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Recently Segevet al. [Phys. Rev. E64, 011920(2001); Phys. Rev. Lett.88, 118102(2002)] made long-term
observations of spontaneous activity of in-vitro cortical networks, which differ from predictions of current
models in many features. In this paper we generalize the excitatory-inhibitory cortical model introduced in a
previous paper[Scarpettaet al., Neural Comput.14, 2371 (2002)], including intrinsic white noise and ana-
lyzing effects of noise on the spontaneous activity of the nonlinear system, in order to account for the
experimental results of Segevet al.Analytically we can distinguish different regimes of activity, depending on
the model parameters. Using analytical results as a guide line, we perform simulations of the nonlinear
stochastic model in two different regimes, B and C. The power spectrum density(PSD) of the activity and the
interevent-interval distributions are computed, and compared with experimental results. In regime B the net-
work shows stochastic resonance phenomena and noise induces aperiodic collective synchronous oscillations
that mimics experimental observations at 0.5 mM Ca concentration. In regimeC the model shows spontaneous
synchronous periodic activity that mimics activity observed at 1 mM Ca concentration and the PSD shows two
peaks at the first and second harmonics in agreement with experiments at 1 mM Ca. Moreover(due to intrinsic
noise and nonlinear activation function effects) the PSD shows a broad band peak at low frequency. This
feature, observed experimentally, does not find explanation in the previous models. Besides we identify para-
metric changes(namely, increase of noise or decreasing of excitatory connections) that reproduces the fading
of periodicity found experimentally at long times, and we identify a way to discriminate between those two
possible effects measuring experimentally the low frequency PSD.
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I. INTRODUCTION AND MOTIVATIONS

Spontaneous(and stimulation-driven) synchronized oscil-
latory activity has been observed in many in-vitro and in-
vivo experiments[1–3].

The understanding of spontaneous activity of in-vitro net-
works [4–7] is a preliminary requirement for the comprehen-
sion of the network behavior inside the animal brain, where
the dynamics are more complex due to the presence of ex-
ternal stimuli and of interactions among different parts of the
brain. In particular, the understanding of the specific mecha-
nisms underlying the spontaneous spatiotemporal pattern of
activity is important for the comprehension of brain activity,
especially in relation with epilepsy[8], the central pattern
generator systems, etc.

Recently Segevet al. [4,5] have done accurate long-term
measurements of the spontaneous activity of in-vitro cortical
cells neural networks placed on multielectrode arrays. The
effect of external Ca concentration on the spontaneous activ-
ity has been studied. They observed, for a critical range of
Ca concentration, periodic synchronized bursting activity,
that fades away after,20 min. Periodic synchronized burst-
ing is observed at 1 mM Ca concentration and not at higher
s2 mMd and lowers0.5 mMd concentrations. Their observa-
tions differ from prediction of current neural network models
in many features. They try to model the phenomena perform-
ing numerical simulations of an integrate-and-fire network
model with random connections. Adding(1) dynamic thresh-
old and(2) activity-dependent synaptic connections, they re-
produce much of the observed network activity, but do not

obtain a complete explanation of the experimental results.
For example, their numerical simulations capture the transi-
tion between aperiodic synchronized bursting versus periodic
synchronized bursting when Ca concentration(and so model
connection strengths) was increased, but they do not repro-
duce the transition from periodic synchronized bursting ver-
sus aperiodic activity observed experimentally when Ca con-
centration was increased over the critical interval. Moreover
the experimental data show that the energy distribution over
low frequencies has a broad band with power law decay that
indicates the existence of positive long-range time correla-
tions in the sequences of bursts; this behavior cannot be ac-
counted for by the Segevet al. model. The interevent-
interval (IEI) distribution at 0.5 mM Ca shows a very long
tail (tens of seconds), decaying much more slowly than in the
integrate-and-firing(IF) model. Finally, experimental results
show that, after 1 mM Ca concentration was obtained, the
high peaks of the power spectrum density(PSD), at first and
second harmonic, become lower and lower with time, and
after,20 min the PSD is almost flat. These PSD features(in
particular the behavior at low frequency and the changes that
happen in a time scale of several minutes) have not been
explained by the models of Segevet al. [4,5], and as far as
we know, until now the explanation is lacking. Patterns of
spontaneous activity in cortical cultured networks were ob-
served by other researchers[3,7]. Canepariet al. [3] ob-
served transitions from asynchronous firing dynamics to syn-
chronous firing dynamics when Ca2+ concentration was
increased from 0.1 to 1 mM.

Here we model a cultured cortical cells network using a
excitatory-inhibitory(EI) Cowan-Wilson-like[9] model ana-
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lytically tractable, which enables us to study the source of
spontaneous activity dynamics analytically. We analyze the
macroscopic observables that describe the dynamics of the
system as a function of the network parameters, exploiting
effects of noise and nonlinearity.

We show that some insights and a good agreement with
experiments can be obtained including intrinsic white noise
in the spiking-rate excitatory-inhibitory(EI) neural network
model. The model is based on the noiseless cortical model
introduced in a previous paper[10] by one of us, Li, Hertz,
which is able to imprint and retrieve oscillatory patterns
when driven by noiseless oscillatory input(using a general-
ized hebbian learning rule). Here the model is studied to put
in evidence its spontaneous activity and specifically the ef-
fects of noise on the dynamics are analyzed. The spatiotem-
poral patterns of spontaneous activity in our model is a con-
sequence of the dynamics of the interacting excitatory and
inhibitory units, and depends critically from the presence of
noise and from the synaptic strengths of the EI network.

The results we have found, although referred to the work
of Segevet al. [4,5], are of more general interest, indeed they
connect the behavior of in-vitro neural networks to the one
of nonlinear subthreshold and overthreshold systems in pres-
ence of noise.

The effects of noise in neural models is the focus of a lot
of recent literature[11–13], from the single FitzHugh-
Nagumo system point of view[13] to the IF homogeneous
networks[12] or the phase-model coupled oscillators[11].

In Sec. II the model is described, in Sec. III–V analytical
and numerical results are reported, and in Sec. VI there are
discussions and conclusions.

II. MODEL

Our starting point in modeling is the stochastic Cowan-
Wilson-like EI equations[10,9,14] governing the state vari-
ables, modeling the membrane potentials,u=hu1, . . . ,uNj
and v=hv1, . . . ,vNj, respectively, for the excitatory and in-
hibitory units:

u̇i = − aui − o
j

Hijgvsv jd + o
j

Jijgusujd + F̄istd, s1d

v̇i = − avi + o
j

Wijgusujd + Fistd. s2d

The unit outputsgusu1d , . . . ,gusuNd and gvsv1d , . . . ,gvsvNd
represent the probabilities of the cells firing(or instantaneous
firing rates) wheregu and gv are sigmoidal activation func-
tions that model the neuronal input-output relations.a−1 is a
time constant(about few milliseconds, for simplicity it is
assumed equal for excitatory and inhibitory units) modeling
the membrane time constant,Jij is the synaptic connection
strength from excitatory unitj to excitatory uniti, Wij is the
synaptic connection strength from excitatory unitj to inhibi-
tory unit i and Hij is the synaptic connection strength from
inhibitory unit j to excitatory uniti. Since in cortical area
pyramidal cells have long range connections to other pyra-
midal cells and to inhibitory interneurons, while inhibitory

interneurons generally only project locally, we assumeJij
andWij to be long range connections, andHij to be local. All
these parameters are non-negative; the inhibitory character of
the second term on the right-hand side of Eq.(1) is indicated

by the minus sign preceding it.F̄istd and Fistd model the
intrinsic noise, respectively, on the excitatory and inhibitory
units, not included in the definition ofu,v. In a (cultured)
interacting neurons system noise can be due to several rea-
sons, like thermal fluctuation, ionic channel stochastic activi-

ties, and many others. We take the noiseF̄istd ,Fistd to be

uncorrelated white noise, such thatkFistdl=kF̄istdl=0 and

kFistd Fjst8dl=Gdi jdt−t8, kF̄istd F̄jst8dl=Ḡdi jdt−t8. Each such
unit ui, vi represents a local assembly of pyramidal cells or
local interneurons sharing common, or at least highly corre-
lated, input.(The number of neurons represented by the ex-
citatory units may be in general different from the number
represented by the inhibitory units.) For reasons explained in
the following, we choose the connection matricesJ, H, W
symmetric, apart from small random fluctuations. This sym-
metry does not imply symmetry of the total connection ma-
trix s J −H

W 0
d, indeed it is highly asymmetric, as well as the

connections between excitatory and inhibitory neurons are
still asymmetric in this scenario.

Network connectivity

Since the connectivity formation of the cultured system
we want to model has grown randomly and spontaneously,
we can reasonably assume that the strength of each connec-
tion is a function only of the type of presynaptic and post-
synaptic neurons(excitatory or inhibitory), and of the dis-
tance between them, plus eventually some random quenched
fluctuations. Recent estimation of connectivity in in-vitro rat
cortical networks has shown long range connections, with
arborization of the neurons of 1.2±0.5 mm2 [7], such that
each neuron was connected with about 600 nearby neurons.

We will analyze two types of connectivity structures:
• In the first case, each excitatory unit is connected to all

the other units of the model, while inhibitory units only
project locally. In particular,J andW are long-range matrices
given by

Jij = j0s1 + ehi j
sJdd/N,

Wij = W0s1 + ehi j
sWdd/N, s3d

and the matrixH is local Hij =h0di js1+ehi
sHdd, wheree!1

and hi j
sJd, hi j

sWd, and hi
sHd are random quenched values, uni-

formly distributed between −1 and 1. Whene=0, the three
connection matrices commute each other and share a com-
plete set of eigenvectors. In particular the principal eigenvec-
tor j0=s1/ÎN, . . . ,1 /ÎNd has eigenvaluesj0, W0, and h0,
while the othersN−1 eigenvectors have eigenvalues 0, 0,
and h0, respectively. When e.0, the vector j0
=s1/ÎN, . . . ,1 /ÎNd will still be an eigenvector of the con-
nection matrices, apart from corrections of orderOse /ÎNd.
In this paper we takee=0, in a following paper, we will
investigate the effects of ordere and e2 snumerical simu-
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lations with smalleÞ0 give results qualitatively similar to
the ones withe=0d.

• In the second case, we consider structured short-range
connectivity, inspired by recent measurements[15,7]. We put
one excitatory and one inhibitory unit on each site of a
square lattice with L rows and M columns, so that there will
be N=LM excitatory units andN inhibitory units. Each in-
hibitory unit is connected only locally, to the excitatory unit
that is on the same site. Numbering the unit in a typewriter
way, from 0 to N−1, we connect thei-th excitatory unit to
the excitatory and inhibitory units that are on the eight sites
numbered i −1 modN, i +1 modN, i −M mod N, i
+M mod N, i −M +1 modN, i +M −1 modN, i +M
+1 modN, i −M −1 modN. Therefore, each elements ofJij
is

Jij =5
j0/8 if ui − j u mod N = 1

j0/8 if ui − j u mod N = M

j0/8 if ui − j u mod N = M ± 1

0 otherwise.
6 s4d

AnalogouslyWij =w0/8 if ui − j u mod N=1 or M or M ±1,
and is zero otherwise.Hij is h0 if i = j and is zero
otherwise.

Notice that, apart from the units on the boundary, each
unit is connected to its four nearest neighbors and to its four
next-nearest neighbors. Furthermore the connection matrices
J and W are Toplitz matrices so that eigenvectors are the
Fourier basis

jns jd =
1

ÎN
ei2pnj/N s5d

and eigenvalues, given the notationJij =Jsi − jd=Jsxd, can be
easily calculated: jn=ox=0

N−1Jsxdcoss2p /Nnxd, and analo-
gously forW. The highest eigenvalue ofJ is j0 (andw0 for
W), corresponding to the eigenvector withn=0. H is diago-
nal and has all eigenvalues equal toh0. We investigate also
the case of structured short-range connectivity with open
boundary conditions. In such a case the eigenvectors and
eigenvalues are not known analytically and have to be com-
puted numerically.

In experiments of Segevet al. [4] three networks are ana-
lyzed with different geometries and size: a small 50-cells
with a quasi-one-dimensional(1D) 2 mm350 mm geom-
etry, medium 104-cells networks, with a rectangular 2 mm
32 mm geometry, and a large 23106-cells network with a
circular 11-mm-radius geometry.

When L=M our lattice model describes the 2D square
geometry, while whenM =1 and L=N there are only two
connections for each site(left and right next-neighbor sites)
and the model describes the quasi-1D geometry used in the
experiments.

In both cases(3) and (4), all the matricesJ, W and H
commute each other and share a common set of eigenvectors
given by the Fourier basis in Eq.(5).

In the next section the model dynamics is analyzed in
terms of the eigenvectors and eigenvalues of the connection
matrices. The procedure is the same for both the structured

short-range connectivity(4) and the long-range connectivity
that we have considered, since in both cases we know ana-
lytically the eigenvectors and eigenvalues of the matrices. In
the open boundary conditions case we compute the eigenval-
ues numerically.

III. MODEL DYNAMICS

Using vectorial notation, the dynamics of the model is
described by the 2N components vectorhu ,vj. Let us call

hū , v̄j the fixed point determined byu̇=0, v̇=0 with F̄std
=0, Fstd=0.

Linearizing Eqs.(1) and(2) around the fixed pointhū , v̄j,
eliminatingv from the equations, and assuming noise to be

only on thev units sḠ=0d, we get

ü + s2a − Jdu̇ + fa2 − aJ + HWgu = − HFstd, s6d

whereu is now measured from the fixed point valueū, and
nonlinearity enters only through the redefinition of the ele-
ments of J, H, and W: Jijgu8sūjd→Jij , Hijgu8sv̄ jd→Hij and
Wijgu8sūjd→Wij . We use bold and sans serif notation(e.g.,
u ,J) for vectors and matrices, respectively.

The fixed pointsū , v̄d is stable if the homogeneous asso-
ciate equation of Eq.(6) has only decaying solutionsu. In
particular, whenJ, H, andW share the same set of eigenvec-
tors jn, denoting with jn, Wn, andhn their eigenvalues, the
eigensolutions are

un = elntjn, s7d

where

ln = −
2a − jn

2
±

Îjn
2 − 4hnWn

2
s8d

and the stability condition isReflng,0, i.e., the real parts
Reflng of the eigenvaluesln of the homogeneous system
must be negative. The state vectoru is a linear combination
of all the eigenmodes, given byu=oncne

lntjn+c.c. in the
absence of noiseG=0, therefore if all then modes haveln
=Reflng,0, and Imflng=0, the activityu simply decays
toward the fixed point, stationary state(regime A). In regime
A the isolated system is “quiet” and, each unit just fires ran-
domly, each one uncorrelated with the others. Regime A cor-
responds tojn,2a and jn

2.4hnWn. Besides the regime A,
other interesting dynamic regimes can be considered. In
the following we analyze two cases named, respectively, re-
gimes B and C. The regime B arises when

Reflng , 0 ∀ n

Imflng = 0 ∀ n but onescall it n = 0d.

It means that excitatory connections are such thatj0,2a
and j0

2,4h0W0. In this regime, in absence of noise the sys-
tem (after a transient with damped oscillations) settles down
to the stable fixed point. However as we will see later, spon-
taneous collective aperiodic oscillations are induced by
noise. The activity in presence of noise is similar to the one
observed in-vitro by Segevet al. at 0.5 mM Ca concentra-
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tion. The regime C is present when it exists at least an ei-
genvalue, let call itl0, such that

Refl0g . 0

Imfl0g Þ 0.

It means that 2a, j0,Î4h0W0. Therefore regime C oc-
curs only in a critical interval of excitatory connections
strength, such that excitatory principal eigenvaluej0 is
greater then 2a but lower thenÎ4h0W0. In this regime spon-
taneous oscillations grow in the linear approximation. As one
expects, the saturating nonlinearity stabilizes the limit cycle.
The nonlinear model shows synchronous periodic activity
spontaneously, as we will see later, similar to the experimen-
tal results observed at 1 mM Ca concentration.

When j0 is so large thatj0.2a and j0.Î4h0W0 the lin-
ear analysis predicts a divergence without oscillations. In this
case strong nonlinear effects have to be taken in consider-
ation. It has been observed by numerical simulations(Sec.
V) that the system shifts to a new stable fixed point, around
which oscillations are induced by noise.

The extracellular Ca2+ is known to affect synapse prob-
ability of transmitter release[17,18] and the action potential
firing threshold(see Ref.[16]). The parameter of interestJ,
H, andW are actually products of connection strengths and
gradients of the nonlinear terms evaluated at the equilibrium
position; calcium concentration may affect both terms. So
the effects of extracellular Ca2+ concentration may be mul-
tiple. We model the increase of Ca concentration as an in-
crease of the excitatory connection strengths. Modeling the
increase of Ca concentration as an increase of excitatory con-
nectionsJ andW (or at least as an increase of the excitatory-
to-excitatory connection strengthJ), then both the transitions
observed experimentally from 0.5 to 1 mM and from
1 to 2 mM Ca concentration could be accounted by the
model. Indeed while a small increase in Ca concentration
(and therefore a small increase ofj0 with respect toa) in-
duces a transition in the model from regime B to regime C, a
larger increase in Ca concentration(and therefore a larger
increase ofj0) make the model to go out of regime C.

IV. REGIME B DYNAMICS AND STOCHASTIC
RESONANCE EFFECTS

Starting from Eq.(6) we first analyze the self-correlation
function of excitatory uniti, Cist− t8d=kuistduist8dl−kuistdl
3kuistdl and the average self-correlation functionCst− t8d
= 1

Noi Cist− t8d in the regime B in presence of noise of am-

plitude G. The PSD, i.e., the Fourier transformC̃svd of Cst
− t8d, is the sum ofN contributions given by

C̃nsvd ~
h0

2Gtn
4

s1 + v2tn
2d2 s9d

when the eigenvalues are real and negativeln=−1/tn, and
by

C̃0svd ~
h0

2Gt0
4

4s1 + v0
2t0

2dF 2 + v/v0

1 + t0
2sv + v0d2 +

2 − v/v0

1 + t0
2sv − v0d2G

s10d

for the eigenvaluel0=−1/t0+ iv0, with t0.0, v0Þ0. The
contribution expressed by Eq.(9) is peaked atv=0, while
the contribution given by Eq.(10) is peaked atv close tov0
(whent0v0,1). In regime B the PSD has contributions also
from Eq. (10). Therefore the linear analysis predicts that
noise induces in the regime B a collective oscillatory behav-
ior in the neurons activity. This collective oscillatory behav-
ior corresponds to a broad peak in the power-spectrum of the
neurons activity near the characteristic frequencyv0.

We perform numerical simulations of the nonlinear net-
work model with the long-range connectivity and with the
short-range connectivity. The values of parameters have been
chosen in such a way to satisfy the conditions for the regime
B. Similar results have been obtained in the long-range con-
nectivity case(Figs. 1 and 2) and in the short-range connec-
tivity model (Fig. 3). Noise induces spontaneous oscillations
that are synchronous becausej0 has real positive elements.
Figure 1 shows the synchronous time behavior of the state
variablesuistd, and its power spectrum density, when noise is
G=0.0004 in theN=10 long-range connections model[Eq.
(3)], in regime B. The signaluistd looks aperiodic on long
time scale, being decorrelated over long time scale by the
noise. This spontaneous aperiodic synchronous activity mim-
ics the spontaneous aperiodic synchronous activity observed
under 0.5 mM Ca(and 2.0 mM Ca) concentration in Ref.
[5]. We compute the interevent-interval(IEI) between two
successive bursting events. A peak of allui with intensity
above 0.7 is defined as a synchronized bursting event. From
the sequencetn, specifying the location of thenth event, we
compute the IEI histogram shown in Fig. 2. Figure 3(b)
shows the IEI histogram of a short-range connectivity model
[Eq. (4)] with N=100 in regime B with noiseG=0.001. No-
tably, both IEI are in a good agreement with the experimental
one observed at 0.5 mM Ca(see Fig. 5 of Ref.[5]). Both
experimentally and in the model, the IEI shows a peak(at
about 10 s) with a very long tail(around 40–60 s the histo-
gram is still significantly nonzero).

Introduction of a sigmoidal nonlinearitygsud does not
change the linear approximation results drastically. Numeri-
cal simulations show that noise induces similar synchronous
oscillatory activity both in the nonlinear system and in the
linearized one[see Fig. 1(b)]. However some classes of non-
linearity can show coherent stochastic resonance phenomena
[19]. We categorize the nonlinearity into two general classes
(as in Ref. 10) in terms of howgu deviates from linearity
near the fixed pointū

class I: gusuid , ui − aui
3 class II: gusuid , ui + aui

3 − bui
5,

s11d

wherea,b.0, andui is measured from the fixed point value
ūi. Classes I and II nonlinearity differ in whether the gaingu8
decreases or increases(before saturation) as one moves away
from the equilibrium point, and will lead to qualitatively dif-
ferent behavior, as will be shown. Figure 4(b) shows the ratio
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R=C̃sv0d /G between the output power at the characteristic
frequencyv0 and the power of the noiseG, versus the noise
level, using the two nonlinearities shown in Fig. 4(a) (dashed
line for class I, solid line for class II), in a long-range con-
nectivity model. Class II nonlinearity can enhance the ratio
between the height of the PSD peak and the strength of
noise, for a critical range of noise intensities. Solid line in
Fig. 4(b) shows the typical maximum that has become the
fingerprint of stochastic resonance phenomena[19]. Figure
4(c) shows that the oscillation frequency changes(slowly)
with the noise levelG.

V. REGIME C DYNAMICS

If the excitatory-to-excitatory connections are stronger, so
that Refln=0g=a− j0/2ù0, but not too strong, so that it is
still Imfl0gÞ0, then spontaneous oscillatory activity arises
also without noise. In particular, spontaneous periodic oscil-
lations arise in the linear approximation ifRefl0g=0 and
lmfl0gÞ0, this is a critical point separating the regimes
Refl0g,0, lmfl0gÞ0 (regime B) and Refl0g.0, lmfl0g
Þ0 (regime C).

In the regime C linear analysis predicts synchronous pe-
riodic activity with diverging amplitude, that becomes stable
when nonlinearity is taken into account. We focus on class I
nonlinearity[Eq. (11)], whengu deviates from linearity near

FIG. 1. Numerical simulations of a long-range connectivity[Eq.
(3)] model. The values of parameters have been chosen in such a
way to satisfy the conditions for the regime B[specifically, a
=50 s−1, N=10, Jij = j0/N=2sa−0.1d /N, Wij =W0/N, Hij =h0dsi
− jd, W0=h0=Î0.25j0

2+0.25, so thatv0=Î−j0
2/4+h0W0=0.5 rad/s].

(a) Activation functiongsud used in simulations for excitatory units.
u is measured from the fixed point valueū, and gsud is shifted
vertically so that the fixed point coincides with the origin(0,0),
marked by a cross.(b) Power spectrum density of excitatory units
activity, in regime B, with noiseG=0.0004. Stars are nonlinear
simulations results, circles are linear simulations results, while solid
line is theoretical prediction in linear approximation. A broad peak
at vÞ0 in the PSD is induced by noise.(c) The time behavior of
the state variableuistd, i =1, . . . ,N in the linear numerical simula-
tion in regime B, withG=0.0004. Linesuistd, i =1, . . . ,N=10, over-
laps each other because of synchrony. All unitsuistd shows synchro-
nous aperiodic oscillatory activity.

FIG. 2. (a) Histogram of intersynchronous event intervals of the
activity shown in previous figure(regime B with G=0.0004). (b)
Zoom of the decay region of the IEI histogram.
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the fixed pointū due to saturation. This case includes most
standard sigmoids used in modeling, including logistic sig-
moids, hyperbolic tangent, and rounded threshold-linear
models with a soft saturation at high input level. Equation(6)
then becomes

FIG. 3. (Color online) Numerical simulation of a noisy nonlin-
ear square model with structured short-range connectivity in regime
B, using periodic boundary condition[Eq. (4)] (a and b) and open
boundary conditions(c). N=100 excitatory andN inhibitory units
are placed on a 10310 square. The values of parameters have been
chosen in such a way to satisfy the conditions for the regime B
[specifically, a=50 s−1, N=100, W0=h0=Î0.25j0

2+0.25, j0=2sa
−0.1d, so thatv0=0.5 rad/s]. (a) The time behavior of excitatory
activity uistd, i =1, . . . ,N in the model with periodic boundary con-
dition. [Specifically parameters areJij = j0/8 andWij =W0/8 for ui
− j u mod N=1,M ,M ±1, andHij =h0dsi − jd, G=0.001]. (b) Histo-
gram of intersynchronous event intervals of the activity shown in
(a). (c) The time behavior of excitatory activityuistd, i =1, . . . ,8 in
the model with open boundary condition. Activity is synchronous,
but with different amplitudes. Parameters:Jij = j0/7.75 and Wij

=W0/7.75 for ui − j u=±1, ±M , ±sM ±1d, zero otherwise,Hij =h0dsi
− jd, G=0.04.

FIG. 4. Nonlinearity and stochastic resonance effects. Numeri-
cal simulations of a long-range connectivity model in regime B.(a)
Two activation functions for excitatory unitsui. Dashed line shows
a saturating activation function(class I, used in most of the follow-
ing simulations), while solid line shows a class II nonlinear function
whose slope increases before decreasing whenu is raised from its
stationary value(cross). (b) Ratio R=PSDsv0d /G as a function of
the noise levelG. Dashed line corresponds to the class I activation
function shown with dashed line in(a), while the solid line to the
solid line class II activation function. We used the following param-
eters in the simulations:N=10, a=50 s−1 Jij = j0/N=9.98 s−1, W0

=h0=50.89 s−1, so thatv0=10 rad/s.(c) The frequency of the PSD
peak versus the noise level[same simulations as in(b)]. Effect of
nonlinearity is evident in both(b) and(c), indeed for linear system
R andv0 do not change with noise level.
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fsa + ]td2gu − fs]t + adJ − HWggusud = − HFstd, s12d

where by gusud we mean a vector with components
fgusudgi =gusuid.

Figure 5 shows the simulation results of a long-range con-
nectivity model in regime C, with and without noise. Figure
1(a) shows the saturating function that we have used in our
numerical nonlinear simulations for excitatory units. Simula-
tion results ofN=100 short-range connectivity model with
M =L=10 in regime C, shown in Fig. 6, are in qualitative
agreement with the long-range connectivity model results.
As shown in Figs. 5(a) and 6(a) the noiseless nonlinear nu-
merical simulations show stable synchronous periodic oscil-
latory activity u.

We check numerically that this spontaneous periodic os-
cillations behavior holds only for a particular range of pa-
rameters(regime C). For example, starting from the regime
C parameters used in Fig. 5, for lower excitatory connections
s j0=99.86,2ad we get regime B aperiodic oscillations,
while increasingj0 beyond the regime C range(e.g., at j0
=103.Îh0w0) the network jumps to a new stable fixed point
(and it starts to oscillate around the new fixed point if there is
noise).

As shown in Figs. 5(c) and 6(b) the PSD in regime C has
two high peaks at first and second harmonic of the periodic
network activity, resembling the experimental results of[5].
Moreover [4] has put in evidence experimentally the exis-
tence of a broad peak at low frequencies in the PSD, indi-
cating long time positive correlations. Our model reproduces
these results, indeed numerical simulations of regime C in
presence of noise, with both type of connectivities, show a
broad peak at low frequency in the PSD[see Fig. 5(d)]. The
broad peak is absent when the noise is absent. The low fre-
quency’s behavior indicates a long-time positive autocorrela-
tion in the activity of the network. This behavior cannot be
accounted by the IF model of Segevet al. (see Fig. 3(c) in
[4]). In order to compare the IEI behavior of our model in the
two regimes, the IEI histogram for the noisy model in regime
C has been computed(see Fig. 7). It looks totally different
from the IEI histogram in regime B. In the regime C, for
both the long-range and short-range connectivity cases, the
long time tail of the IEI disappears. There is only a narrow
high peak corresponding to the period of the signal. There-
fore, one prediction of our model is that the experimental IEI
at 1 mM Ca concentration should have a high peak(period-
icity) with a fast decay similarly to Fig. 5(differently than at
0.5 mM Ca).

A. Fading of periodicity at long times

Another effect, put in evidence experimentally[5], is the
decrease in time of the periodicity of the bursting activity
under 1 mM Ca on the time scale of several minutes. Ac-
cording to Segevet al. [5], this effect could be related with
the possibility of network adaptation, that still needs to be
verified experimentally.

In our model we identify two parametric changes which
result in a decrease of the periodicity, namely, the increase of
noise level and the depression of excitatory connections. The
depression of the synapses, during the experiments, could be

justified in the light of adaptation processes: shortly after
1 mM Ca is added the excitatory connections increase their

FIG. 5. Regime C simulations of the nonlinear model with long-
range connectivity[Eq. (3)]. We use the following parametersN
=10, Jij = j0/N=2sa+0.07d /N, andW0=h0=Î0.25j0

2+0.25. The ac-
tivation function for the excitatory unit is shown in Fig. 1(a). (a),(b)
Time behavior of the state variablesuistd, in the numerical simula-
tion of the isolated EI long-range connectivity network in regime C.
[Linesuistd, i =1,..,10, overlap each other because of synchrony.] (a)
Regime C, noiseless nonlinear system. Synchronous periodic oscil-
latory activity is shown.(b) Regime C, noisy nonlinear system with
G=0.01. The activity is almost periodic, but noise decorrelates the
signal over long time scales.(c) Power spectrum density of the
activity shown in a lin-log scale. The peaks in the first and second
harmonic mark clearly the collective periodic activity.(d) Log-log
plot of the power spectrum density of the activity in regime C at
G=0.01 (upper curve), G=0.001 (lower curve) and G=0 (inset).
Noise induces a broad peak at low frequency.
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efficacy, while several minutes after the system possibly
adapt to the new concentration and the efficacy of connec-
tions decreases to the original values. Also an increase of the
noise during time cannot be excluded in principle. Even

though all conditions, like temperature and humidity, are
kept constant during the experiment, an increase of the noise
of the system is possible.

So, according to our analysis, adaptation(which is related
to the depression of the excitatory connections) is not the
only possible explanation of the fading of periodicity ob-
served experimentally, since simply an increase of the level
of intrinsic noise is able to account for the observed fading of
periodicity.

To show this, we have computed numerically the PSD for
different values of the noise and for different values of the
excitation. The results are reported in Figs. 8 and 9, respec-
tively. In both figures, it is evident that a fading of periodic-
ity (i.e., a decrease of the first and second harmonic peaks)
occurs both when noise increases and when excitatory con-
nections are depressed. Looking at Figs. 8 and 9 we see that
the two parametric changes(noise-change or excitatory con-

FIG. 6. (Color online) Numerical simulations of nonlinear
model with short-range connectivity(4) in regime C, using periodic
boundary conditions(a and b) and open boundary condition(c).
N=100 excitatory andN inhibitory units are placed on a 10310
square. The values of parameters have been chosen in such a way to
satisfy the conditions for regime C(specifically,N=100, j0=2sa
+0.07d, W0=h0=Î0.25j0

2+0.25). (a) Time behavior of the state vari-
ablesuistd (synchrony) in the periodic boundary condition connec-
tivity case (4). [Specifically parameters areJij = j0/8, Wij =W0/8,
for ui − j u mod N=1,M ,M ±1, Hij =h0dsi − jd.] (b) PSD of the activ-
ity uistd shown in(a). (c) Time behavior of the state variableuistd
for i =1, . . . ,10 in the open boundary condition model. Activities of
the units are synchronous but with different amplitudes.[Specifi-
cally parameters areJij = j0/7.75, Wij =W0/7.75, for ui − j u
=±1, ±M , ±M , ±1, Hij =h0dsi − jd.]

FIG. 7. Histogram of intersynchronous event intervals, of the
activity shown in Fig. 5(b) (nonlinear model with long-range con-
nectivity in regime C withG=0.01).

FIG. 8. (Color) (a) Power spectrum density of the excitatory
units activity of the noisy nonlinear networks with long-range con-
nectivity in regime C, plotted at different noise levels. Black line:
no-noiseG=0.0, red line:G=0.0001, green line:G=0.001, blue
line: G=0.01, and yellow line:G=0.1. Noise makes the high peri-
odic activity fade away.(b) Log-log plot of the power spectrum
densities shown in(a). The two high peaks in the PSD correspond
to the first and second harmonics of the activity period. The low
frequency power spectrum distribution shows a broad peak in
v=0.
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nections decrease) can be discriminated since their effects on
the PSD are different at low frequency. In Fig. 8 we note that
an increase of the level of noise leads to an increase of the
broad peak atv=0. Instead in Fig. 9 it is evident that a
depression of the excitatory connections eigenvaluesj0, W0
induces a decrease of both the high peaks and the broad peak
at v=0.

However, the experimental results at present do not allow
us to discriminate between the two possible explanations be-
cause, as far as we know, there is not any measurement of the
low frequency PSD after the fading of periodicity occurring
on the time scale of several minutes. It could also be that
both the phenomena occur and contribute to the fading of
periodicity.

An indication that noise may change during time comes
from the work of Tatenoet al. [7] showing the PSD of the
activity of a rat cortical network after 12, 18, and 58 days
in-vitro (DIV ). While PSD at 12 DIV seems to correspond to
a noiseless or low-noise system, the figures at 18 and 58 DIV
bring to mind the possibility that the noise is increased(in
particular a low frequency peak becomes visible, even
though the lin-log scale does not highlight it). A strong
decrease of periodic activity occurs as number of days
increases.

B. Phase-locking between excitatory and inhibitory population

Besides the periodic synchronous bursting activity ana-
lyzed until now, our model can exhibit periodic but not syn-
chronous bursting activity. This appears when there is a
phase lock between neurons involved in the burst. Math-
ematically it is described byuistd~ uji ucossv0t−fid. We can

describe both synchronous and phase-locked periodic activi-
ties cases by writinguistd=jie

−iv0t+c.c., taking theji real in
the first case and complexsji = uji ueifid in the second.

A phase locked oscillation arises when the dominant ei-
genvector is complex. Figure 10 shows spontaneous oscilla-
tory activity in regime C with a phase shiftfi =20p /Ni,
between all the unitsui involved in the oscillation. This is
achieved using both positive and negative connections.
Negative connections can be simply implemented via inhibi-
tory interneurons with very short time membrane time
constants.

In all simulations of previous sections the excitatory ac-
tivity is synchronous, while the excitatory population and
inhibitory population periodic activity are phase locked, and
the phase shift between the two ensembles depends from
network parameters. In all the simulations of the previous
figures theustd versusvstd phase shift is about few thou-
sandths of a period, in good agreement with the theoretical
result arctgsv0/ad coming from the linear approximation
analysis of our model. In the experiments of Segevet al.
[4,5] all the oscillatory population(both excitatory and in-
hibitory) appear synchronous. Indeed the predicted phase-
shift is so tiny that they cannot be clearly distinguished from
zero.

VI. SUMMARY AND CONCLUSIONS

In the present paper we analyzed the effect of uncorre-
lated white noise on the spontaneous dynamics of the EI
model. First, we studied the evolution of the system in the
linear approximation and put in evidence the existence of
two different regimes, B and C. The transition from the B to
C regimes is induced by increasing the strength of the exci-
tatory synapses. Then nonlinear corrections have been intro-
duced numerically. The noise induces in the two regimes
very different behaviors. In regime B the presence of noise
induces collective synchronous aperiodic oscillations in the

FIG. 9. (Color) (a) Power spectrum density of the excitatory
units activity of the noisy nonlinear long-range networks, atG

=0.0001, plotted versusb, j0=b+ j̄0, W0=b+W̄0 [where j̄0=2sa
+0.07d andW̄0=Î0.25j0

2+0.25 correspond to regime C]. Increasing
b the excitatory connections become stronger. Decrease ofb (i.e.,
decrease of excitation) makes the high periodic activity fade away.
(b) Log-log plot of some of the power spectrum densities shown in
(a). Blue line: b=0.2 back line:b=0; yellow line: b=−0,2; and
magenta line:b=−0.5. The two high peaks in the PSD correspond
to the first and second harmonics of the activity period. The low
frequency power spectrum distribution shows a broad peak inv
=0 that decreases when excitationsbd decreases, fading away.

FIG. 10. (Color online) Phase-lock oscillatory activityuistd,
i =1, . . . ,5.N=100 excitatory andN inhibitory units are placed on a
10310 square.Jij and Wij are positive whenui − j u mod N
=1,M ,M ±1 and are negative whenui − j u modN=3,3M ,3M ±1, all
the other elements are null.Hij =h0di j as usual. The values of pa-
rameters have been chosen in such a way to satisfy the conditions
for the regime C.
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neural activity. In this regime nonlinearity does not change
the synchronous oscillatory activity but can induce stochastic
resonance.

In regime C stable spontaneous periodic oscillations can
arise only in the presence of nonlinearity. The oscillations are
present also in noiseless conditions. The noise produces a
broad peak at low frequency and a fading of periodicity at
high level of noise.

The stochastic model presented is able to account for the
experimental results of Segevet al. In particular it accounts
for both the observed synchronous periodic regime(at
1.0 mM Ca concentration—regime C) and aperiodic regime
(at 0.5 and 2.0 mM Ca concentration—regime B), and tran-
sition from one regime to another. It accounts for the long
time positive correlations of the bursting activity, the IEI and
spectral features of the activity, and the observed fading of
periodicity.

All to all connection matrices whose elements are re-
scaled withN is a very simplified model that, even though
useful for analytical calculations, is not realistic. Recent es-
timation of connectivity in in-vitro rat cortical networks has
shown arborization of the neurons of 1.2±0.5 mm2 [7]. A
more plausible connection matrix for our model therefore is
a structured finite range connection structure. We have simu-
lated a network of 100 excitatory and 100 inhibitory units:
each couple of excitatory and inhibitory units is placed in a
square lattice. Apart from the units on the boundary, each
excitatory unit is connected to its four nearest neighbors and
to its four next-nearest neighbors. Inhibitory-to-excitatory
connections H are still local, with each inhibitory unit con-
nected to only one excitatory unit.

In this structured short-range connections framework we
can also account for the size-independence of the activity
networks. Indeed Segevet al. [4] observe a similarity in the
activity of different-size networks. In order to account for
this invariance, they suggested that the networks have a self-
regulation process that can be achieved, for example, by an
adjustment of neural efficacies or neuronal firing threshold.
However, the similarity of activity finds a simple explanation
in the scenario where each unit is connected only to other
units that are within a critical radius. While in an all-to-all
connection model, in order to keep the activity constant the

strength of the connections should scale with the size of the
model, in a short-range connection model the strength of
connections should not scale with the network’s size. In or-
der to scale the strength of connections with the size of the
network a sort of self-regulations should be invoked. In the
short-range model we get the scale-invariant activity as a
bonus. Indeed the strength of the principal eigenvalue de-
pends on the number of connections for each unit in average,
and not on the total number of units.

According to our model, networks with one size too small
with respect to the range of connections(such that boundary
effects become relevant and affect the average number of
connections for each unit) shows dissimilarity from the
larger networks activity, at the same environment conditions
(same Ca concentration, density, etc).

Finally it is worth mentioning two points.
(i) The occurrence of different regimes of activity in in-

vitro cortical networks has been also shown in the recent
work of Tatenoet al. [7]. Figure 6(a) of Ref. [7] shows the
PSD that we recognize as typical of regime C, while, for
example, we recognize indications of a possible broad peak
at low frequency in the PSD shown in Figs. 7(b) and 7(c).

(ii ) The “anomalous” low frequency broad peak in the
PSD of neural activity is not specific to cortical in-vitro net-
works, it has been observed in-vivo, for example, in the
pulse trains of nerve cells belonging to various brain struc-
tures (such as auditory nerve[20] and the mesencephalic
reticular formation[21]) and in IF models[22]. In [22] it has
been related to the metastability of high activity patterns in
the presence of noise(patterns that diffuse throughout the
system). The “anomalous” peak has been also pointed out
recently in the activity of the suprachiasmatic nucleus[23]. It
corresponds to an “anomalous” behavior of the Fano factor
at large times. We claim that in the suprachiasmatic nucleus
neurons, as in the rat cortical cultures, the low frequency
peak in the PSD is just the result of the interplay between
nonlinearity and the intrinsic noise.
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