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Recently Segeet al.[Phys. Rev. E64, 011920(2001); Phys. Rev. Lett88, 118102(2002] made long-term
observations of spontaneous activity of in-vitro cortical networks, which differ from predictions of current
models in many features. In this paper we generalize the excitatory-inhibitory cortical model introduced in a
previous papefScarpetteet al, Neural Comput.14, 2371(2002)], including intrinsic white noise and ana-
lyzing effects of noise on the spontaneous activity of the nonlinear system, in order to account for the
experimental results of Seget al. Analytically we can distinguish different regimes of activity, depending on
the model parameters. Using analytical results as a guide line, we perform simulations of the nonlinear
stochastic model in two different regimes, B and C. The power spectrum d€éRSIEy of the activity and the
interevent-interval distributions are computed, and compared with experimental results. In regime B the net-
work shows stochastic resonance phenomena and noise induces aperiodic collective synchronous oscillations
that mimics experimental observations at 0.5 mM Ca concentration. In regitme model shows spontaneous
synchronous periodic activity that mimics activity observed at 1 mM Ca concentration and the PSD shows two
peaks at the first and second harmonics in agreement with experiments at 1 mM Ca. M@geerintrinsic
noise and nonlinear activation function effoctee PSD shows a broad band peak at low frequency. This
feature, observed experimentally, does not find explanation in the previous models. Besides we identify para-
metric changegnamely, increase of noise or decreasing of excitatory connegtibasreproduces the fading
of periodicity found experimentally at long times, and we identify a way to discriminate between those two
possible effects measuring experimentally the low frequency PSD.

DOI: 10.1103/PhysRevE.70.041909 PACS nun)er87.18.Sn, 05.40.Ca, 05.45.Xt

I. INTRODUCTION AND MOTIVATIONS obtain a complete explanation of the experimental results.

For example, their numerical simulations capture the transi-

Spontaneougand stimulation-drivensynchronized oscil-  tion between aperiodic synchronized bursting versus periodic

latory activity has been observed in many in-vitro and in-Synchronized bursting when Ca concentraiiand so model

vivo experimentg1-3). connection strgngtl)yvas inqrea}sed, but thgy do not repro-
The understanding of spontaneous activity of in-vitro net-duce the transition from periodic synchronized bursting ver-

works[4—7] is a preliminary requirement for the comprehen- SUs aperiodic activity observed experimentally when Ca con-

sion of the network behavior inside the animal brain, wheregt€ntration was increased over the critical interval. Moreover

the dynamics are more complex due to the presence of eihe experimental data show that the energy distribution over

ternal stimuli and of interactions among different parts of the!OW frequencies has a broad band with power law decay that

brain. In particular, the understanding of the specific mecha'-ndicaltes the existence of positive long-range time correla-

) . . ions in the sequences of bursts; this behavior cannot be ac-
nisms underlying the spontaneous spatiotemporal pattern éﬁunted for by the Segeet al. model. The interevent-

activity is important for the comprehension of brain activity, interval (IEI) distribution at 0.5 mM Ca shows a very long

especially in relation with epilepsig], the central pattern ., (tens of secondsdecaying much more slowly than in the
generator systems, etc. integrate-and-firingIF) model. Finally, experimental results
Recently Segeet al. [4,5] have done accurate long-term gpoy that, after 1 mM Ca concentration was obtained, the
measurements of the spontaneous activity of in-vitro cortlcahigh peaks of the power spectrum deng®BD), at first and
cells neural networks placed on multielectrode arrays. Thgecond harmonic, become lower and lower with time, and
effect of external Ca concentration on the spontaneous activgfter ~20 min the PSD is almost flat. These PSD featuires
ity has been studied. They observed, for a critical range oparticular the behavior at low frequency and the changes that
Ca concentration, periodic synchronized bursting activityhappen in a time scale of several minjtésive not been
that fades away after 20 min. Periodic synchronized burst- explained by the models of Segev al. [4,5], and as far as
ing is observed at 1 mM Ca concentration and not at highewe know, until now the explanation is lacking. Patterns of
(2 mM) and lower(0.5 mM) concentrations. Their observa- spontaneous activity in cortical cultured networks were ob-
tions differ from prediction of current neural network models served by other researchef3,7]. Canepariet al. [3] ob-
in many features. They try to model the phenomena performserved transitions from asynchronous firing dynamics to syn-
ing numerical simulations of an integrate-and-fire networkchronous firing dynamics when Ca2+ concentration was
model with random connections. Addiigt) dynamic thresh- increased from 0.1 to 1 mM.
old and(2) activity-dependent synaptic connections, they re- Here we model a cultured cortical cells network using a
produce much of the observed network activity, but do notexcitatory-inhibitory(El) Cowan-Wilson-like[9] model ana-
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lytically tractable, which enables us to study the source ofnterneurons generally only project locally, we assuje
spontaneous activity dynamics analytically. We analyze thendWj; to be long range connections, aHg to be local. All
macroscopic observables that describe the dynamics of thbese parameters are non-negative; the inhibitory character of
system as a function of the network parameters, exploitinghe second term on the right-hand side of Eq.is indicated

effects of noise and nonlinearity. by the minus sign preceding iE;(t) and F;(t) model the
We show that some insights and a good agreement Witfhrinsic noise, respectively, on the excitatory and inhibitory
experiments can be obtained including intrinsic white noisg,jts, not included in the definition af,v. In a (cultured
in the spiking-rate excitatory-inhibitor§El) neural network interacting neurons system noise can be due to several rea-
model. The model is based on the noiseless cortical modelons, jike thermal fluctuation, ionic channel stochastic activi-
introduced in a previous papgt0] by one of us, Li, Hertz, ties, and many others. We take the nogét) F.(1) to be
which is able to imprint and retrieve oscillatory patterns " ) EA
when driven by noiseless oscillatory inpuising a general- Uncorrelated white noise, such théi(t))=(F;(t))=0 and
ized hebbian learning ruleHere the model is studied to put (F(t) F;(t"))=T'8;8-v, (Fi(t) Fj(t'"))=T&;8-. Each such
in evidence its spontaneous activity and specifically the efynit u, v; represents a local assembly of pyramidal cells or
fects of noise on the dynamics are analyzed. The spatioteniocal interneurons sharing common, or at least highly corre-
poral patterns of spontaneous activity in our model is a conated, input.(The number of neurons represented by the ex-
sequence of the dynamics of the interacting excitatory angitatory units may be in general different from the number
inhibitory units, and depends critically from the presence ofrepresented by the inhibitory unit$zor reasons explained in
noise and from the synaptic strengths of the El network. the following, we choose the connection matridesH, W
The results we have found, although referred to the worksymmetric, apart from small random fluctuations. This sym-

of Segewet al.[4,5], are of more general interest, indeed theymetry does not imply symmetry of the total connection ma-

connect the behavior of in-vitro neural networks to the ongyy (JW_E'). indeed it is highly asymmetric, as well as the

of nonlinear subthreshold and overthreshold systems in preg$ynnections between excitatory and inhibitory neurons are

ence of noise. o , still asymmetric in this scenario.
The effects of noise in neural models is the focus of a lot

of recent literature[11-13, from the single FitzZHugh-
Nagumo system point of viel3] to the IF homogeneous Network connectivity
networks[12] or the phase-model coupled oscillatgtd]. Since the connectivity formation of the cultured system
In Sec. I.I the model is described, in S(_ac. -V analytical \ye \want to model has grown randomly and spontaneously,
and numerical results are reported, and in Sec. VI there arfge can reasonably assume that the strength of each connec-
discussions and conclusions. tion is a function only of the type of presynaptic and post-
synaptic neurongexcitatory or inhibitory, and of the dis-
tance between them, plus eventually some random quenched
Il. MODEL fluctuations. Recent estimation of connectivity in in-vitro rat
Our starting point in modeling is the stochastic Cowan-cortical networks has shown long range connections, with

Wilson-like EI equationg10,9,14 governing the state vari- arborization of the neurons of 1.2+0.5 rfifv], such that
ables, modeling the membrane potentials{u,, ... uy} each neuron was connected with about 600 nearby neurons.

We will analyze two types of connectivity structures:

* In the first case, each excitatory unit is connected to all
the other units of the model, while inhibitory units only
=—al— > Hi0y(v)) + > 30 u) +F®, (D p_rOJecthocaIIy. In particular) andW are long-range matrices

i i given by

andv={vq, ... vy}, respectively, for the excitatory and in-
hibitory units:

3y =jo(L+en )N,
i = = av;+ 2 Wyg(up) + Fi(t). 2 e
h (0, ) 30501 o) Vh =6l er N ?

The unit outputsg,(uy), ...,g9,(uy) and g,(v4), ... .0, (N o

represent the probabilities of the cells firifay instantaneous  2"d ”(1;’ m(%an 1S I(%:al Hij=hodj(1+er™), where e<1 _
firing rateg whereg, andg, are sigmoidal activation func- and 7;", 7; ", and 7~ are random quenched values, uni-
tions that model the neuronal input-output relatiomst is a  formly distributed between -1 and 1. Wher0, the three
time constant@bout few milliseconds, for simplicity it is connection matrices commute each other and share a com-
assumed equal for excitatory and inhibitory upitsodeling ~ Plete set of eigenvectors. In particular the principal eigenvec-
the membrane time constark; is the synaptic connection tor &=(1/VN,...,1/\N) has eigenvaluegy, Wo, and hy,
strength from excitatory unitto excitatory uniti, W;; is the ~ while the othersN—1 eigenvectors have eigenvalues 0, 0,
synaptic connection strength from excitatory unio inhibi- ~ and ho, respectively. When >0, the vector &

tory uniti andHj;; is the synaptic connection strength from =(1/yN, ..., 1AN) will still be an eigenvector of the con-
inhibitory unit j to excitatory uniti. Since in cortical area nection matrices, apart from corrections of or@e/\N).
pyramidal cells have long range connections to other pyrak this paper we take&=0, in a following paper, we will
midal cells and to inhibitory interneurons, while inhibitory investigate the effects of orderand € (numerical simu-
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lations with smalle # 0 give results qualitatively similar to short-range connectiviti4) and the long-range connectivity

the ones withe=0). that we have considered, since in both cases we know ana-
« In the second case, we consider structured short-randgtically the eigenvectors and eigenvalues of the matrices. In

connectivity, inspired by recent measuremdts 7. We put  the open boundary conditions case we compute the eigenval-

one excitatory and one inhibitory unit on each site of aues numerically.

square lattice with L rows and M columns, so that there will

be N=LM excitatory units andN inhibitory units. Each in-

hibitory unit is connected only locally, to the excitatory unit lll. MODEL DYNAMICS
that is on the same site. Numbering the unit in a typewriter . , i ) .
way, from 0 to N-1, we connect thé-th excitatory unit to Us!ng vectorial notation, the dynamics of the model is
the excitatory and inhibitory units that are on the eight siteglescribed by the 2N components vectar,v}. Let us call
numbered i-1 modN, i+1modN, i-M modN, i {u,v} the fixed point determined byu=0, v=0 with F(t)
+M modN, i-M+1modN, i+M-1modN, i+M =0, F(t)=0.
+1 modN, i-M-1 modN. Therefore, each elements &f Linearizing Egs(1) and(2) around the fixed poinfu, v},
is eliminatingv from the equations, and assuming noise to be
io/8 if |i—j| modN=1 only on thev units (I'=0), we get
. jo/8 if [i—j| modN=M @ U+ (2a-d)u+[a?- ad + HW]u = - HF(t), (6)
V|8 if fi—j modN=M=1 whereu is now measured from the fixed point valugand
0 otherwise. nonlinearity enters only through the redefinition of the ele-
o ments ofJ, H, and W: J;g/(u;) —J;j, H;;g,(v)) —H;; and
Analqgouslyvvij:wo/8. if ||—J_| modl_\l:_l or M or M1, W;g;,(U)) —W;. We use bold and sans serif notatiteg.,
and is zero otherwiseH;; is hy if i=j and is zero

herwi u,J) for vectors and matrices, respectively.
ot Ner\':\'nseih t from the unit the bound The fixed point(u,V) is stable if the homogeneous asso-
otice that, apart from the units on the bounadary, eadl:iate equation of Eq(6) has only decaying solutions. In

umttls conn?cteq :}% Its foFur ?hearest n:::]ghbors antq o |tstfc_>u articular, wherd, H, andW share the same set of eigenvec-
next-nearest neighbors. Furthermore the connection matricgs, < = “janoting withj,, W, andh, their eigenvalues, the

J anqw are Toplitz matrices so that eigenvectors are theeigensolutions are
Fourier basis
1 Un=eMg,, ()

&)= mézmjm (5 where

2a—j, \ji-4hW,
and eigenvalues, given the notatidp=J(i —j)=J(x), can be Ny=— @~ In + Vin nYVn ®)

easily calculated: j,==-1J(x)cog27/Nnx), and analo- 2 2
gously forW. The highest eigenvalue dfis jo (andwy for and the stability condition iRe[\,]<0, i.e., the real parts

W), correspondm_g fo the eigenvector Wm:.FO‘ H IS diago- Re[\,] of the eigenvalues,, of the homogeneous system
nal and has all eigenvalues equalhp We investigate also . . . 7

o ; must be negative. The state vectois a linear combination
the case of structured short-range connectivity with open

- . - : )
boundary conditions. In such a case the eigenvectors an?{) all the e'ge.”m‘ides' given W_E“C”@n gn*C.C. In the

) . absence of nois€=0, therefore if all then modes have\,
eigenvalues are not known analytically and have to be com-= - o .
puted numerically =Re[\,]<0, andIm[\,]=0, the activityu simply decays

In experiments .of Segest al. [4] three networks are ana- towar(_j the fixed point,.statio.nary stategime N _In regime
lyzed with different geometries and size: a small 50-ceIIsA the isolated system is “quiet” gnd, each un|tjust'f|res ran-
with a quasi-one-dimensionallD) 2 mmx 50 xzm geom domly, each one uncorrelated with the others. Regime A cor-
-one- - : 5% ( !

etry, medium 16-cells networks, with a rectangular 2 mm responds 1, < 2a and j,=4h,W,. Besides the regime A,

X 2 mm geometry, and a largex2l(P-cells network with a other intgresting dynamic regimes can be consid.ered. In
circular 11-mm-radius geometry. the following we analyzg two cases named, respectively, re-

When L=M our lattice model describes the 2D squareglmes B and C. The regime B arises when
geometry, while wherM=1 andL=N there are only two Re[A\,]<0 On
connections for each sitgeft and right next-neighbor sitgs _ o
and the model describes the quasi-1D geometry used in the Im{An] =0 Hn but one(call it n=0).
experiments. It means that excitatory connections are such hat2«

In both caseg3) and (4), all the matricesJ, W and H andj§<4h0W0. In this regime, in absence of noise the sys-
commute each other and share a common set of eigenvectaesm (after a transient with damped oscillatigrsettles down
given by the Fourier basis in E¢). to the stable fixed point. However as we will see later, spon-

In the next section the model dynamics is analyzed intaneous collective aperiodic oscillations are induced by
terms of the eigenvectors and eigenvalues of the connectiomoise. The activity in presence of noise is similar to the one
matrices. The procedure is the same for both the structuresbserved in-vitro by Segeet al. at 0.5 mM Ca concentra-
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tion. The regime C is present when it exists at least an ei- () h2l' 75 2+olog  2-olwg
1 o 8
genvalue, let call iy, such that ® A1+ 22| 1+ 2@+ g2 1+ 20— wp)
10
Re[N\g] >0 (10
Im[\o] # O. for the eigenvalue\g=-1/m+iwgy, with 79>0, wy# 0. The

contribution expressed by E() is peaked atw=0, while
It means that @< j,< v4hyW,. Therefore regime C oc- the contribution given by Eq10) is peaked at close towy
curs only in a critical interval of excitatory connections (whenmywy<1). In regime B the PSD has contributions also
strength, such that excitatory principal eigenvalyeis  from Eg. (10). Therefore the linear analysis predicts that
greater then @ but lower theny4hoW,. In this regime spon- noise induces in the regime B a collective oscillatory behav-
taneous oscillations grow in the linear approximation. As onédor in the neurons activity. This collective oscillatory behav-
expects, the saturating nonlinearity stabilizes the limit cycleior corresponds to a broad peak in the power-spectrum of the
The nonlinear model shows synchronous periodic activityneurons activity near the characteristic frequengy
spontaneously, as we will see later, similar to the experimen- We perform numerical simulations of the nonlinear net-
tal results observed at 1 mM Ca concentration. work model with the long-range connectivity and with the
Whenj, is so large thaio> 2« andj,> V4hoW, the lin-  short-range connectivity. The values of parameters have been
ear analysis predicts a divergence without oscillations. In thighosen in such a way to satisfy the conditions for the regime
case strong nonlinear effects have to be taken in consideB. Similar results have been obtained in the long-range con-
ation. It has been observed by numerical simulati®esc. nectivity casgFigs. 1 and 2and in the short-range connec-
V) that the system shifts to a new stable fixed point, aroundivity model (Fig. 3). Noise induces spontaneous oscillations
which oscillations are induced by noise. that are synchronous becau&ggehas real positive elements.
The extracellular Ca2+ is known to affect synapse probFigure 1 shows the synchronous time behavior of the state
ability of transmitter releasgl7,18 and the action potential variablesu;(t), and its power spectrum density, when noise is
firing threshold(see Ref[16]). The parameter of interedt  I'=0.0004 in theN=10 long-range connections modelq.
H, andW are actually products of connection strengths and3)], in regime B. The signali(t) looks aperiodic on long
gradients of the nonlinear terms evaluated at the equilibriuniime scale, being decorrelated over long time scale by the
position; calcium concentration may affect both terms. Smoise. This spontaneous aperiodic synchronous activity mim-
the effects of extracellular Ca2+ concentration may be mulics the spontaneous aperiodic synchronous activity observed
tiple. We model the increase of Ca concentration as an inunder 0.5 mM Caand 2.0 mM Ca concentration in Ref.
crease of the excitatory connection strengths. Modeling thg5s]. We compute the interevent-intervéEl) between two
increase of Ca concentration as an increase of excitatory coBuccessive bursting events. A peak of @llwith intensity
nections] andW (or at least as an increase of the excitatory-above 0.7 is defined as a synchronized bursting event. From
to-excitatory connection strengfh, then both the transitions the sequencg,, specifying the location of thath event, we
observed experimentally from 0.5 to 1 mM and from compute the IEI histogram shown in Fig. 2. Figuréh)3
1 to 2mM Ca concentration could be accounted by theshows the IEI histogram of a short-range connectivity model
model. Indeed while a small increase in Ca concentratioffEq. (4)] with N=100 in regime B with nois& =0.001. No-
(and therefore a small increase jgfwith respect toa) in-  tably, both IEl are in a good agreement with the experimental
duces a transition in the model from regime B to regime C, ane observed at 0.5 mM Qa@ee Fig. 5 of Ref[5]). Both
larger increase in Ca concentratigand therefore a larger experimentally and in the model, the IEI shows a péaik
increase ofjp) make the model to go out of regime C. about 10 $with a very long tail(around 40-60 s the histo-
gram is still significantly nonzejpo
Introduction of a sigmoidal nonlinearitg(u) does not
IV. REGIME B DYNAMICS AND STOCHASTIC change the linear approximation results drastically. Numeri-
RESONANCE EFFECTS cal simulations show that noise induces similar synchronous
) , . oscillatory activity both in the nonlinear system and in the
Starting from Eq(6) we first analyze the self-correlation |inearized ongsee Fig. 1b)]. However some classes of non-
function of excitatory uniti, Ci(t-t")=(u)u(t"))=(u(t)) jinearity can show coherent stochastic resonance phenomena
X(u(t)) and the average self-correlation functi@it-t')  [19]. We categorize the nonlinearity into two general classes
=ﬁ2i Ci(t-t’) in the regime B in presence of noise of am- (as in Ref. 10 in terms of howg, deviates from linearity

plitude . The PSD, i.e., the Fourier transfor@(w) of C(t ~ near the fixed point-
—t’), is the sum ofN contributions given by class I: gy(u) ~ U -l  class II: g (u) ~ U +aud - bi,
(11)
- hol" i _ | |
Cw) L+a?d)? (99 wherea,b>0, andu, is measured from the fixed point value
@ u;. Classes | and Il nonlinearity differ in whether the ggjp
decreases or increasgefore saturationas one moves away
when the eigenvalues are real and negatiye-1/7,, and  from the equilibrium point, and will lead to qualitatively dif-
by ferent behavior, as will be shown. Figuréb#shows the ratio
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FIG. 2. (a) Histogram of intersynchronous event intervals of the
activity shown in previous figur¢regime B withI'=0.0004. (b)
Zoom of the decay region of the IEI histogram.

R=C(wg)/T" between the output power at the characteristic
frequencyw, and the power of the noide, versus the noise
level, using the two nonlinearities shown in Figay(dashed

line for class I, solid line for class)lin a long-range con-
nectivity model. Class Il nonlinearity can enhance the ratio
between the height of the PSD peak and the strength of
noise, for a critical range of noise intensities. Solid line in
Fig. 4b) shows the typical maximum that has become the

{c)
t (sec) fingerprint of stochastic resonance phenomgl. Figure

4(c) shows that the oscillation frequency changslewly)

FIG. 1. Numerical simulations of a long-range connecti . . .
g-rang i vglth the noise level.

(3)] model. The values of parameters have been chosen in such
way to satisfy the conditions for the regime [Bpecifically,
=50 s, N=10, Jij=Jo/N=2(a=0.)/N, Wi;=Wo/N, Hj;=hd(i
=), Wp=hg=10.253+0.25, 50 thatuy=\—j5/4+hWp=0.5 rad/$.

(a) Activation functiong(u) used in simulations for excitatory units.
u is measured from the fixed point valug and g(u) is shifted
vertically so that the fixed point coincides with the origi,0),

V. REGIME C DYNAMICS

If the excitatory-to-excitatory connections are stronger, so
that Re[\p-g]=a—jo/2=0, but not too strong, so that it is
still Im[\q]# 0, then spontaneous oscillatory activity arises

marked by a crosgb) Power spectrum density of excitatory units alsfo WithQUt n,0ise' In_ particular, Spontgneous periodic oscil-
activity, in regime B, with noise'=0.0004. Stars are nonlinear |ations arise in the linear approximation fke[xo]=0 and
simulations results, circles are linear simulations results, while solidM[Ao] # 0, this is a critical point separating the regimes
line is theoretical prediction in linear approximation. A broad peakRe[Ao] <0, Im[\q]# 0 (regime B and Re[\y]>0, Im[\(]

at w# 0 in the PSD is induced by noiséc) The time behavior of # 0 (regime Q.

the state variable;(t), i=1,... N in the linear numerical simula- In the regime C linear analysis predicts synchronous pe-
tion in regime B, with'=0.0004. Linesy(t),i=1,... N=10, over-  riodic activity with diverging amplitude, that becomes stable
laps each other because of synchrony. All unjt§ shows synchro-  when nonlinearity is taken into account. We focus on class |
nous aperiodic oscillatory activity. nonlinearity[Eq. (11)], wheng, deviates from linearity near
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-1r W FIG. 4. Nonlinearity and stochastic resonance effects. Numeri-
¢ cal simulations of a long-range connectivity model in regim&ds.
Two activation functions for excitatory unitg. Dashed line shows
20 20 40 60 a saturating activation functiafelass I, used in most of the follow-

() t (sec) ing simulation$, while solid line shows a class Il nonlinear function
whose slope increases before decreasing whenraised from its

FIG. 3. (Color online Numerical simulation of a noisy nonlin- Stationary valugcrosg. (b) Ratio R=PSQ(wg)/I" as a function of

ear square model with structured short-range connectivity in regiméhe noise level’. Dashed line corresponds to the class I activation
function shown with dashed line if@), while the solid line to the

B, using periodic boundary conditidiEq. (4)] (a and B and open
solid line class Il activation function. We used the following param-

boundary conditiongc). N=100 excitatory andN inhibitory units . : : e : e
are placed on a 1910 square. The values of parameters have beef@ters in the simulationsN=10, =50 s J;;=jo/N=9.98 s, Wy

chosen in such a way to satisfy the conditions for the regime B=No=50.89 §%, so thatw,=10 rad/s(c) The frequency of the PSD
[specifically, =50 s, N=100, Wo=hy=10.252+0.25, jo=2(a peak versus the noise levidame simulations as ifb)]. Effect of

~0.1), so thatwy=0.5 rad/$. (a) The time behavior of excitatory ~Nonlinearity is evident in botb) and(c), indeed for linear system

activity u(t), i=1, ... N in the model with periodic boundary con- R andwg do not change with noise level.

dition. [Specifically parameters aik =jo/8 andW;;=W,/8 for |i
~j] mod N=1,M,M+1, andH;;=hyd(i-j), I'=0.001. (b) Histo-
gram of intersynchronous event intervals of the activity shown inyhe fixed pointu due to saturation. This case includes most

(@. () The ti.me behavior of excitator_y aCtiViWF)’ i_=1, 81N gandard sigmoids used in modeling, including logistic sig-
the m(.)del ‘.N'th open bo.undary condition, Activity is SynChronous’moids hyperbolic tangent, and rounded threshold-linear
but with different amplitudes. Parameterd; =Jo/7.75 and W models with a soft saturation at high input level. Equati®n
=Wp/7.75 for|i—j|=#1,*M, £ (M+1), zero otherwiseH;;=hyd(i '

-j), I'=0.04. then becomes
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[(a+d)%u=[(3+ a)d = HW]g,(u) = - HF (), (12)

where by g,(u) we mean a vector with components
[gu(W]i=0gu(W).

Figure 5 shows the simulation results of a long-range con-
nectivity model in regime C, with and without noise. Figure i
1(a) shows the saturating function that we have used in our ol
numerical nonlinear simulations for excitatory units. Simula-
tion results ofN=100 short-range connectivity model with
M=L=10 in regime C, shown in Fig. 6, are in qualitative
agreement with the long-range connectivity model results.
As shown in Figs. &) and &a) the noiseless nonlinear nu-
merical simulations show stable synchronous periodic oscil-
latory activity u.

We check numerically that this spontaneous periodic o0s-
cillations behavior holds only for a particular range of pa-
rametergregime Q. For example, starting from the regime

u(t)

C parameters used in Fig. 5, for lower excitatory connections "
(jo=99.86<2a) we get regime B aperiodic oscillations, b ° [
while increasingjO beyond the regime C rande.g., atjg tsec)

=103> \how,) the network jumps to a new stable fixed point
(and it starts to oscillate around the new fixed point if there is
noise. L
As shown in Figs. &) and &b) the PSD in regime C has i :
two high peaks at first and second harmonic of the periodic i
network activity, resembling the experimental result§5if 10
Moreover[4] has put in evidence experimentally the exis-
tence of a broad peak at low frequencies in the PSD, indi-
cating long time positive correlations. Our model reproduces
these results, indeed numerical simulations of regime C in
presence of noise, with both type of connectivities, show a
broad peak at low frequency in the P$&ee Fig. &d)]. The
broad peak is absent when the noise is absent. The low fre-
quency’s behavior indicates a long-time positive autocorrela-
tion in the activity of the network. This behavior cannot be
accounted by the IF model of Segeval. (see Fig. &) in

[4]). In order to compare the IEI behavior of our model in the 10
two regimes, the IEI histogram for the noisy model in regime

C has been computedee Fig. 7. It looks totally different 10—2 ‘ ‘
from the IEI histogram in regime B. In the regime C, for (d) 107" 1
both the long-range and short-range connectivity cases, the

long time tail of the IEI disappears. There is only a narrow  F|G. 5. Regime C simulations of the nonlinear model with long-
high peak corresponding to the period of the signal. Thererange connectivityfEq. (3)]. We use the following parametels
fore, one prediction of our model is that the experimental IEl= 10,J;=jo/N=2(a+0.09/N, andWy=hy= \50,255+o,25, The ac-
at 1 mM Ca concentration should have a high pgadtiod- tivation function for the excitatory unit is shown in Figal (a),(b)
icity) with a fast decay similarly to Fig. &lifferently than at  Time behavior of the state variablegt), in the numerical simula-

PSD

w

0.5 mM Ca. tion of the isolated El long-range connectivity network in regime C.
[Linesu;(t), i=1,..,10, overlap each other because of synchigay.
A. Fading of periodicity at long times Regime C, noiseless nonlinear system. Synchronous periodic oscil-

. . . . latory activity is shown(b) Regime C, noisy nonlinear system with
Another effect, put in evidence experimentaly, is the I'=0.01. The activity is almost periodic, but noise decorrelates the

decrease in time of the periodicity of the burstirig activitysignal over long time scalesc) Power spectrum density of the
under 1 mM Ca on the time scale of several minutes. ACycivity shown in a lin-log scale. The peaks in the first and second
cording to Segeet al. [S], this effect could be related with  harmonic mark clearly the collective periodic activitgl) Log-log
the possibility of network adaptation, that still needs to bepjot of the power spectrum density of the activity in regime C at
verified experimentally. I'=0.01 (upper curvg, I'=0.001 (lower curve and I'=0 (insed.

In our model we identify two parametric Changes which Noise induces a broad peak at low frequency_
result in a decrease of the periodicity, namely, the increase of
noise level and the depression of excitatory connections. Thigistified in the light of adaptation processes: shortly after
depression of the synapses, during the experiments, could iemM Ca is added the excitatory connections increase their
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1 FIG. 7. Histogram of intersynchronous event intervals, of the

activity shown in Fig. 8) (nonlinear model with long-range con-
10 ¢ nectivity in regime C with['=0.0D.

though all conditions, like temperature and humidity, are
10 kept constant during the experiment, an increase of the noise
of the system is possible.
10 £ So, according to our analysis, adaptatiadich is related
. ‘ to the depression of the excitatory connectjoissnot the
! 1 only possible explanation of the fading of periodicity ob-
) w (rad/sec) served experimentally, since simply an increase of the level
of intrinsic noise is able to account for the observed fading of
periodicity.
I To show this, we have computed numerically the PSD for
NI different values of the noise and for different values of the
‘{‘ excitation. The results are reported in Figs. 8 and 9, respec-
f 5 tively. In both figures, it is evident that a fading of periodic-
L ity (i.e., a decrease of the first and second harmonic peaks
Il occurs both when noise increases and when excitatory con-
‘U w nections are depressed. Looking at Figs. 8 and 9 we see that
the two parametric changésoise-change or excitatory con-

2000 -

FIG. 6. (Color onling Numerical simulations of nonlinear
model with short-range connectivity) in regime C, using periodic
boundary conditionga and B and open boundary conditioft). 2 10004
N=100 excitatory and\ inhibitory units are placed on a 3010
square. The values of parameters have been chosen in such away 500"
satisfy the conditions for regime Gpecifically, N=100, jo=2(«

1500+

+0.07, Wy=ho=10.253+0.25. (a) Time behavior of the state vari- o ] i

ablesu;(t) (synchrony in the periodic boundary condition connec- “'('adisecf 4 . ©°

tivity case (4). [Specifically parameters ard; =jo/8, Wij=Wy/8, (a)

for [i—j| modN=1,M,M=1, H;j=hy&(i-}).] (b) PSD of the activ-

ity ui(t) shown in(a). (c) Time behavior of the state variabig(t) FIG. 8. (Color (a) Power spectrum density of the excitatory
fori=1,...,10 in the open boundary condition model. Activities of units activity of the noisy nonlinear networks with long-range con-
the units are synchronous but with different amplitud&pecifi- nectivity in regime C, plotted at different noise levels. Black line:
cally parameters areJ;j=jo/7.75, Wi;=Wy/7.75, for li—jl no-noisel"=0.0, red line:I'=0.0001, green lineI’=0.001, blue
=+1,*M, M, £1, Hj;=hgd(i-j).] line: '=0.01, and yellow lineT"'=0.1. Noise makes the high peri-

odic activity fade away(b) Log-log plot of the power spectrum
efficacy, while several minutes after the system possiblyiensities shown itia). The two high peaks in the PSD correspond
adapt to the new concentration and the efficacy of conneao the first and second harmonics of the activity period. The low
tions decreases to the original values. Also an increase of thfeequency power spectrum distribution shows a broad peak in
noise during time cannot be excluded in principle. Eveno=0.
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6000

“’(rad/:ec) 2 g 10 -
(a) (b) w
] ] FIG. 10. (Color online Phase-lock oscillatory activity;(t),

FIG. 9. (Colon) (&) Power spectrum density of the excitatory j=1 . 5N=100 excitatory andN inhibitory units are placed on a
units activity of the n0|s¥ nonllgear long-range netwgrks,Fat 10x10 square.; and W; are positive when|i-j| mod N
=0.0001, plotted versus, jo=pB+]jo, Wo=B+W, [wherejo=2(a  =1,M,M=1 and are negative whéir-j| modN=3,3V,3M =1, all
+0.07 andW,= \;’0,253+0,25 correspond to regime]dncreasing  the other elements are nuli;=hyd; as usual. The values of pa-

B the excitatory connections become stronger. Decreagg(dé., rameters have been chosen in such a way to satisfy the conditions
decrease of excitatiormakes the high periodic activity fade away. for the regime C.

(b) Log-log plot of some of the power spectrum densities shown in

(8). Blue line: 8=0.2 back line:3=0; yellow line: 8=-0,2; and  describe both synchronous and phase-locked periodic activi-
magenta lineB=-0.5. The two h_|gh peaks in t_h_e PSD_ correspondiias cases by writings(t) = &e190t+c.c., taking theg; real in

to the first and second harmonics of the activity period. The lowy o first case and compléx; =|¢|€7) in the second.

frequency power spectrum distribution shows a broad peai in A phase locked oscillation arises when the dominant ei-
=0 that decreases when excitatig) decreases, fading away. . . .
genvector is complex. Figure 10 shows spontaneous oscilla-
. L . ) tory activity in regime C with a phase shith;=20m/Ni,
nections decreagean be discriminated since their effects on panween all the units; involved in the oscillation. This is
the PSD are different at low frequency. In Fig. 8 we note thaychieved using both positive and negative connections.
an increase of the level of noise leads to an increase of thQegative connections can be simply implemented via inhibi-

broad peak aw=0. Instead in Fig. 9 it is evident that a tory interneurons with very short time membrane time
depression of the excitatory connections eigenvajye¥,  constants.

induces a decrease of both the high peaks and the broad peak| g)| simulations of previous sections the excitatory ac-

atw=0. , tivity is synchronous, while the excitatory population and
However, the experimental results at present do not allowihitory population periodic activity are phase locked, and
us to discriminate between the two possible explanations bgpe phase shift between the two ensembles depends from
cause, as far as we know, there is not any measurement of th@twork parameters. In all the simulations of the previous
low freql_Jency PSD after the fadmg of periodicity occurring figures theu(t) versusu(t) phase shift is about few thou-
on the time scale of several minutes. It could also be thal,nihs of a period, in good agreement with the theoretical
both the phenomena occur and contribute to the fading Ofegyit arctg(wy/a) coming from the linear approximation
periodicity. . N analysis of our model. In the experiments of Seggval.
An indication that noise may change during time comesmﬂ all the oscillatory populatioriboth excitatory and in-
from the work of Tatencet al. [7] showing the PSD of the  pipiory) appear synchronous. Indeed the predicted phase-

activity of a rat cortical network after 12, 18, and 58 daySqif; ig'g0 tiny that they cannot be clearly distinguished from
in-vitro (DIV). While PSD at 12 DIV seems to correspond to zero

a noiseless or low-noise system, the figures at 18 and 58 DIV~

bring to mind the possibility that the noise is increaged

particular a low frequency peak becomes visible, even VI. SUMMARY AND CONCLUSIONS
though the lin-log scale does not highlighy.itA strong

decrease of periodic activity occurs as number of days In the present paper we analyzed the effect of uncorre-
increases. lated white noise on the spontaneous dynamics of the El

model. First, we studied the evolution of the system in the
linear approximation and put in evidence the existence of
two different regimes, B and C. The transition from the B to
Besides the periodic synchronous bursting activity anaC regimes is induced by increasing the strength of the exci-
lyzed until now, our model can exhibit periodic but not syn- tatory synapses. Then nonlinear corrections have been intro-
chronous bursting activity. This appears when there is auced numerically. The noise induces in the two regimes
phase lock between neurons involved in the burst. Mathvery different behaviors. In regime B the presence of noise
ematically it is described by;(t) = |&|codwgt— ;). We can  induces collective synchronous aperiodic oscillations in the

B. Phase-locking between excitatory and inhibitory population
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neural activity. In this regime nonlinearity does not changestrength of the connections should scale with the size of the
the synchronous oscillatory activity but can induce stochastienodel, in a short-range connection model the strength of
resonance. connections should not scale with the network’s size. In or-

In regime C stable spontaneous periodic oscillations cager to scale the strength of connections with the size of the
arise only in the presence of nonlinearity. The oscillations ar¢yetwork a sort of self-regulations should be invoked. In the
present also in noiseless conditions. The noise produces ghort-range model we get the scale-invariant activity as a
broad peak at low frequency and a fading of periodicity atyonys, Indeed the strength of the principal eigenvalue de-

high level of noise. _ pends on the number of connections for each unit in average,
The stochastic model presented is able to account for thg, 4 not on the total number of units.

experimental results of Seget al. In particular it accounts According to our model, networks with one size too small

floB r?1(|)\}|hc;[1h§o:(?esri:\;?ignilpgg;ﬁg())c;?] dp:[r)lgrcij(l)?jiéerggﬁﬁe with respect to the range of connectiqissich that boundary
(at 0.5 and 2.0 mM Ca concentration—regimg 8nd tran- effects become relevant and affect the average number of
connections for each unitshows dissimilarity from the

sition from one regime to another. It accounts for the IongI roer network tivity. at th me environment condition
time positive correlations of the bursting activity, the IEI and arger networks activity, at the same environment co ons
?same Ca concentration, density, )etc

spectral features of the activity, and the observed fading of>"_. L S .
periodicity. F_mally it is worth mentioning two points. S
All to all connection matrices whose elements are re- . () Thg occurrence of different regimes of aptmty in n-
scaled withN is a very simplified model that, even though vitro cortical networks has been also shown in the recent

useful for analytical calculations, is not realistic. Recent es—Work of Tatencet al. [7]. Figure &a) of Ref. [7] shows the

timation of connectivity in in-vitro rat cortical networks has PSD that we recognize as typlcal of regime C, while, for
shown arborization of the neurons of 1.2+0.5 mfi]. A example, we recognize indications O.f a p053|ble broad peak
more plausible connection matrix for our model therefore isat low frequency in the PSD shown in Figgbyand 1c).

a structured finite range connection structure. We have simtbs(g) fThe “arpomfal_tzu# Iovtv freq!;gntcy br?adl _pea_l: in tr;e
lated a network of 100 excitatory and 100 inhibitory units: of neuraf activity IS not Specilic 1o cortical in-vitro net-

each couple of excitatory and inhibitory units is placed in aworks, it has been observed in-vivo, for example, in the

square lattice. Apart from the units on the boundary, eaclﬁ’u'se trains of nerve cells belonging to various brain struc-

; o ; - h as auditory nervg20] and the mesencephalic
excitatory unit is connected to its four nearest neighbors an&ur_es (suc . . .
to its four next-nearest neighbors. Inhibitory-to—excitatoryretICUIar formatior{21]) and in IF model$22]. In [22] it has

connections H are still local, with each inhibitory unit con- E)heen related to fthe .met?ftab'l'% Otf g?h ac;uhwty pﬁttetrrgﬁ In
nected to only one excitatory unit. e presence of noisgpatterns that diffuse throughout the

In this structured short-range connections framework Wesystertrl). Thti an?maIOLfJ?h peak haﬁ. beent_also Fomtelsl out
can also account for the size-independence of the activit ecently in the activity of the suprachiasmatic nuclg2d.

networks. Indeed Segeat al. [4] observe a similarity in the orresponds to an “anomaloqs” behavior Of. the Fano factor
activity of different-size networks. In order to account for at large times. We claim th*’# in the suprachiasmatic nucleus
this invariance, they suggested that the networks have a seffeurons, as in the rat cortical cultures, the low frequency

regulation process that can be achieved, for example, by eak in the PSD is just the result of the interplay between

adjustment of neural efficacies or neuronal firing threshold.nonlmeamy and the intrinsic noise.

However, the similarity of activity finds a simple explanation
in the scenario where each unit is connected only to other
units that are within a critical radius. While in an all-to-all We would like to thank Ronen Segev for useful
connection model, in order to keep the activity constant theliscussions.
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