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We study the dynamics of liquid drops in the partial wetting regime first on pure surfaces and then on
heterogeneous substrates. We model the spreading of a drop by a 3-dimensional Ising3Ddd#). The
initial nonequilibrium configuration is a parallelepiped of occupied sites with appropriately chosen boundary
conditions from which we let the system evolve towards its equilibrium state via a particle-conserving dynam-
ics. We find that the time behaviors of the base ra&i($) and the cosine of the contact angle &3 are well
described by exponential decay functions with relaxation timesnd 7,5, correspondingly. Thus it follows
that the molecular kinetic theory gives a valid description of the initial stage of drop spreading in the partial
wetting regime for times smaller than both relaxation timeand 7., Also, our MC results for the 3D IM
with regularly distributed single-site impurities at low temperatures and low surface fields are compatible with
Cassie’s and Israelachvili's equations, the description of the data with Israelachvili's equation being slightly
better. At high temperatures and high surface fields there is a deviation from the purely linear behavior of the
cosine of the contact angle on the concentration known as Cassie’s law for chemically heterogeneous surfaces.
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[. INTRODUCTION surfaces and then on heterogeneous substrates.
. , . This paper is organized as follows. First we present the
The phenomena of spreading and wetting have many dignde| and the initial and boundary conditions employed.
verse applications in a wide number of processes and progrhen we present our results at equilibrium on homogeneous
ucts in industry, which explains partly the new revived inter-5q heterogeneous substrates. In the next section we present
est in the past decade. On the other hand, the development gf;, findings for the dynamics of spreading in the partial wet-

new technologies has inspired new research. Due to the widg,q regime. The last section is devoted to our conclusions.
availability of computers, Monte Carlo algorithms have

proved nowadays to be a powerful t@fir a review see e.g.,
[1]) to study the properties of many-particles systems, in that Il. THE MODEL, INITIAL AND BOUNDARY
number simple fluids. CONDITIONS

Simple models in physics have always played an impor-
tant role in helping to improve the understanding of the mi- We use the well known kinetic 3D Ising model with con-
croscopic origins of macroscopic behavior. The Ising modekerving dynamicg11,12 to model our system. It is conve-
is a prototype model for many studies in statistical physicsnient to introduce basic ideas and quantities with reference to
Monte Carlo simulations of IM have been used to study theéhe conventional Ising model, while keeping in mind that
dynamics of liquid droplet spreading D=2 dimensiong2]  spin-up (+) and spin-down(-) states are readily mapped
yielding a linear growth with time of the width of the drop. onto the liquid and vapor states of a LG. The model is de-
Previous studies also include simulations of a variant of thdined in the standard way. We consider a simple cubic lattice
3D lattice gagLG) with Lennard-Jones interaction potential A with linear size L and with every lattice sitei
in the partial wetting regim¢3]. A 3D IM with conserving  =(iy,ly,i,), i € A, we associate a variabte which takes on
dynamics has already been successfully applied in studies ofvo values{+1,-1}. The corresponding Hamiltonian is
spreading in the complete wetting regirf¥g5,6 recovering

a diffusive behavior of the base radil®,> \t, in agreement H=-J > aoj— X ha, 1)
with the experimental resul{§,8,9 and molecular dynamic (ijyeA icdh
simulations[10]. whereJ(J>0) is a constant describing the attraction between

Here we extend these works to study in detail the timey,o molecules of the fluid in this simplified description. As
evolution of a liquid drop, modeled by a 3D IM with con- gy a|ly, (ij) means that nearest-neighbor interactions are
serving dynamics, in the partial wetting regime first on pureonly considered ant; describes a surface field acting at the
boundaries of the latticéA.

Schematic representation of the system is shown in Fig. 1.
*Electronic address: nina@imbm.bas.bg The initial nonequlibrium configuration is a parallelepiped of

"Electronic address: joel@galileo.umh.ac.be sites witho,=+1. The parallelepiped sizes are equal to the
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=) Most of the simulations are performed for a system of size

L3, L=15u, whereu is the lattice constant. Larger system
FIG. 1. Schematic representation of the model system in the&izes are also considered in few cases. The density was kept

initial state, the left cube, and in the final state, the right cube.  fixed atp=0.4 during the simulations. The temperature was

) ) o ) set toT=3.81/kg, sufficiently below the critical temperature
sizes of the system in theand x directions, i.e.l¥=L, 17 of the 3D Ising modelT0~4.51)/kg [14,15 so that the

:l—p, andI is chosen so that one gets a fixed density, pe., correlation lengtr¢ is small(of the order of one lattice spac-
=ly/L. The rest of the sites outside the parallelepiped are sghg ¢~ u, see, e.g[16,17,18). The results are usually aver-
to 0;=-1. aged ovemMg,s=500 runs. Typical Monte Carlo simulation

In the x-direction periodic boundary conditions are im- |asted(1.6-2) x 10° Monte Carlo step§MCS) per site.
posed to reduce the finite-size effects. At the boundary

planes,z=L+1,y=L+1, a fieldh=-J is applied which fa-
vors the formation of a phase with a negative magnetization
or a vapor phase in LG language. At the boundary phane A. Homogeneous substrates

=0 a fieldh,=0.7] is imposed close to the bulk magnetiza- 14 getermine whether the equilibrium state is reached, we
t_lon at the considered _temperature, e.0,=~0.8 at T ot studied the casky=h, where at equilibrium one should
=3.8)/kg [13] (see also Fig. Rin order to model a half drop gt 5 completely symmetric shape of the drop with respect to
in a corner in thez,y) plane.kg is the_BoItzmann constant. o plane of symmetrg=y. We kept track also of the total

In most cases, we also set the fi¢igat the boundary  gnergyE(t) of the system and the bulk phase magnetization
planez=0, r_nodelmg the interaction with the_- s_ubstrate, to bemb(t) versus timet. But the slowest relaxing quantity in the
equal toh,, i.e., h,=h,, to ensure better statistics. system is the shape of the drop. It relaxes slower than the

We then let the system evolye tovyards its_equilibriumg st layer radiusR,(t) of the drop in contact with the sub-
state through a Kawasaki dynamics which preserves the totg(rate_ In the cases whehg# h,, to ensure that indeed the

:2?3?5:5333?!3;';;“ system. The following, Kawasaki equilibrium state is reached, we also performed some addi-
’ tional runs starting from a completely random initial con-

Ill. RESULTS

1.0 figuration withp=0.4 and the same boundary conditions ar-
03 - riving at the same final equilibrium state. The two cagbs,
O o4y 3 ua h,=h, and (Il) hy# h,, simply correspond to two different
0.6 A /E,Q_Q:IL.\: S0 =0.7] geometries studied.
e/r""7¢\e e \ The averaged distribution of the magnetization along the
04 e/ \§0 \A\. -\ y axis in every layerz at equilibrium,m(z,y)={(m(z,y)), is
02F ¥ hd defined in the following way:
_ h=-0.1J <_§3\ \\. " " " ]
m 0.0 \ 1 &S 1 &nsf 1. X
N w4 ﬁ(zy)=—2m(zy)=—2(—Eo(zyX)).
02 xe \‘s. Nensk:l “ Nenskzl Lxle “
B A
041 '§3\ \ (4)
-0.6 - \3\; The magnetization profilesy(y) of the first layer(z=1) at
08 L equilibrium for different fieldsh, in the casel) h,=h, are
shown in Fig. 2. From there the first layer radius of the drop

Lottt at equilibrium R; was determined as the point at which
) ) ) ) ) my(R;)=0. In the same way we proceeded to determine the
projection of the shape of the drop in tkey) plane. De-

FIG. 2. (Color onling The averaged magnetizatiom, of the ~ Pending on the substrate fielt} one gets, as expected, a
first layer (z=1) of the drop versus the scaled distanceY/L at ~ complete range of behavior, see Fig. 3, i.e., ranging from a
equilibrium (T=3.8)/kg, p=0.4) is shown for different values of nonwetting ath,=-J in the casen,=0.7] fixed and varying
the field in the casgl) h,=h,: from left to right are the data for h, [case(Il)], through partial wetting, to a complete wetting
h,=-0.13,0J,0.3],0.5J,0.7J. The lines serve as a guide to the eye. regime. While in the case,=h,, if one applies high negative
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FIG. 5. (Color onling The cosine of the contact angle ads

FIG. 3. (Color onling The averaged profiles of the drop in the versus the surface field, (in J units) is shown: aff=3.81/kg in the
(z,y) plane at equilibriun{T=3.8]/kg, p=0.4) are shown for case case(l) h,=h,, solid squares, and in the cadk) h,=0.7J fixed and
(I1): hy=0.7J fixed and different surface fields € [-1J,0.7J]. The  varying h,, open squares, and @it=3.Q)/kg in the casgl) hy=h,,
lines connecting the data serve as a guide to the eye. solid up triangles, and in the cagé) hy=0.7J fixed and varyingh,,

open up triangles. The dotted lines are the fits with the sigmoidal

field the drop starts separating in the corner, e.gh,at (Boltzmanr) function.
—0.4], and ath,=-J the drop is at the center of the system,

see Fig. 4. In the partial wetting regime studied here in thgyye to approaching the wetting fiely, at this temperature.
intervalh,  (0,0.7) there is not qualitative difference in the The wetting temperature for the semi-infinite 3D Ising model
quantities of interest in the two cases, see, e.g., Fig. 5. s estimated to b&3P~ 3.81/kg for h,=0.64) using the re-
The reduced first layer radiug=R;/L is a linear function  sylts in[19,20,21. Indeed, at a lower temperature, e.g., at
of the surface fieldh, in a wide interval of values df, as can  T=3.aJ/kg, one can see a linear behavior practically in the
be seen from Fig. 4. The deviation at high fi¢id>0.6J is  whole intervalh, e (0,...,0.7), since afT=3.0)/kg the wet-
ting field is h,~0.86J.
Though in a lattice system, like the IM, one should rather
o use the WuIff constructiorf22] to get the proper contact
Oh=h — & ¢ angle, one can still try to define local contact angle in the
08| : simplest possible way and attempt to study how it behaves as
-t a function of the surface field, and of the temperaturé.
. Following that approach we define the “contact angleis-
0.6 a oF ing the obtained shape of the drop, shown in Fig. 3, by fitting
r r @ ~ o the first few points, closest to the substrate, by a parabola and

1.0 -

0.4 , () h=0.7J taking the derivative at=2. At T=3.8]/kg the cosine of the
o so defined contact angle as a function of the surface figld
displayed in Fig. 5, is well fitted by a sigmoidd@oltzmann
02F function. Note, that the cogis practically the same function
roo for the two considered cased) h,=h,, where the casé,
0.0 =h, is well defined(i.e. for h,=-0.1J, and(ll) h,=0.7J is
- fixed andh, varies.
-1.0 -0.8 -0.6 -0.4 -02 0.0 02 04 0.6 0.8 We get also that the contact andlés a linearly increas-
h ing function of the temperaturd in the interval kgT/J
z €[3.0,4.2 in the caséh,=h, below the wetting temperature
as can be seen from Fig. 6. The little arrows denote the
approximate positions of,, for the corresponding fieldh,.
This result is in general agreement with the experimental
results in[23].

FIG. 4. (Color online The reduced first layer radiug=R;/L
versus the surface field, in (J units) is shown aff=3.81/kg: in the
casg(l) hy=h,, solid squares, and in the ca@p h,=0.7J fixed and
varying h,, solid circles. The dotted lines are the corresponding
linear fits. The inserts show schematically the forming of the drop
in the middle of the system dt,=—-1J in the hy=h, case and the
forming of a half-drop at the waly=0 whenh,=0.7J is fixed and We have studied the effect on the final state of the drop
h, varies. produced by single-site impurities with different concentra-

B. Substrate with single-site impurities
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FIG. 7. (Color online The cosine of the contact angle ads
FIG. 6. (Color onling The contact angle (in degreesversus  versus the concentration of single-site impurities is shown for
the temperatur@ (in J/kg units) is shown in the casd) hy=h, for several combinations of the pure substratgs-h, at c=0 andh,
different values of the surface field,: h,=0.3J, solid circles,h, =hg at c=1): in the caseh,=0.3] andh,=0.3], hg=-0.08) (solid
=0.3), solid up triangles, and,=0.7], solid squares. The lines squares h,=0.5) andh,=0.5J, hg=-0.05) (solid up triangley at
serve as a guide to the eye. The little arrows denote the approximate=3.8]/kg; and also forh,=0.5] and h,=0.5], hg=0.2] at two
position of the wetting temperature at the corresponding Tig(th). different temperatures: al=3.81/kg (solid circleg, and atT
=3.4)/kg (solid diamonds The dashed lines are the best fits with
tions. The point impurities are assigned a surface ffejd I_srael_achvili’s equation. '_I'he dotted lines are the corresponding best
different from the rest of the substrate,, and are regularly ~fits with the power functiorf(c) =2, - a,cP.
distributed in every layefy,z=0}, y=1,...,L. The shape of
the drop and the contact angle change significantly with the=3.4J/kg) in Fig. 7. At high temperatures and high fields
concentration. Starting with a concave shape @rd39°, there is a deviation from the linear law in concentration. The
when the fieldh,=0.5 is fixed and the surface field is,  concentration dependence is then described by a power func-
=h,=0.5] corresponding to 0% concentration of impurities, tion, i.e., cosf(c)=a;-a,c?, wherea; anda, are related to
one obtains a convex shape adiek 90°, when the surface the cosines of the contact angles of the pure substrates:
field is h,=hg=-0.05] corresponding to 100% concentration =cosé,, and a,=cosé,—cosfg. Thus for the considered
of impurities. substrates with point impurities one has
In Fig. 7 we have presented the results we obtained for the
cosine of the contact angle as a function of the concentration COSH(C) = COSOA+ (COS B — COSOA)C’. ()
c of point impurities for several combinations of the surface|f p=1 this reduces to the familiar Cassie’s equation.
fields of the pure substra_tes at two temperatures. We find that p~1.83 for h,=0.5] and h,=0.5, hg=
For the 2D IM[24] using numerical simulations it was -0.05). The error of the fitting ig?<5 X 10°5. The powerp
shown that Cassie’s IaWﬂ is Compatible with the data. We decreases with decreasirh‘g (Wh||e hB is kept ﬁxed and
have tested our data for heterogeneous surfaces against Cagfth the temperaturd. That is the deviation from the linear
ie’s equation: behavior is stronger at higher temperatures and for stronger
- interactions with the substrate.
cos#(c) = ¢ cosf + (1~ C)coS G ©® The advancing interface in the fir&t=1) layer, i.e., the
and Israelachvili’s equatiof26]: position of the triple line as function of time, was also re-
[1+cosO(c)]2=c(1 + cosf)?+ (1 —c)(1 + cosy)?, gorded. The way in yvhich the impu_rities affect Fhe contact
line motion is well illustrated in Fig. 8. The impurities
(6) change the velocity of the contact line, in this particular ex-
where cos, and cosdg are the cosines of the contact angle @MPle they temporarily trap the contact line and slow down
on the pure substrates and @) is the cosine of the effec- ItS motion. Even when the contact line overcomes the impu-
tive contact angle on the heterogeneous substrate at conceffies it is still deformed and the deformation of the contact
tration ¢ of the impurities with a surface fieltds. We find ~ In€ in the final equilibrium state depends on the strength,
here that at low temperatures and low surface fields there is${2€ and the position of the impurities.
good agreement of our data with Cassie’s and Israelachvili's
equations. The agreement with Israelachvili's equation is
slightly better—see, e.g., the results fty=0.3], hg= We find that there exists certain interval of values of the
-0.5) at T=3.8J/kg and h,=0.5J, hg=0.21 at (T  surface fielch, e.g.,h, e (0.1],0.6)) at T=3.81/kg, such that

C. Time evolution of the drop
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FIG. 10. (Color onling The time(in MCS per sit¢ evolution of

FIG. 8. The averaged position of the interfaRg, in the (x,y)  the cosine of the contact angle o#f$) at T=3.8)/kg in the cas€l)
plane as function ok (both in lattice spacingsat the first layez ~ hy=h; for several values of the surface fidigl from bottom to top:
=1 on a substrate with impurities is shown at several successive,=0.0J, solid circles;h,=0.3J, solid down trianglesh,=0.5J, solid
values of the time. The black squares show the place of the impusguares. The dotted lines are the best exponential decay fits.
rities and the arrows denote the direction of spreading.

As can be seen from Fig. 9, at fixed temperaflirehen

the time behavior of the first layer radid(t) is well de-  the fieldh, increases, the time behavior Bf(t) changes and
scribed by an exponential decay function, i.By(t)=yy  the quality of the fit with an exponential decay function gets
—Aexp(-t/7), wherey,=Rgq is the equilibrium value of the worse. Ath,=0.7] for T=3.8/kg the system is actually in
base radius and, is a characteristic relaxation exponent. the wetting regime, at least the semi-infinite system. If one
Typical simulation runs for the base radius of the spreadindurther increases the system size, Bf=0.7J and T
drop at T=3.8J/kg are shown in Fig. 9. Within the same =3.81/kg, one finds that the time behavior of the first layer
interval of surface field$,, the time evolution of the cosine radius changes to an exponential growth function.
of the contact angle, shown in Fig. 10, is also well described For low and negative surface fields, i.e., fgr<0.1J, two
by an exponential decay function but with different relax-regimes are observed in the time behaviomRpft). At first
ation exponentrqg g. R,(t) decreases with (see Fig. 9,h,=-0.13,0J) and then
there is a time interval where again its behavior is well de-
scribed by an exponential decay function. The same holds for
the time behavior of the cosine of the contact angle. For low
values of the field it is difficult to determine, and 7.,y
correctly. For the temperatures and positive surface fields
considered we find that the base radius relaxes slower than
the cosine of the contact angle, i.€.,s,< 7. FOr example
we find that typical relaxation timg# MCS per sit¢ are as
follows: for h,=0.5, 7.,sy=9120 and r,=15684; for h,
=0.3], 7¢059=17500 and7,=24287; while for h,=0J we
have 7.5 y=72785 andr, =36338.

From the exponential decay fits of the base rady&)
and co9 it follows that for times smaller tham,, the
interface velocityv=dR,;/dt is proportional to the driving
force Fy, o cosf,—cosd(t), i.e., that the following equation
holds forR;:

14+

12 -

10

L I
0 25000 50000

2 1 " 1 n 1 I 1 1
0 50000 100000 150000 200000 250000 4R
t d_tl =b(T,h,)[cosb, - cosa(t)], (8)

FIG. 9. (Color onling The time(in MCS per sit¢ evolution of . . . . )
the base radiuBy(t) (in lattice spacingsat T=3.81/kg in the case  Whereb(T ,h,) is a coefficient of proportionality ané, is the

() hy=h, for several values of the surface fieig from bottom to equilibrium contact angle. Let us recall that the molecular
top: h,=-0.1],0.0J,0.1J,0.31,0.5],0.7J. The dotted lines are the Kinetic model by Blakeet al.[27], in its linear form, relates
best exponential decay fits. The inset shows the time behavior fdihe base radius and the cosine of the contact afgletime
small times of the base radius fat=-0.1J. t through the following equation:
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FIG. 11. (Color onling The jump frequency [in FIG. 12. (Color online The time(in MCS per sit¢ dependence

(MCS per s_ite‘l] distributions in different Iaye_rs are displayed in s shown of the frequencfy(z=1) [in (MCS per sit¢™1] for jumps
the equilibrium state al=3.81/kg for h,=0.5J in the cas&ll) hy  in they direction in the first layer, defined as the ratio of the real-

=h;: fzq (émpty squares f,, (solid square fy, =Ty, (solid up tri-  ized jumps in they direction over the attempted jumps in tiye
angles, andf,,=f,; (solid circleg. The lines serve as a guide to the direction in the first layer in one MCS per site Bt 3.8)/kg. The
eye. four different lines are for different values of the surface fieJabf

the substrate in the casg¢) hy=h, from top to bottom:h,
dr, =0.13,0.31,0.51,0.7.
—— =—(cosf, - cosh), 9) . _ . o
dat ¢ in the bulk, while for lower fields, e.gh,=0.2],0.3], it is
. - . . . the opposite. We find also, see Fig. 12, that the frequencies
where/{ is the friction coefficient and is the interface ten- for jumps in the first layer decrease when the surface field

sion. So the Blakg gnd Hayngg_molecular kinetic t.heoryncreases, i.e., the interactions with the substrate get stronger,
gives a valid description of the initial stages of spreading of, agreement with the MD simulations by de Ruijer al
the 3D IM drop. Comparing the two equations it follows that[ ] '

the coefficient of proportionalityp(T,h,)=y/{. This relation We have studied and plotted in Fig. 13 the temperature

can be used in principle to determine the friction CoefﬁCiemdependence of the frequency for jumps in the spreading di-

¢ if the inte_rface tensiory is _k_nown. . . _ rection f,,. As can be seen the temperature dependence is
We studied also the mobility of the particles in the differ- well fitted by the following function:

ent layers of the drop. The frequency for jumps atzlayer
in the positive(right) y direction (this is the direction of the
spreading of the drops defined as the average of the ratio of 0.0012
the number of particles which have moved in the right

direction at thez layer in one MCS per site over the total 0.0011
number of particles in the system, i.e.,

fye(2) = (Ny(2)/Npar - (10) 0.0010

In a similar way are defined the frequencies for jumps in the fyr 0.0009

z (up and dowhn and in thex (right and lefy directions. -
Typical distributions of the frequencies for jumps in the dif- I
ferent layers at equilibrium are shown in Fig. 11. One can see 0.0008
that in the bulk the different frequencies for jumps change R
slightly and the values they have are very close. There are 0.0007
significant differences at the end-layers and particularly in L
the first layer, all the frequencies are higher, except for 34 35 3.6 37 38 39 40
f,{z=1) which is zero of course. The frequencies for jumps T

in they direction(right and lefy are slightly lower than irz

andx directions due to the existence of the interface. At the g, 13. (Color onling The frequency for jumps in the spread-
end layers, i.e.z>11 all the frequencies are slightly lower ing directionf,, [in (MCS per sit¢"!] versus the temperatuf(in
due to the fact that there are less particles than in the bullg/kg units) is shown ath,=0.5J in the case(l) h,=h,. The dotted
For high interaction with the substrate, e.9,=0.5J, the line is the best fit by f(T)=p;Texp-p,/T), where p;
total mobility of the particles in the first layer is lower than =0.00143 p,=6.36.
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fyr(T) =0.00143T exp(— 6.361T). (11 The obtained temperature dependence of the contact angle

. o ) on homogeneous substrates is in a qualitative agreement with
This temperature dependence is in agreement with the mqpq experimental results 23],

lecular kinetic theory of liquids by Eyringt al. [29] accord- We find that the time behaviors of the first layer radius
ing to which the equilibrium frequency of displacemelis 414 the cosine of the local contact angle in certain interval of
is related to the molar activation free enedy@,, through \a1yes of the surfach, field within the partial wetting re-

gime are well described by exponential decay functions.

Ko= %exp(— AG,/NakgT), (12 From this it follows that the interface velocity is proportional
to the driving force:
where N, is the Avogadro’s number and is the Planck dr
constant. This expression for the frequency of displacements —1_ b(T,h,)[cos b, — cos(t)] (13)
enters into the Blake and Haynes theory of spreading. dt

for times smaller than relaxation time,s 4. Thus the Blake
and Haynes molecular kinetic theory gives a valid descrip-
tion of the initial stages of spreading of the 3D IM drop.

The MC simulations of the 3D IM on heterogeneous sub- We find also that the temperature dependence of the equi-
strates show that at low temperatures and low surface field&rium frequency for jumps in the spreading directidy, is
there is a good agreement of the data with Cassie's and I§onsistent with the temperature dependence given by the
raelachvili's equations, the agreement with Israelachvili'sBlake and Haynes theory.
equat|on_be|ng sllgh_tly better_. At high temperature_s'and high ACKNOWLEDGMENTS
surface fieds there is a deviation from the Cassie’s and Is-
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