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Stochastic analysis of the Lotka-Volterra model for ecosystems
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A stochastic Lotka-Volterra-type model for the interaction between the preys and the predators in a random
environment is investigated. A self-competition mechanism within the prey population itself is also included.
The effect of a random environment is modeled as random variations in the birth rate of the preys and the death
rate of the predators. The stochastic averaging procedure of Stratonovich and Khasminskii is applied to obtain
the probability distributions of the system state variables at the state of statistical stationarity. Asymptotic
behaviors of the system variables are discussed, and the mean transition time from an initial state to a critical
state is obtained. Effects on the ecosystem behaviors of the self-competition term, of the random variation in
the prey birth rate, and of the random variation in the predator death rate are investigated.
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[. INTRODUCTION without limit, contrary to what is expected of nature. Sec-
ondly, changes in the environment are always present which
re not accounted for in the governing equations. To improve
the classical Lokta-Volterra model, M&B] added a self-
competition term to the prey equation and a Gaussian white-
noise variation in the prey birth rate. He then used a pertur-

A well-known mathematical model describing the behav-
iors of two interacting species, referred to hereafter as pre
(or hosy and predatorgor parasitg, is the Lotka-Volterra
model [1-5], governed by the following differential equa-

tions: ; : . .
bation scheme and a path-integration approach to obtain
X1 = X1(@a—bxy), approximate solutions for the associated Fokker-Planck
equation(e.g.,[6]), governing the probability densities of the
Xo = Xo(— C + fXy), (1) prey and predator populations at both the transient and sta-

. . tionary states. Arnolet al.[7] introduced a random variation
where x, and x, are the population densities Of Preys andin the prey birth rate, and modeled the variation as a Gauss-
predators, respectively, aralb,c, and f are positive con- i, \hite noise in the It6 sensg8], but without a self-
stants. Equationgl) indicate that the prey population would ¢ oetition term in the prey equation. Khasminskii and Kle-
grow exponenti_ally without the presence of the predatorsbaner[g] modified the model of Amnoldet al. by adding
a}nd th‘? population of the pre:dators WOUId decrease' EXPONeUL other Gaussian white noise to the predator death rate, and
tially without the preys. The interactive termgx, provide @ jiernreted both Gaussian white noises in the Stratonovich
balance between the two populat|_o_ns_. sensdg10], namely, in the sense of a limit of a physical noise.

System(1) has an_unstap!e nghbnum stag 0, anda |, both [7,9], asymptotic analyses were conducted to show
stable nonasymptotic equilibrium state/f,a/b). It pos- that no stationary state exists for the system. Dimentberg

and three limit cycles, corresponding to three posikwel-
ues, determined with system paramet@+r.9,b=1,c=0.5,
and f=0.5 (all parameter values are nondimensionalized in 1
the paper. It shows that the prey and predator populations
are changing periodically with time, along a path in the

sesses a first integral [11,12 used the same model as M8}, and found an exact
fx bx
r(xl,xz):fxl—c—cln?l+bx2—a—aln?2:k, (2 3t
. ) C k=0.654

wherek is a non-negative constant. It can be shown that 25
r(x;,%,)=0 at the point(c/f,a/b), thatr(x;,x,)=0 for any C
positive x; and x,, and thatr(x;,x,) =k describes a periodic 2k
trajectory, namely a limit cycle of systeiil). Depicted in X2 [
Fig. 1 are the equilibrium poin®, corresponding tk=0, 153_

0.5F
phase plandthe x;-x, plane, which depends only on the C
initial states ofx; andx,. It also shows that a high level of L
prey density and/or predator density can lead to very low % 1 2 3 4

levels for both, even in an invariant environment.
System(1) fails to describe some basic phenomena of a ' X1
realistic prey-predator ecosystem in at least two ways. First,
in the absence of the predators, the prey population will grow  FIG. 1. Equilibrium point and limit cycles of syste(i).
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solution for the stationary probability density. Rozenfeld 3r
al. [13] considered the case of both periodic and randon C
variations in the prey birth rate, and carried out a Monte o550 s=0.1
Carlo type simulation to investigate the possibility of sto- T
chastic resonance of the system. -
In the present paper, an improved stochastic model is cor 2r-
sidered which includes a self-competition term in the preyx; -
equation and random variations in both the prey birth rate 1 5:_
and the predator death rate. The stochastic averaging meth -
of Stratonovich[10] and Khasminski[14] is applied to ob- L
tain the joint stationary probability distributions for the prey 1F
and predator populations, their asymptotic behaviors, and th -
mean transition time from a normal population state to & -
more dangerous state close to extinction. The Monte Carl 0.5r
type simulations are carried out to substantiate the accurac C (3.5, 0.5)
of the analysis. oL v v vy
0 1 2 3 4
Il. STOCHASTIC LOTKA-VOLTERRA MODEL
x
The stochastic Lotka-Volterra model to be investigated in 1
the following is governed by
X1 = Xy (ay - $% ~ DXg) + XqWa(0), °F
. o5k s=0.02
Xo = Xo(= €+ Xp) + XoWa(1), (3 C
where Xy(t) and X,(t) are two stochastic processes, repre- ok
senting the prey and the predator population densities, rey, C
spectively, and wher&V,(t) and W,(t) are two independent C
Gaussian white noises in the Stratonovich sense. The trac 1.50
tion of using a capital letter to represent a random variable o C
a stochastic process will also be followed henceforth. The 1E
autocorrelations of the white noises are given by C
EIW(OWi(t+D]=D;o(7), i=1,2, (4) 05
whereE[ ] denotes an ensemble averaBg,is the intensity C (3.5,0.5)
of Wi(t), and &( ) is the Dirac delta function. Comparison Ol b o e o Boe p pop i g
between Eq(3) and Eq.(1) shows that a term s—Xf is added 0 1 2 3 4
to the prey equation to model the self-competition nature o ”

the preys, andV;(t) and W,(t) are introduced to model the
random variations in the prey birth rate and the predator

death rate, respectively. FIG. 2. Trajectories of systeni) for two different values

of s.

A. The deterministic counterpart its equilibrium faster, while with the smalle=0.02, the sys-
To provide a background for the stochastic analysis Wtem moves around the stable equilibrium with a decreasing
. ) S ' eamplltude. In the absence of the predators, the prey density
examine first the deterministic counterpart of EG), reaches its equilibrium state af/s, which is inversely pro-
namely, portional tos, as expected. When the predators are present,
however, the interaction between the prey and the predator
populations is the more important factor, whereas the value
of s affects only the density of the predators at the equilib-

X1 =X;(ag — SX — bxy),

Xo =Xp(—Cc+ fxy). (5)  rium state. Note that systeni®) and(5) have the same equi-
System(5) has an asymptotic stable equilibriumsatsc/f  librium state if
and x,=(a;—sc/f)/b. Figure 2 depicts two trajectories of sc
system(5), corresponding to two different values s£0.1 a=a - (6)

and 0.02, respectively, and with the sarmag=1,b=1,c

=0.5, andf=0.5. The motion of the system begins from By comparing Figs. 1 and 2, it can be seen that, with a small
point (3.5, 0.5. The term s>€ models the effect of interspe- s, namely a slowly varying(x;,x,), system(5) is close to
cies competition. With the larges=0.1, the system reaches system(1l) as expected.
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The ecosystem described by equation (4¢tis periodic,

1 1 [ Jdx, 1 [ Jdx;
and for a trajectory (x;,X,), the period is determined from (W T [ Jdt= TP ota-0 1F x@-bx)

: _ dx, _ dxq (14)
TN = fﬁ a= fﬁ X —0) 5£ a-bg'

When performing stochastic averaging, the deterministic
wherex; andx, are related by (x;,%,)=k. By including a  variablesx;, X,, andr are, of course, replaced by their sto-
self-competition term sx¢ for the preys as in equation set chastic counterparts;, X,, andR, respectively. The quasi-
(5), the period changes slowly. It may be regarded as th@eriodT is given in Eq.(7), again withx;, X,, andr replaced

quasiperiod at a given instant of time. by their random counterparts. The result obtained from each
. . time average is a function &. The following time averages
B. Stochastic averaging can be obtained directly from Eq&l) and (2):
Return now to the stochastic modd), and rewrite Eq. c a ac
(3) in the form of the Itd stochastic differential equatidis, (X = - (Xo) = o (XyXo) = rt (15)
S 1 —
Xm = X1<a_ bX2 - ?(_ c+ le) + ED]_)dt + \DlxldBl(t),
a((fX; = 0 = c((bXy — @)%, (16)
1 — Definin
dX, = x2<— c+ Xy + §D2> dt + VD,X,0B5(t),  (8) g
_ (le - C)de
whereB,(t) andB,(t) are two independent unit Wiener pro- gR) =a Y (17)
cessege.g.,[6]). Comparing Eq(8) with Eg. (3), the addi- 2
tional terms3D,X,dt and3D,X,dt in the equation sgB) are  we have
known as the Wong-Zakai correction terigesg.,[6]), which
must be incorporated whew,(t) and W,(t) in Eq. (3) are o 9R - 9R)
interpreted as white noises in the physical Stratonovich sense (X =0)%= aT(R)’ (0% =)= cTR) (18)
[10.
Now, consider a stochastic process It follows from Egs.(12) and(13) that
fX; bX, 1 1 s g(R)
R(X,Xy) =fX;—c—-cIn—+bX;—a-aln— (9 R)==cD;+ -aD,- —=——, 19
(X1, X2) 1 c 2 a 9 m()2C12a2afT(R) (19
which is the random counterpart afx; ,x,) in Eq.(2). Using
o di ' 1 R
the 1td differential rule[15], we have from Eqs(8) and(9) o2(R) = a_C(CD1+ aDZ)-?—ER; (20)

1 1
dR=|- §(fx1 - )2+ =fD; X, + =bD,X, |dt _ _
f 2 2 using Eqs(15) and(18). Equationg11), (19), and(20) con-

+\Dy(fX, - ©)dBy(1) + \Dp(bX, — 2)dBy(1). (10) ;trl(t)létssstjgt(at)g(c;\./ge.rlr[nerﬁ law for the one-dimensional Markov
Assume that the coefficiestof the self-competition term is The stochastic proceds(t), as defined in Eq(9), is a
small, indicating that the term has a small influence when théunction of two stochastic processes, namely the prey density
prey density is small. Assume also thia¢ andD, are small, X; and the predator densi,, and it can be considered as a
namely, the random disturbances are small. TRén is a  representation of the system state. Under the conditions of
slowly varying process. In this case, the stochastic averagingmall random variations in the prey birth rate and the preda-
method [10,14 can be applied to obtain an averaged It6tor death rate, and weak self-competition within the prey
stochastic differential equation fét, population,R(t) is a slowly varying stochastic process.

dR=m(R)dt + o(R)dB(t), (11)

C. Stationary probability distributions
wherem(R) and o(R) are known as the drift coefficient and

e - . : The probability density oR at the stationary state, de-
:]sefgllrcf) L\JI:S'(_)n coefficient, respectively, and they are Obtamednoted byp(r), is governed by the following Fokker-Planck

equation(e.g.,[6]):

1 1 S
m(R) = STD1(Xu); + ZbDx0G) ~ (1% =0, (12 d 1 @
g ETH T e SmOpOI- S SlPnpml=0, (2D

— — )2 _ 2
(R =Dy((fXy =0+ D(DXe -2, (13) wherer is the state variable of the stochastic procBéS.
and where([ J);, denotes the time average in one quasip-With appropriate boundary conditions &t0 and~, to be
eriod, defined as explained in Sec. Il D, Eg.21) can be solved to obtain
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()_& 2m(r)
PO=20%%) 20

ac(cD; +aDy)T(r) - =2g(r)

—Cmexf f dr
~on P (cD; +aDy)g(r) ’
(22)

whereC andC, are two normalization constants. By noticing
that

dg(r) 35 i%d Xo = jg ﬂ = afT(r)(xyy

Xo dr Xo(fX1 =€)
=acT(r), (23)
Eqg. (22) is simplified to

p(r) = CT(r)exp(- Br), (24)

where 3 is a constant given by

2sc
= 25
A f(cD; +aD,) @9

The joint probability density oR(t) andX;(t) can be written
as

p(r,Xl) = p(r)p(xl|r)1 (26)

wherep(x,|r) is the conditional probability density of;(t)
givenR(t)=r. It can be obtained as follows:

dt Xm _ Xm
PRIN 30 it~ @bt 27
Substituting Eq(27) into Eq. (26),
O —_ (29)

x1(a = bx)[T(r)

in whichx, is treated as a function af andr. Thus, the joint
probability densityp(x;,x,) follows as

a(r,xq)
d (X1!X2)

P(X1,X) = P(r,Xq)

__p()
XX T(r)

Cc
= Eexd_ ,Br(Xl,Xz)], (29)

where d(r,x;)/d(x;1,X,) is the Jacobian of transformation.
Upon substituting Eq(2) into Eq.(29), we obtain

P(X1,%2) = P(Xp)P(X2), (30
where
_ (B s
p(xy) = T(8c )X exp(— Bfxy), (31)

PHYSICAL REVIEW E 70, 041910(2004

s=0.1, Analytical
o s=0.1, Simulation
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FIG. 3. Probability densities of the prey population obtained for
D,=D,=0.01 and two differens values.

(B0 s
r(a)

andI'( ) is the gamma function. Equatiqi80) implies that
X;(t) andX,(t) are independent when they reach the state of
statistical stationarity, which is an unexpected result for sys-
tem (3) with nonlinear coupling betweeK; and X,. Equa-
tions (31) and(32) show that nontriviap(x;) andp(x,) exist
only if 3>0 anda>0. These conditions lead to

p(xp) = exp(— Bbxy), (32

f
0<s< % (33)

The system will diverge without the self-competition term,
namely if s=0, since no restriction will be imposed on the
growth of the prey population. On the other hand, if
s>fa,/c, the growth of the prey population will be over-
restricted, leading to extinction of the predators.

Itis of interest to note that iD,=0, i.e., in the absence of
W,(1), Egs.(23) and(29)—(32) reduce to the exact solutions
obtained by Dimentber{l1,12.

Shown in Fig. 3 is the probability densify(x;) of the
prey populationX; for the stochastic systeig8), calculated
from Eg.(31), with a;,=1,b=1,¢=0.5,f=0.5,D,=D,=0.01,
and for two differents values of 0.1 and 0.02. Also depicted
in Fig. 3 are results obtained from the Monte Carlo type
simulation. The theoretical and simulation results agree very
well in both cases. With a large self-competition coefficient
s=0.1, the prey density is nearly centered arouqec/f
=1, which is the equilibrium point for the deterministic
counterpart without random variations in the prey birth rate
and the predator death rate. In this case, the system is more
stable in terms of the relative prey and predator populations.
With a smalls=0.02, the peak of the prey probability density
is shifted to a value smaller than the equilibrium poxqt
=1, and the probability for a high prey population becomes
higher, for which the system is less stable.

Figures 4 and 5 show the effects of changing the intensi-
ties D, andD,, respectively, of random variatioW,(t) and
W,(t) on the probability density oK;. The system param-
eters selected for computation aag=1,5=0.1,b=1,c=0.5,
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D1=0.01, Analytical

° D1=0.01, Simulation
1 — — — — DI1=0.05, Analytical
s D1=0.05, Simulation
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FIG. 4. Probability densities of the prey population obtained for

s=0.1,D0,=0.01, and two differenD, values.

and f=0.5. With an increasin@, or D, similar effects are
observed to those of a decreasggiamely the peak of the

probability density is shifted to the left; however, the peak
height is lower and the overall probability for a large prey
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bX bX,-a
In—Z:In<1+ 2 )x

bX-a ;(bxz—a)z
a 2 a '
(35

Substituting Eqs(34) and (35) into the stochastic counter-
part of Eq.(2),

a(fX; - ¢)?+c(bX, — a)?> = 2acR (36)
Using Eqgs.(16) and(36), we have
(fXy =0 =cR  ((bx,—a)*);=aR. (37
It follows from Eqgs.(12) and(13) that
m(R) — 3(cD; +aD,),
0*(R) — (cD; +aD,)R asR— 0. (38)

Since ¢(0)=0, the left boundary aR=0 is singular of the
first kind [6]. The diffusion exponent, the drift exponent, and

the character value for the left boundary are, respectively,
Bl = Ov (39)

0[|:1, C|:1.

population increases, indicating that the system is less stabl&éherefore, the left boundary is an entrance, as long=as.

D. Asymptotic behaviors

Governed by the It6 stochastic differential equati@a),

R(t) is a one-dimensional Markov diffusion process. Its be-

havior at the two boundaries R=0 andR=c can be inves-
tigated as follows, based on a theory showrj@h

1. At the left boundary R=0

As can be deduced from E€l), R approaches zero, when
X; andX, approactc/f anda/b, respectively. Thus, we may
write

X fX;—-c\ fX;-c 1[fX;-c)?
In—t=In[1+-2 e ,
c c c 2 c
(34)
1.2 D2=0.01, Analytical
° D2=0.01, Simulation
1 — — — — D2=0.05, Analytical
o D2=0.03, Simulation
Dx1)
0.8
o
0.6 !

o
>
ISR

o
[N

B S L AR RRREE=

o

X1

This indicates that, with random variations in the birth rate of
the preys and/or the death rate of the predators, neither the
prey population nor the predator population will be extinct.
2. At the right boundary R— «
It was shown in[9] that

(X, -0 =3cR ((bX-a)?)=3aR (40
asR—«. We have, according to Eq6l2) and(13),
sc
R)—-—R
m(R) Pl
1
d(R) — 5(ch +aD,)R asR— . (41)

Thus, the right boundary &= is singular of the second
kind [6], at which the diffusion exponent, the drift exponent,
and the character value are

SC

=1, =1, ¢ =—0—""T—.
o A " f(cDy+aDb,)

(42
Therefore, the right boundary is repulsively natural. The self-
competition mechanism results in a negative drift term for
large R, which guarantees that neither the prey population
nor the predator population can grow without restraint. With-
out the —sxi term in Eq.(3), which is the model considered
in the paper by Khasminskii and Klebangd], the right
boundaryR=« would have been attractively natural, imply-
ing that the prey population could grow without limit, an
outcome contrary to what is expected of nature. Therefore,

FIG. 5. Probability densities of the prey population obtained forthe inclusion of the self-competition terns> in the model

s=0.1,D0,=0.01, and two differenD, values.

iS necessary.
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E. Transition time

It is shown, with the present stochastic mod8), that
neither the preys nor the predators will be extinct as long as
the conditiona>0 is satisfied. However, the situation of a
very low prey population should be avoided as much as pos- H
sible. For this purpose, it is useful to investigate the transi-
tion time from a normal level of the prey population to a
very low one, so that effective measures can be designed and
applied to avoid its happening, or lengthen the transition
time. It is seen from Eq(2) and Fig. 1 that a very small
value of eitheix; or x, corresponds to a much larger value of
r. In the randomized version, these variables are denoted by
X1,Xs5, and R, respectively. The time it takes to reach near
extinction for eitherX; or X, can be investigated, using the Dy
classical framework of the first-passage problem in stochas-
tic dynamics(e.g.,[6]), namely the time it takes for the ran-
dom processR(t) to move from a low levelry to a high
critical levelr,.

SinceR(t) is a stochastic process, the first time for it to . L .
® P are small. This effect diminishes at increasibg or D, or

move from an original noncritical statg to reach a critical . X ;
stater, to be referred to as the first-passage time, is a rant-)Oth D, andD,. Comparing Figs. 6 and 7, the effectdf is

dom variable, which is, of course, a functionrgf The mean seen to be greater than thatidf, noting that theu scales are

first-passage time, denoted pyr,), is governed by the well- different in these two figures.
known Pontryagin equatiofi6],

FIG. 6. Mean first-passage time to a critical state, computed for
D,=0, varyingD,, and differents values.

Ill. CONCLUSION
dr2
wherem(ry) anda(rg) are given by Eqs(19) and(20), with
R replaced byry. The boundary conditions for E¢g43) are

1+mig 2+ Loy

0, 43
dro 2 43

Arandomized Lotka-Volterra-type model is used to inves-
tigate the interaction between the populations of the preys
and the predators in an ecosystem. In particular, the random
variations in time of the birth rate of the preys and the death
rate of the predators are modeled as Gaussian white noises. A

deterministic self-competition term is also included in the

d_M —_ 1 —_ 2 and u(ry) = 0 prey equation. The stochastic averaging procedure of Stra-
dro|, oo m(0) cD, +aD, #ile ' tonovich and Khasminskii is applied in the analysis. The
0 probability distributions at the stationary state of the prey
(44)

The first condition can be obtained directly from E43), by

taking into account tha#?(0)=0. The solution for Eq(43),

that satisfies the two boundary conditions, is given by
paf

e eﬁu u
= — ~Bu
u(ro) s ). g(u)dujo T(v)e P dv,

where the constang is given by Eq.(24) and the function
g(u) is the deterministic version of E@l7).

(45)

The same systems parameters were selected for numerical U

calculation, i.e.,a;=1,b=1,c=0.5, andf=0.5. The initial

prey population was assumed to be at its equilibrium state,

i.e.,x;=c/f=1, corresponding to,=0. The critical value for
X, was chosen to be;.=0.01 (equivalent tor.=1.81), at

which the prey population was near extinction. The mean

first-passage time:, calculated from Eq(45), is shown in
Figs. 6 and 7 for three differerg values, 0.01, 0.02, and
0.03. Shown in Fig. 6 are the results obtained@g~=0 and
varying D;. Those obtained foD;=0 and varyingD, are

and predator populations are determined, and the average
time for the ecosystem to reach a critical state is calculated.
It is found that the system behaviors are sensitive not only to
the self-competition term, but also the random variations in
the prey birth rate and the predator death rate.

104:

103:

102:

shown in Fig. 7. It is seen from these two figures that the

mean first-passage time is sensitive to $hB,, andD,, val-
ues. The effect of the value is dominant whe®,; and D,

FIG. 7. Mean first-passage time to a critical state, computed for
D,=0, varyingD,, and differents values.
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