agree very well with simulation results.
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[. INTRODUCTION In this work we focus on qualitative and quantitative ef-
fects of fluctuations on phase transitions in the RPM in the
Phase transitions and critical phenomena in ionic systemsamework of the field theory developed in R§t3]. There
have been a subject of an intensive debate for many yearare two order paramete(®P) in the RPM: the local charge,
The simplest systems correspond to anions and cations hag(x), and numberp(x), densities. Short-wavelength charge-
ing identical charges and very similar sizes. In the corre-density fluctuations dominatgl8] and lead to the charge-
sponding restricted primitive modéRPM) hard spheres of a ordered—charge-disordered phase transition. For different
diametero and charges e-are immersed in a structureless space discretizations/a this transition, continuous in MF,
solvent with a dielectric constarD. Experiments[1,2], ~may become fluctuation-induced first-ordgt6,17. The
simulations[3—8] and fluid theoriesmean-spherical approxi- OP’s are coupled beyond the Gaussian part of the functional,
mation [9,10] and extensions of the Debye-Hiickel theorytherefore in our theory also the ion-poor—ion-rich phase
[11,17 ) show coexistence between uniform ion-dilute andSeparation is found when the charge-density fluctuations are
ion-dense phases with an associated critical p@m at low  integrated ouf13,14. Here we shall focus only on the order-
concentrations of ions, and crystallization at high concentradisorder transition. _
tions. After long-lasting debate concerning the nature of criti-  Systematic study of the effect of the charge-density fluc-
cality in the RPM, recent experimenft], simulations[6,7] tuat|0n§ on phase. diagrams for d|ﬁeren_t valuesro@ was )
and field theory[13,14 all indicate that the critical point ©egun in Ref[16] in an approach following the Brazovskii
belongs to the Ising universality class. Unlike in simple flu-theory [19]. According to the Landau-Brazovskii theory,
ids, however, the phase diagrams in the RPM depend on thehen at the spinod@= [y G,,(k) — =, whereG,(k) is the
space discretization/a when the ions are restricted to lat- OP correlation function in Fourier representation, the order-
tice sites on a simple cubisc) lattice with a lattice constant disorder transition is fluctuation-induced first-order, although
a<o [3,15-17. For o/a=1 only order-disorder transition MF predicts a continuous transition. It turns out that in con-
between charge-disordered and charge-ordered plimses tinuum, on the fcc lattice and in modeléxcluded simulta-
oppositely charged sublattigewith an associated tricritical neous occupancy of the nearest-neighbor sitgdiverges at
point (TCP) occurs; foro/a=2 the order-disorder transition the spinoda[16,17, i.e., the transition is fluctuation-induced
is only first order, i.e. the TCP disappears. fedta=3 the first-order. Foro/a=1 as well as foroe/a=2,G is finite.
phase diagram is of the same type as in continuum space.Simulations, however show continuous transition fefa
Landau theory introduced in Refl3] predicts that only =1, and first order transition fos-/a=2. In this work we
an order-disorder transition between charge-disordered arwbnsider the sc lattice witlr/a=1 (denoted by “scf and
charge-ordered phases with an associated tricritical poink/a=2 (denoted by “model IlI" after Ref[16] ). Using the
(TCP) occurs. This result agrees with the RPM phaserenormalization-grougRG) method we present convincing
behavior on the sc lattice, and is in a sharp qualitative disarguments that the transition is continugas high tempera-
agreement with the phase diagram in continuum system. Thigireg and first-order in the first and in the second model
failure of the Landau mean fieltMF) theory in the con- respectively.
tinuum indicates particularly important role of fluctuations in  The effect of fluctuations on the position of thdine in
ionic systems and a strong dependence of the role of fluctuahe case of the sc lattice has been studied in R€). within
tions on space discretization. One should note that in th®ebye-Hiicke[DH) theory and in Ref[21] within hierarchi-
theories predicting correct topological structure of the phaseal reference theorgHRT). In the case of the DH theory the
diagram in the continuum RPM[9-12 the charge- temperature at the TCP deviates from the result of simula-
correlations are partially included. tions [3,4] by more than 100%. In the second theory the
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accuracy is better, i.e., for the temperature at the TCP th%l"'(|AX|) =1 - &(|Ax|) -3 PIVETY)
relative difference from the simulation result 130%. In i '
this work we determine the shift of the line of continuous

order-disorder transitionsh-line) on the sc lattice within the - 2 F(Axxtegtel) - (Axte e, *ey).
field-theory developed in Ref13]. The shifts of temperature 1<l
and density at the TCP and along thdine are obtained by (4)

using the self-consistent Hartree approximation and the
weighted field theory[13], respectively. The results agree In Fourier representation we obtain the following forms of
very well with simulations. the potentialV in the two considered cases:

In Sec. Il the models witlor/a=1 (s¢) ando/a=2 (model
[II') are introduced and the MF theory is briefly described. In
Sec. lll the weighted field approximation is developed. Sec-
tion IV contains the analysis of the effects of charge-density
fluctuations on the order of the charge—ordered—chargezamd
disordered transition in the two models. The position of the — _ - - _
\-line for o/a=1 is found in Sec. V. Section VI contains a VI (K) = V() = 2] VE+ BV5%F o (k) + 12V5%K (k)

short summary. Cs
ry +8V5Tpedk)]  (model II). (6)

VSYk) = Ve(k) = 27V (sQ) (5)

Il. THE MODELS AND THE MEAN-FIELD The lattice Coulomb potentiglc(k), the lattice characteristic
APPROXIMATION = . .
functionsf (k) and the constantg,” for n=0-3 aregiven

The Hamiltonian of the lattice restricted primitive model in the Appendix.
(LRPM) in the general case of ions that can have extended We consider an open system with equal chemical poten-
cores on the sc lattice is gi\/en [DS(G] tials of the two ionic SpECie$L+:M_. Thus, in the case of
molten salts only one chemical potential is independent. Be-
E cause of close packingach site is occupied either by an ion
H= —OE > V(|x = x'[)8(x)8(x"), (1) or by a solvent molecujealso in the case of solutions there
257 is only one independent chemical potential. The natural
choice isu=21/2(u,+p_)— o, i.e., the chemical potential
whered=+1,-1,0represents the anion, the cation and thedifférence between the solute = . and the solveniy, (for
solvent(or vaccum in the case of molten sajteespectively. molten salts we assume the samewith 1,=0). The mi-
The lattice sites are=xe/, whereé are the unit lattice vec- Ccrostates with overlapping hard spheres, {&x)} such that
tors,x; are integer numbers=1,2,3,summation convention there existx and Ax#0 for which S(x)S(x +Ax)(1-g(Ax))
is used and the distance is measurea innits. The energy # 0, are excluded. Only ions cannot overlap in this model
unit is E;=e?a?,/Duv,, WhereD is the dielectric constant of (the solvent is “structurelesp” The probability of the al-
the solventa,, is the distance between nearest-neighbor site{oWwed microscopic statés(x)} is
andug is the volume per lattice sit20]. The corresponding
dimensionless temperature T§=1/8°=kT/Ey. TE=T for pl{8)}] = E Y exd - BHI{EX)}] - 2 E(x)].  (7)
ola=1, whereT =kTDo/€? is the standard reduced tem- x
perature. Finally,
In the above E=3y); expd—BH{8(X)}]-uZ, $(x))],
V(|Ax]) = g(|AX|)V(|AX]), (2)  Wwhere Z,), means summation over allowed microstates.
Thermodynamics is determined by the grand thermodynamic
potential Q=—kT log E. The symmetry of Eq(7) with re-
spect toS— —S leads to(S)=0. Note, however that for oppo-

follows from the requirement that the contribution to the sitely charged nearest neighbors the Hamiltorigrassumes

electrostatic energy from ions occupying forbidden pairs of /€Y low ne?atwe valgt_es. Inl contra§t, tieOHanAnltog%n as-
sites is not included in Eql). Hence for both considered sumes very large, positive values wrr) [or S(x) <O

models we assumg(|Ax|)=0 for |Ax| smaller than the ion for x belonging to a large, coherent region. As a conse-
diameter, andj(|Ax|)=1 for |Ax| = . The explicit form ofg ~ dYeNce .spolntan.eous symmetry break(sQQ) # 0, IS asso-
for o/a=1 is thus ciated with violations of the charge neutrality in microscopic

regions (neighboring regions being oppositely charged

Moreover, in thermodynamic limit global charge neutrality

g°(Ax)) =1 -8(|Ax]). (3 [3, (&x))=0] should be obeyed.
In the MF approximation the average charge and number

In model 1lI the sites inside the 83X 3 cube cannot be densities are identified with the most probable valugsp,.
occupied simultaneously with the central site of this cube These fields correspond to a global minimum of the grand-
therefore for model 11l we have potential functional in the MF approximation

whereV,(|x-x'|) is the dimensionless Coulomb potential on
the sc lattice(see the Appendixand the form ofg(|jx—x'|)
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MF
BT h,p) = BFrd bpl + BULS] - BuZ p().  (B)  Eodpey = @0 oo O BLT _ FBFns
X ” ” spk)sp(-k)  spk)sp(—k)
whereF,J ¢, p] is the free energy of the uncharged reference (14
system. Foro/a=1 it has the form of the ideal entropy of =0 ) -
mixing, respectivelyC_ >0, therefore there is no transition between

two fluid phases on the MF level. The continuous transition
pte ptd\ p-¢ p=¢ - is qi 3+ BEV(K,) =
BELbpl=S [ Iog( )+ log to the charge grdered phase is 'g'|ven m}+ﬂ' V(kb)' .0
xL 2 2 2 2 where atk =k, V(k) assumes a minimum. The instability of

the uniform phase is induced by dominant fluctuations
+(1-p)log(1 —p)] . (90  d(x)=d cogx-ky), which correspond to the largest decrease
of the electrostatic energy for a given amplitudeof the

In model IIl Frd#,p] assumes a different form. However, charge-wave. _
the order of the order-disorder transition is independent of FOr o/a=1,kp=m(+1,£1,+1) [13,19, whereas in

the form of Frd . p], as will be shown later. model Il the potential6) assumes a minimum at cs=z
The electrostatic energy[¢] in Fourier representation is r i=1,2,3,wherez satisfies the equation
given by 1
m = ZV?_C+ 8V§CZ+ 8\/:3;22 (15)
Eof ~ o~ o~ -
Uldl=—| V(K)d(Kk)d(-k), 10 ) o .
(4] 2 Jy ()lk)¢(= k) (10 We find z=0.708, which is close to c6s/4). The bifurca-

_ tion vector is thusk,=ky(x1,+1, £1), where our simple ap-
whereV(k) is given in Eqs(5) and(6) for the two models, proximation givesk,~ /4. The order-disorder transition

k=(kq,ky,ks) and we use the notation line is
v Jp2ml 2w 2w where
The charge an_d num_ber densitiﬁsindp are dim_ension]ess; S=TEpy, Sﬁ"F - —\~/(kb). (17)
the average dimensionless-densityis the fraction of ion-
occupied sites. For o/a=1, S"F~2.13 [13,19 and in model Ill we find

QMF given in Eq.(8) can be expanded about its minimum §;"Fz3.2. The continuous transition to the charge-ordered
at ¢(x)=0, p(x)=p,. The expansion irp andAp=p-p, has phase, predicted by the above MF approximation, indeed oc-
the form curs foro/a=1[3,20,2]. However, the MF value of at the

\-line, and consequently the temperature at the T(fP

1 ~0.7 [15], are significantly overestimated, compared to the
MF — OMF = 0 ’ )
7] = AT0p0] + 2§ ; Coola X $XDE0C) gimyation resultsTE~0.14 (Ref. [4]) and T ~0.15 (Ref.
v [3] ). Only first-order transition was found for model Il in

1 imulati .

+ 23 3 €0, (1 plx) Ap(xc) simulations{3]
X1 %2 lll. FIELD THEORY FOR THE LRPM
+ 2 EEEEM A. Fundamentals
2m) ! n!

mLe2n mx  (CT) The field-theoretic approach to the RPM closely follows

XP(rq) -+ d(romAp(Xy) - - Ap(Xy), (12)  the theory developed for a description of critical phenomena

) , o VIE in simple and complex fluids. Instead of considering micro-
\ivherfi Yomn given bY respective derlvatlves 6" at _¢ scopic statesS(x)}, we consider smooth order-parameter
=0,p=po, are functions ofpo. Following the density-  op fields (functions in the lattice cagewithin a coarse-
functional theory [22], the charge-charge and number- 4 aineq descriptioi23]. Such description is justified when
number correlation function§,,, and G,, are defined as  he instability of the disordered phase is induced by small-
inverse(in tTAeF matrix senseto the second functional deriva- gmpjitude fluctuations, i.e., for continuous or weakly first-
tives of SQOT". In Fourier representation we thus have thegger transitions. The formalism described below is quite
following forms of the correlation functions in the uniform general, except that the explicit forms of the coupling con-

phase(¢=0, p=po) [13] stants depend on the model. The coupling constants are
- - BOMF 5 needed for a determination of quantitative effects of fluctua-
Gl k) =Chyk) = ——————=pp" + BV(K) tions. Only for o/a=1 the quantitative effects are studied,
op(K) dp(= k) and only for this model the explicit forms of the coupling

(13)  constants will be given.
According to the fluctuation theory of Landau, the fluc-
and tuations ¢(x) and p(x) are excited with a probability deter-
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mined by the corresponding increase of the grand thermody-
namic potential. We therefore postulate that in an open

system the probability ofp(x) and p(x) is proportional to
exp(-BOMF). Following the standard procedure we intro-
duce spatially varying external field§sourced u(x)
=u+Au(x) andJ(x), and the functionals of them

=060, 700] = f Dp f Db exii~ BQ " p]
_ S Au0p0 - S 300600)], (18

= BALIX), u(x)]

=log 2, (19

PHYSICAL REVIEW E 70, 046103(2004
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FIG. 1. Feynman diagrams contributing to the nonlo@a.,
with x; # X,) parts of the correlation function§,,(x,—x,) (&) and
Gpp(X1—X2) (D), up to two-loop order. Thin line connecting points

where in continuum systems sums over lattice sites should be and x, representsG’, 4(X1=Xz) and the black box represents

replaced by integrals f[dr over space positions.
-BO[I(x), u(x)] is the generating functional for th@on-
nected correlation functions. In particular,

(- Q)
vm——— = , 20
5B |sy000 P 20
&(- Q)
S(B(x1)) A BuX2) | ax=0
= Gpp(XI!XZ)
={p(x1)p(X2)) = {p(x1)X(p(X2)), (21

etc., with similar relations for the charge-density correla-
tions. Double Legendre transform ofJ(x), u(x)] is, up to

minus sign, the Helmholtz free energy functional of the av-

erage OP fields,
T, (p)] = Q + 2 I p(X)) + 2 u(x){p(x)). (22)

The high-temperature, disordered phase is at the boundary
stability when the matrix of second functional derivatives of
I' is no longer positive definite.

I' is the generating functional for the vertex functions
[23]. Expanding about the values of the average(@pP=0
and{p)=p, we obtain

IT¢,p] =T0,p] + > uAp(x)

+ %2 > C¢¢(X1,X2)$(Xl)$(xz)

X1 X2

1 o
+ EE > C,p(X1,X) Ap(x1) Ap(x,)

X1 X2

DR R

m>1,n>2rq Mom

omn(r, oo FomXq, -
xS ... 2
X X 2m)In!

XB(ry) - drom)Aplxy) -+ Apl(Xy),

Xn)

(23)

Ggp(xl—xz):b‘(xl—xz)Gpp. The open square and the bullet repre-
sent the four- and the six-point hyperverticed ;and —A4¢, respec-
tively. In the inset the verticeg,n, , contributing to the hyperverti-

ces A, (top) and Ag (bottom) are shown. The corresponding
expressions ford, and.4g are given in Eqs(28) and(29), respec-
tively. Note that since with each vertex a summatioriegration

over space positions is associated, the same holds for hypervertices.

where we have simplified the notation by introducid_zg
={¢), p={p), andAp(X)=p—p,. The vertex functions in Eq.

(23) are calculated ap=0, p=p,. The two-point vertex func-
tions, C,, andC,, are inverse to the full correlation func-
tions, G,,(k) andG,,(k), respectively.

In MF the vertex functiong’,, , reduce toy,n,n,, and the
correlation functions reduce 16, and GJ, when all y,m,,
are neglected in Eq12), i.e., in the Gaussian approximation.
In the perturbation theorg,,, C,, andI',,,, are given by
appropriate one-particle irreducible Feynman diagrams ac-
cording to standard ruleg3]. In these diagrams there are
cs)?veral types of verticeg,,,, and two types of lines, corre-
sponding to the Gaussian correlation functi@fs, andG)
[see Egs(13) and(14)]. The lines representing

Ggp(xlyxz) = Ggpts(xl = Xa), (24

are degenerate in the sense that they do not connect different
points. In the aboves(x;—x,) represents the Kronecker and
the Dirac delta function on the lattice and in continuum,
respectively. Foo/a=1 Ggp:po(l—po), and in general it is
a positive function ofpg. From the vertexy,n,, there ema-
nate 2n “charge” lines representin@%¢ and n “density”
lines representingagp. Finally, with each vertexy,,, atx a
summation(integratior) over space positionsis associated.
The diagrams representing nonlocal paite., with x;
#Xp) of the two correlation functionsG,,(x;,x;) and
G,,(X1,X5), are shown in Fig. 1 up to two loop order, when
the verticesy,n,, that satisfym+n=<3 are included. By in-
spection of Fig. 1 one easily sees that the number density
fluctuations at different points, not correlated at the zero-loop
level [see EQ.(24)], become correlated beyond MF. This
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leads to the conclusion that in the RPM the charge-densit
correlations have to be included in the lowest-order theory.n(; - = * + { + %

B. WEIGHTED-FIELD APPROXIMATION ) ) o
. . . L FIG. 2. The verticesy,,, with m+n<3 contributing to the
In order to develop a simplest field theory which for ionic hypervertex’d ..

systems would predict a qualitatively correct phase diagram,

recall that in MF the average densities are approximated by

the most probable ones. For the RPM we follow this idea and Ay= 3’303_ 1 (s0, (30)
we approximate the number density by its most probable Po
value, but we do so for each charge-density fluctuathox)
separately, obtaining,[ ¢]. The average number density in 3(3— 1500 + 20p9)
this theory is obtained by averaging the most probable den- Ag= g 0
sity py ] over all charge-density fluctuatioritherefore we Po

call it “weighted field” (WF)). The grand thermodynamic
potential in the WF approximation has the form

(sO. (31

Note thatA4,>0 only for py>1/3. As already shown in Ref.
[13], for pg<<1/3 the order-disorder transition becomes first
- BOWH0,u] = log EVHO,u], order..Ag> 0 for 0= py=<1, and the truncated function@?7)

is stable for¢p— 0. From the viewpoint of stability we can

thus truncate the functional at the tepng®. In the perturba-
EV0,u] :f D¢ exp(— BQeid b)), (25 tion theory described in the previous subsection it means that
we can limit ourselves to the verticeg,, , with m+n<3.
where Qqil p1=QMF[ b, p[p]]. In this approximationp When the functional25) is truncated, then in a consistent
=(pul $Dwr, Where(- - -)e denotes averaging with the Bolt- approximation we truncate the expansionofit the term
zmann factorcexp(— Qi b)) proportional to{ ¢*(x))we, SO that in the diagrammatic expan-

For the particular case of/a=1 we find p,[¢] from  sion of p only verticesyy, with m+n<3 are included. In
SOMF/5p=0 and using Bu=-log(1-py)+log(py/2) we this approximation we obtain

obtain .

_ r
2p0-1\"(2n-3) 1! p=po—2%1<¢2(x»wp— 4%10 (" we (32
( 202 op " “pp

N po(l _PO)E
2pp—1 n=1

p(X) = pg -

where the hypervertek? ,, obtained by standard rul¢g3],
X(E2(X) b (5. (26)  is given by(see Fig. 2
Here and in the sequétc) indicates that the formula corre-
sponds only to the sc lattice wiit/a=1.

_ 6(= 722 (= ¥2.1) _ 3(- 730(= 7’2,1)2

0 _
The functionalQ.{ ¢] can be expanded about=0, Ta1% 7 c?, co - (33
e lz >l (x=Xx")(X) (X)) In the particular case of/a=1 the average density in this
27 X o approximation is explicitly given by
A4 4 A6 6 1 - 2 - 1
4 76 — P P
P2 L0t | @D s —0<<¢2(X)>WF+ > <¢4(x)>WF) (s9).
x L ' 2po 4py
The coupling constantsl, and Ag are represented by the (39
hyper-vertices shown in the inset in Fig. 1, and are expressed
in terms of the vertices,,, , as follows: In this work we focus on the transition to the charge-ordered
' ( )2 phase, wherég) # 0. The instability with respect to charge-
— 72,

o (28)  ordering is givgn b)f:d,q,('kb)zo, whereE:d)d)(k) is inverse to
op the full correlation function. In our WF theory we shall con-

sider the approximate for€"/"(k)=G""(k), with
(= 720 (= 72,0 _ 15(_ 72,1)3(_ Y0.9 ’ ”

Ay=v40-3

As= Y60~ 15 0 03 ~ ~ o~
Cop Cop G\,:svg(k) = (k) p(= K))we- (35)
(= 722(= ¥2.0)°
—45—2’C02 2 , (29) The main assumption here is that the instability of the uni-

PP form phase is induced by the charge-density fluctuations
where the numerical factors have been calculated according(x). We also take into account the most probable number-
to standard rule$23]. For o/a=1 the explicit expressions density fluctuationg,[¢] accompanying them. Remaining
for the coupling constants are number-density fluctuations are neglected.
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IV. ORDER OF THE TRANSITION TO THE
CHARGE-ORDERED PHASE

The field theory for the system in which the instability is
induced by fluctuations characterized ky+ 0 has been de-
veloped by Brazovskij19], and subsequently used by others
for a description of various systems, including microemul-
sions[24] and block copolymer§25]. When the integral

Go= fk GY4(k) (36)
representing the loop in the second diagram in F{@) di-
verges at the MF line of instabilit=S)"" [Whereagd)(kb)
=0], then the equatioﬁ:¢¢(kb):0 has no solutions for finite
temperatures. Instead, a first-order transition is found.

The integrancf;‘;(b(k) can be written in the fornisee Egs.
(13) and(17)]

E TE

Ghyk) = ——— =, (37)

P s+ k) P+ AV(K)

where the critical parameter is defined by
P=s-9F, (39)

SandS)'F are given in Eq(17), andAV(k)=V(k)-V(ky). Gy
is infinite in continuum, on the fcc lattice and in model |
[16], whereas it is finite forr/a=1 and for model lli( k,, are
isolated vectors so the Brazovskii argument does not apply

PHYSICAL REVIEW E 70, 046103(2004

FIG. 3. The fullk domain in the case of a two-dimensional
system and the way it is divided into different parts. The central,
shaded square is the new domdmn The wave vectors with one
coordinate outsideD belong to the gray rectangles. The critical
fluctuations are shown as black regions near the corners.

field for g € D [see Fig. 4a)]. For the original fluctuations
with the wave vectors located outside the new domain we
define new fields just by shifting the arguments, namely,

(@) =¢(q £ me), (39

where +re, and —me corresponds tg; <0 andg; >0 respec-
tively. These three fields describe fluctuations with one coor-

for the latter models. Simulations, however, show continuouglinate outside the new domain. The fielgléq) are defined
and first-order phase transitions in the first and in the secongt the whole domairD [see Figs. &) and 4c) for the case

case, respectively3]. The only qualitative difference be-
tween model Il and the sc lattice witli/a=1 concerns the
location of the bifurcation vectors,. For model Il the bi-
furcation vectorsk,(+1,+1, +1) are located inside thle do-

d=2]. Next,

E(q) = (q £ me £ 7)), (40)

main, whereas at the sc lattice they form the verticegvherei #j,kandj<Kk, and where, as abovesre, and -me,

m(+1,+1,+1) of the cube -w<k; <. In order to see the
effect of the location of the bifurcation vectors, we shall

define new fields by shiftin@&(k), so that the critical wave

vector for each shifted fiela/(”)(q)::ﬁ(q+kf)”)), is q=0. The
original field, critical for 8 wave vectorkg‘), will be re-

corresponds tay,<0 andg,>0 respectively, withn=j k.
These three fields describe the fluctuations with two coordi-
nates of the wave vector outside the new domain. Again, the
fields are defined at the whole domdn Finally, we define

the field corresponding to fluctuations with all the coordi-
nates outside the new domain,

placed by several fields, some of them being critical, and the

functional will assume a different form. The advantage is the

fact that the functionals of several fields with the critical
wave vectorg =0 have been studied alreaf®6—-29, and we

can apply the known methods to our particular case. In de-

termining the order of the transition we shall limit ourselves
to A,>0, where MF predicts a continuous transition.

1. sc lattice witho/a=1: Bifurcation vectors at the
domain boundary

—-m<k; < 7 into different parts in such a way that for edgh
we split[—m, ] into [~7,—7/2)|U[-7/2, 7/ 2]U[7/2,7].

Then we consider new fields defined on the new dorain
such thatqe D if —#/2<qg<w/2. The full and the new

FIG. 4. Reduction of the original domain to tqedomainD for
the new fields, obtained by shifting the original fiefdk) in the

. . . ._case of a two-dimensional systefa) the first new field is just the
Let us focus first on the sc lattice. We divide the domain yster) J

original field for wave vector& belonging taD; (b) and(c) the new
fields’yi(q) correspond to the original field with one coordinate of
the wave vector& outsideD. The thick verticalb) and horizontal
(c) lines represent the corresponding lines in FigdBthe critical

field T/xb(q) corresponds to the fieldb(k) for the wave vectork

domain are shown in Fig. 3 and 4 respectively in the case Ofith all coordinates outsid®. Note that the critical regions located

d=2. The first new fieId,T//l(q)::;S(q), is just the original

near the corners in Fig. 3 form here a circle centereg=0.
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~ _ For model Il there are 8 bifurcation vectorsk
Uo(A) = $(q + ey £ e, £ mey), (4D (41,41, 1), wherek,~ /4. We can divide the bifur-
where +me, and -me, corresponds t@,<0 andq,>0 re-  cation vectors into two groups. To the first group belong the
spectively, withn=1,2,3.Note that the critical fluctuations bifurcation vectors with the third coordinate positive, i.e., we
?p(kb) with ky,=(xm,+7,+7) are all included in the last haveky(a,3,1), wherea,=+1. There are 4 such vectors,
field ,,(0) [for d=2 this case is shown in Fig(d), where ki'=k(1,1,D,ki”=ky(-1,-1,9 kP =ky(-1,1,)  and
the central black circle represents the critical fluctuationsky =ks(1,~1,. The vectors in the second groug(a, 3,
located at the corners in Fig].3The fieldsys, x; and& are  -1), are —k(l),—kff),—kf‘),—kff). We shall denote the fields
noncritical, since they correspond to the fieltk) with k far ~ associated with the first group of bifurcation vectors as
from the critical vectork,. The functional{) can now be

written in terms of the new fields, with the integrationkn ~4 o _ () P

space reduced to the new domain. The Gauss?an(piactf v@=elke +aq). 1=1.2,3.4 “49

the new functional)’ can be written as - .
and the remaining fields as

; 1 W,BE)f ~
Q \I,na =_( - t ? o p i
B Yo ] =5 36 /)0 [¥6(@) (= A (to + %) Ui(@)=d(-ky +q), i=1,2,34. (45)
7
> A\lrn(Q);l}n(_ Q¥ ()], (42 Sinced'(k,+q)=d(-k,—q) [reality condition foré(x)], we
n=1

havet//r*(q):wi'(—q). In real-space representation we obtain
where ty=367°/ 7, with 7 defined in Eq.(38), q=|q| and  complex fields

termsO(g*) have been neglected,, denote all the noncriti-

cal fieldsys, x; and¢; defined above andy, (q) never van- . ~. '

ish. Only the field?]rb(q) is critical atty=0 for g=0. In MF i (x) = S g (@)™ (46)
the instability of the disordered phase is inducedy,at0 by a<

1,(0) with W,=0. The dominant higher-order term is of the and

usual, i form for vanishing noncritical fields. The noncriti-

cal fields can be integrated out, leading to the same form of

the functional of the critical field, with modified parameters y(X) = Tﬁi—(q)e—iq-x’ (47)
[28]. We have thus reduced the functional to the standard qeS

form of the Ising universality class. The deviation®from

. oy _ F
the value corresponding to the MF transition=S-S\'",  \yhere the integration is ovef. Note thaty; (x) is a complex

plays analogous role as the reduced temperature in the Isingz i\ .nate tas* (x). hencedt(x)=d:(x) +iW:(x). whered. (x
like systems. The above reduction proves that on the sc Iagndjq,g(x) a?é" fez)a,I A= P)£ (), )
i .

tice the transition to the charge-ordered phase is continuous Let us write the Gaussian part 6f in terms of the new

for A,>0 and belongs to the Ising universality class. fields. Since we are interested only in the stability of the
) ) o . disordered phase, the integral over the full domainkin

2. o/a=2 (model IIl): Bifurcation vectors inside the domain space/, , can be replaced by the sum of integrals over the 8
In this case we again divide the domain into different ~ spheresS centered at the 8 vectoks”, since the contribu-

parts. The above analysis indicates that the fields obtaineiibn from the neighborhood of each bifurcation vector is in-

from p(k), with k located far fromk,, are noncritical and in  ¢luded, and the contributions from the noncritical fields can

the first approximation can be disregarded. If the bifurcatiorP® neglected. Hence,

vectors are located inside the domain, however, there exists a

sphereS, which is contained in the domainr<k < 7 and -~ o~ ~

centered at the critical modg,. We considek,, located far f P(K)Cyg(K) (- k) (48)
from the domain boundaries and the radius of the splsere k

described above is finite. Similar case has been studied in

Ref. [29] in the context of microemulsions. If there ane  can be replaced by

bifurcation (or critical) vectors, there ara different critical
fields, namely AU 4 L
- 2| 2C@y @y -a=2| > Ca[Pi(a)Pi(-q)
vi(a) = pky +q), (43 qi=1 qi=1

where k(! denotes theith bifurcation vector, andj(q) is +Ti(q) (- )], (49

defined in the spheré& centered at the vectckg), ie., kg)
+q belongs to the domainm<k;< 7. In the critical region  when the stability of the uniform phase is studied. Near each

we can study the function&l of the new critical fieldg/q(q). bifurcation vector 6¢¢(k):a¢¢(ikg)+q):a(q) Eéaﬁ(q),
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where in model Ill thei-th vectorkg>:kb(a,ﬂ,1) corre- _|(92V/p7k|(9k||k| ==k On the right-hand 5|de(RHS)

sponds to the pai, =+1. We have C,p(q) is written in spherical variables. The form Gf(q) is
different for differenti. However, all the field$b; and¥; are

Cop(q) =70+ %[qu + B(aBoy0; + at;0s + 89,05)] critical for the same thermodynamic stafe=0 for q—0.By
a suitable change of variables we can show that for any in-
=2+ P, 4500,0), (500  tegerkf, C(q)=/, C(q); the above holds in particular for
_ k=-2.
where q=(q;,0,,93), 9=|q/, and A:(92V/f9ki2|\ki\=kb- B The fourth order term can be written as

=l L (2 Ja

4
:4—!4 f f f f S @I @GR Ak kb kG £k + S q). 58

Qg 1,j,k,n=1

The above symbolic notation mearfstérms, associated with different distributions of + sign for edgh k,n). As before, the
contributions from the noncritical modes have been neglected. Since we consider a small dnthm equality
+kj+kb+ki£kP+3%, q;=0 can be satisfied only forkb+klL+ki+kP=0. After some combinatorics we obtain

Qi = fffj (Eq.>[62tﬂ.(ql)tﬂ.(q2)¢.(q3)¢.(q4)+4'22w.(ql)tﬂ.(q»tﬂ,(q3)¢,(q4)

i i<j

+ 41 (P1(00) 1¥5(A) Y(0a) ¥ (d) + Y (A1) Y(0) ¥5(013) Pis(aa)) ] (52
In real-space representation

Qi = 2 [UTX (DE(X) + WF(x))? + Up 2 (PF(X) + W) (PF(X) + WF(X)) + US(P1 () Po(x) P3(x)Py(X)

i<j

+ W)W o(X)W3(X) ¥ 4(X)+ D1 (X)W o(X)P3(x)W4(X) + P1(X)W2(X) ¥ 3(X)P4(X) + W 1(X) P o(X)¥3(X) Dy(X)

+ W (X)Po(X) P3(X) W 4(X) = W1 (X)W o(X) D3(X)Dy(X) = P1(X)Po(X) W3(X)W4(X))] (53
[
where Bu = MﬁMUi|uo =-eu + aﬂfunuj. (56)
A Here u is the arbitrary “momentum(i.e., the inverse lengjh
0 4

wW=—", w=A, uW3=2A4,. (54)  scale, anduo means derivative at fixed bare coupling$
Equations(55) describe the flow of the renormalized cou-
plings under rescaling the “momentum(¢)=uf. The
The functional(53) is similar to the functional obtained for critical region corresponds t6— 0. To one-loop order the
type Il antiferromagnets in Ref26], and studied withine  dimensionless renormalized coupling constants are related to
expansion in Ref[27]. Note also that the form of the func- the bare quantities bj23,3Q
tional is independent of the explicit form of,, i.e. on the 0)
form of Fq in Eq. (8). . _ uio = /c—lu{ui + %Lunuj:| ) (57
Here we find the RG flow equations for the renormalized €
couplingsu;, determine the fixed points and show that they

—e D
are all unstable. We use the standard method of dimensionlzi\erebfq aﬁlq) b’“ ’C/det')n 4- ed(ljmensmns Thlef facto
regularization and minimal subtraction of pole termsen Ccan be easily obtained by considering several four-point cor-

=4-d [23,30. To one-loop order we obtain the RG flow relation functions for the field®;,V;, and to one-loop order
equations, ' the explicit forms of thes-functions are

By, = — €Uy + 40U + 6U3, (59)
dU.(f)

=Bulu (0], w(D) =u, (55 Bu, = — €l + 16U5 + U3 + 321y, (59)
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Bu, = ~ €Uz + 24u5Us. (60) _ 9 % Q0 8_8, 9_8,

There are four fixed points of the flow equations:
—=—+Q+8+m+8—8+Q8+...
* 6 * *
(II)u1:4 u,=uz=0, (62)

0 FIG. 5. Top: a few diagrams contributing to the charge-charge
correlation function in the Hartree approximation. Bottom: Dia-
grammatic representation of the self-consistent equation for the
U=—, Uu3=0, (63 charge-charge correlation function. The thick line represents the

correlation functioné¢¢(k), thin line is the Gaussian correlation

unction G , the box and the bullet represent the hypervertices
fi i G?/)d)(k) he b d the bull he h
«_3e L€ -A, and =4, respectively, and th& integral is associated with
(IV) u = , U=—, uz=0. (64) .
128 64 each loop(see also Fig. 1

() u=u;=uz=0, (61)

* 6
nH u) = —,
() uy 64

For the couplingu; we obtain, at fixedu,=u;, U,=u,, the

flow V. THE A-LINE ON THE SC LATTICE BEYOND MF

_ . The purpose of this section is a determination of the
Us(¢) = uz explws log €), (65 fluctuation-induced shift of tha-line for o/a=1. In MF the
transition is continuous ford,>0, i.e. for pg>1/3, with
po=1/3 at the TCP. Weshall find the temperature in the
self-consistent Hartree approximation, and the density in the

C ' = .~ approximation developed here in Sec. Ill. In our approxima-
fI_uctuat'lon—lnduced first-order transitiga7], as observed in tion the TCP is given by the corresponding shift of the MF
simulations[3]. Note that on the RG flow diagram there are result

fixed points stable on the plane and on the axis. However, the In the Hartree approximation the correlation function is

E:ﬁ;gﬂg%thgsgagtsbsarzcr;o'{o;ntﬂngngcmemeofEch(S?]' Cor]given by an infinite series of effectively one-loop diagrams,
iy 1 ubsp € sp upiig shown in Fig. 5top). In Fourier representation a single loop
stants does not change our conclusion.

The functional obtained for model Ill is not complete in In Fig. 5 corresponds to the integid@6) and other diagrams

the sense that the Hamiltonian with an eight-component O re products otj. The self-consistent approximation is ob-

) | i ind dent i tant ained, when in Eq(36) the integrand is replaced by the
IN géneral PoSSesses sSix independent coupling constants g e |ation function which is the result of the whole resum-
sociated with six fourth-order interactiofi26]. In Coulomb

systems, however, there Is a single fourth-order tatgrin mation(Fig. 5, bottom. The resulting equation is then solved

. ) . self-consistently. In the self-consistent Hartree approxima-
the effective functional27). Therefore, the complete Hamil- Y bp

. . . . S tion, discussed in more detall, e.g., in Ref24,25, the
tonlar) glerlved in Ref[26] is reducgd to the Hamiltonian k-dependence of the correlation function is the same as given
describing model 11l when the coupling constaufsare re-

. . | in Eq. (37), and only the critical parameter, is rescaled.
lated to.4, according to Eq(54) for i=<3 and fori >3, u? ; P
=0. The B-functions and the fixed points obtained for the Diagrams other than that shown in Fig.(Bottom wouild

general model in Ref[27] reduce to Eqs(58)—(60) (and '€@d to & change of thk-dependent part o8,(k). How-
Egs. (61)«64), respectively, if fori>3, u;=0. We could ever, due to the divergence @‘fw(kb) for S=§A\"F, the dia-
assume that our model corresponds to the complete modgtams shown in Fig. fbottom) give the dominant contribu-

with a special choice of the bare coupling constab® in  tion to G,,(k) near the line of instability{19,24,25. We

the six-dimensional coupling-constants space. As shown i r ~
Ref. [27], all the fixed points in the general model are un_'a(?note thek-integral of G4,(k) by G(7), and the rescaled

stable to one-loop order, and we again obtain a first-ordegtitical parameter byr [i.e., in this approximatiorCy(k)

transition. =7+AV(k)]. The self-consistent equation fdB,,(k) as-
For models as complex as the considered one the ongumes the forngsee Fig.

loop results cannot be considered as fully reliable. For ex-

ample, the cubic model with the relllcomponent OP after _ _ A, Ag 5 n

30 years of intensive studies has been proved to belong to the G4(k) = Gj,,(k) > | - (79(7-) + ?QZ(T)>G%¢(k)

cubic universality clasg31-34. We cannot exclude the pos- n=0

sibility that a stable fixed-point emerges beyond the one-loop B As  Ag -1

order. However, higher-order RG approximations, used in = {Gg;l(k)+g(r)<—+—3§(r))] ) (66)

Refs.[31-34, go beyond the scope of this work. We believe 2 2

that the fixed points remain unstable beyond the one-loop ) o .

approximation, because simulations show a first-order tranE"om Eqg. (66) we obtain the explicit form of thex-line

sition. Cd’d’(kb) =T7= O,

wherew,=—e+24u, is negative for all the fixed points. Thus,
for €—0, [uy(€)| increases, which means that all the fixed
points are unstable in the directian. This indicates the
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S R (¢ ))we = HFP s (71)
0351 1 i.e., we neglect the connected part(dif'¢(k))we which at
03 . the zero-loop order is proportional tohHiég(b(ki) [23]. In
025k ] the self-consistent Hartree approximation the two-point func-
' tion in Eq.(71) is given by Eq.(70). The explicit form ofp
02F . along thea-line in this approximation igsee Eqs(34), (70),
and(71)]
0.15F B
e —_ 9:S(1-py)  39iS(2p0- V(L - po)
04304 05 0s 07 05 051 p=po+ = 5 < 4 S (i)Bp . (72
0

FIG. 6. Thex line in the self-consistent Hartree approximation. The A-line S,(p) given by Eqgs(69) and(72) is shown as a
The dashed line gives the transition temperature as a function of tholid line in Fig. 6. It starts at the TCP, obtained by the
most probable densityT" =S, (py) [see Eq.(69)]. The solid line  corresponding shift of the TCP found in MF. Our result is
T =S,(p) is the transition temperature as a function of the averageompared with other theoretical and simulation results in
density p given in Eq.(72). Temperature is in standard reduced Table I.
units ( T'=kTDo/€?) and the fraction of ion-occupied sitgsis
dimensionless.

VI. SUMMARY
I +g(0)(i‘ +ﬂ3g(0)) -0 (67) The effects of charge-density fluctuations on the order-
0 3 . . .- . . .
2 2 disorder transition for different values of the space discreti-

zationo/a have been described in Ref$6,17. In this work

On the sc lattice the form o§(0) is [see Eqs(37) and(2) o casesp/a=1 ando/a=2 have been analyzed in detail.

and the Appendik We have shown that in both models the instability of the
3 5 disordered phase is induced on the MF level by charge-

G(0)=TEg,, g;= —f - 1}=1.091. density wavesp(k) with 8 wave _vectorig‘). Hovyever, fqr _
T\ 3 +Ei cosk; ola=1 these vectors form vertices of the cubic domain in

the k-space, whereas far/a=2 they are located inside the
domain, far from the boundary. For each model we con-
Equation(67) can be solved easily. The explicit expressionstructed a functional depending on the shifted fia}é¥(q)

for the line of instability in the self-consistent Hartree ap-:}g(q+kg‘))_ Next we have shown that far/a=1 there is

(68)

proximation is only one critical field and near the line of instability of the
RIS disordered phase _the functional reduces to the well knqwn
22+ A ) 1+ 2Aepo01 _ functlo_nal of the Ising-university class. H«_ance, Fhe transition
4Pod1 (2 + Aypo0y)? is continuous. In contrast, there are 8 critical fields éda
S\ = 5 (690 =2, and there is no stable fixed point of the RG-flow
Aspodi equations—hence a first-order transition should be expected.

i _ - P ; On the sc lattice withr/a=1 the instability is induced by
The A Ilpe S SA(p.O) 's shown in Fig. 6 as a dashed Img. .the charge-density waves compatible with the lattice, and
As discussed in Sec. lll, the average number density dif; ev all lead o a unique Structufan to +/— symmetry. see
fers from the most probable one. We can include the effect ori yl in Ref.[15] ) 'Ighe uni ue(strr)ucture foﬁ/ows frgr,n the
the charge-density fluctuations on the average number den - Bl 1q .
sity by using Eq(34). In the self-consistent Hartree approxi- particular location of the critical wave vectors at the vertices

mation for the charge-charge correlation function we assumgf the cyb|cl§-doma|n. Th.e unique ordered structure can be
€asily pinpoint to the lattice and the order can grow gradu-

2 - - ally. The transition is thus continuous. Otherwise an interfer-
(¢ 0Dwe=G(0) = 615vo. (70 ence of different structures associated with different wave
Next we assume that the four-point function is a product owectorskg‘) restores the disordered phase. The ordered struc-
two-point functions up to a numerical factd23] (see ture is not washed out by fluctuations only for a finite value
Fig. 7), of the OP, i.e., the transition is first order. The above analysis
indicates that the continuous transition and the TCP are quite
rare, and occur in a system with a special template.
In this work we have also developed an approximate
=D theory allowing for a determination of quantiative effects of
fluctuations. We have applied the formalism developed in
Sec. lll to a determination of a position of theline on the
FIG. 7. The diagrams contributing to the shift of the density of SC lattice witho/a=1. The result is shown in Fig. 6 and
ions (32) in the Hartree approximation. See also Figs. 2 and 5. compared with earlier theories and simulations in Table 1. At
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TABLE |. Location of the TCP obtained in the MF theory work was supported by the KBN through research project 1
[10,15, in the DH and HRT theorie$20,21 and in simulations PQ2B 033 26.
[3,4], and the result of this work. Temperature and density at the
TCP in standard reduced units are denoted By and py,

respectively. APPENDIX: LATTICE COULOMB POTENTIAL
N N The lattice Coulomb potential is a solution of the dis-
Tic Pre cretized Poisson-Boltzmann equation, and in Fourier repre-
MF [15] 0.7 13 sentation assumes the form
MF [10] 0.299 1/3 - o
DH [20] 0.38 0.365 Ve(k) = —3[1 Sl (A1)
HRT [21] 0.202+0.002 0.38+0.005 latt
This work 0.15 0.44 where the index latt denotes the sc, fcc or the bcec lattice. The
Simulations[3] 0.15+0.01 0.48+0.02 lattice characteristic functiof,(k) depends on the kind of
Simulations[4] 0.14 0.4 the lattice. For the sc, fcc, and bec lattidgg(k) is given by
1 3
close packing(=1) we obtain T'~0.33 at the\-line, foe= 52 cosk;, (A2)
which is lower than the result of simulations,~ 0.5 [35]. i=1
However, the weighted field theory, where number-density
fluctuations are allowed, is not expected to be valid gor ~ 1
=1, therefore forp close to 1 the exact-line deviates from frec(k) = _z‘, coskicosk;, (A3)
our result. In simulations the potentialrlwas used, and not .
the form we have considered for a lattice system. There arand
also standard sources of inaccurdéipite system, etg.of 3
simulations. The position of the TCP is thus probably some- ?bcc(k) =11 cosk, (Ad)

what different. Similarly, the result of an exact theory should
be somewhat different from our approximation.

The results of this and earlier works show that the theoryespectively. The constantg® andV;® are defined via equa-
introduced in Ref[13] leads to qualitatively correct phase tions

i=1

diagrams in all considered cases, including those which have 1

not been described within any other thegnyodel |, model VSC—J _— (A5)

lll, fcc lattice, LRPM with additional short-range foroes k 3(1 —fdk))

Moreover, the quantitative accuracy of the theory is also sig-

nificantly better than the accuracy of the other theories. Hn cosk

Clearly, further studies are necessary for a determination of VSos J =1 i (A6)

phase diagrams for other values @fa and in continuum n K 3(1 s c(k)).

space on a quantitative level, but the formalism developed s

here seems to be particularly well suited for this purpose. The values we need in this work are
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