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We present numerical schemes to integrate stochastic partial differential equations which describe the spatio-
temporal dynamics of reaction-diffusion problems under the effect of internal fluctuations. The schemes con-
serve the non-negativity of the solutions and incorporate the Poissonian nature of internal fluctuations at small
densities, their performance being limited by the level of approximation of density fluctuations at small scales.
We apply the schemes to two different aspects of the Reggeon model, namely, the study of its nonequilibrium
phase transition and the dynamics of fluctuating pulled fronts. In the latter case, our approach allows us to
reproduce microscopic properties quantitatively within the continuum model.
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Continuum representations of the dynamics of spatially
extended systems subject to fluctuations is a very active area
of research in statistical mechanics and nonlinear dynamics
[1–5]. This is because they are frequently more tractable than
discrete models, they can be put forward using simple sym-
metry arguments and applying conservation laws, and there-
fore they provide minimal representations of the observed
phenomena. Important instances are Langevin equations for
the relaxational dynamics of equilibrium models[1], growth
interface phenomena[4], or coarse-grained descriptions of
microscopic reaction-diffusion(RD) problems[5,6]. Despite
their apparent simplicity, most of these models cannot be
solved analytically and one has to resort to approximate ana-
lytical techniques, or to numerical integration of the stochas-
tic time-dependent set of equations using well established
algorithms[7]. In the important instance of RD systems sub-
ject to internal fluctuations the configurations are given by a
non-negativedensity fieldrsx,td subject to fluctuations of
typical strengthÎrsx,td which accounts for thePoissonian
fluctuationsof the number of particles atx [5]. Unfortu-
nately, standard algorithms fail to guarantee both the essen-
tial non-negativity ofrsx,td and the Poissonian character of
its fluctuations. Our purpose in this paper is to propose effi-
cient numerical algorithms to overcome these problems
which will allow us to prove the importance of internal fluc-
tuations and to check the relevance of their correct descrip-
tion at different scales.

In this paper we concentrate in the so-called Reggeon
model, which in one dimension is given by[6]

] r

] t
= D

]2r

] x2 + r − r2 + Îsr hsx,td, s1d

wherehsx,td is a Gaussian white noise. The Reggeon model
can be obtained under some approximations from the micro-
scopic Master equations of RD microscopic models using
well-known techniques[5,8]. Heuristically, Eq.(1) can also
be considered as the simplest dynamical equation for a
coarse-grained density field withs=1/N, N being the mean-

field number of particles per site. The Reggeon model pro-
vides a minimal representation of the directed percolation
(DP) universality class, which is currently regarded as a
paradigm of nonequilibrium systems with absorbing states
[6]: if r̄std is the mean density spatial average, there exists a
critical value ofs for which (1) undergoes a transition be-
tween an active phase limt→` r̄stdÞ0 and an absorbing
phasefor which limt→` r̄std=0.

In addition, whens=0 Eq. (1) becomes the so-called
Fisher-Kolmogorov-Petrovsky-Piscounov(FKPP) equation
[9], which displayspulled frontsin which the active phase
invades the absorbing state[10–13]. Simulations of micro-
scopic particle models[14,11] have shown that the dynamics
of pulled fronts are extremely sensitive to microscopic fluc-
tuations atr.1/N, leading to strong corrections in the front
properties when compared with those of the FKPP equation.
Since Eq.(1) is usually held as a continuum description of
some particle models at the mesoscopic level(i.e., whenr
@1/N) one might doubt that the Reggeon model describes
correctly the behavior of pulled fronts subject to internal
fluctuations. The efficiency and accuracy of the numerical
schemes proposed here will allow us to show that Eq.(1)
indeed incorporates the ingredients to explain(even quanti-
tatively) the phenomena observed in particle models, thus
providing also a minimal representation of pulled fronts sub-
ject to internal fluctuations.

To simplify the discussion, let us consider the simplest
possible case for the dynamics of a density subject to internal
fluctuations:

dr

dt
= ar + Îsr hstd. s2d

Typical explicit or implicit methods based on stochastic Tay-
lor approximations of Eq.(2) immediately run into problems,
since they do not conserve the non-negativity ofrstd. For
example, the Euler approximation is[7]

rt+Dt = rt + art Dt + Îsrt DWt, s3d

where DWt are random Gaussian numbers with zero mean
andDt variance. Thus, there is a finite probability thatrt+Dt
becomes negative, and the numerical integration comes to a*Electronic address: emoro@math.uc3m.es
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halt. In order to overcome this problem, Dickman proposed
an interesting solution based on the Euler scheme(3) and the
discretization of the possible values ofrt as multiples ofr*

=OssDtd [16]. Despite its success in reproducing the univer-
sality class exponents of DP using Eq.(1) and its application
to other situations[16], Dickman’s algorithm is not really a
numerical integration of a continuum model. Moreover, no
general study of its convergence and applicability for other
situations has been done yet. A more technical solution was
proposed by Schurz and co-workers[17] using balanced im-
plicit methods(BIM ), in which implicit Euler methods are
used to impose the non-negativity of the solution. In the case
of Eq. (2) the BIM scheme reads[18]

rt+Dt =
rt + Dtrt + ÎsrtsDWt + uDWtud

1 +Îs/rtuDWtu
, s4d

which explicitly implements the constraintrt+Dtù0, and re-
duces to the Euler algorithm(3) up to orderOsDtd [17,19].
The BIM scheme is known to have the same order of con-
vergence as the Euler algorithm, namely, the error isOsÎDtd
for approximations of individual trajectories andOsDtd for
moments ofrstd [7,17].

Another approach was taken by Pechenik and Levine[12]
employing the exact conditional probability density(CDF)
Psrt+Dt urtd for the stochastic process satisfying(2), which
has been known for some time in economy as the Cox-
Ingersoll-Ross process[20]. The CDF can be expressed in
terms of modified Bessel functions and, although it can be
sampled numerically using rejection or transformation meth-
ods[12], it is computationally expensive. Here we propose a
more efficient procedure, which is based on the following: if
we define rdstd=oi=1

d xi
2std, where xistd satisfies dxi /dt

=axi /2+ss /4d1/2histd with histd independent white noises,
then drd/dt=ds /4+ard+ssrdd1/2hstd, which coincides with
Eq. (2) in the limit d→0. Since the equation for eachxistd is
linear, rdstd is the sum of squares of Gaussian random num-
bers with nonzero mean. Thus its probability distribution is
related to thex2 distribution withd degrees of freedom[21].
Specifically, we find that rt+Dt=r0st+Dtd=x80

2sld / s2kd,
wherek=2a/ fsseaDt−1dg, l=keaDtrt, andx80

2sld is a random
number with a noncentralx2 distribution with zero degrees
of freedom and noncentrality parameterl, whose cumulative
distribution function is given by[15,19,21]

Pfx0
2sld ø xg = o

j=1

`
sl/2d je−l/2

j !
Pfx2j

2 ø xg + e−l/2Qsxd,

s5d

wherex2j
2 is ax2 random number with 2j degrees of freedom

and Qsxd is the step function. Equation(5) is important for
two reasons:(i) it shows that there is a finite probability
Psrt+Dt=0d=e−l/2 for getting into the absorbing state, and
more importantly(ii ) it reveals that the probability distribu-
tion of x80

2sld is a linear combination ofx2 probability dis-
tributions with Poisson weights. This fact can be exploited to
generatert+Dt efficiently: if we chooseK from a Poisson
distribution with meanl /2, then

rt+Dt =
1

2k50, if K = 0,

o
i=1

2K

zi
2, if K Þ 0,

s6d

where zi are independent Gaussian random numbers with
zero mean and unit variance.

Another interesting feature of the exact CDF for Eq.(2) is
the fact that it converges asymptotically towards the Euler
approximation(3) whenl.rt / ssDtd@1 [19,21]. However,
for smalll, the Euler approximation underestimates the large
fluctuations present in the exact solution of Eq.(2). This
effect, which can be seen in Fig. 1, is related to the fact that
the Gaussian approximation(3) of a Poisson random number
(2) is only valid when the mean value is large enough[19].
The failure of approximations similar to Eqs.(3) or (4) to
reproduce large density fluctuations at small values ofl in-
troduces an effective microscopic cutoffr* =OssDtd in the
numerical simulations below which these approximations
break down.

Although the scheme(4) can be easily generalized to in-
tegrate equations like such as(1), this is not the case for the
exact sampling of the CDF for Eq.(2). Thus, asplitting-step
strategy for integrating Eq.(1) was proposed in[12], where
the time intervalDt is split into two steps:(i) given rt, we
use Eq.(6) to integrate Eq.(2) and get an intermediate value
r̃t+Dt; (ii ) we take r̃t+Dt as the initial condition for]r /]t
=]2r /]x2−r2, producingrt+Dt with the aid of any determin-
istic numerical algorithm. It can be proved that this splitting
step method(SSM) converges towards the solutions of Eq.
(1), its order of convergence beingOsDtd both for realiza-
tions and for moments ofrstd [19]. This means that the
splitting-step method provides better approximations than
those based on Euler methods(like the Dickman and BIM
algorithms) for any realization of the noise. This has signifi-
cant consequences when characterizing the critical point, as
will be shown below. In the following we apply the two
methods proposed here[BIM and the SSM using Eq.(6)]

FIG. 1. Conditional probability density as a function ofrt+Dt for
Eq. (2) with Dt=0.1,rt=1 (left), andrt=10−2 (right). Solid lines are
the exact solution from Eq.(5), while dashed lines are the approxi-
mations obtained using the Euler scheme(3).
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and the Dickman algorithm to the two problems for which
Eq. (1) is archetypal[22].

Study of the DP phase transition. To test the proposed
algorithms, we study the well known nonequilibrium phase
transition that the Reggeon model displays for moderate val-
ues ofs [16]. At the critical point, the mean average density
r̄std;s1/Ldoxkrsx,tdl decays like a power lawr̄, t−d with
d.0.1595[6]. As in [16], we identify the critical point as the
value ofs for which we observe such a power law decay in
r̄std. Results for the different algorithms are shown in Fig. 2,
where we report the value ofsc as a function of the time step
Dt. As expected, the order of convergence of the Dickman
and BIM methods isOsÎDtd, while the SSM hasOsDtd order
of convergence. The improvement in the order of conver-
gence comes with a price: the computer time needed for our
numerical simulations at the critical point(see Table I) indi-
cates that methods based on Euler approximations, despite
having an effective microscopic cutoff atr* =OssDtd, are
faster than the SSM, and thus could provide better strategies
for integrating numerically equations for RD models close to
the critical point, where only accurate approximations of
large length and time scalesare needed.

Dynamics of fluctuating pulled fronts. Whens=0, Eq.(1)

displays a wavelike solution(front) which travels with ve-
locity v0=2ÎD (provided sharp enough initial conditions are
given) [9,10]. The dynamics of thispulled front is severely
affected when microscopic fluctuations close to the absorb-
ing stater=0 are considered. Specifically, it has been ob-
served in particle models whose mean field limit is given by
the FKPP equation, that the front speed is universally modi-
fied as[11,10,14]

vN ; lim
t→`

kxfstdl
t

. v0 − v0
C

ln2N
, s7d

wherexfstd is the instantaneous position of the front,C is a
positive constant, andN is the number of particles per site
[14]. Moreover, the pulled front diffuses with diffusion
constant

Df,N ; lim
t→`

ksxfstd − vNtd2l
2t

.
C8

ln3N
, s8d

whereC8 is a positive constant. Whereas the velocity correc-
tion can be easily understood because microscopic fluctua-
tions atr.N−1 provide an effective cutoff in the dynamics
[11], the diffusion coefficient seems to depend on the exis-
tence of relatively large fluctuations in the density atr
.N−1 and on their slow relaxation by the pulled front
dynamics[14].

As mentioned in the Introduction, one might doubt that
the large microscopic fluctuations atr=N−1 observed in par-
ticle models are correctly reproduced by an equation similar
to Eq. (1). Note, however, that the relationship between par-
ticle models and the Reggeon field model is deeper than at
the coarse-grained level. Specifically, in[13] it was shown
that there is anexact duality transformationbetween the
A↔A+A microscopic particle model and the so-called sto-
chastic FKPP equation, which is similar to the Reggeon
model but with aÎsrs1−rdhsx,td noise term. Fors!1, the
noise is only relevant at very small values ofr where
Îsrs1−rd.Îsr and thus, both the Reggeon model and the
stochastic FKPP should provide similar results.

Our results for the front diffusion coefficient, obtained by
numerical integration of Eq.(1), are reported in Fig. 3 to-
gether with those of hybrid Monte Carlo results for the
A↔A+A particle model[14]. As we can see, for a given
time stepDt, the SSM reproduces the ln−3 N results for par-
ticle models(8), thus confirming the duality relationship be-
tween the particle model and the continuum equation even at
the quantitative level. However, the other algorithms are
more consistent with a ln−6 N scaling which, interestingly,
can be obtained through standard perturbation techniques
based on Gaussian approximations for the fluctuations of the
front position[10]. The reason for this difference among the
various schemes is related to the fact that both the Dickman
and BIM algorithms are based on Gaussian approximations
for the density fluctuations which are underestimated for
r,r* =OssDtd, while only the SSM reproduces exactly the
large density Poissonian fluctuations(also observed in par-
ticle models) when r is small. This does not mean that the
Dickman and BIM algorithms do not converge in this case:
specifically, if we takeDt→0 we observe that the value of

FIG. 2. Left: convergence analysis for the different algorithms.
Points are the critical value ofs as a functionDt (below) and of
Dt1/2 (up) while dashed lines are linear fits to the data. The system
size isL=400. Right: time dependence of the mean densityr̄std at
the critical points=scsDtd with Dt=10−2 obtained using the differ-
ent algorithms(lines are shifted vertically for clarity). The thin line
is the power lawr̄std, t−d with d=0.1595. The system size isL
=1000.

TABLE I. Comparison of CPU time ats=scsDtd with Dt
=10−2 andL=400 for the different algorithms in Fig. 2, normalized
to that of Dickman’s algorithm.

Method sc Trun

Dickman 2.55 1

BIM 1.61 1.2

Splitting step 1.45 7.6
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the diffusion coefficient approaches that of the hybrid MC
simulations for theA↔A+A (see Fig. 3). Thus the applica-
bility of the Dickman and BIM algorithms is limited in this
case since they fail to reproduce fluctuations atsmall density
and time scales.

In summary, we have presented strategies for integrating
stochastic(partial) differential equations for models of RD
subject to internal fluctuations. While all of them preserve
the non-negativity of the solution, algorithms based on

Gaussian approximations introduce a microscopic cutoff be-
low which density fluctuations are not correctly accounted
for. This is not important when the system properties are
dominated by the dynamics of large length and time scales
(as in critical behavior), and thus, schemes based on the Eu-
ler approximation suffice to numerically integrate equations
such as Eq.(1). However, when the observed phenomena are
sensitive to microscopic fluctuations, only algorithms which
take into account the exact sampling of density fluctuations
at small scales are computationally efficient. Moreover, our
results validate continuum models such as Eq.(1) to study
the dynamics of fluctuating pulled fronts and corroborate the
importance of Poissonian large fluctuations of the density at
small scales. We hope that our results will be used in the
future for the analytical understanding of pulled front
dynamics[10,14].

Finally, we mention that the methods presented here(the
BIM and SSM) can be easily extended to other situations in
which the relevant degrees of freedom are non-negative
[15,19], such as the study of density fluctutions in more gen-
eral RD problems[5], the understanding of critical phenom-
ena of systems subject to external and/or multiplicative noise
[e.g., withrhsx,td noises] [2,3], or the nonlinear modeling of
the behavior of interest rates in the economy[17,20].
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