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A stochastic Lotka-Volterra-type model for the interaction between the preys and the predators in a random
environment is investigated. A self-competition mechanism within the prey population itself is also included.
The effect of a random environment is modeled as random variations in the birth rate of the preys and the death
rate of the predators. The stochastic averaging procedure of Stratonovich and Khasminskii is applied to obtain
the probability distributions of the system state variables at the state of statistical stationarity. Asymptotic
behaviors of the system variables are discussed, and the mean transition time from an initial state to a critical
state is obtained. Effects on the ecosystem behaviors of the self-competition term, of the random variation in
the prey birth rate, and of the random variation in the predator death rate are investigated.
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I. INTRODUCTION

A well-known mathematical model describing the behav-
iors of two interacting species, referred to hereafter as preys
(or host) and predators(or parasite), is the Lotka-Volterra
model [1–5], governed by the following differential equa-
tions:

ẋ1 = x1sa − bx2d,

ẋ2 = x2s− c + fx1d, s1d

where x1 and x2 are the population densities of preys and
predators, respectively, anda,b,c, and f are positive con-
stants. Equations(1) indicate that the prey population would
grow exponentially without the presence of the predators,
and the population of the predators would decrease exponen-
tially without the preys. The interactive termsx1x2 provide a
balance between the two populations.

System(1) has an unstable equilibrium state(0, 0), and a
stable nonasymptotic equilibrium statesc/ f ,a/bd. It pos-
sesses a first integral

rsx1,x2d = fx1 − c − c ln
fx1

c
+ bx2 − a − a ln

bx2

a
= k, s2d

where k is a non-negative constant. It can be shown that
rsx1,x2d=0 at the pointsc/ f ,a/bd, that rsx1,x2dù0 for any
positivex1 andx2, and thatrsx1,x2d=k describes a periodic
trajectory, namely a limit cycle of system(1). Depicted in
Fig. 1 are the equilibrium pointO, corresponding tok=0,
and three limit cycles, corresponding to three positivek val-
ues, determined with system parametersa=0.9,b=1,c=0.5,
and f =0.5 (all parameter values are nondimensionalized in
the paper). It shows that the prey and predator populations
are changing periodically with time, along a path in the
phase plane(the x1-x2 plane), which depends only on the
initial states ofx1 andx2. It also shows that a high level of
prey density and/or predator density can lead to very low
levels for both, even in an invariant environment.

System(1) fails to describe some basic phenomena of a
realistic prey-predator ecosystem in at least two ways. First,
in the absence of the predators, the prey population will grow

without limit, contrary to what is expected of nature. Sec-
ondly, changes in the environment are always present which
are not accounted for in the governing equations. To improve
the classical Lokta-Volterra model, May[3] added a self-
competition term to the prey equation and a Gaussian white-
noise variation in the prey birth rate. He then used a pertur-
bation scheme and a path-integration approach to obtain
approximate solutions for the associated Fokker-Planck
equation(e.g.,[6]), governing the probability densities of the
prey and predator populations at both the transient and sta-
tionary states. Arnoldet al. [7] introduced a random variation
in the prey birth rate, and modeled the variation as a Gauss-
ian white noise in the Itô sense[8], but without a self-
competition term in the prey equation. Khasminskii and Kle-
baner [9] modified the model of Arnoldet al. by adding
another Gaussian white noise to the predator death rate, and
interpreted both Gaussian white noises in the Stratonovich
sense[10], namely, in the sense of a limit of a physical noise.
In both [7,9], asymptotic analyses were conducted to show
that no stationary state exists for the system. Dimentberg
[11,12] used the same model as May[3], and found an exact

FIG. 1. Equilibrium point and limit cycles of system(1).
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solution for the stationary probability density. Rozenfeldet
al. [13] considered the case of both periodic and random
variations in the prey birth rate, and carried out a Monte
Carlo type simulation to investigate the possibility of sto-
chastic resonance of the system.

In the present paper, an improved stochastic model is con-
sidered which includes a self-competition term in the prey
equation and random variations in both the prey birth rate
and the predator death rate. The stochastic averaging method
of Stratonovich[10] and Khasminskii[14] is applied to ob-
tain the joint stationary probability distributions for the prey
and predator populations, their asymptotic behaviors, and the
mean transition time from a normal population state to a
more dangerous state close to extinction. The Monte Carlo
type simulations are carried out to substantiate the accuracy
of the analysis.

II. STOCHASTIC LOTKA-VOLTERRA MODEL

The stochastic Lotka-Volterra model to be investigated in
the following is governed by

Ẋ1 = X1sa1 − sX1 − bX2d + X1W1std,

Ẋ2 = X2s− c + fX1d + X2W2std, s3d

where X1std and X2std are two stochastic processes, repre-
senting the prey and the predator population densities, re-
spectively, and whereW1std and W2std are two independent
Gaussian white noises in the Stratonovich sense. The tradi-
tion of using a capital letter to represent a random variable or
a stochastic process will also be followed henceforth. The
autocorrelations of the white noises are given by

EfWistdWist + tdg = Didstd, i = 1,2, s4d

whereEf g denotes an ensemble average,Di is the intensity
of Wistd, and ds d is the Dirac delta function. Comparison
between Eq.(3) and Eq.(1) shows that a term −sX1

2 is added
to the prey equation to model the self-competition nature of
the preys, andW1std and W2std are introduced to model the
random variations in the prey birth rate and the predator
death rate, respectively.

A. The deterministic counterpart

To provide a background for the stochastic analysis, we
examine first the deterministic counterpart of Eq.(3),
namely,

ẋ1 = x1sa1 − sx1 − bx2d,

ẋ2 = x2s− c + fx1d. s5d

System(5) has an asymptotic stable equilibrium atx1=c/ f
and x2=sa1−sc/ fd /b. Figure 2 depicts two trajectories of
system(5), corresponding to two different values ofs=0.1
and 0.02, respectively, and with the samea1=1,b=1,c
=0.5, and f =0.5. The motion of the system begins from
point (3.5, 0.5). The term −sx1

2 models the effect of interspe-
cies competition. With the largers=0.1, the system reaches

its equilibrium faster, while with the smallers=0.02, the sys-
tem moves around the stable equilibrium with a decreasing
amplitude. In the absence of the predators, the prey density
reaches its equilibrium state ofa1/s, which is inversely pro-
portional tos, as expected. When the predators are present,
however, the interaction between the prey and the predator
populations is the more important factor, whereas the value
of s affects only the density of the predators at the equilib-
rium state. Note that systems(1) and(5) have the same equi-
librium state if

a = a1 −
sc

f
. s6d

By comparing Figs. 1 and 2, it can be seen that, with a small
s, namely a slowly varyingrsx1,x2d, system(5) is close to
system(1) as expected.

FIG. 2. Trajectories of system(5) for two different values
of s.
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The ecosystem described by equation set(1) is periodic,
and for a trajectoryrsx1,x2d, the period is determined from

Tsrd = R dt = R dx2

x2sfx1 − cd
= R dx1

x1sa − bx2d
, s7d

wherex1 and x2 are related byrsx1,x2d=k. By including a
self-competition term −sx1

2 for the preys as in equation set
(5), the period changes slowly. It may be regarded as the
quasiperiod at a given instant of time.

B. Stochastic averaging

Return now to the stochastic model(3), and rewrite Eq.
(3) in the form of the Itô stochastic differential equations[8],

dX1 = X1Sa − bX2 −
s

f
s− c + fX1d +

1

2
D1Ddt + ÎD1X1dB1std,

dX2 = X2S− c + fX1 +
1

2
D2Ddt + ÎD2X2dB2std, s8d

whereB1std andB2std are two independent unit Wiener pro-
cesses(e.g.,[6]). Comparing Eq.(8) with Eq. (3), the addi-
tional terms1

2D1X1dt and 1
2D2X2dt in the equation set(8) are

known as the Wong-Zakai correction terms(e.g.,[6]), which
must be incorporated whenW1std and W2std in Eq. (3) are
interpreted as white noises in the physical Stratonovich sense
[10].

Now, consider a stochastic process

RsX1,X2d = fX1 − c − c ln
fX1

c
+ bX2 − a − a ln

bX2

a
s9d

which is the random counterpart ofrsx1,x2d in Eq. (2). Using
the Itô differential rule[15], we have from Eqs.(8) and (9)

dR= F−
s

f
sfX1 − cd2 +

1

2
fD1X1 +

1

2
bD2X2Gdt

+ ÎD1sfX1 − cddB1std + ÎD2sbX2 − addB2std. s10d

Assume that the coefficients of the self-competition term is
small, indicating that the term has a small influence when the
prey density is small. Assume also thatD1 andD2 are small,
namely, the random disturbances are small. ThenRstd is a
slowly varying process. In this case, the stochastic averaging
method [10,14] can be applied to obtain an averaged Itô
stochastic differential equation forR,

dR= msRddt + ssRddBstd, s11d

wheremsRd andssRd are known as the drift coefficient and
the diffusion coefficient, respectively, and they are obtained
as follows:

msRd =
1

2
fD1kX1lt +

1

2
bD2kX2lt −

s

f
ksfX1 − cd2lt, s12d

s2sRd = D1ksfX1 − cd2lt + D2ksbX2 − a1d2lt, s13d

and wherekf glt, denotes the time average in one quasip-
eriod, defined as

kf glt =
1

T
R f gdt =

1

T
R f gdx2

x2sfx1 − cd
=

1

T
R f gdx1

x1sa − bx2d
.

s14d

When performing stochastic averaging, the deterministic
variablesx1, x2, and r are, of course, replaced by their sto-
chastic counterpartsX1, X2, andR, respectively. The quasi-
periodT is given in Eq.(7), again withx1, x2, andr replaced
by their random counterparts. The result obtained from each
time average is a function ofR. The following time averages
can be obtained directly from Eqs.(1) and (2):

kX1lt =
c

f
, kX2lt =

a

b
, kX1X2lt =

ac

bf
, s15d

aksfX1 − cd2lt = cksbX2 − ad2lt. s16d

Defining

gsRd = aR sfX1 − cddX2

X2
, s17d

we have

ksfX1 − cd2lt =
gsRd

aTsRd
, ksbX2 − ad2lt =

gsRd
cTsRd

. s18d

It follows from Eqs.(12) and (13) that

msRd =
1

2
cD1 +

1

2
aD2 −

s

af

gsRd
TsRd

, s19d

s2sRd =
1

ac
scD1 + aD2d

gsRd
TsRd

s20d

using Eqs.(15) and(18). Equations(11), (19), and(20) con-
stitute the governing law for the one-dimensional Markov
processRstd (e.g.,[6]).

The stochastic processRstd, as defined in Eq.(9), is a
function of two stochastic processes, namely the prey density
X1 and the predator densityX2, and it can be considered as a
representation of the system state. Under the conditions of
small random variations in the prey birth rate and the preda-
tor death rate, and weak self-competition within the prey
population,Rstd is a slowly varying stochastic process.

C. Stationary probability distributions

The probability density ofR at the stationary state, de-
noted bypsrd, is governed by the following Fokker-Planck
equation(e.g.,[6]):

d

dr
fmsrdpsrdg −

1

2

d2

dr2fs2srdpsrdg = 0, s21d

where r is the state variable of the stochastic processRstd.
With appropriate boundary conditions atr =0 and`, to be
explained in Sec. II D, Eq.(21) can be solved to obtain
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psrd =
C1

s2srd
expE 2msrd

s2srd
dr

= C
Tsrd
gsrd

expE acscD1 + aD2dTsrd −
2sc

f
gsrd

scD1 + aD2dgsrd
dr,

s22d

whereC andC1 are two normalization constants. By noticing
that

dgsrd
dr

= aR f

x2

] x1

] r
dx2 = aR fx1dx2

x2sfx1 − cd
= afTsrdkx1lt

= acTsrd, s23d

Eq. (22) is simplified to

psrd = CTsrdexps− brd, s24d

whereb is a constant given by

b =
2sc

fscD1 + aD2d
. s25d

The joint probability density ofRstd andX1std can be written
as

psr,x1d = psrdpsx1urd, s26d

wherepsx1u rd is the conditional probability density ofX1std
given Rstd=r. It can be obtained as follows:

psx1urddx1 =
dt

Tsrd
=

dx1

uẋ1uTsrd
=

dx1

ux1sa − bx2duTsrd
. s27d

Substituting Eq.(27) into Eq. (26),

psr,x1d =
psrd

ux1sa − bx2duTsrd
, s28d

in whichx2 is treated as a function ofx1 andr. Thus, the joint
probability densitypsx1,x2d follows as

psx1,x2d = psr,x1dU ] sr,x1d
] sx1,x2d

U
=

psrd
x1x2Tsrd

=
C

x1x2
expf− brsx1,x2dg, s29d

where ]sr ,x1d /]sx1,x2d is the Jacobian of transformation.
Upon substituting Eq.(2) into Eq. (29), we obtain

psx1,x2d = psx1dpsx2d, s30d

where

psx1d =
sbfdbc

Gsbcd
x1

bc−1exps− bfx1d, s31d

psx2d =
sbbdba

Gsbad
x2

ba−1exps− bbx2d, s32d

and Gs d is the gamma function. Equation(30) implies that
X1std andX2std are independent when they reach the state of
statistical stationarity, which is an unexpected result for sys-
tem (3) with nonlinear coupling betweenX1 and X2. Equa-
tions (31) and(32) show that nontrivialpsx1d andpsx2d exist
only if b.0 anda.0. These conditions lead to

0 , s,
fa1

c
. s33d

The system will diverge without the self-competition term,
namely if s=0, since no restriction will be imposed on the
growth of the prey population. On the other hand, if
s. fa1/c, the growth of the prey population will be over-
restricted, leading to extinction of the predators.

It is of interest to note that ifD2=0, i.e., in the absence of
W2std, Eqs.(23) and (29)–(32) reduce to the exact solutions
obtained by Dimentberg[11,12].

Shown in Fig. 3 is the probability densitypsx1d of the
prey populationX1 for the stochastic system(3), calculated
from Eq. (31), with a1=1,b=1,c=0.5,f =0.5,D1=D2=0.01,
and for two differents values of 0.1 and 0.02. Also depicted
in Fig. 3 are results obtained from the Monte Carlo type
simulation. The theoretical and simulation results agree very
well in both cases. With a large self-competition coefficient
s=0.1, the prey density is nearly centered aroundx1=c/ f
=1, which is the equilibrium point for the deterministic
counterpart without random variations in the prey birth rate
and the predator death rate. In this case, the system is more
stable in terms of the relative prey and predator populations.
With a smalls=0.02, the peak of the prey probability density
is shifted to a value smaller than the equilibrium pointx1
=1, and the probability for a high prey population becomes
higher, for which the system is less stable.

Figures 4 and 5 show the effects of changing the intensi-
ties D1 andD2, respectively, of random variationsW1std and
W2std on the probability density ofX1. The system param-
eters selected for computation area1=1,s=0.1,b=1,c=0.5,

FIG. 3. Probability densities of the prey population obtained for
D1=D2=0.01 and two differents values.
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and f =0.5. With an increasingD1 or D2, similar effects are
observed to those of a decreasings, namely the peak of the
probability density is shifted to the left; however, the peak
height is lower and the overall probability for a large prey
population increases, indicating that the system is less stable.

D. Asymptotic behaviors

Governed by the Itô stochastic differential equation(11),
Rstd is a one-dimensional Markov diffusion process. Its be-
havior at the two boundaries atR=0 andR=` can be inves-
tigated as follows, based on a theory shown in[6].

1. At the left boundary R=0

As can be deduced from Eq.(1), R approaches zero, when
X1 andX2 approachc/ f anda/b, respectively. Thus, we may
write

ln
fX1

c
= lnS1 +

fX1 − c

c
D <

fX1 − c

c
−

1

2
S fX1 − c

c
D2

,

s34d

ln
bX2

a
= lnS1 +

bX2 − a

a
D <

bX2 − a

a
−

1

2
SbX2 − a

a
D2

.

s35d

Substituting Eqs.(34) and (35) into the stochastic counter-
part of Eq.(2),

asfX1 − cd2 + csbX2 − ad2 < 2acR. s36d

Using Eqs.(16) and (36), we have

ksfX1 − cd2lt < cR, ksbx2 − ad2lt < aR. s37d

It follows from Eqs.(12) and (13) that

msRd → 1
2scD1 + aD2d,

s2sRd → scD1 + aD2dR asR→ 0. s38d

Sincess0d=0, the left boundary atR=0 is singular of the
first kind [6]. The diffusion exponent, the drift exponent, and
the character value for the left boundary are, respectively,

al = 1, bl = 0, cl = 1. s39d

Therefore, the left boundary is an entrance, as long asa.0.
This indicates that, with random variations in the birth rate of
the preys and/or the death rate of the predators, neither the
prey population nor the predator population will be extinct.

2. At the right boundary R\`

It was shown in[9] that

ksfX1 − cd2lt < 1
2cR, ksbX2 − ad2lt < 1

2aR s40d

asR→`. We have, according to Eqs.(12) and (13),

msRd → −
sc

2f
R,

s2sRd → 1

2
scD1 + aD2dR asR→ `. s41d

Thus, the right boundary atR=` is singular of the second
kind [6], at which the diffusion exponent, the drift exponent,
and the character value are

ar = 1, br = 1, cr =
sc

fscD1 + aD2d
. s42d

Therefore, the right boundary is repulsively natural. The self-
competition mechanism results in a negative drift term for
large R, which guarantees that neither the prey population
nor the predator population can grow without restraint. With-
out the −sX1

2 term in Eq.(3), which is the model considered
in the paper by Khasminskii and Klebaner[9], the right
boundaryR=` would have been attractively natural, imply-
ing that the prey population could grow without limit, an
outcome contrary to what is expected of nature. Therefore,
the inclusion of the self-competition term −sX1

2 in the model
is necessary.

FIG. 4. Probability densities of the prey population obtained for
s=0.1,D2=0.01, and two differentD1 values.

FIG. 5. Probability densities of the prey population obtained for
s=0.1,D1=0.01, and two differentD2 values.
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E. Transition time

It is shown, with the present stochastic model(3), that
neither the preys nor the predators will be extinct as long as
the conditiona.0 is satisfied. However, the situation of a
very low prey population should be avoided as much as pos-
sible. For this purpose, it is useful to investigate the transi-
tion time from a normal level of the prey population to a
very low one, so that effective measures can be designed and
applied to avoid its happening, or lengthen the transition
time. It is seen from Eq.(2) and Fig. 1 that a very small
value of eitherx1 or x2 corresponds to a much larger value of
r. In the randomized version, these variables are denoted by
X1,X2, and R, respectively. The time it takes to reach near
extinction for eitherX1 or X2 can be investigated, using the
classical framework of the first-passage problem in stochas-
tic dynamics(e.g.,[6]), namely the time it takes for the ran-
dom processRstd to move from a low levelr0 to a high
critical level rc.

SinceRstd is a stochastic process, the first time for it to
move from an original noncritical stater0 to reach a critical
staterc, to be referred to as the first-passage time, is a ran-
dom variable, which is, of course, a function ofr0. The mean
first-passage time, denoted bymsr0d, is governed by the well-
known Pontryagin equation[16],

1 + msr0d
dm

dr0
+

1

2
s2sr0d

d2m

dr0
2 = 0, s43d

wheremsr0d andssr0d are given by Eqs.(19) and(20), with
R replaced byr0. The boundary conditions for Eq.(43) are

U dm

dr0
U

r0=0
= −

1

ms0d
= −

2

cD1 + aD2
andmsrcd = 0.

s44d

The first condition can be obtained directly from Eq.(43), by
taking into account thats2s0d=0. The solution for Eq.(43),
that satisfies the two boundary conditions, is given by

msr0d =
baf

s
E

r0

rc ebu

gsud
duE

0

u

Tsvde−bvdv, s45d

where the constantb is given by Eq.(24) and the function
gsud is the deterministic version of Eq.(17).

The same systems parameters were selected for numerical
calculation, i.e.,a1=1,b=1,c=0.5, and f =0.5. The initial
prey population was assumed to be at its equilibrium state,
i.e.,x1=c/ f =1, corresponding tor0=0. The critical value for
x1 was chosen to bex1c=0.01 (equivalent torc=1.81), at
which the prey population was near extinction. The mean
first-passage timem, calculated from Eq.(45), is shown in
Figs. 6 and 7 for three differents values, 0.01, 0.02, and
0.03. Shown in Fig. 6 are the results obtained forD2=0 and
varying D1. Those obtained forD1=0 and varyingD2 are
shown in Fig. 7. It is seen from these two figures that the
mean first-passage time is sensitive to thes,D1, andD2 val-
ues. The effect of thes value is dominant whenD1 andD2

are small. This effect diminishes at increasingD1 or D2, or
bothD1 andD2. Comparing Figs. 6 and 7, the effect ofD1 is
seen to be greater than that ofD2, noting that them scales are
different in these two figures.

III. CONCLUSION

A randomized Lotka-Volterra-type model is used to inves-
tigate the interaction between the populations of the preys
and the predators in an ecosystem. In particular, the random
variations in time of the birth rate of the preys and the death
rate of the predators are modeled as Gaussian white noises. A
deterministic self-competition term is also included in the
prey equation. The stochastic averaging procedure of Stra-
tonovich and Khasminskii is applied in the analysis. The
probability distributions at the stationary state of the prey
and predator populations are determined, and the average
time for the ecosystem to reach a critical state is calculated.
It is found that the system behaviors are sensitive not only to
the self-competition term, but also the random variations in
the prey birth rate and the predator death rate.

FIG. 6. Mean first-passage time to a critical state, computed for
D2=0, varyingD1, and differents values.

FIG. 7. Mean first-passage time to a critical state, computed for
D1=0, varyingD2, and differents values.
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