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We present numerical schemes to integrate stochastic partial differential equations which describe the spatio-
temporal dynamics of reaction-diffusion problems under the effect of internal fluctuations. The schemes con-
serve the non-negativity of the solutions and incorporate the Poissonian nature of internal fluctuations at small
densities, their performance being limited by the level of approximation of density fluctuations at small scales.
We apply the schemes to two different aspects of the Reggeon model, namely, the study of its nonequilibrium
phase transition and the dynamics of fluctuating pulled fronts. In the latter case, our approach allows us to
reproduce microscopic properties quantitatively within the continuum model.
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Continuum representations of the dynamics of spatiallyfield number of particles per site. The Reggeon model pro-
extended systems subject to fluctuations is a very active araades a minimal representation of the directed percolation
of research in statistical mechanics and nonlinear dynamic®P) universality class, which is currently regarded as a
[1-5]. This is because they are frequently more tractable thaparadigm of nonequilibrium systems with absorbing states
discrete models, they can be put forward using simple symfg]: if p(t) is the mean density spatial average, there exists a
metry arguments and applying conservation laws, and theresritical value of o for which (1) undergoes a transition be-
fore they provide minimal representations of the observedween an active phase ljm, p(t)#0 and anabsorbing
phenomena. Important instances are Langevin equations f@hasefor which lim,_., p(t)=0.
the relaxational dynamics of equilibrium modél§, growth In addition, wheno=0 Eq. (1) becomes the so-called
interface phenomenpd], or coarse-grained descriptions of Fisher-Kolmogorov-Petrovsky-PiscounafFKPP) equation
microscopic reaction-diffusiotRD) problems[5,6]. Despite  [9], which displayspulled frontsin which the active phase
their apparent simplicity, most of these models cannot benvades the absorbing stat#0—13. Simulations of micro-
solved analytically and one has to resort to approximate anacopic particle modelgl4,11] have shown that the dynamics
lytical techniques, or to numerical integration of the stochasof pulled fronts are extremely sensitive to microscopic fluc-
tic time-dependent set of equations using well establishegLations ajp=1/N, leading to strong corrections in the front
algorithms[7]. In the important instance of RD systems sub-properties when compared with those of the FKPP equation.
ject to internal fluctuations the configurations are given by asince Eq.(1) is usually held as a continuum description of
non-negativedensity field p(x,t) subject to fluctuations of some particle models at the mesoscopic lgvel, whenp
typical strengthy/p(x,t) which accounts for th&oissonian > 1/N) one might doubt that the Reggeon model describes
fluctuationsof the number of particles at [5]. Unfortu-  correctly the behavior of pulled fronts subject to internal
nately, standard algorithms fail to guarantee both the esseffluctuations. The efficiency and accuracy of the numerical
tial non-negativity ofp(x,t) and the Poissonian character of schemes proposed here will allow us to show that @&g.
its fluctuations. Our purpose in this paper is to propose effiindeed incorporates the ingredients to explgxen quanti-
cient numerical algorithms to overcome these problemgatively) the phenomena observed in particle models, thus
which will allow us to prove the importance of internal fluc- providing also a minimal representation of pulled fronts sub-
tuations and to check the relevance of their correct descrigect to internal fluctuations.

tion at different scales. To simplify the discussion, let us consider the simplest
In this paper we concentrate in the so-called Reggeopossible case for the dynamics of a density subject to internal
model, which in one dimension is given p§] fluctuations:
ap _Pp — dp —
—=D—S+p-p*+\ x1), 1 —-=ap+op n(t). 2
St Pgetrr Vap 7(x,1) 1) b p 7(t) (2

where 7(x,t) is a Gaussian white noise. The Reggeon modellypical explicit or implicit methods based on stochastic Tay-
can be obtained under some approximations from the micrdor approximations of Eq.2) immediately run into problems,
scopic Master equations of RD microscopic models usingsince they do not conserve the non-negativityptt). For
well-known technique$5,8]. Heuristically, Eq.(1) can also  example, the Euler approximation [ig]

be considered as the simplest dynamical equation for a —

coarse-grained density field with=1/N, N being the mean- Prat= prtapy At+Vop AW, 3

where AW, are random Gaussian numbers with zero mean
and At variance. Thus, there is a finite probability thata,
*Electronic address: emoro@math.uc3m.es becomes negative, and the numerical integration comes to a
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halt. In order to overcome this problem, Dickman proposed 10"
an interesting solution based on the Euler sché3pand the

discretization of the possible values gfas multiples ofp" i
=O(oAt) [16]. Despite its success in reproducing the univer- Lok
sality class exponents of DP using Effj) and its application E

-

to other situationg16], Dickman’s algorithm is not really a <

—

numerical integration of a continuum model. Moreover, no <
. S L107E

general study of its convergence and applicability for other o~ [

situations has been done yet. A more technical solution waﬁa:

proposed by Schurz and co-workéis] using balanced im-

plicit methods(BIM), in which implicit Euler methods are 107k

used to impose the non-negativity of the solution. In the case

of Eqg. (2) the BIM scheme readd 8]

poon = pi+ Atp+ Vop (AW, + [AW])
o 1+\olplaw|

, (4 Prias

. L ) FIG. 1. Conditional probability density as a functionf,; for
which explicitly implements the constraipf., =0, and re-  gq (2) with At=0.1,p,=1 (left), andp,= 1072 (right). Solid lines are
duces to the Euler algorithit8) up to orderO(At) [17,19.  the exact solution from Eq5), while dashed lines are the approxi-
The BIM scheme is known to have the same ordergf CONmations obtained using the Euler sche(@ge
vergence as the Euler algorithm, namely, the err@(sAt)

for approximations of individual trajectories af@(At) for 0 if K=0
moments ofp(t) [7,17). 1| ’
. - 6
Another approach was taken by Pechenik and Lejli2g Pt+at oK 2 le if K£0, (6)

employing the exact conditional probability dens{@DF)
P(pusatl py) for the stochastic process satisfyi@), which
has been known for some time in economy as the CoxWwherez are independent Gaussian random numbers with
Ingersoll-Ross proces®0]. The CDF can be expressed in Z€ro mean and unit variance.

terms of modified Bessel functions and, although it can be Another interesting feature of the exact CDF for E2).is
sampled numerically using rejection or transformation meththe fact that it converges asymptotically towards the Euler
ods[12], it is computationally expensive. Here we propose a@pproximation(3) when\ = p,/(cAt)>1 [19,21). However,
more efficient procedure, which is based on the following: iffor small\, the Euler approximation underestimates the large
we define rd(t):zidzl xiz(t), where x;(t) satisfies dx/dt fluctuations present in the exact solution of K#). This
=ax/2+(a/4)Y2y(t) with 7(t) independent white noises, €ffect, which can be seen in Fig. 1, is related to the fact that
then dry/dt=da/4+arg+(ory)27(t), which coincides with ~the Gaussian approximati@8) of a Poisson random number
Eq.(2) in the limit d— 0. Since the equation for eaafit) is (2 is only valid when the mean value is large enoug#].
linear, ry(t) is the sum of squares of Gaussian random num- N€ failure of approximations similar to Eqe3) or (4) to

bers with nonzero mean. Thus its probability distribution isrepdroduce Iargfcfa d(.ansity.ﬂuctuatipns at STa" vAaIugs (:
related to they? distribution withd degrees of freedore1], ~ troduces an effective microscopic cutgff=0(aAt) in the

Specifically, we find that pHAFFo(t+At):X’§(?\)/(2k), numerical simulations below which these approximations

, . break down.
wherek=2a/[ (e~ 1)], A=ke™{p, andy’3(\) is a random . . .
number with a noncentrg}? distribution with zero degrees Although the schemé4) can be easily generalized to in-

; : tegrate equations like such @b, this is not the case for the
of freedom and noncentrality paramekgmwhose cumulative : o
distribution function is giver?t?y[lS 19,21 exact sampling of the CDF for ER). Thus, asplitting-step
T strategy for integrating Eq1) was proposed iil2], where

i=1

* (N2)ieN? the time intervalAt is split into two steps(i) given p;, we
PN <x]=> fp[xgj < x]+eM?0(x), use Eq(6) to integrate Eq(2) and get an intermediate value
j=1 P (i) we takepa; as the initial condition fordp/at

(5)  =&plax*—p? producingp s with the aid of any determin-
istic numerical algorithm. It can be proved that this splitting

whereys: is ax? random number with Rdegrees of freedom  step method SSM) converges towards the solutions of Eq.
and O(x) is the step function. Equatiof®) is important for (1), its order of convergence bein@(At) both for realiza-
two reasons{i) it shows that there is a finite probability tions and for moments op(t) [19]. This means that the
Plpuar=0)=€2 for getting into the absorbing state, and splitiing-step method provides better approximations than
more importantly(ii) it reveals that the probability distribu- those based on Euler methodie the Dickman and BIM
tion of x'2(\) is a linear combination of? probability dis-  algorithmg for any realization of the noise. This has signifi-
tributions with Poisson weights. This fact can be exploited tocant consequences when characterizing the critical point, as
generatep.,,; efficiently: if we chooseK from a Poisson will be shown below. In the following we apply the two
distribution with mean\/2, then methods proposed hef@IM and the SSM using Eq6)]
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Atl/z displays a wavelike solutio(front) which travels with ve-
R J— T —QJ I LB B B AL locity vo=2\D (provided sharp enough initial conditions are
9/’ E R H10° given) [9,10. The dynamics of thigpulled frontis severely
F - 3 ] affected when microscopic fluctuations close to the absorb-
ng 3 ing statep=0 are considered. Specifically, it has been ob-
I P _0_’9_,9, E served in particle models whose mean field limit is given b
E 0 o 3 p g y
2 the FKPP equation, that the front speed is universally modi-
- 1F E =) .
< isE—t——t—+—1+—+H =  fied as[11,10,14
\,b B I ~
o 4 B ] im (1)) c )
\\ = = v - v 1
1.2 N \E\\ - —— M \ '\\ . . e .
[ Q Dickman e ] T Dickman N wherex(t) is the instantaneous position of the froftjs a
Mg Splitting-step \\: ----- Splitting-step \ positive constant, anlll is the number of particles per site
Y R R T T 11)1 1:)2 1;)‘ e [14]. Moreover, the pulled front diffuses with diffusion
At t constant
2
FIG. 2. Left: convergence analysis for the different algorithms. D« = lim ((X¢(t) — ont)9) - c’ (8)
Points are the critical value af as a functionAt (below) and of fN t—oo 2t N3N’

Atlf2 (up) while dashed lines are linear fits to the data. The system . . .
size isL=400. Right: time dependence of the mean dengity at whereC’ is a positive constant. Whereas the velocity correc-

the critical pointo=o(At) with At=102 obtained using the differ- tion can be easily understood because microscopic fluctua-

ent algorithms(lines are shifted vertically for clarily The thin line  tions atp=N"* provide an effective cutoff in the dynamics

is the power lawp(t)~t™® with 5=0.1595. The system size Is  [11], the diffusion coefficient seems to depend on the exis-

=1000. tence of relatively large fluctuations in the density @t
=N and on their slow relaxation by the pulled front

and the Dickman algorithm to the two problems for which dynamics(14]. . _

Eq. (1) is archetypa[22]. As mentioned in the Introduction, g?e might doubt that
Study of the DP phase transitioffo test the proposed the large microscopic fluctuations @&N"" observed in par-
algorithms, we study the well known nonequilibrium phaset'de models are correctly reproduced by an equation similar
transition that the Reggeon model displays for moderate val® Ed-(1). Note, however, that the relationship between par-
ues of [16]. At the critical point, the mean average density il models and the Reggeon field model is deeper than at
P =(1/L)S(p(x,1)) decays like a power laj~t° with the coarse-grained level. Specifically, [ib3] it was shown
5=0.1595[6]. As in [16], we identify the critical point as the that there is arexact duality transformatiorbetween the

value of o for which we observe such a power law decay inA<>A+A microscopic particle model and the so-called sto-
p(t). Results for the different algorithms are shown in Fig. 2,chast|c FKP_P e(aMWhlch IS similar to the Reggeon
where we report the value of. as a function of the time step quel .bUt with a/op(1=p) 7(x, t) noise term. For <1, the
At. As expected, the order of convergence of the Dickmarf!2iS€_is_only relevant at very small values pfwhere

and BIM methods i©)(VA), while the SSM ha@(At) order  VoP(1=p)=\op and thus, both the Reggeon model and the
stochastic FKPP should provide similar results.

of convergence. The improvement in the order of conver- e 7 .
gence comes with a price: the computer time needed for our Our results for the front diffusion coefficient, obtained by

numerical simulations at the critical poifgee Table)l indi- numerica! integration of Eq(.l), are reported in Fig. 3 to-
cates that methods based on Euler approximations, despi@¢ther with those of hybrid Monte Carlo results for the
having an effective microscopic cutoff af =O(cAt), are < A+A particle model[14]. As we can see, for a given

faster than the SSM, and thus could provide better strategiergne stepAt, the SSM reproduces the"fN results for par-

for integrating numerically equations for RD models close totICIe models(8), thus confirming the duality relationship be-

the critical point, where only accurate approximations Ofi\r/]veen thet.f"’}[.rt'del mo|de|l_|and the ctohntmutﬁm eqluat|_?r:1 even at
large length and time scaleare needed. e quantitative level. However, the other algorithms are

Dynamics of fluctuating pulled front&vheno=0, Eq.(1) more consist_ent with a T8N scaling which, in_terestingly,
can be obtained through standard perturbation techniques
based on Gaussian approximations for the fluctuations of the
front position[10]. The reason for this difference among the
various schemes is related to the fact that both the Dickman
and BIM algorithms are based on Gaussian approximations
for the density fluctuations which are underestimated for

TABLE |I. Comparison of CPU time av=o.(At) with At
=102 andL =400 for the different algorithms in Fig. 2, normalized
to that of Dickman'’s algorithm.

Method 7 Trun p<p =0O(cAt), while only the SSM reproduces exactly the
Dickman 2.55 1 large density Poissonian fluctuatio@so observed in par-

BIM 1.61 1.2 ticle model$ when p is small. This does not mean that the
Splitting step 1.45 76 Dickman and BIM algorithms do not converge in this case:

specifically, if we takeAt— 0 we observe that the value of
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FIG. 3. Front diffusion coefficient as a function of for the
different algorithms and differenAt, compared with hybrid MC
simulations of the microscopic modél«— A+A [14]. The solid
(dashedl line is the log® N (log™® N) power law.
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Gaussian approximations introduce a microscopic cutoff be-
low which density fluctuations are not correctly accounted
for. This is not important when the system properties are
dominated by the dynamics of large length and time scales
(as in critical behavigr and thus, schemes based on the Eu-
ler approximation suffice to numerically integrate equations
such as Eq(1). However, when the observed phenomena are
sensitive to microscopic fluctuations, only algorithms which
take into account the exact sampling of density fluctuations
at small scales are computationally efficient. Moreover, our
results validate continuum models such as #&g.to study

the dynamics of fluctuating pulled fronts and corroborate the
importance of Poissonian large fluctuations of the density at
small scales. We hope that our results will be used in the
future for the analytical understanding of pulled front
dynamics[10,14.

Finally, we mention that the methods presented lidre
BIM and SSM can be easily extended to other situations in
which the relevant degrees of freedom are non-negative
[15,19, such as the study of density fluctutions in more gen-

the diffusion coefficient approaches that of the hybrid MCera| RD problemg5], the understanding of critical phenom-

simulations for theA— A+A (see Fig. 3. Thus the applica-
bility of the Dickman and BIM algorithms is limited in this
case since they fail to reproduce fluctuationsratll density

and time scales

ena of systems subject to external and/or multiplicative noise
[e.g., withp7(x,t) noise$ [2,3], or the nonlinear modeling of
the behavior of interest rates in the econofhy,2Q.

In summary, we have presented strategies for integrating We are grateful to E. Brunet, R. Cuerno, C. Doering,

stochastic(partia) differential equations for models of RD

H. Schurz, and P. Smereka for comments and discussions.

subject to internal fluctuations. While all of them preserveFinancial support is acknowledged from the Ministerio de
the non-negativity of the solution, algorithms based onCiencia y TecnologigSpair).
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