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We study the dynamics of liquid drops in the partial wetting regime first on pure surfaces and then on
heterogeneous substrates. We model the spreading of a drop by a 3-dimensional Ising model(3D IM). The
initial nonequilibrium configuration is a parallelepiped of occupied sites with appropriately chosen boundary
conditions from which we let the system evolve towards its equilibrium state via a particle-conserving dynam-
ics. We find that the time behaviors of the base radiusR1std and the cosine of the contact angle cosustd are well
described by exponential decay functions with relaxation timestr andtcosu correspondingly. Thus it follows
that the molecular kinetic theory gives a valid description of the initial stage of drop spreading in the partial
wetting regime for times smaller than both relaxation timestr andtcosu. Also, our MC results for the 3D IM
with regularly distributed single-site impurities at low temperatures and low surface fields are compatible with
Cassie’s and Israelachvili’s equations, the description of the data with Israelachvili’s equation being slightly
better. At high temperatures and high surface fields there is a deviation from the purely linear behavior of the
cosine of the contact angle on the concentration known as Cassie’s law for chemically heterogeneous surfaces.
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I. INTRODUCTION

The phenomena of spreading and wetting have many di-
verse applications in a wide number of processes and prod-
ucts in industry, which explains partly the new revived inter-
est in the past decade. On the other hand, the development of
new technologies has inspired new research. Due to the wide
availability of computers, Monte Carlo algorithms have
proved nowadays to be a powerful tool(for a review see e.g.,
[1]) to study the properties of many-particles systems, in that
number simple fluids.

Simple models in physics have always played an impor-
tant role in helping to improve the understanding of the mi-
croscopic origins of macroscopic behavior. The Ising model
is a prototype model for many studies in statistical physics.
Monte Carlo simulations of IM have been used to study the
dynamics of liquid droplet spreading inD=2 dimensions[2]
yielding a linear growth with time of the width of the drop.
Previous studies also include simulations of a variant of the
3D lattice gas(LG) with Lennard-Jones interaction potential
in the partial wetting regime[3]. A 3D IM with conserving
dynamics has already been successfully applied in studies of
spreading in the complete wetting regime[4,5,6] recovering
a diffusive behavior of the base radius,R1~Ît, in agreement
with the experimental results[7,8,9] and molecular dynamic
simulations[10].

Here we extend these works to study in detail the time
evolution of a liquid drop, modeled by a 3D IM with con-
serving dynamics, in the partial wetting regime first on pure

surfaces and then on heterogeneous substrates.
This paper is organized as follows. First we present the

model and the initial and boundary conditions employed.
Then we present our results at equilibrium on homogeneous
and heterogeneous substrates. In the next section we present
our findings for the dynamics of spreading in the partial wet-
ting regime. The last section is devoted to our conclusions.

II. THE MODEL, INITIAL AND BOUNDARY
CONDITIONS

We use the well known kinetic 3D Ising model with con-
serving dynamics[11,12] to model our system. It is conve-
nient to introduce basic ideas and quantities with reference to
the conventional Ising model, while keeping in mind that
spin-up s+d and spin-downs−d states are readily mapped
onto the liquid and vapor states of a LG. The model is de-
fined in the standard way. We consider a simple cubic lattice
L with linear size L and with every lattice sitei
=six, iy, izd , i PL, we associate a variablesi which takes on
two valuesh+1,−1j. The corresponding Hamiltonian is

H = − J o
ki j lPL

sis j − o
iP]L

hisi , s1d

whereJsJ.0d is a constant describing the attraction between
two molecules of the fluid in this simplified description. As
usually, ki j l means that nearest-neighbor interactions are
only considered andhi describes a surface field acting at the
boundaries of the lattice]L.

Schematic representation of the system is shown in Fig. 1.
The initial nonequlibrium configuration is a parallelepiped of
sites withsi = +1. The parallelepiped sizes are equal to the
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sizes of the system in thez and x directions, i.e.,lx
p=L , lz

p

=L, and ly
p is chosen so that one gets a fixed density, i.e.,r

= ly
p/L. The rest of the sites outside the parallelepiped are set

to si =−1.
In the x-direction periodic boundary conditions are im-

posed to reduce the finite-size effects. At the boundary
planes,z=L+1,y=L+1, a fieldh=−J is applied which fa-
vors the formation of a phase with a negative magnetization
or a vapor phase in LG language. At the boundary planey
=0 a fieldhy=0.7J is imposed close to the bulk magnetiza-
tion at the considered temperature, e.g.,mb<0.8 at T
=3.8J/kB [13] (see also Fig. 2) in order to model a half drop
in a corner in thesz,yd plane.kB is the Boltzmann constant.

In most cases, we also set the fieldhz at the boundary
planez=0, modeling the interaction with the substrate, to be
equal tohy, i.e., hz=hy, to ensure better statistics.

We then let the system evolve towards its equilibrium
state through a Kawasaki dynamics which preserves the total
magnetizationMtot in the system. The following, Kawasaki
rate function is used:

wsDEd =
1

1 + expS DE

kBT
D , s2d

relating two spin configurations of the systemhsj⇒ hs8j
which differ only by the exchange of two nearest-neighbor
spins.DE is the corresponding change in the energy of the
system, i.e.,

DE = Hshs8jd − Hshsjd. s3d

Most of the simulations are performed for a system of size
L3, L=15u, whereu is the lattice constant. Larger system
sizes are also considered in few cases. The density was kept
fixed atr=0.4 during the simulations. The temperature was
set toT=3.8J/kB, sufficiently below the critical temperature
of the 3D Ising model,Tc

3D<4.51J/kB [14,15] so that the
correlation lengthj is small(of the order of one lattice spac-
ing j,u, see, e.g.[16,17,18]). The results are usually aver-
aged overNensù500 runs. Typical Monte Carlo simulation
lasteds1.6−2d3105 Monte Carlo steps(MCS) per site.

III. RESULTS

A. Homogeneous substrates

To determine whether the equilibrium state is reached, we
first studied the casehy=hz where at equilibrium one should
get a completely symmetric shape of the drop with respect to
the plane of symmetryz=y. We kept track also of the total
energyEstd of the system and the bulk phase magnetization
mbstd versus timet. But the slowest relaxing quantity in the
system is the shape of the drop. It relaxes slower than the
first layer radiusR1std of the drop in contact with the sub-
strate. In the cases wherehyÞhz, to ensure that indeed the
equilibrium state is reached, we also performed some addi-
tional runs starting from a completely random initial con-
figuration withr=0.4 and the same boundary conditions ar-
riving at the same final equilibrium state. The two cases,(I)
hy=hz and (II ) hyÞhz, simply correspond to two different
geometries studied.

The averaged distribution of the magnetization along the
y axis in every layerz at equilibrium,m̄sz,yd=kmsz,ydl, is
defined in the following way:

m̄sz,yd =
1

Nens
o
k=1

Nens

mksz,yd =
1

Nens
o
k=1

NensS 1

Lx
o
x=1

Lx

sksz,y,xdD .

s4d

The magnetization profilesm̄1syd of the first layersz=1d at
equilibrium for different fieldshz in the case(I) hz=hy are
shown in Fig. 2. From there the first layer radius of the drop
at equilibrium R1 was determined as the point at which
m̄1sR1d=0. In the same way we proceeded to determine the
projection of the shape of the drop in thesz,yd plane. De-
pending on the substrate fieldhz one gets, as expected, a
complete range of behavior, see Fig. 3, i.e., ranging from a
nonwetting athz=−J in the casehy=0.7J fixed and varying
hz [case(II )], through partial wetting, to a complete wetting
regime. While in the casehy=hz, if one applies high negative

FIG. 1. Schematic representation of the model system in the
initial state, the left cube, and in the final state, the right cube.

FIG. 2. (Color online) The averaged magnetizationm̄1 of the
first layer sz=1d of the drop versus the scaled distancey=Y/L at
equilibrium sT=3.8J/kB, r=0.4d is shown for different values of
the field in the case(I) hy=hz: from left to right are the data for
hz=−0.1J,0J,0.3J,0.5J,0.7J. The lines serve as a guide to the eye.
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field the drop starts separating in the corner, e.g. athz<
−0.4J, and athz=−J the drop is at the center of the system,
see Fig. 4. In the partial wetting regime studied here in the
intervalhzP s0,0.7Jd there is not qualitative difference in the
quantities of interest in the two cases, see, e.g., Fig. 5.

The reduced first layer radiusr1=R1/L is a linear function
of the surface fieldhz in a wide interval of values ofhz as can
be seen from Fig. 4. The deviation at high fieldhz.0.6J is

due to approaching the wetting fieldhw at this temperature.
The wetting temperature for the semi-infinite 3D Ising model
is estimated to beTw

3D<3.8J/kB for hz=0.64J using the re-
sults in [19,20,21]. Indeed, at a lower temperature, e.g., at
T=3.0J/kB, one can see a linear behavior practically in the
whole intervalhzP s0,… ,0.7Jd, since atT=3.0J/kB the wet-
ting field is hw<0.86J.

Though in a lattice system, like the IM, one should rather
use the Wulff construction[22] to get the proper contact
angle, one can still try to define local contact angle in the
simplest possible way and attempt to study how it behaves as
a function of the surface fieldhz and of the temperatureT.
Following that approach we define the “contact angle”u us-
ing the obtained shape of the drop, shown in Fig. 3, by fitting
the first few points, closest to the substrate, by a parabola and
taking the derivative atz=2. At T=3.8J/kB the cosine of the
so defined contact angle as a function of the surface fieldhz,
displayed in Fig. 5, is well fitted by a sigmoidal(Boltzmann)
function. Note, that the cosu is practically the same function
for the two considered cases:(I) hy=hz, where the casehy
=hz is well defined(i.e. for hzù−0.1J, and (II ) hy=0.7J is
fixed andhz varies.

We get also that the contact angleu is a linearly increas-
ing function of the temperatureT in the interval kBT/J
P f3.0,4.2g in the casehy=hz below the wetting temperature
as can be seen from Fig. 6. The little arrows denote the
approximate positions ofTw for the corresponding fieldhz.
This result is in general agreement with the experimental
results in[23].

B. Substrate with single-site impurities

We have studied the effect on the final state of the drop
produced by single-site impurities with different concentra-

FIG. 3. (Color online) The averaged profiles of the drop in the
sz,yd plane at equilibriumsT=3.8J/kB, r=0.4d are shown for case
(II ): hy=0.7J fixed and different surface fieldshzP f−1J,0.7Jg. The
lines connecting the data serve as a guide to the eye.

FIG. 4. (Color online) The reduced first layer radiusr1=R1/L
versus the surface fieldhz in (J units) is shown atT=3.8J/kB: in the
case(I) hy=hz, solid squares, and in the case(II ) hy=0.7J fixed and
varying hz, solid circles. The dotted lines are the corresponding
linear fits. The inserts show schematically the forming of the drop
in the middle of the system athz=−1J in the hy=hz case and the
forming of a half-drop at the wally=0 whenhy=0.7J is fixed and
hz varies.

FIG. 5. (Color online) The cosine of the contact angle cosu
versus the surface fieldhz (in J units) is shown: atT=3.8J/kB in the
case(I) hy=hz, solid squares, and in the case(II ) hy=0.7J fixed and
varying hz, open squares, and atT=3.0J/kB in the case(I) hy=hz,
solid up triangles, and in the case(II ) hy=0.7J fixed and varyinghz,
open up triangles. The dotted lines are the fits with the sigmoidal
(Boltzmann) function.
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tions. The point impurities are assigned a surface fieldhB
different from the rest of the substrate,hA, and are regularly
distributed in every layerhy,z=0j , y=1,… ,L. The shape of
the drop and the contact angle change significantly with the
concentration. Starting with a concave shape andu<39°,
when the fieldhy=0.5J is fixed and the surface field ishz
=hA=0.5J corresponding to 0% concentration of impurities,
one obtains a convex shape andu<90°, when the surface
field is hz=hB=−0.05J corresponding to 100% concentration
of impurities.

In Fig. 7 we have presented the results we obtained for the
cosine of the contact angle as a function of the concentration
c of point impurities for several combinations of the surface
fields of the pure substrates at two temperatures.

For the 2D IM [24] using numerical simulations it was
shown that Cassie’s law[25] is compatible with the data. We
have tested our data for heterogeneous surfaces against Cass-
ie’s equation:

cosuscd = c cosuB + s1 − cdcosuA s5d

and Israelachvili’s equation[26]:

f1 + cosuscdg2 = cs1 + cosuBd2 + s1 − cds1 + cosuAd2,

s6d

where cosuA and cosuB are the cosines of the contact angle
on the pure substrates and cosuscd is the cosine of the effec-
tive contact angle on the heterogeneous substrate at concen-
tration c of the impurities with a surface fieldhB. We find
here that at low temperatures and low surface fields there is a
good agreement of our data with Cassie’s and Israelachvili’s
equations. The agreement with Israelachvili’s equation is
slightly better—see, e.g., the results forhA=0.3J, hB=
−0.5J at T=3.8 J/kB and hA=0.5J, hB=0.2J at sT

=3.4 J/kBd in Fig. 7. At high temperatures and high fields
there is a deviation from the linear law in concentration. The
concentration dependence is then described by a power func-
tion, i.e., cosuscd=a1−a2c

p, wherea1 and a2 are related to
the cosines of the contact angles of the pure substrates:a1
=cosuA, and a2=cosuA−cosuB. Thus for the considered
substrates with point impurities one has

cosuscd = cosuA + scosuB − cosuAdcp. s7d

If p=1 this reduces to the familiar Cassie’s equation.
We find that p<1.83 for hy=0.5J and hA=0.5J, hB=

−0.05J. The error of the fitting isx2ø5310−5. The powerp
decreases with decreasinghA (while hB is kept fixed) and
with the temperatureT. That is the deviation from the linear
behavior is stronger at higher temperatures and for stronger
interactions with the substrate.

The advancing interface in the firstsz=1d layer, i.e., the
position of the triple line as function of time, was also re-
corded. The way in which the impurities affect the contact
line motion is well illustrated in Fig. 8. The impurities
change the velocity of the contact line, in this particular ex-
ample they temporarily trap the contact line and slow down
its motion. Even when the contact line overcomes the impu-
rities it is still deformed and the deformation of the contact
line in the final equilibrium state depends on the strength,
size and the position of the impurities.

C. Time evolution of the drop

We find that there exists certain interval of values of the
surface fieldhz, e.g.,hzP s0.1J,0.6Jd at T=3.8J/kB, such that

FIG. 6. (Color online) The contact angleu (in degrees) versus
the temperatureT (in J/kB units) is shown in the case(I) hy=hz for
different values of the surface fieldhz: hz=0.3J, solid circles,hz

=0.5J, solid up triangles, andhz=0.7J, solid squares. The lines
serve as a guide to the eye. The little arrows denote the approximate
position of the wetting temperature at the corresponding fieldTwshd.

FIG. 7. (Color online) The cosine of the contact angle cosu
versus the concentrationc of single-site impurities is shown for
several combinations of the pure substrates(hz=hA at c=0 andhz

=hB at c=1): in the casehy=0.3J andhA=0.3J, hB=−0.05J (solid
squares), hy=0.5J andhA=0.5J, hB=−0.05J (solid up triangles), at
T=3.8J/kB; and also forhy=0.5J and hA=0.5J, hB=0.2J at two
different temperatures: atT=3.8J/kB (solid circles), and at T
=3.4J/kB (solid diamonds). The dashed lines are the best fits with
Israelachvili’s equation. The dotted lines are the corresponding best
fits with the power functionfscd=a1−a2c

p.
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the time behavior of the first layer radiusR1std is well de-
scribed by an exponential decay function, i.e.,R1std=y0

−A exps−t /trd, wherey0=Req is the equilibrium value of the
base radius andtr is a characteristic relaxation exponent.
Typical simulation runs for the base radius of the spreading
drop at T=3.8J/kB are shown in Fig. 9. Within the same
interval of surface fieldshz, the time evolution of the cosine
of the contact angle, shown in Fig. 10, is also well described
by an exponential decay function but with different relax-
ation exponenttcosu.

As can be seen from Fig. 9, at fixed temperatureT when
the fieldhz increases, the time behavior ofR1std changes and
the quality of the fit with an exponential decay function gets
worse. At hz=0.7J for T=3.8J/kB the system is actually in
the wetting regime, at least the semi-infinite system. If one
further increases the system size, athz=0.7J and T
=3.8J/kB, one finds that the time behavior of the first layer
radius changes to an exponential growth function.

For low and negative surface fields, i.e., forhzø0.1J, two
regimes are observed in the time behavior ofR1std. At first
R1std decreases witht (see Fig. 9,hz=−0.1J,0J) and then
there is a time interval where again its behavior is well de-
scribed by an exponential decay function. The same holds for
the time behavior of the cosine of the contact angle. For low
values of the field it is difficult to determinetr and tcosu

correctly. For the temperatures and positive surface fields
considered we find that the base radius relaxes slower than
the cosine of the contact angle, i.e.,tcosu,tr. For example
we find that typical relaxation times(in MCS per site) are as
follows: for hz=0.5J, tcosu=9120 and tr =15684; for hz

=0.3J, tcosu=17500 andtr =24287; while for hz=0J we
havetcosu=72785 andtr =36338.

From the exponential decay fits of the base radiusR1std
and cosu it follows that for times smaller thantcosu the
interface velocityv=dR1/dt is proportional to the driving
force Fdr~cosu0−cosustd, i.e., that the following equation
holds forR1:

dR1

dt
= bsT,hzdfcosu0 − cosustdg, s8d

wherebsT,hzd is a coefficient of proportionality andu0 is the
equilibrium contact angle. Let us recall that the molecular
kinetic model by Blakeet al. [27], in its linear form, relates
the base radius and the cosine of the contact angleu at time
t through the following equation:

FIG. 8. The averaged position of the interfaceRint in the sx,yd
plane as function ofx (both in lattice spacings) at the first layerz
=1 on a substrate with impurities is shown at several successive
values of the time. The black squares show the place of the impu-
rities and the arrows denote the direction of spreading.

FIG. 9. (Color online) The time(in MCS per site) evolution of
the base radiusR1std (in lattice spacings) at T=3.8J/kB in the case
(I) hy=hz for several values of the surface fieldhz, from bottom to
top: hz=−0.1J,0.0J,0.1J,0.3J,0.5J,0.7J. The dotted lines are the
best exponential decay fits. The inset shows the time behavior for
small times of the base radius athz=−0.1J.

FIG. 10. (Color online) The time(in MCS per site) evolution of
the cosine of the contact angle cosustd at T=3.8J/kB in the case(I)
hy=hz for several values of the surface fieldhz, from bottom to top:
hz=0.0J, solid circles;hz=0.3J, solid down triangles;hz=0.5J, solid
squares. The dotted lines are the best exponential decay fits.
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dR1

dt
=

g

z
scosu0 − cosud, s9d

wherez is the friction coefficient andg is the interface ten-
sion. So the Blake and Haynes molecular kinetic theory
gives a valid description of the initial stages of spreading of
the 3D IM drop. Comparing the two equations it follows that
the coefficient of proportionalitybsT,hzd=g /z. This relation
can be used in principle to determine the friction coefficient
z if the interface tensiong is known.

We studied also the mobility of the particles in the differ-
ent layers of the drop. The frequency for jumps at thez layer
in the positive(right) y direction(this is the direction of the
spreading of the drop) is defined as the average of the ratio of
the number of particles which have moved in the righty
direction at thez layer in one MCS per site over the total
number of particles in the system, i.e.,

fyrszd = kNyrszd/Npartl. s10d

In a similar way are defined the frequencies for jumps in the
z (up and down) and in thex (right and left) directions.
Typical distributions of the frequencies for jumps in the dif-
ferent layers at equilibrium are shown in Fig. 11. One can see
that in the bulk the different frequencies for jumps change
slightly and the values they have are very close. There are
significant differences at the end-layers and particularly in
the first layer, all the frequencies are higher, except for
fzdsz=1d which is zero of course. The frequencies for jumps
in the y direction(right and left) are slightly lower than inz
andx directions due to the existence of the interface. At the
end layers, i.e.,z.11 all the frequencies are slightly lower
due to the fact that there are less particles than in the bulk.
For high interaction with the substrate, e.g.,hz=0.5J, the
total mobility of the particles in the first layer is lower than

in the bulk, while for lower fields, e.g.,hz=0.2J,0.3J, it is
the opposite. We find also, see Fig. 12, that the frequencies
for jumps in the first layer decrease when the surface field
increases, i.e., the interactions with the substrate get stronger,
in agreement with the MD simulations by de Ruijteret al.
[28].

We have studied and plotted in Fig. 13 the temperature
dependence of the frequency for jumps in the spreading di-
rection fyr. As can be seen the temperature dependence is
well fitted by the following function:

FIG. 11. (Color online) The jump frequency [in
sMCS per sited−1] distributions in different layers are displayed in
the equilibrium state atT=3.8J/kB for hz=0.5J in the case(I) hy

=hz: fzd (empty squares), fzu (solid squares), fyr; fyl (solid up tri-
angles), andfxr; fxl (solid circles). The lines serve as a guide to the
eye.

FIG. 12. (Color online) The time(in MCS per site) dependence
is shown of the frequencyfysz=1d [in sMCS per sited−1] for jumps
in the y direction in the first layer, defined as the ratio of the real-
ized jumps in they direction over the attempted jumps in they
direction in the first layer in one MCS per site atT=3.8J/kB. The
four different lines are for different values of the surface fieldhz of
the substrate in the case(I) hy=hz, from top to bottom: hz

=0.1J,0.3J,0.5J,0.7J.

FIG. 13. (Color online) The frequency for jumps in the spread-
ing direction fyr [in sMCS per sited−1] versus the temperatureT (in
J/kB units) is shown athz=0.5J in the case(I) hy=hz. The dotted
line is the best fit by fsTd=p1T exps−p2/Td, where p1

=0.00143,p2=6.36.
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fyrsTd = 0.00143T exps− 6.36/Td. s11d

This temperature dependence is in agreement with the mo-
lecular kinetic theory of liquids by Eyringet al. [29] accord-
ing to which the equilibrium frequency of displacementsK0
is related to the molar activation free energyDGw through

K0 =
kBT

2p"
exps− DGw/NAkBTd, s12d

where NA is the Avogadro’s number and" is the Planck
constant. This expression for the frequency of displacements
enters into the Blake and Haynes theory of spreading.

IV. CONCLUSIONS

The MC simulations of the 3D IM on heterogeneous sub-
strates show that at low temperatures and low surface fields
there is a good agreement of the data with Cassie’s and Is-
raelachvili’s equations, the agreement with Israelachvili’s
equation being slightly better. At high temperatures and high
surface fieds there is a deviation from the Cassie’s and Is-
raelachvili’s equations. Then the concentration dependence
of the cosine of the contact angle is well described by a
power function.

The obtained temperature dependence of the contact angle
on homogeneous substrates is in a qualitative agreement with
the experimental results in[23].

We find that the time behaviors of the first layer radius
and the cosine of the local contact angle in certain interval of
values of the surfacehz field within the partial wetting re-
gime are well described by exponential decay functions.
From this it follows that the interface velocity is proportional
to the driving force:

dR1

dt
= bsT,hzdfcosu0 − cosustdg s13d

for times smaller than relaxation timetcosu. Thus the Blake
and Haynes molecular kinetic theory gives a valid descrip-
tion of the initial stages of spreading of the 3D IM drop.

We find also that the temperature dependence of the equi-
librium frequency for jumps in the spreading direction,fyr, is
consistent with the temperature dependence given by the
Blake and Haynes theory.

ACKNOWLEDGMENTS

N.C.P. gratefully acknowledges the hospitality of the Cen-
tre de Recherche en Modélisation Moléculaire and financial
support from FNRS which made this collaboration possible.

[1] K. Binder and D. Heermann,Monte Carlo Simulation in Sta-
tistical Physics(Springer-Verlag, Heidelberg, 1997).

[2] E. Cheng and C. Ebner, Phys. Rev. B47, 13808(1993).
[3] S. Tan, Colloids Surf., A148, 223 (1999).
[4] J. D. Coninck, Colloids Surf., A80, 131 (1993).
[5] J. D. Coninck, N. Fraysse, M. P. Valignat, and A. M. Cazabat,

Langmuir 9, 1906(1993).
[6] A. M. Cazabat, J. D. Coninck, S. Hoorelbeke, M. P. Valignat,

and S. Villette, Phys. Rev. E49, 4149(1994).
[7] F. Heslot, A. M. Cazabat, P. Levinson, and N. Fraysse, Phys.

Rev. Lett. 65, 599 (1990).
[8] F. Heslot, N. Fraysse, and A. M. Cazabat, Nature(London)

338, 640 (1989).
[9] J. D. Coninck, S. Hoorelbeke, M. P. Valignat, and A. M. Caza-

bat, Phys. Rev. E48, 4549(1993).
[10] J. D. Coninck, U. D’Ortona, J. Koplik, and J. R. Banavar,

Phys. Rev. Lett.74, 928 (1995).
[11] K. Kawasaki, Phys. Rev.145, 224 (1966).
[12] K. Kawasaki, inPhase Transitions and Critical Phenomena,

edited by C. Domb and M. S. Green(Academic, New York,
1972), Vol. 2.

[13] K. Binder, D. P. Landau, and A. M. Ferrenberg, Phys. Rev.
Lett. 74, 298 (1995).

[14] C. F. Baillie, R. Gupta, K. A. Hawick, and G. S. Pawley, Phys.

Rev. B 45, 10438(1992).
[15] A. Ferrenberg and D. P. Landau, Phys. Rev. B44, 5081

(1991).
[16] H. B. Tarko and M. E. Fisher, Phys. Rev. B11, 1217(1975).
[17] K. Binder, D. P. Landau, and D. M. Kroll, Phys. Rev. Lett.56,

2272 (1986).
[18] M. Hasenbusch and K. Pinn, Physica A192, 342 (1993).
[19] K. Binder, D. P. Landau, and S. Wansleben, Physica A40,

6971 (1989).
[20] K. Binder and D. P. Landau, Phys. Rev. B37, 1745(1988).
[21] K. Binder and D. P. Landau, Phys. Rev. B46, 4844(1992).
[22] G. Wulff, Z. Kristallogr. Mineral. 34, 449 (1901).
[23] M. de Ruijter, P. Kölsch, M. Voué, J. D. Coninck, and J. P.

Rabe, Colloids Surf., A144, 235 (1998).
[24] D. Urban, K. Topolski, and J. D. Coninck, Phys. Rev. Lett.76,

4388 (1996).
[25] A. B. D. Cassie, Discuss. Faraday Soc.3, 11 (1948).
[26] J. Israelachvili and M. Gee, Langmuir5, 288 (1989).
[27] T. D. Blake and J. M. Haynes, J. Colloid Interface Sci.30, 421

(1969).
[28] M. J. de Ruijter, T. D. Blake, and J. D. Coninck, Langmuir15,

7836 (1999).
[29] S. Gladstone, K. J. Laidler, and H. J. Eyring,The Theory of

Rate Processes(McGraw-Hill, New York, 1941).

DROP SPREADING ON HETEROGENEOUS SUBSTRATES… PHYSICAL REVIEW E 70, 046102(2004)

046102-7


