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formation, and protein interactions but also has implications for natural selection.
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I. INTRODUCTION

The revolution in molecular biology[1] sparked by the
discovery[2] of the structure of the DNA molecule 50 years
ago has led to a breathtakingly beautiful description of life.
Life employs well-tailored chain molecules to store and rep-
licate information, to carry out a dizzying array of function-
alities, and to provide a molecular basis for natural selection.
The complementary base pairing mechanism in DNA com-
bined with its double-helix structure serves as a repository of
information and provides a pretty mechanism for replication
[2]. The replication is prone to errors or mutations and these
errors, which are the basis of evolution, are in turn copied in
future generations[3]. Using the RNA molecule as an inter-
mediary, the information contained in the DNA genes is
translated into proteins, which are linear chains of amino
acids. Unlike the DNA molecule, which adopts a limited
number of related structures, protein molecules[4–6] fold
into thousands of native state structures under physiological
conditions. For proteins, form determines functionality and
the rich variety of observed forms underscores the versatility
of proteins. There then follows a complex orchestrated dance
in which proteins catalyze reactions, interact with each other,
and finally feed back into the gene to regulate the synthesis
of other proteins[1].

A protein molecule is large and has many atoms. In addi-
tion, the water molecules surrounding the protein play a cru-
cial role in its behavior. At the microscopic level, the laws of
quantum mechanics can be used to deduce the interactions
but the number of degrees of freedom is far too many for the
system to be studied in all its detail. When one attempts to
look at the problem in a coarse-grained manner[7] with what
one hopes are the essential degrees of freedom, it is very
hard to determine what the effective potential energies of
interaction are. This situation makes the protein problem par-
ticularly daunting and no solution has yet been found.

Over many decades, much experimental data has been
accumulated yet theoretical progress has been somewhat lim-
ited. The problem is highly interdisciplinary and touches on
biology, chemistry, and physics and it is often hard to distill

the essential features of each of the multiple aspects of the
problem. The great successes of quantum chemistry in the
determination of the structure of the DNA molecule[2] and
in the spectacular prediction that helices and sheets[8–10]
are the building blocks of protein structures have spurred
much work using detailed chemistry on understanding the
protein problem. Such work has been very insightful in pro-
viding useful hints on how proteins behave at the atomic
scale in performing their tasks. The missing feature, of
course, in such a theoretical approach is that it treats each
protein as a special entity with all the attendant details of the
sequence of amino acids, their intricate side chain atoms, and
the water molecules. Such an approach, while quite valuable,
neither has as a goal nor can lend itself to a unified way of
understanding seemingly disparate phenomena pertaining to
proteins. Reinforcing this, experiments, which are very chal-
lenging, are carried out on one protein at a time and cry out
for an understanding of the behavior of an individual class of
protein.

The lessons we have learned from physics are of a differ-
ent nature. The history of physics is replete with examples of
the elucidation of connections between what seem to be dis-
tinct phenomena and the development of a unifying frame-
work, which, in turn, leads to new observable consequences
[11,12]. There have been many attempts at using physics-
based approaches for understanding proteins. These have
provided valuable insights on how one might think about the
problem and have served as a means of understanding ex-
perimental data. Yet no simple unification has been achieved
in a deeper understanding of the key principles at work in
proteins.

We restrict ourselves to globular proteins which display
the rich variety of native state structures. There are other
interesting and important classes of proteins[13] such as
membrane proteins and fibrous proteins which we do not
consider here. Our goal here is to present a different ap-
proach to understanding proteins—our focus is on under-
standing the origin of protein structures and how they form
the basis for both functionality and natural selection. Our
work points to a unification of the various aspects of all
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proteins: symmetry and geometry determine the limited
menu of folded conformations that a protein can choose from
for its native state structure; these structures are in a margin-
ally compact phase in the vicinity of a phase transition and
are therefore eminently suited for biological function; these
structures are the molecular target for the powerful forces of
evolution; proteins are well-designed sequences of amino ac-
ids which fit well into one of these predetermined folds; and
proteins are prone to misfolding and aggregation leading to
the formation of amyloids, which are implicated in debilitat-
ing human diseases[14,15] such as Alzheimer’s, light-chain
amyloidosis, and spongiform encephalopathies.

We present a discussion of the nature of the denatured
state(which can loosely be thought of as the collection of
unfolded conformations) and its possible key role in the pro-
tein folding problem. We also show how disordered proteins
could fit into our unified framework.

The problem of how life was created is a fascinating one.
Our focus is on looking at life on earth and asking how it
works. The lessons we learn provide hints to the answers of
deep and fundamental questions that have been pondered by
our ancients: Was life on earth inevitable? Then there is the
question posed by Henderson[16] about whether the nature
of our physical world is biocentric. Is there a need for fine-
tuning in biochemistry to provide for the fitness of life in the
cosmos or even less ambitiously for life here on earth? Sur-
prisingly, as we will show, a physics approach turns out to be
valuable for thinking about these questions.

The main text of the paper contains the principal ideas
and details of the calculations are relegated to the Appen-
dixes. In Sec. II, we introduce the description of a protein as
a thick polymer chain and highlight the differences in its
phase diagram with respect to the usual string and bead
model. In Sec. III, we make a comparison of the predictions
obtained from the simple tube model against experimental
data available on protein native state structures. In Sec. IV,
we introduce a more refined model in which the tube picture
is reinforced with the geometrical constraints that arise in the
formation of hydrogen bonds and discuss the resulting phase
diagram for an isolated peptide chain. In Sec. V, we discuss
several consequences of our model including the nature of
the free energy landscape, the innate propensity of proteins
to aggregate into amyloidlike forms, and the role played by
proteins as the targets of natural selection in molecular evo-
lution. In Sec. VI, we discuss the nature of the denatured
state of proteins and its possible role in protein folding. In
the final Sec. VII, we conclude with a summary.

II. PHASES OF MATTER: FROM SPHERES TO TUBES

The fluid and crystalline phases of matter can be readily
understood[17] in terms of the behavior of a simple system
of hard spheres. The standard way of ensuring the self-
avoidance of a system of uniform hard spheres is to consider
all pairs of spheres and require that their centers are no closer
than their diameter. Studies of hard spheres have a venerable
history [18] including early work by Kepler on the packing
of cannonballs in a ship’s hold. Each hard sphere can be
thought of as a point particle or a zero-dimensional object

with its own private space of spatial extent equal to its ra-
dius. Generalizing to a one-dimensional object, one must
consider a line or a string, with private space associated with
each point along the line, leading to a uniform tube of radius
of cross section or thicknessD, with its axis defined by the
line. (Likewise, one could consider a collection of interacting
tubes.) The generalization of the hard sphere constraint to the
description of the self-avoidance of a tube of nonzero thick-
ness is as follows[19] (see Appendix A). Consider all triplets
of points along the axis of the tube. Draw circles through
each of the triplets and ensure that none of the radii is less
than the tube thickness[20]. This prescription surprisingly
entails discarding pairwise interactions and working with ef-
fective three-body interactions[19,21,22].

One may visualize a tube as the continuum limit of a
discretechain of tethered disks or coins[21] of fixed radius
separated from each other by a distancea in the limit of a
→0. The inherent anisotropy associated with a coin(the
heads to tails direction being different from the other two
perpendicular to it) reflects the fact that there is a special
local direction at each position defined by the locations of
the adjacent objects along the chain. An alternative descrip-
tion of a discrete chain molecule is a string and bead model
in which the tethered objects are spheres. The key difference
between these two descriptions is the different symmetry of
the tethered objects. Upon compaction of a chain of spheres,
each individual sphere tends to surround itself isotropically
with other spheres, unlike the tube situation in which nearby
tube segments need to be placed parallel to each other. Even
for unconstrained particles, deviations from spherical sym-
metry (replacing a system of hard spheres with one of hard
rods, for example) lead to rich new liquid crystal phases
[23,24] (see Fig. 1). Likewise, we find that the tube and a
chain of tethered spheres exhibit quite distinct behaviors
with one exception—in the presence of an attractive self-
interaction favoring compaction, the chain of coins and the
string and bead model behave similarly in the limit of van-
ishing ratios of the radii of the coin and sphere to the range

FIG. 1. (Color online) Schematic phase diagram for hard rods
highlighting the rich behavior and the new(with respect to hard
spheres) liquid crystal phases exhibited at intermediate
temperatures.
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of attraction. A detailed comparison between the chain of
coins (tube) and the string and bead model with a bending
rigidity energy term is carried out in Appendix B.

Figure 2 is a sketch of the phase diagram, at zero tem-
perature, of a homopolymer of lengthL and thicknessD with
the range of attractive interactionR. This phase diagram has
been obtained using detailed computer simulations accompa-
nied by an approximate mean field theory[22] and can be
understood on the basis of physical arguments. For large val-
ues ofL /R, there are two distinct phases. WhenD /R is large,
the tube is very thick compared to the range of attractive
interactions and one obtains a swollen phase with equal
weight for all self-avoiding conformations. One finds a very
large degeneracy with no tendency toward compaction. On
the other hand, for smallD /R, one has a semicrystalline
phase[25] in which the tube is stretched out locally with
nearby sections parallel to each other. A similar structure is
also obtained for many long tubes—the arrangement is akin
to piling up logs parallel to each other with each log sur-
rounded by six other logs in a hexagonal array, the optimal
packing in two dimension of coins of radiusD. Such struc-
tures are similar to those found in the Abrikosov flux lattice
[26] and bear a resemblance to liquid crystal order.

Liquid crystals are a delicate state of matter of rodlike
molecules which adopt many distinct arrangements sensitive
to external electric and magnetic fields[23,24]. A liquid crys-
tal phase that is analogous to the semicrystalline phase is the
nematic phase in which the molecules move as in a regular
liquid but with an alignment of their axes. Unlike a spin
system in which an up spin is different from a down spin, in
the nematic phase, all that matters is the direction of the axis
of the particle—there is no up-down distinction—and this
change in symmetry leads to a first order phase transition
between the disordered isotropic and the ordered nematic
phases. Likewise, the phase transition between the semicrys-
talline phase at low temperatures and a high temperature dis-
ordered phase in which there is no compaction of the tube is
a first order transition as in the melting of ice into water. At
the transition temperature, there is a coexistence of the two
phases(e.g., pieces of ice floating in a glass of water) and an
abrupt transition between the two states. One might call such
a system a two-state system—one has water and/or ice but
nothing in between.

When the tube is short, one would expect finite size ef-
fects [27] to come into play. In most physical systems, such
finite size effects are intuitively obvious corrections to the
bulk scenario and arise from the effects of the finite bound-
aries. For our tube, the simplest situation occurs in the swol-
len phase where the finite size effects are not important—
short fat tubes continue to adopt open conformations. At the
other extreme of smallD /R, as one reduces the length of the
tube, the overall symmetry of the folded object crosses over
from that of a cylinder(corresponding to the Abrikosov flux
lattice–like phase akin to the hexagonal arrangement of par-
allel, straight logs) to a sphere whenL,R3/D2 and one ob-
tains one out of many degenerate featureless compact con-
formations. Physically, for a short tube, there are many more
conformations that can be accommodated in the spherical
topology than in the cylindrical topology without any accom-
panying sacrifice in the attractive interaction energy.

There is a confluence of three distinct types of structures:
the swollen conformations, the semicrystalline phase, and the
featureless compact conformations, whenD,R,L (Fig. 2).
This interplay leads to quite remarkable finite size effects:
one obtains amarginally compactphase with a huge reduc-
tion in the degeneracy compared to the featureless compact
phase and the swollen phase. On raising the temperature, one
again finds a two-state behavior and the finite size analog of
a first order transition between the marginally compact phase
and the disordered phase. The first order transition occurs
because it is necessary for different nearby tube segments to
snap into position right alongside each other and parallel to
each other in order to avail themselves of the attraction. The
inherent anisotropy of a tube along with the fact thatD is of
order R leads to this requirement. Such two-state behavior
can, in the simplest scenario, be associated with a transition
state [28] along suitably chosen reaction coordinates. The
structures of choice[21,29] in the marginally compact phase,
for a discrete chain, are helices, kissing hairpins, regular
hairpins, and sheets(Figs. 3 and 4). Helices, hairpins, and
sheets are indeed characterized by a parallel placement of
nearby tube segments. The marginally compact phase is
poised in the vicinity of a phase transition to the swollen

FIG. 2. Sketch of the zero-temperature phase diagram of a tube
in the continuum, subject to a self-attraction promoting compaction.
There are two phases when the tube lengthL is long compared to
the range of attractive interactionR. One obtains the semicrystalline
phase (with parallel/antiparallel alignment between different
stretches of the tube which then fill the space with hexagonal sym-
metry, as depicted in the figure) when the tube thicknessD is small
compared toR and a swollen phase whenD is large compared toR.
There are interesting finite size effects in the semicrystalline phase.
In the thin tube limit, on decreasing the length there is a crossover
from the semicrystalline phase with overall cylindrical symmetry to
a featureless compact phase with spherical symmetry whenL /R
,sD /Rd−2. There is an unusual finite size effect whenD,R near
the confluence of three phases(at L=2pR, D=R for a chain in the
continuum): the semicrystalline phase, the featureless compact
phase, and the swollen phase. A marginally compact phase is ob-
tained in this regime and displays a dramatic entropy reduction,
with the choice structure being a helix with a well-defined pitch to
radius ratio(see Fig. 4). Other structures such as hairpins and sheets
are present in the marginally compact phase fordiscrete chains(see
Fig. 3) [22].
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phase and the structures are therefore flexible[30] and sen-
sitive to the right types of perturbations.

III. TUBES AND PROTEINS

There is a truly remarkable coincidence between the
structures one obtains in the marginally compact physical
state of matter of short tubes and the building blocks of
protein native state structures(Fig. 3). Proteins[13] are lin-
ear chains of amino acids, of which there are 20 naturally
occurring types with distinct side chains. The backbone and
several of the side chains are hydrophobic and, under physi-
ological conditions, globular proteins fold rapidly and repro-
ducibly to somewhat compact conformations called their na-
tive state structures. In their native states, a hydrophobic core
is created which is space filling and water is expelled from
the interior. Even though there are hundreds of thousands of
proteins in human cells, the total number of distinct folds
that they adopt in their native states is only of the order of a
few thousand[31–33]. Furthermore, these structures seem to

be evolutionarily conserved[34–36]. Proteins are relatively
short chain molecules and indeed longer globular proteins
form domains which fold autonomously[37]. The building
blocks of protein structures are helices, hairpins, and almost
planar sheets(Fig. 3). Strikingly, short tubes, with nohetero-
geneity, in the marginally compact phase form helices with
the same pitch to radius ratio as in real proteins[38] (Fig. 4)
and almost planar sheets made up of zigzag strands. It is
interesting to note that the helix is a very natural conforma-
tion for a tube and occurs without any explicit introduction
of hydrogen bonding. Recent work on the denatured state of
short amino acid sequences has suggested that the poly-
proline II helix might be the preferred structure in that phase,
even though it does not entail the formation of any hydrogen
bonds[39]. As in the tube case, small globular proteins show
a two-state behavior[40–44] and recent experiments
[4,45,46] have been successful in mapping out the nature of
the transition state in several cases.

Let us make theconstructive hypothesisthat the extraor-
dinary similarity between the structures adopted by short
tubes in the marginally compact phase and the building
blocks of protein native state structures is not a mere coinci-
dence. Wepostulateinstead that the tube picture presented
above is a paradigm for understanding protein structures.
Quite generally, such postulates are of limited utility unless
one is able to unify seemingly unrelated aspects of the prob-
lem and make predictions amenable to experimental verifi-
cation. In our case, while the tube idea is theoretical, there is
a wealth of experimental data already available on proteins.
Before we proceed to explore the consequences of our hy-
pothesis, we will first link the tube picture with the protein
problem using experiments as the guide.

Let us begin by asking whether the backbone of a protein
can be described as a tube. Figure 5 indeed shows that, in its
native state, the protein backbone can be thought of as the
axis of a tube of approximate radius of cross sectionsDd
equal to 2.7 Å. Interestingly, there are small variations in the
tube radius especially in the vicinity of backward bends[48].
The tuning of the two length scalesD and R to be compa-
rable to each other happens automatically for proteins: the
sizes of the amino acid side chains determine both the tube
thickness and the range of interactions. Steric interactions
lead to a vast thinning of the phase space that protein struc-
tures can explore[49,50]. Physically, the notion of a thick
chain or a tube follows directly from steric interactions in a
protein—one needs room around the backbone to house the
amino acid side chains without any overlap. The same side
chains that determine the tube thickness also control the
range of attraction—the outer atoms of the side chain interact
through a short range interaction screened by the water. This
self-tuning is a quite remarkable feature of proteins.

The rapid folding of small proteins can be understood in
terms of the inherent anisotropy of a tube and the self-tuning
of the two key length scales, the tube thickness and the range
of the attractive interactions. In the marginally compact
phase, in order to take advantage of the attractive interac-
tions, nearby segments of the tube have to snap into place
parallel to each other and right up against each other. As
stated before, both in the tube picture and in proteins, the
helix and the sheet are characterized by such parallel space

FIG. 3. (Color online) Building blocks of biomolecules and
ground state structures associated with the marginally compact
phase of a short tube corresponding to a discrete chain of tethered
disks of radiusD. The axis in the middle indicates the direction
along which the tube thicknessD increases. The top row shows
some of the building blocks of biomolecules, while the bottom row
depicts the corresponding structures obtained as the ground state
conformations of a short tube.(A1) is an a helix of a naturally
occurring protein, while(A2) and (A3) are the helices obtained in
our calculations—(A2) has a regular contact map(i.e., a matrix
whose elements, corresponding to residue pairs, are either 0 or 1
depending on whether the two given residues are in contact or not)
whereas(A3) is a distorted helix in which the distance between
successive atoms along the helical axis is not constant but has pe-
riod 2. (B1) is a helix of strands in the alkaline protease of
Pseudomonas aeruginosa, whereas(B2) shows the corresponding
structure obtained in our computer simulations.(C1) shows the
“kissing” hairpins of RNA and(C2) the corresponding conforma-
tion obtained in our simulations. Finally(D1) and (D2) are two
instances of quasiplanar hairpins. The first structure is from the
same protein as before(the alkaline protease ofPseudomonas
aeruginosa) while the second is a typical conformation found in our
simulations. The sheetlike structure(D3) is obtained for a longer
tube(see[21] for more details). The biomolecular structures in the
top row are shown in theCa representation for proteins, and in the
P representation for RNA kissing hairpins.
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filling alignment of nearby tube segments. In proteins, such
an arrangement serves to expel the water from the protein
core. As shown by Pauling and co-workers[8,9], hydrogen
bonds provide the scaffolding for both helices and sheets and
place strong geometrical constraints stemming from quantum
chemistry.

IV. BEYOND THE TUBE ARCHETYPE: A REFINED TUBE
MODEL INFORMED BY PROTEIN DATA

We turn now to a marriage of the tube idea and the wealth
of information available from a variety of experimental
probes[4,51] in preparation for the task of exploring the
consequences of our hypothesis. Recall that three-body local
and nonlocal radii constraints describe the self-avoidance of
a tube[19] (see Appendix A). For a discrete chain, the local
three-body radius is defined as the radius of a circle drawn
through three consecutive nodes of the chain(in the limit of
a continuous chain the local three-body radius is equal to the
radius of curvature). The nonlocal radius at a given node is
defined to be the smallest among all the radii of circles
drawn through that node and all pairs of other nodes except

for its adjacent nodes[see also the caption of Fig. 4(b)].
Unlike unconstrained matter for which pairwise interactions
suffice, for a chain molecule, it is necessary to define the
context of the object that is part of the chain. This is most
easily carried out by defining a local Cartesian coordinate
system(see Fig. 6) whose three axes are defined by the tan-
gent to the chain at that point, the normal, and the binormal
which is perpendicular to both the other two vectors. A study
[52] of the experimentally determined native state structures
of proteins from the Protein Data Bank[53] reveals that there
are clear amino acid aspecific geometrical constraints on the
relative orientation of the local coordinate systems due to
sterics and also associated with amino acids which form hy-
drogen bonds with each other(see Fig. 15 in Appendix D).

Recently[52], we have carried out Monte Carlo simula-
tions of shorthomopolymers, chains made up of just one type
of amino acid, subject to these geometrical constraints and
physically motivated interaction energies, a local bending en-
ergy penaltyeR, an overall hydrophobicityeW, and effective
hydrogen bond energies(see Appendix E for details about
the refined tube model and the simulations). The resulting
phase diagram and the associated structures for short ho-
mopolymers of length 24 are depicted in Fig. 7. In keeping

FIG. 4. (Color online) (a) Space fillingoptimal helix, with a
pitch to radius ratioc* <2.512 (drawn usingMATHEMATICA ). As
explained in Appendix C, this optimal value is determined by re-
quiring that the radius of curvature of the helical curve is equal to
half the minimum distance of closest approach between different
turns of the helix. The corresponding tube(that can be thought of as
being inflated uniformly around the curve) is optimally space filling
since it stops growing when reaching its maximum thickness both
locally (the radius of curvature) andnonlocally(half the minimum
distance of closest approach between different turns) at the same
time (see Appendixes A and C). Such an optimality criterion is
shared by some of the conformations selected as ground states in
our simulations in the marginally compact phase such as helices or
planar hairpin and sheets shown in Fig. 3, when it is properly trans-
lated for the case of a discrete chain[see below and Eq.(A5) in
Appendix A]. It can be shown[21] that the planarity of hairpins
and sheets is a consequence of this optimal space filling criterion.
The same geometrical feature is strikingly found to hold, within
3%, for a helices occurring in the native state of natural proteins
[38]. (b) Plot of the ratiof i =rNLsid /rLsid of the nonlocal radius of
curvature rNLsid;minj,krsr i ,r j ,r kd (with h j ,kjÞ hi −2,i −1j ,hi
−1,i +1j ,hi +1,i +2j) over the radius of curvaturerLsid
; rsr i−1,r i ,r i+1d as a function of the residue indexi for the native
state structure of sperm whale myoglobin(Protein Data Bank code
1mbn), wherer i refers to the spatial coordinates of theCa atom of
the ith residue, 1ø i ø153[see Appendix A for the definition of the
triplet radiusrsr i ,r j ,r kd]. In correspondence with the eighta heli-
ces present in the myoglobin fold, shown as the solid(red) parts in
the plot, the values off i oscillate around unity, demonstrating that
helices in natural proteins areoptimally space filling in the sense
described above.
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with the behavior of the archetype tube discussed earlier, in
the vicinity of the swollen phase, one obtains distinct as-
sembled tertiary structures, quite akin to real protein struc-
tures, on making small changes in the interaction parameters.
The striking similarity between the observed structures and
real protein structures suggests that our model captures the
essential ingredients responsible for the limited menu of pro-
tein native structures.

The marginally compact phase has distinct structures in-
cluding a single helix, a bundle of two helices, a helix
formed by b strands, ab hairpin, three-strandedb sheets
with two distinct topologies and ab-barrel-like conforma-
tion. These structures are the stable ground states in different
parts of the phase diagram. Furthermore, conformations such
as theb-a-b motif are found to be competitive local minima.

The specific structure depends on the precise values of the
local radius of curvature penalty(a large penalty forbids tight
turns associated with helices resulting in an advantage for
sheet formation) and the strength of the hydrophobic inter-
actions(a stronger overall attraction leads to somewhat more
compact well-assembled tertiary structures). The topology of
the phase diagram allows for the possibility of conforma-
tional switching leading to the conversion of ana helix to a
b topology on changing the hydrophobicity parameter analo-
gous to the influence of denaturants or alcohol in experi-
ments[55].

V. CONSEQUENCES OF THE PROTEIN-TUBE
HYPOTHESIS

We now turn to a study of some of the consequences of
our postulate that the tube is a useful paradigm for under-

FIG. 5. Histogram of local thicknesses computed for all residues
of different protein native structures, when the virtual chain formed
by the backboneCa atoms is viewed as a discretized thick tube. At
a given residue the local thickness is simply the minimum triplet
radius over all triplets containing that residue(see Appendix A for
the definition of triplet radius and for an explanation of how such a
quantity arises within a tube description).

FIG. 6. Sketch of the local coordinate system. For eachCa atom
i (except the first and the last ones), the axes of a right-handed local
coordinate system are defined as follows. The tangent vectort̂i is
parallel to the segment joiningi −1 with i +1. The normal vectorn̂i

joins i to the center of the circle passing throughi −1, i, and i +1
and it is perpendicular tot̂i. t̂i andn̂i along with the three contiguous

Ca atoms lie in a plane shown in the figure. The binormal vectorb̂i

is perpendicular to this plane. The vectorst̂i, n̂i, b̂i are normalized to
unit length.

FIG. 7. (Color online) Phase diagram of ground state conforma-
tions. The ground state conformations were obtained by means of
Monte Carlo simulations of chains of 24Ca atoms.eR andeW de-
note the local radius of curvature energy penalty and the solvent
mediated interaction energy, respectively(see Appendix E). Over
600 distinct local minima were obtained in our simulations in dif-
ferent parts of parameter space starting from a randomly generated
initial conformation. The temperature is set initially at a high value
and then decreased gradually to zero.(a), (b), (c), (e), (f), (g), and
(h) are the Molscript representations of the ground state conforma-
tions which are found in different parts of the parameter space as
indicated by the arrows. The helices and strands are assigned when
local or nonlocal hydrogen bonds are formed according to the rules
described in Appendix E. Conformations(i), (j), (k), (l), and(m) are
competitive local minima. In the shaded phase(orange line) on the
top right that does not correspond to any conformation, the ground
state is a two-strandedb hairpin (not shown). Two distinct topolo-
gies of a three-strandedb sheet are found corresponding to confor-
mations shown in(b) and (c), respectively. The region(white on-
line) in the left of the phase diagram has large attractive values of
eW and the ground state conformations are compact globular struc-
tures with a crystalline order induced by hard sphere packing con-
siderations[54] and not by hydrogen bonding[conformation(d)].
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standing protein structures and behavior. We will benchmark
these against experimental evidence to assess their validity.

A. Energy landscape of proteins

There have been many previous studies of proteins from a
physics point of view[56]. The standard approach is to as-
sume an overall attractive short range potential which serves
to lead to a compact conformation of the chain in its ground
state. In the absence of amino acid specificity or when one
deals with a homopolymer, there is a huge number of highly
degenerate ground states comprising all maximally compact
conformations with high barriers between them[see Fig.
8(a)]. The ground state degeneracy and the height of the
barriers grow exponentially with the length of the homopoly-
mer. The role played by sequence heterogeneity is to break

the degeneracy of maximally compact conformations, lead-
ing to a unique ground state conformation which, of course,
depends on the amino acid sequence. Yet, for a typical ran-
dom sequence, the energy landscape is still very rugged and
is virtually the same as in Fig. 8(a). A model protein moving
in such a rugged landscape can be subject to trapping in local
minima and may not be able to fold rapidly, so that glassy
behavior may ensue due to such trapping. Bryngelson and
Wolynes[57] suggested that there is a principle of minimal
frustration at work for well-designed sequences in which
there is a nice fit between a given sequence and its native
state structure carving out a funnel-like landscape[58] which
promotes rapid folding and avoids the glassy behavior[Fig.
8(c)].

Indeed, given a sequence of amino acids, with all the
attendant details of the side chains and the surrounding wa-
ter, one obtains a funnel-like landscape with the minimum
corresponding to its native state structure. Each protein is
characterized by its own landscape. In this scenario, the pro-
tein sequence is all important and the protein folding prob-
lem, besides becoming tremendously complex, needs to be
attacked on a protein-by-protein basis.

In contrast, our model calculations show that the large
number of common attributes of globular proteins[29,59]
reflects a deeper underlying unity in their behavior. At odds
with conventional belief, a consequence of our hypothesis is
that the gross features of the energy landscape of proteins
result from the amino acid specific common features of all
proteins. This landscape is(pre)sculptedby general consid-
erations of geometry and symmetry[Fig. 8(b)]. Our unified
framework suggests that the protein energy landscape ought
to have thousands of broad minima corresponding to putative
native state structures. The key point is that for each of these
minima the desirable funnel-like behavior is already
achieved at the homopolymer levelin the marginally com-
pact part of the phase diagram(see Fig. 7). The self-tuning
of two key length scales, the thickness of the tube and the
interaction range, to be comparable to each other and the
interplay of the three energy scales, hydrophobic, hydrogen
bond, and bending energy, in such a way as to stabilize mar-
ginally compact structures also provide the close cooperation
between energy gain and entropy loss needed for the sculpt-
ing of a funneled energy landscape.

Recent work has shown that the rate of protein folding is
not too sensitive[44,60] to large changes in the amino acid
sequence[60,61], as long as the overall topology of the
folded structure is the same. Furthermore, mutational studies
[44–47] have shown that, in the simplest cases, the structures
of the transition states are also similar in proteins with simi-
lar native state structures.

Sequence design[62] would favor the appropriate native
state structure over the other putative ground states leading
to an energy landscape conducive for rapid and reproducible
folding of that particular protein. Nature has a choice of 20
amino acids for the design of protein sequences. A pres-
culpted landscape greatly facilitates the design process. In-
deed, within our model, we find that a crude design scheme,
which takes into account the hydrophobic(propensity to be
buried) and polar(desire to be exposed to the water) charac-
ter of the amino acids, is sufficient to carry out a successful

FIG. 8. Simplified one-dimensional sketches of energy land-
scape. The quantity plotted on the horizontal axis schematically
represents a distance between different conformations in the phase
space and the barriers in the plots indicate the energy needed by the
chain in order to travel between two neighboring local minima.(a)
Rugged energy landscape for a homopolymer chain with an attrac-
tive potential promoting compaction as, e.g., in a string and bead
model. There are many distinct maximally compact ground state
conformations with roughly the same energy, separated by high
energy barriers(the degeneracy of ground state energies would be
exact in the case of both lattice models and off-lattice models with
discontinuous square-well potentials). (b) Presculpted energy land-
scape for a homopolymer chain in the marginally compact phase.
The number of minima is greatly reduced and the width of their
basin increased by the introduction of geometrical constraints.(c)
Funnel energy landscape for a protein sequence. As folding pro-
ceeds from the top to the bottom of the funnel, its width, a measure
of the entropy of the chain, decreases cooperatively with the energy
gain. Such a distinctive feature, crucial for fast and reproducible
folding, arises from careful sequence design in models whose ho-
mopolymer energy landscape is similar to(a). In contrast, funnel-
like properties already result from considerations of geometry and
symmetry in the marginally compact phase(b), thereby making the
goals of the design procedure the relatively easy task of stabiliza-
tion of one of the presculpted funnels followed by the more refined
task of fine-tuning the putative interactions of the protein with other
proteins and ligands.
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design of sequences with one or the other of the structures
shown in Fig. 7. The matching of the hydrophobic profile of
the designed sequence to the burial profile[63] (as measured
by the number of neighbors within the range of the hydro-
phobic interaction) leads to the correct fold in a Monte Carlo
simulation. As examples, the sequence HPPHHPHHPPPPP-
PHHPHHPPPPP, witheR=0.3 uniformly for all residues,
eW=−0.4 for contacts between H and H, andeW=0 for other
contacts, has as its ground state the two-helix bundle struc-
ture [Fig. 7(h)] whereas HPHHHPPPPHHPPHHPPPPHH-
HPP prefers thebab motif [Fig. 7(j)]. It is interesting to note
that thebab motif is only a local minimum in the phase
diagram of a homopolymer but is stabilized by the designed
sequence. Also, as is seen experimentally, many protein se-
quences adopt the same native state conformation[64]. Once
a sequence has selected its native state structure, it is able to
tolerate a significant degree of mutability except at certain
key locations[45,46,62,65]. Furthermore, multiple protein
functionalities can arise within the context of a single fold
[66].

One of the successful methods of protein structure predic-
tion is based on threading[67]. The basic idea is entirely
consistent with our findings—one uses pieces of native state
structures of longer proteins as possible candidate structures
of a shorter protein—but the technique is simpler because
instead of determining the structure fromab initio calcula-
tions, one merely has to select from among the putative na-
tive state structures. The documented success of the thread-
ing method confirms that each protein does not fashion its
own native state structure but merely selects from the menu
of predetermined folds.

B. Amyloid phase of proteins

A range of human diseases such as Alzheimer’s, spongi-
form encephalopathies, and light-chain amyloidosis lead to
degenerative conditions and involve the deposition of
plaquelike material in tissue arising from the aggregation of
proteins[14,15,68,69]. In the case of prions[69], one ob-
serves a transition froma to b rich structures which favors
aggregation and causes bovine spongiform encephalopathy
disease. It has been argued[70] that the formation of amy-
loid fibrils occurs in a hierarchical way starting from a chiral
b strand. The resulting structures arise from a competition
between the free energy gain from the aggregation and the
elastic energy cost of the distortion. A variety of proteins not
involved in these diseases also form aggregates very similar
to those implicated in the diseased state[15,68]. This sug-
gests[15] that the tendency for proteins to aggregate is a
generic property of polypeptide chains with the specific se-
quence of amino acids playing at best a secondary role. Can
one understand this general tendency of proteins to form
amyloids within our framework?

Let us recall the semicrystalline polymer phase which one
obtains when the tube is sufficiently long(or when there are
many interacting tubes) and is subject to attractive interac-
tions leading to compaction. In this phase, the tube is
stretched out locally with nearby sections parallel to each
other (or has the tubes stacked parallel to each other in a

periodic arrangement) and does not have the richness we
associate with protein native state structures. Returning to
the protein, one may ask whether there are structures which
are the analogs of those found in the semicrystalline phase.

In order to assess the role played by the interaction be-
tween multiple short proteins, let us first consider our model
homopolymer chain made up of 36 identical amino acids in
the marginally compact phase of the refined tube model(see
Sec. IV and Appendix E) with the hydrophobic parameter
and the local bending energy penalty chosen so that the
ground state is a single long helix.

On making two incisions in the chain to create three dis-
tinct chains each containing 12 amino acids, the ground state
of the system appears to be a bundle of three helices[see Fig.
9(d)]. This helix structure, however, is stable only at very
low temperatures. At intermediate temperatures, close to but
lower than the temperature of the specific heat peak, it is
destabilized in favor of aggregatedb helices[Figs. 9(a) and
9(b)] or sandwiches ofb sheets[Fig. 9(c)], due to entropic
effects. Cutting a single chain into parts increases the entropy
of the system. Unbonded chains are more flexible and this
promotes the formation of interchain hydrogen bonds. The
b-sheet structures also show an increased flexibility compar-
ing to the helix bundle, and they have better kinetic accessi-
bility from a disordered globule. While the appearance of
b-sheet conformations in the case of three chains seems to
have an entropic origin, it seems likely that the ground state
of a system of multiple chains does in fact consist of aggre-
gatedb sheets. Indeed simulations of five or ten chains have
shown thatb structures are the most likely choice(see Fig.
10).

The formation ofb-sheet structured protein aggregates is
favored with respect to other possible aggregates such as
helix bundles[which we actually detect in our simulations;
see Fig. 9(d)]. In the latter case hydrogen bonds are saturated
within a single helix so that aggregation is driven exclusively
by the effective hydrophobic attraction between different he-
lices. On the other hand, for structures such as those shown
in Figs. 9(a)–9(c) hydrogen bonds are formed between dif-
ferent chains and severalb strands are left unsaturated at
both “ends” of the aggregate, which can then readily grow by
hydrogen bonding to other chains.

The refined tube model can be used to explore the free
energy landscape of a homopolymer chain in the vicinity of
its folding transition temperature, operationally defined as
the specific heat peak temperature.(Of course, there is no
real phase transition for finite size systems such as proteins.)
Figure 11(a) is a contour plot of the free energy at a tempera-
ture higher than the folding transition temperature for the
parameter valueseW=−0.08 and eR=0.3 for which the
ground state is ana helix. The free energy landscape has just
one minimum corresponding to the denatured phase whose
typical conformations are still somewhat compact. The con-
tour plot at the folding transition temperature[Fig. 11(b)] has
three local minima corresponding to ana helix, a three-
strandedb sheet, and the denatured state. At lower tempera-
tures, thea helix is increasingly favored and theb sheet is
never the global free energy minimum.

That ab-sheet structure is a significant competitor with a
large basin of attraction in a region where the stable phase is
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a helix (see Fig. 11) reinforces the possibility that the inter-
action between several proteins could stabilize the formation
of extended hydrogen bondedb sheets via the aggregation of
individual chains(see[72] for experimental evidence that the
increased propensity for extended single chainb conforma-
tions as the temperature is increased could indeed drive the
formation ofb aggregates). These kinds of structures, which
resemble the basic structures associated with amyloid fibrils,
thus seem to belong to the general class of predetermined
folds, but this time for multiple proteins, and ought to be

seen ubiquitously in generic proteins[15,68]. This suggests
that the key to the prevention of such aggregates is the sta-
bilization of helices in such proteins and evolutionary
mechanisms such as proteasomes, molecular chaperones
[73], and ubiquitination enzymes[15,68].

Our results show the generic tendency for multiple chains
of amino acids to form aggregated amyloids rather than
maintain their proteinlike shape. Interestingly, nature has, on
suitable occasions, thwarted the tendency of a single long
chain to form amyloid by dividing the protein into substan-
tially independent domains which fold autonomously and are
then assembled together. This suggests that the variety of
protein folds increases with length up to a certain point at
which they are supplanted by the formation of domains or
amyloids.

In a recent paper, Fandrich and Dobson[74] suggested
that “amyloid formation and protein folding represent two
fundamentally different ways of organizing polypeptides into
ordered conformations. Protein folding depends critically on
the presence of distinctive side chain sequences and produces
a unique globular fold. By contrast, . . . amyloid formation
arises primarily from main chain interactions that are, in
some environments, overruled by specific side chain con-
tacts.” Our results are in complete accord with the suggestion
that amyloid structures may arise from the generic properties
of the proteins with the details of the amino acid side chains
playing a secondary role. However, our work suggests that
instead of an “inverse side chain effect in amyloid structure
formation” [74], there is a unifying theme in the behavior of
proteins. Just as the class of cross-linkedb structures are
determined from geometrical considerations, the menu of
protein native state structures is also determined by the com-

FIG. 9. (Color online) Aggregated structures formed by three
chains of length 12. We show the lowest energy conformations
obtained in long simulations for three 12-residue chains confined
within a cubic box of sideL=80 Å atT=0.19(a), T=0.18(b), and
T=0.16(c). The conformations shown insa8d, sb8d, andsc8d are the
same as in(a), (b), and(c), respectively, but viewed from a different
angle. The parameters used in the model areeW=−0.08 andeR

=0.2 which correspond to having a single helix ground state in the
case of a single chain. The simulations start with random extended
conformations for all chains and are carried out with pivot and
crank-shaft moves that are accepted or rejected based on theME-

TROPOLIScriterion. Moves that bring the residues out of the box are
not allowed. The bundle of three helices(d) is a putative ground
state of the system and was obtained in a simulation at a very low
temperaturesT=0.05d starting with isolated single helices. This
conformation has the lowest energy among those shown but is not
the equilibrium conformation at intermediate temperatures. Indeed,
a simulation run atT=0.18 starting with conformation(d) leads to
the helix bundle being converted into theb-helix-like conformation
shown in (b) which is the dominant equilibrium conformation at
this temperature.(e) The aspecific heat as function of temperature
for the system of three 12-residue peptides. The data shown were
obtained using the weighted histogram technique[71] based on
long equilibrium simulations at various temperatures between 0.16
and 4. The small shoulder(I) corresponds to a condensation of
separated peptides into a disordered globule. The large peak(II )
corresponds to a transition from disordered globule to the
b-helix-like phase.(f) The energy as a function of time(in Monte
Carlo steps) during a long simulation at a temperature correspond-
ing to the maximum of the specific heat,T=0.195. The simulation
shows several transitions between the disordered globule phase and
the b-helix-like phase.

FIG. 10. (Color online) Aggregated structures formed by five
and ten chains of length 12 witheW=−0.08,eR=0.2. We show the
lowest energy conformations obtained in long simulations for five
chains atT=0.18 (a), and for ten chains atT=0.2 (b). The five-
chain system is confined within a cubic box of sideL=80 Å
whereas the ten-chain system is confined within a cubic box of side
L=100 Å. The conformations shown insa8d and sb8d are the same
as those in(a) and (b) but viewed from a different angle.
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mon attributes of globular proteins: the inherent anisotropy
associated with a tube and the geometrical constraints im-
posed by hydrogen bonds and steric considerations.

C. Natural selection and protein interactions

Traditionally, the framework of evolution in life works
through two aspects of organization called the genotype and
the phenotype. The genotype is the heritable information en-
coded in the DNA, which is translated through the RNA
molecules into proteins. The phenotype is valuable for adap-
tation and at the molecular level plays a key role in natural
selection. One conventionally assumes that there is a selec-
tion of phenotypes which leads to an enhancement in the
numbers of the genotype. Furthermore, mutations of the

genotype lead to the possibility of new phenotypes.
Let us consider the situation at two levels: the sequence

level (which is the genotype because it is a direct translation
from the evolving DNA molecules) and the structure level,
which we can think of as the phenotype. As pointed out by
Maynard Smith[75], as the sequence undergoes mutation,
there must be a continuous network that the mutated se-
quences can traverse without passing through any intermedi-
aries that are nonfunctioning. Thus, one seeks a connected
network in sequence space for evolution by natural selection
to occur. There is considerable evidence, accumulated since
the pioneering suggestion of Kimura[76] and King and
Jukes[77], that much of evolution is neutral. The experimen-
tal data strongly support the view that the “random fixation
of selectively neutral or very slightly deleterious mutants oc-
cur far more frequently in evolution than selective substitu-
tion of definitely advantageous mutants”[78]. Also “those
mutant substitutions that disrupt less the existing structure
and function of a molecule(conservative substitutions) occur
more frequently in evolution than more disruptive ones”
[78]. Thus while one has a “random walk” in sequence space
that forms a connected network, there is no similar continu-
ous variation in structure space[36,79].

These facts are in accord with our result of a presculpted
energy landscape that is shared by all proteins and has thou-
sands of local minima corresponding to putative native state
structures—not too few because that would not lead to suf-
ficient diversity and not too many because that would lead to
too rugged a landscape with little hope that a protein could
fold reproducibly and rapidly into its native state structure.
Indeed, many proteins share the same native state fold and
often the mutation of one amino acid into another does not
lead to radical changes in the native state structure, under-
scoring the fact that it is not the details of the amino acid side
chains that sculpt the energy landscape but rather some over-
arching features of symmetry and geometry that are common
to all proteins. In this respect, the phase of matter that com-
prises the native state structures is one that is possibly deter-
mined by physical law rather than by the plethora of micro-
scopic details in analogy with the limited menu of possible
crystal structures.

Anfinsen[41] wrote in 1973, “Biological function appears
to be more a correlate of macromolecular geometry than of
chemical detail.” There has been much recent progress in
extracting information on biological function and protein in-
teractions[80] from the structure of proteins and the com-
plexes they form[81]. A protein structure chosen from the
predetermined menu of folds contains information on the
topology of the folded state. Additionally, one can glean in-
formation on the nature of the exposed surface, crystal pack-
ing, and the existence of clefts or other geometrical features
(which are often the active sites of enzymes). The picture is
completed by knowledge of the sequence of amino acids that
folds into the structure using which one can infer the amino
acid composition of the exposed surfaces, the location of
mutants and conserved residues, and evolutionary relation-
ships. For some structural families, function is highly con-
served, whereas for others, one can use the types of informa-
tion described above to guess the function[82].

Biological reactions are accelerated by factors of more
than a billion by enzymatic proteins. Enzymes not only pro-

FIG. 11. (Color online) Contour plots of the effective free en-
ergy (a) at high temperaturesT=0.22d and(b) at the folding transi-
tion temperatureTf =0.2 for a single 24-residue homopolymeric
chain, witheW=−0.08,eR=0.3. The effective free energy, defined as
FsNl +Nnl ,NWd=−ln PsNl +Nnl ,NWd, is obtained as a function of the
total number of hydrogen bondsNl +Nnl and the total number of
hydrophobic contactsNW from the histogramPsNl +Nnl ,NWd col-
lected in equilibrium Monte Carlo simulations at constant tempera-
ture. The spacing between consecutive levels in each contour plot is

1 and corresponds to a free energy difference ofkBT̃, whereT̃ is the
temperature in physical units. The darker the color, the lower the
free energy value. There is just one free energy minimum corre-
sponding to the denatured state at a temperature higher than the
folding transition temperature(a) whereas one can discern the ex-
istence of three distinct minima at the folding transition temperature
(b). Typical conformations from each of the minima are shown in
the figure.
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vide for great catalytic efficiency but are also extremely spe-
cific in their function. The principal mechanism[83] under-
lying the tremendous enhancement of the reaction rate by the
enzymes is the lowering of the free energy of the transition
state of the reaction through their specific binding to the
substrate or the reactant(s). In its native state, an enzyme
adopts a structure chosen from the menu of predetermined
folds. Strikingly, only a small part of this structure is impor-
tant for the enzymatic action. Generally, there are a few
amino acids, associated with the active site, which are re-
sponsible for the catalytic activity. In close proximity, one
also finds the substrate binding site which provides the speci-
ficity, often through the classic lock and key mechanism.

An illustration of enzymatic action and the role of mo-
lecular evolution is provided by the protease family of pro-
teins. In a living cell, there is turnover of proteins with new
proteins being continually synthesized along with the degra-
dation of existing proteins. Proteins responsible for degrada-
tion through the hydrolysis of peptide bonds are called pro-
teases. Under physiological conditions, peptide bonds are
stable for a period of around a hundred years. The proteases
are able to enhance the degradation rate selectively by fac-
tors of around a billion. There are several classes of pro-
teases including serine proteases(such as chymotrypsin, a
digestive enzyme) with a very reactive serine residue, cys-
teine proteases(such as papain, which is a digestive enzyme
derived from papaya) with cysteine playing the role of
serine, aspartyl proteases(such as renin which controls blood
pressure) which employs a pair of aspartate groups, and met-
alloproteases(such as collagenase responsible for collagen
degradation in osteoarthritic cartilage), which use a bound
metal ion such as zinc to accelerate the hydrolysis.

In serine proteases, the catalytic triad comprises three
amino acids, serine, histidine, and aspartate, bound to each
other through hydrogen bonds, whose presence leads to the
proton being moved away from the serine and the creation of
a reactive alkoxide ion. The same triad is implicated in all
serine proteases. Indeed, an example of convergent evolution
is provided by subtilisin(an enzyme that resembles chymot-
rypsin in its action and is made by certain soil bacteria) and
its family members, which possess the catalytic triad but
have a quite different structure from chymotrypsin. Here Na-
ture uses different folds from the presculpted energy land-
scape which, on appropriate sequence design, have the same
catalytic triad and perform similar tasks.

The limited menu of possible protein folds provides a
marvellous opportunity for divergent evolution. This corre-
sponds to proteins whose native state structure and the cata-
lytic triad are the same but with distinct differences in the
nature of the binding site. The binding site in chymotrypsin
is adjacent to the active site and is a hydrophobic cavity
which facilitates hydrolysis of the peptide bonds on the car-
boxyl side of aromatic or large hydrophobic amino acids
such as Trp, Tyr, Phe, Met, and Leu. Relatively small
changes in the amino acid sequence, which maintain both the
native state structure and the active triad lead to other pro-
teins such as trypsin(a digestive protein made in the pan-
creas which cleaves after positively charged amino acids
lysine and arginine due to a change of one of the hydropho-
bic amino acids in the binding cavity to a negatively charged

aspartic acid), elastase(a protein made both in the pancreas
and by white blood cells in which two glycines in the bind-
ing cavity are replaced by much larger amino acids valine
and threonine allowing the enzyme to specifically target elas-
tin, which is an important building block of blood vessel
walls and ligaments—elastase is able to cleave proteins after
a glycine and alanine because of the small size of the binding
cavity), thrombin (a larger enzyme, the tail end of which
bears a significant similarity to the sequence of amino acids
of chymotrypsin and trypsin and cleaves proteins only at
arginine-glycine linkages; thrombin is a complex regulatory
protease which converts a usually soluble blood protein fi-
brinogen into the insoluble fibrin causing a blood clot and
the cessation of bleeding), plasmin (an enzyme which
cleaves proteins after lysine and arginine and dissolves blood
clots), cocoonase(which also cleaves after lysine and argin-
ine in the silk strands of the cocoon after the transformation
of a caterpillar into a silk moth), and acrosin(an enzyme
which plays a pivotal role in fertilization by creating a hole
in the protective sheath around the egg and allowing sperm-
egg contact).

As we have seen, evolution along with natural selection
allow Nature to use variations on the same theme facilitated
by the rich repertory of amino acids to create enzymes that
are able to catalyze a remarkable array of diverse and com-
plex tasks in the living cell. The key point, of course, is that
in order for molecular evolution to work in this manner, one
needs the constant backdrop of folds not shaped by the se-
quence but determined by physical law. Were the folds not
immutable and themselves subject to Darwinian evolution,
the possibility of creating so many subtle and wonderful
variations on the same theme would not exist. The pre-
sculpted landscape is the crucial feature that leads to a pre-
determined menu of immutable folds.

It is known that key functional sites exhibit a high degree
of conservation[84]. Interestingly, coevolutionary analysis
has been useful in identifying protein-protein interactions
[85]. Structural similarity, independent of evolutionary ho-
mology, can be the key reason why proteins with different
folds share some commonality in enzymatic activity or
ligand binding[86]. Conversely, there are protein structures
such as the TIM(Triose phosphate Iso Merase) barrel [87]
which are very versatile and are able to house proteins that
are able to carry out multiple functionalities. Even though
the proteins are able to perform diverse catalytic tasks, Na-
ganoet al. [87] find that the active site is generally found at
the C terminal end of the barrel sheets and that there are
“striking structural superpositions” of the metal-ligating and
catalytic residues.

Nooren and Thornton[88] have pointed out that “The
structure and affinity of a PPI[protein-protein interaction] is
tuned to its biological function and the physiological envi-
ronment and control mechanism. PPIs presumably evolve to
optimize ‘functional’ efficacy. This does not necessarily in-
volve strong interactions. Clearly, weak transient interactions
that are efficiently controlled are also very important in cel-
lular processes.”

There are several attractive features of the picture we
have developed based on the tube-protein hypothesis. First,
protein structures lie in the vicinity of a phase transition to
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the swollen phase which confers on them exquisite sensitiv-
ity, especially in the exposed parts of the structure, to the
effects of other proteins and ligands. The flexibility of differ-
ent parts of the protein depends on the amount of constraints
placed on them from the rest of the protein[30]. From this
point of view, it is easy to understand how loops, which are
not often stabilized by backbone hydrogen bonds, can play a
key role in protein functionality.

It is useful to reconsider how nature uses the variety of
amino acids for sequence design. The existence of a pres-
culpted energy landscape with broad minima corresponding
to the putative native state structures and the existence of
neutral evolution demonstrate that the design of sequences
that fit a given structure is relatively easy, leading to many
sequences that can fold into a given structure. This freedom
facilitates the accomplishment of the next level task of evo-
lution through natural selection: the design of optimal se-
quences, which not only fold into the desired native state
structure, but also fit in the environment of other proteins. A
useful protein is one that can interact with other proteins in a
synergistic manner and at the same time is not subject to the
tendency to aggregate into the harmful amyloid form. This
suggests that protein engineering studies aimed at improving
enzymatic function ought to be carried out in a two-step
manner: first, the family of sequences that fold into a desired
target structure needs to be selected and a finer design needs
to be carried out in the context of the substrates and the other
proteins that the target protein interacts with. Unlike the gen-
erality of geometry and symmetry that leads to the menu of
native state folds, what we have here is a problem of chem-
istry acting within the fixed background of the physically
determined structures. These considerations suggest that,
when the information becomes available, protein-protein in-
teraction networks[89] can be fruitfully viewed not only as
the interactions between proteins but also as the interactions
between the structures that house them.

The characteristics required for protein native state struc-
tures to be targets of an evolutionary process are stability and
diversity. Stability is needed because one would not want to
mutate away a DNA molecule able to code for a useful pro-
tein, and diversity, in order to allow evolution to build com-
plex and versatile forms. The mechanism for natural selec-
tion arises naturally in this context—DNA molecules that
code for amino acid sequences that fit well into one of these
predetermined folds and have useful functionality thrive at
the expense of molecules that create sequences that are not
useful. Indeed, in this picture, sequences and functionality
evolve in order to fit within the constraints of these folds,
which, in turn, are immutable and determined by physical
law.

VI. THE DENATURED STATE OF PROTEINS

Progress occurs in science through the use of constructive
hypotheses with a careful assessment of their consequences.
Experiments not only provide valuable hints for selecting
between competing hypotheses but are also the ultimate tests

of a given hypothesis. There are strong hints from protein
experiments that the protein-tube hypothesis is valid. It pro-
vides a unification of the various aspects of all proteins: one
obtains a presculpted energy landscape with relatively few
folds, one can rationalize how a protein might fold in a co-
operative manner into its native state conformation, there is
the possibility of straightforward design of optimal se-
quences that fit into a desired structure, the structures are in
a marginally compact phase in the vicinity of a phase transi-
tion and have the flexibility needed for biological function,
and one can understand the formation of amyloids and the
role played by the protein structures as a molecular basis for
natural selection.

Protein sequence design provides an optimal fit of the
sequence with one among the menu of presculpted confor-
mations. The question arises of course as to how a given
sequence is able to reach its native state conformation or its
home starting from its denatured conformation. The answer
to this question entails the understanding of its denatured
state[39,90–96]. Unlike the native state which is a somewhat
tightly bound set of marginally compact conformations, one
envisions the denatured state as an ensemble of somewhat
open conformations that the protein adopts when it is not
under physiological conditions.

While one may naively think that the denatured state is
devoid of any interesting features, recent work has under-
scored the possibility that the number of accessible confor-
mations is severely reduced compared to a random chain
[39,90,91,93–96] leading to biases in the chain direction that
persist over the entire length of the protein[94]. Indeed,
Shortle [94] has argued that “long-range structure, which
cannot be removed by strongly denaturing conditions, could
arise predominantly from local steric hindrance.” He goes on
to state that “not only does the ribosome determine the pri-
mary structure of each protein it makes, it also establishes
the topological space in which that protein chain will be
confined for the rest of its existence.”

We build on these insights and the presumed validity of
our protein-tube hypothesis by making a second hypothesis
that just as there is a one-way correspondence between a
sequence and its native state structure, there could exist a
similar correspondence between the sequence and its dena-
tured state. In this view, the denatured state can thought of as
an address of the native state conformation and lies within its
basin of attraction.

Unlike the native state, the denatured state has a larger
entropy and comprises somewhat open conformations. Be-
cause of this, water plays a quite crucial role in the denatured
state. Both the above factors lead to local interactions[97,98]
playing a more important role than nonlocal interactions in
the denatured state. As can be seen from Fig. 15(a), the local
bending energy term is amino acid specific. In addition, in
the spirit of the tube model, one might ask whether there are
extra geometrical constraints between the local frames of ref-
erence(see Fig. 6) of neighboring amino acids along the
chain.(As discussed earlier, at the nonlocal level, hydrogen
bonds linking different parts of the chain do place geometri-
cal constraints on the reference frames associated with these
locations.) Physically, such correlations arise from the fact
that in addition to theCa atom that we have considered as a
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surrogate for the amino acid, all amino acids but glycine
have aCb atom to which the side chain is attached. In a
chain of coins(see Sec. II), this corresponds to breaking the
symmetry in the plane of the coin. Thus one would quite
generally expect that side chain interactions would lead to
correlations between the local coordinate frames of nearby
amino acids along the sequence[99]. Remarkably, the local
steric constraints[49] and the hydrogen bonds[8,9] act in
concert and both promote helices and sheets in the native
state.

One can ask what the effects of such a local interaction
are in the absence of any nonlocal interaction promoting the
compaction of the chain. Let us first consider a homopoly-
mer made of just one kind of amino acid. A simple chain
molecule with a local bending constraint leads to a tangent-
tangent correlationkt̂i ·t̂i+nl (see Fig. 6 for the definition of
the tangent vector) that decays exponentially inn. Adding a
local binormal-binormal interaction term leads quite gener-
ally (see the example in Appendix F) to the tangent-tangent
correlation decaying exponentially with sequence separation
but being modulated with oscillatory behavior. This generic
behavior underscores the fact that the class of denatured con-
formations are not merely featureless but rather already have
short-range structure built into them. Indeed, there is a clear
reduction in the entropy, due to the short-range binormal-
binormal interaction, which is reflected in the oscillations.

The situation is vastly more interesting when one consid-
ers a specific sequence of amino acids in its denatured state.
It is clear that one ought to have amino acid specific corre-
lations between neighboring coordinate frames which reflect
the nature and size of the side chains. An amino acid like
proline with its cumbersome side chain configuration can
lead to strong constraints in its vicinity whereas glycine
which lacks theCb atom and a side chain can provide great
flexibility [100] and act as a joker in a card game. Even if
such correlations reflect small but systematic deviations from
the average behavior[101], these can build up in a very
specific way along the sequence leading to a clear imprinting
of the native state conformation even in the denatured state.
In this context, it is interesting to note that Shortle[94] has
shown that “denaturation by at least three different agents—
truncation, urea, and acid—gives rise to essentially the same
persistent native-state like topology.” Furthermore, the alter-
ation of the denatured state by even a single mutation[102]
provides further evidence for the structure inherent in the
denatured state.

We have shown that the menu of native state structures is
determined from generic considerations. Sequence specific-
ity is key in determining whether a given sequence fits par-
ticularly well into one of these conformations. Because the
menu is large(thousands of conformations), one has diver-
sity. However, because the menu is not too large, a well-
designed sequence is able to fold rapidly into its native state
conformation. Our hypothesis is that local sequence-specific
interactions alone lead to a denatured state which is a reflec-
tion of the native state. The denatured state lies in the basin
of attraction of the native state and the folding process sim-
ply entails the action of the appropriate nonlocal interactions
in leading to the protein adopting the native state conforma-
tion.

The situation is somewhat reminiscent of a content-
addressable memory[103] in which partial information is
converted by the brain to recover the complete information.
Such content-addressable memories[103] as well as the en-
ergy landscape[104] suitable for prebiotic evolution[105]
have been modeled through spin glasses[106]. The energy
landscape of spin glasses is also characterized by diversity
and stability arising from randomness and frustration, which
is quite distinct from the the physical mechanisms of short
tubes in the marginally compact phase. In conventional spin
glasses, randomness, which plays a role somewhat similar to
amino acid specific interactions in proteins[107], through
frustration sculpts an energy landscape with many local
minima. Indeed, a nonrandom exchange interaction between
spins would lead to periodic order with much simpler behav-
ior. In spin glasses, starting from a random spin configura-
tion, it is hard to reach a specific local minimum unless the
exchange constants are tuned in a clever way as in a content-
addressable memory. The landscape is not invariant on
changing the exchange interactions and can be fashioned at
will. For proteins, on the other hand, our analysis shows that
a rich landscape is obtained even in the absence of any se-
quence heterogeneity and the nature of the ground states is
determined by geometry and symmetry and is therefore im-
mutable[35].

An interesting consequence of the type of denatured state
described above along with the existence of the presculpted
landscape is the possibility of disordered proteins[108]
—sequences that are in temporally fluctuating denatured
form but which fold in the presence of distinct substrates to
carry out vital multiple functionalities. In our picture, these
sequences need appropriate stabilizing influences to fold. In
the absence of these influences(substrates), the protein is
denatured and is located, colloquially, on the fence between
different native state structures. Given that finite size effects
are severe for proteins, the presence of different substrates
(leading to different boundary conditions) would not only
favor one competing structure over the others but also result
in folding to that structure. The simultaneous existence of the
distinct folds in the energy landscape allows the protein to
choose from among them depending on the precise nature of
the stabilizing influence.

VII. SUMMARY AND PERSPECTIVE

Symmetry and geometry place strong constraints on the
types of infinite sized crystal structures and there are exactly
230 distinct space groups in three dimensions[109]. Proteins
are finite sized objects. Our analysis demonstrates that the
same kind of symmetry and geometrical considerations lead
to a finite number of protein folds. This number grows with
the size of the protein but is limited by the fact that proteins
beyond a characteristic length from either autonomous do-
mains or amyloids. Unlike the crystalline state of matter,
proteins are characterized by an inherent anisotropy due to
their tubelike character. A given crystalline structure tran-
scends the material that is housed in it—common salt adopts
the face-centered-cubic lattice structure as also the well-
packed cannonballs of Kepler[18]. Likewise, different se-
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quences of proteins can be housed in the same protein fold
and yet be able to perform different functionalities[66]. Pro-
tein structures are modular in form being simple assemblages
of helices and strands connected by tight turns.

The unified picture leads to a single free energy landscape
with two distinct classes of structures. The amyloid phase is
dominated byb strands linked to each other in a variety of
forms whereas the native state structure menu is an assembly
of a helices andb structures. Nature has exploited these
native state structures in the context of the work horse mol-
ecules of life. The selection mechanism for genetic evolution
at the molecular level lies in the ability of the protein en-
coded by the gene to fold well into one of the predetermined
folds and have useful function. Unfortunately, however, the
proximity of this beautiful phase to the generic amyloid
phase underscores how life can easily malfunction as soon as
aggregational tendencies of proteins come to the fore. One
cannot but marvel at the robustness of life.

An imperfect analogy to the protein problem is a town-
ship consisting of around a thousand houses(protein struc-
tures), each with its own distinctive style(topology), deter-
mined by geometry and symmetry. The form of a house
(structure) is the basis of useful functionality. A person(pro-
tein) whose tastes(sequence) are(is) especially matched to a
given style of house(native state structure) would choose to
live in it. Of course, many people(proteins) with similar
though not identical tastes(sequences) might choose the
same style of house(native state structure). If a person were
to arrive in this town, how would she/he know which house
to move into? One way would be to explore all the house
styles until the dream house is identified. A vastly more ef-
ficient situation would occur if the person arrives at the
township in the vicinity of the house that she/he will even-
tually occupy. This would require that the location of the
starting point(the denatured conformation) is encoded by the
tastes of the person(the sequence) and is within the basin of
attraction of her/his dream home(native state structure).
This, as yet unproven, scenario would greatly facilitate the
folding of a protein into its native state structure accounting
for its “surprising simplicity” [44].

The protein problem, which lies at the intersection of
many disciplines, is highly complex. Evolution complicates
the situation even further. Human design allows for an engi-
neer to devise entirely new ways of accomplishing certain
tasks—a classic example is the replacement of vacuum tubes
with semiconductor transistors. Nature does not have this
luxury in evolutionary design. Nature takes what she has,
tinkers with it, and builds on it. Thus the notion of optimal
design is not particularly relevant and the future is very
strongly correlated with the present and the past. A slightly
different turn of events could have led to conspicuously dif-
ferent life forms. This picture of Nature muddling along
through evolution combined with the inherent complexity of
proteins makes the problem very daunting. Yet within this
complexity there is a stunning simplicity provided by the
fixed backdrop of the protein folds determined by physical
law in the context of which sequences and functionalities are
shaped by evolution.

We conclude by revisiting the classic theoretical work of
Pauling et al. [8,9] and Ramachandran and Sasisekharan

[49]. Both of them considered the protein backbone which is
the common part of all proteins. Pauling and his co-workers
explored the types of structures that are consistent with both
the backbone geometry and the formation of hydrogen
bonds. They predicted that helices and sheets are the struc-
tures of choice in this regard[Figs. 12(a) and 12(b)]. Ram-
achandran and his co-workers carried out their pioneering
work more than a decade after Pauling. They considered the
role of excluded volume or steric interactions between the
adjacent amino acids in reducing the available conforma-
tional phase space[Fig. 12(c)]. Astonishingly, the two sig-
nificantly populated regions of the Ramachandran plot corre-
spond to thea helix and theb strand. Even though hydrogen
bonds and sterics are not related to each other, they are both
promoters of helices and sheets. Is this concurrence of events
a mere accident? The marginally compact phase of short
tubes has helices and sheets as its preferred structures. In
order for Nature to take advantage of this phase of matter,
proteins, which obey physical laws, may have been selected
to conform to the tube geometry. Hydrogen bonds serve to
enforce the parallelism of nearby tube segments, a feature of
both helices and sheets, while sterics emphasizes the nonzero
thickness of the tube and serves to position it in the margin-
ally compact phase. Because the marginally compact phase
is a finite size effect, proteins tend to be relatively short
compared to conventional macromolecules including DNA.
Indeed, proteins seem to be a vivid example of the adaptation
of Nature to her own laws.

In his insightful bookThe Fitness of the Environment,
Henderson extended the notion of Darwinian fitness to argue
that “the fitness of environment is quite as essential a com-
ponent as the fitness which arises in the process of organic
evolution.” Strikingly, the chemistry of proteins ensures that
they are self-tuned to occupy the marginally compact phase
of short tubes. One cannot but marvel at how several factors,
the steric interactions, hydrogen bonds which provide the
scaffolding for protein structures, the constraints placed by
quantum chemistry on the relative lengths of the hydrogen
and covalent bonds and the near planarity of the peptide
bonds, and the key role played by water, all reinforce and
conspire with each other to place proteins in this phase of
matter.

Proteins have proved to be difficult to understand because
of their inherent complexity with 20 types of amino acids
and the role played by water, because they are relatively
short molecules compared to generic manmade polymers and
are therefore likely to be characterized by “nonuniversal”
behavior, and because of the complexities associated with the
random process of evolution. Nevertheless, our work sug-
gests that there is an underlying stunning simplicity. While
sequences and functionalities of proteins evolve, the folds
that they adopted, which in turn determine function, seem to
be determined by physical laws and are not subject to Dar-
winian evolution. In that regard, these folds may be thought
of as immutable or Platonic. Protein folds do not evolve—
rather, the menu of possible folds is determined by physical
law. In that sense, it is as if evolution acts in the theater of
life and shapes sequences and functionalities but does so
within the fixed backdrop of the Platonic folds.

Henderson[16] wrote “The properties of matter and the
course of cosmic evolution are now seen to be intimately
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related to the structure of the living being and to its activi-
ties; they become, therefore, far more important in biology
than has been previously suspected. For the whole evolution-
ary process, both cosmic and organic, is one, and the biolo-
gist may now rightly regard the universe in its very essence
as biocentric.” His intriguing ideas continue to provoke
thought even as we strive to understand the connections be-
tween life and the laws of nature.
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APPENDIX A: THREE-BODY DESCRIPTION OF A TUBE

In this appendix we will describe how a suitable three-
body potential[19] characterizes the self-avoidance of a tube
of thicknessD whose axisC is a smoothcurve r ssd, param-
etrized by its arclengths with 0øsøL, L being the total
length of the tube. The tube is a one-dimensional generaliza-
tion of the zero-dimensional hard sphere case as described in
the text. The self-avoidance of an ensemble of hard spheres,
each of radiusD, can be ensured by requiring that none of
the distances between all pairs of sphere centers is less than
2D.

Let us consider, first, a closed curve, i.e.,r s0d=r sLd. At
each positions along the curveC we consider an infinitesi-
mally thin circular disk of radiusD, Sss,Dd, centered at the
point r ssd and perpendicular to the tangent vectordr ssd /dsat
s. The tube is simply the union of all the disks. The self-
avoidance is imposed by requiring that pairs of disks at dif-
ferent points do not intersect,Sss,DdùSss8 ,Dd= x ∀s,s8.

There is an easier way to implement the self-avoidance
(steric constraints), which underscores the key difference be-
tween the hard sphere and the tube problem. Indeed, in the
latter case, there are two classes of lengths which are rel-
evant to the steric interaction: the radius of curvatureur̈ ssdu−1

at each positions and the closest approach distances[note
that uṙ ssdu=1 within the arclength parametrization]. A closest
approach occurs at, say, pointsr ss1d and r ss2dss1Þs2d when
r ss1d−r ss2d is perpendicular to both tangent vectors ats1 and
s2. For asmoothclosed curve there is at least one such clos-
est approach. It is rather intuitive[110,111] that a necessary
and sufficient condition for the self-avoidance is thatD be
less than the minimum amongur̈ ssdu−1 ∀s and s1/2dur ss1d
−r ss2du ∀s1,s2 whereṙ ssid , i =1,2, areboth perpendicular to
r ss1d−r ss2d. This minimum is called the thicknessDsCd, of
the curveC [110,111]. The minimum among the closest ap-
proach distances is analogous to the minimum among all
distances between pairs of centers in the hard sphere prob-
lem. The fact that the tube is a linear object introduces an-
other length in the problem which is the minimum among all
radii of curvature and it is local in nature in the sense that it
involves nearby points of the curveC: the radius of curvature
at positions represents the radius of the circle that best ap-
proximates the curveC at s.

We now turn to a reformulation of the tube self-avoidance
constraint in a much more appealing way that makes it more
similar to the self-avoidance recipe for hard spheres. Follow-
ing Ref. [20] let us consider a triplet of positions along the
curve C (instead of a pair of centers as in the hard sphere
problem), r i ; r ssid , i =1,2,3.These positions define a plane
and hence a unique circle through them whose radius is

rsr 1,r 2,r 3d =
ur 2 − r 1uur 3 − r 1uur 3 − r 2u

4Asr 1,r 2,r 3d
, sA1d

whereAsr 1,r 2,r 3d is the area of the triangle whose vertices
arer 1,r 2, andr 3. The theorem proved in Ref.[20] states that

D8sCd ; min
s1,s2,s3

r„r ss1d,r ss2d,r ss3d… = DsCd, sA2d

where thes’s do not need to be distinct. Indeed it is easy to
show that when s1,s2,s3→s then rsr ss1d ,r ss2d ,r ss3dd
→ ur ssdu−1, the radius of curvature ats. Furthermore it is not
difficult to show that the search for the minima in Eq.(A2)
can be restricted to

lim
s2→s1

r„r ss1d,r ss2d,r ss3d… ; rsr 1,r 1,r 3d, sA3d

which is the radius of the circle through the pointr ss3d and
r ss1d and tangent to the curve at the latter point.

Let us assume that the minimum in Eq.(A2) is reached at
three distinct pointsr 1,r 2,r 3 and let us consider the sphere
of radiusD8sCd, Eq.(A2), through them. If it is not tangent to
the curve in at least two of the pointsr 1,r 2,r 3 we have a
contradiction. Indeed if the sphere is tangent to the curve at
one or none of the three points we can shrink the sphere
slightly still keeping three intersections with the curve. How-
ever this is a contradiction since due to the definition of
thickness, Eq.(A2), any sphere of radius less thanD8sCd
cannot intersect the curve in more than two points. Thus say
that one of the points where the tangency occurs isr 1. Since
the circle throughr 1 andr 2 and tangent to the former lies on
the sphere it implies thatrsr 1,r 1,r 2døD8sCd which is a con-
tradiction unless the equality holds. This demonstrates that
the minimum in Eq.(A2) is never exclusively reached at
three distinct points along the curve. The above argument
leads also to the proof of the theorem. In fact if the other
tangency point is, say,r 2, then in addition torsr 1,r 1,r 2d
=D8sCd, one also hasrsr 2,r 2,r 1d=D8sCd. One may immedi-
ately prove that this can occur only if the tangent vectors
ṙ ssid , i =1,2, are perpendicular to r ss1d−r ss2d. Thus
mins1,s2,s3

r(r ss1d ,r ss2d ,r ss3d) captures simultaneously both
the radius of curvature and the distances of closest ap-
proaches, consequently proving the equality(A2).

The local thickness of the tube(global radius of curvature
in Ref. [20] ), at eachr ssdPC, may be defined as

Dr ss1dsCd = min
s2,s3

rsr ss1d,r ss2d,r ss3dd. sA4d

Of course the thicknessDsCd is the minimum ofDr ssdsCd as
r ssd varies onC. Another theorem proved in Ref.[20] states
that if C can be deformed smoothly in order to maximize the
thickness without changing the knot type, the resulting curve
C* , called the “ideal shape” of the given knot type, has
Dr ssdsC*d=DsCd for all points whereur̈ ssduÞ0. Figure 5 is a
histogram of local thicknesses for a sample of native protein
structures. The variations of the local thickness around the
average value 2.7 Å is about 7%.

What we learn from the above mathematical framework is
that a mere pairwise interaction does not suffice to describe
the steric constraint of a tube whose axis is a stringC [19].
This is because, in addition to the distance between two
points on a string, one also needs to know the context, i.e.,
the local direction of the string in the proximity of the points
themselves. Let us consider a three-body potential
V(rsr 1,r 1,r 3d) characterizing the interaction between three
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particles on the axis of the string in terms of the radius of the
circle through them(notice that this potential is invariant
under translation, rotation, and permutation of the three
points). Vsrd could be the same as commonly used in the
hard sphere problem, i.e.,Vsrd=` when r ,D and Vsrd=0
otherwise(in the hard sphere problemr is half of the dis-
tance between a pair of sphere centers). This length scale
neatly solves the contextual problem mentioned above.
When two parts of a chain come together, the radius of a
circle passing through two of the particles on one side of the
chain and one particle from the other side of the chain turns
out to be a measure of the distance of approach of the two
sides of the chain. On the other hand, when one considers
three particles consecutively along the chain, the radius of
the circle passing through them is simply the local radius of
curvature. Indeed when three such particles form a straight
line, the radius goes to infinity and the three particles essen-
tially become noninteracting. The straight line configuration
is the best that the particles can do in terms of staying away
from each other given that they are constrained to be neigh-
bors along the chain. In the case of a polymer chain, such as
a protein, a tube whose axis is asmoothstring is clearly an
approximation. One ought to introduce adiscrete curve
hr 1,r 1, . . . ,r Nj, and the continuous variables of the curve
now becomes discrete. In correspondence with the consider-
ations above, one may again define the thickness of a dis-
crete curveC as [20]

DsCd = min
i,j ,k

rsr i,r j,r kd, sA5d

where nowi , j , and k are all distinct. For a discrete curve
there is no guarantee that the minimum is obtained from
amongrsr i ,r j ,r kd with at least two of the three indices sepa-
rated by one unit(e.g., j = i ±1), but one can still distinguish
between a local and a nonlocal contribution to the thickness,
according to whetheri , j ,k are consecutive along the chain
or not. In the latter case, the minimum obtained from among
rsr i ,r j ,r kd gives half the minimum distance of closest ap-
proach computed for the discrete chain. Similarly, there is no
simple restriction of the triplets when one deals with open
continuous curves with free ends.

APPENDIX B: TUBE VERSUS STRING AND BEADS
MODEL

In this appendix we summarize the main differences be-
tween the thick polymer(TP) model that we deal with in this
work and the Edwards model[112] (EM) in the presence of
a bending rigidity term(the analog of the Edwards model in
the discrete case is the usual string and bead model). In both
cases, one may add a twist rigidity term, which we neglect
here, for simplicity. Let us consider the case of continuous
chains. The Hamiltonian for the generalized EM is

HEMshr jd =
1

2
E

0

L

ṙ ssd2ds+
kb

2
E

0

L

r̈ ssd2ds+
v2

6
E

0

L E
0

L

d„r ssd

− r ss8d…ds ds8+
v3

90
E

0

L E
0

L E
0

L

d„r ssd − r ss8d…

3 d„r ssd − r ss9d…ds ds8 ds9. sB1d

The self-avoidance in the TP model[113] is given by

HTPshr jd =E
0

L E
0

L E
0

L

VsRcsr ssd,r ss8d,r ss9dddds ds8 ds9,

sB2d

whereRc(r ssd ,r ss8d ,r ss9d) is the radius of the circle through
the three pointsr ssd, r ss8d, r ss9d and

Vsrd = 5 ` if r , R0,

− 1 if R0 , r , R1,

0 if R1 , r .

sB3d

Note that in the limit of a continuous chain the EM needs
the introduction of singular potentials, in order to deal with
the fact that a two-body potential is unable to distinguish
whether two nearby beads are far apart or not along the
chain. Within the context of the Edwards model such singu-
larities can then be treated successfully within a perturbative
renormalization group approach[115]. On the other hand,
the need of singular potentials is deftly avoided when using
the three-body prescription implied by the thickness con-
straint in the TP model[113].

The details of the discretization scheme matter for a dis-
crete chain. First, the discretization introduces a natural cut-
off length scale. Second, the three-body potentialV of Eq.
(B2) cannot be used by itself for a discrete chain. Indeed, in
the absence of a two-body repulsion, the chain would col-
lapse onto a circle of radius betweenR0 and R1 and would
wind repeatedly along it.

1. High temperature phase

It is well known that in the high temperature regime the
critical behavior of the EM in the limit of very long chains is
governed by the exponentn.0.58, so that a typical lengthj
measuring the spatial extension of the chain scales asj
,Ln, whereL is the chain length. The chain isswollenwith
respect to the Gaussian random walk behavior for whichn
=1/2. Thesame feature holds for the TP model; in the high
temperature regime the different symmetry properties in-
duced by the inherent anisotropy of a thick tube are averaged
out, and a chain of coins shares the same critical behavior as
a chain of spheres.

Interestingly, other features such as the form of the two-
point tangent-tangent correlation function along the chain
differentiate the TP model from the EM. In the absence of
twisting rigidity [the intrinsic twist of the chain, as defined
by the torsion of the corresponding curve for the EM or the
axis of the tube for the TP model, is described by the energy

term skt /2de0
Lb̂
˙ ssd2ds, where b̂ssd is the binormal vector

which is part of the Frenet triad], one gets a simple exponen-
tial decay in both cases. However, when the twisting rigidity
kt is introduced, the EM exhibits an oscillatory decaying
correlation function for any value ofkt, whereas the TP
model crosses over from simple to oscillatory decay on in-
creasingkt (see Appendix F) [116]. The existence of a tran-
sition line in the parameter spaceskb,ktd separating simple
from oscillatory decay is an interesting feature of the TP
model.
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2. Persistence length

Another similarity between the TP model and the EM is
the following: at anyfixedvalue of the lengthL of the chain
and of the temperatureT, the persistence lengthlp (which is
a measure of the distance along the chain after which the
tangent vectors become uncorrelated) diverges both for the
TP model, in the limitD→` of infinite thickness, and for the
EM, in the limit kb→` of infinite bending rigidity. The
thickness constraint indeed stiffens the chain locally. Yet a
closer look reveals an important difference between the TP
model and the EM. In an ideal case in which nonlocal inter-
actions are disregarded we get a different scaling behavior.
For the EM,lp,kb/kBT, whereas in the TP model the per-
sistence length doesnot increase at low temperatures, a first
hint that the low temperature behavior of the TP model may
be radically different from that of the EM.

3. Low temperature phase

The anisotropy inherent in the thick tube description
strongly affects the behavior of the TP model at low tempera-
tures, as can be seen by comparing the bending rigidity/
temperature phase diagram(Fig. 13) for the EM and the
corresponding thickness/temperature phase diagram(Fig. 14)
for the TP modelin the thermodynamic limit.

Let us first note that whereas the swollen(S) and the
(disordered compact) globule (G) phase share similar fea-
tures in the two cases(but see the above discussion concern-
ing the correlation function properties in the swollen phase),
the asymmetric globule(AG) (semicrystalline) phase is dif-
ferent. The persistence length diverges(strictly atT=0) with
the chain length for both EM and TP model(the chain is
locally straight). For the latter, this arises from the interplay
of the thickness constraint and the interaction promoting
compaction, so that the resulting ground state conformation
will have tube segments aligned with respect to one another
similar to the Abrikosov flux lattice, filling the space with
hexagonal symmetry. For the former, this is a mere conse-
quence of the local bending rigidity, so that ground state
conformations will likely consist of planes stacked onto each
other with parallel (or antiparallel) alignment within the
same plane, but not necessarily between different planes.

A second crucial difference is thatin the limit of zero
temperaturethe EM is in the AG phase for all finite values of
the bending rigidity, whereas the TP model exhibits a transi-
tion from the AG phase to the swollen phase with increasing
thickness. This has profound consequences, especially when
finite size effects are taken into account. It is instructive to
revisit the phase diagram atT=0 for a TP in the plane
sL /R,D /Rd (see Fig. 2). If D.R, the chain cannot take ad-
vantage of the attraction, the length of the chain does not
play any role and in theL→` limit one gets the critical
behavior of the swollen phase. WhenD,R, in the thermo-
dynamic limit L→`, the chain is in the asymmetric globule
phase resembling the Abrikosov flux lattice with hexagonal
symmetry, but different phenomena occur for finite chain
length. If L,2pR all parts of the chain are able to interact
with each other. WhenL.2pR, this is still true for small
enough thickness. However, as the thickness increases, this is
not possible anymore and the chain adopts a conformation
which optimizes the attractive interaction. In the long chain
limit the boundary line between the two regimes scales as
L /R,sR/Dd2. This result is obtained by equating the volume
occupied by the tubeLD2 to the volume of the sphere of
attractionR3. For shorter chains the compact regime at inter-
mediate thickness in which the chain seeks to compact itself
within the constraint of the thickness is indeedmarginal,
being sandwiched between the featureless compact[118] and
the swollen regimes described above. It is precisely in this
window of parameter space that we find marginally compact
ground state structures such as space filling helices. This
finite size feature of the TP model is quite robust indepen-
dent of the details introduced, for instance in the discrete
case. None of these features are present for the EM case for
which there is no dependence whatsoever on the bending
rigidity at T=0.

APPENDIX C: OPTIMAL HELIX

In this appendix we derive the valuec* of the pitch/radius
ratio c of an optimal space filling helix. The radius of curva-

FIG. 13. Schematic phase diagram of an EM in the temperature
sTd bending rigidity skbd plane [117]. The different phases are
S= swollen, G= globule, and AG= asymmetric globule.

FIG. 14. Phase diagram for a thick polymer chain in the
temperature-thicknesssT,Dd plane obtained with Monte Carlo
simulations(see[22] for details). The different phases are S= swol-
len, G= globule, and AG= asymmetric globule.
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ture of such a helix equals the tube radius and is equal to half
the minimum distance of closest approach between different
turns of the helix.

The parametric equation of a helix is

xstd = sr cost,r sin t,vtd, sC1d

where the pitch/radius ratio isc=2pv / r. The tangent and the
acceleration vectors are

ẋstd = s− r sin t,r cost,vd, sC2d

ẍstd = s− r cost,− r sin t,0d. sC3d

Sinceẋstd ·ẍstd=0, the radius of curvature is simply given by

rL =
uẋstdu2

uẍstdu
= rS1 +

v2

r2D sC4d

independently oft.
We define the nonlocal radius of curvature as half the

distance of closest approach between successive turns of the
helix. Fix a point A =xstd on the curve, and compute the
distancedss,td= uB−A u from a second pointB=xssd moving
along the curve as a function ofs. The nonlocal radius is then

rNLstd =
1

2
min
sÞt

hdss,tdj, sC5d

with the requirement that]dss,td /]s=0 at somes* Þ t, im-
plying thatB−A is perpendicular to the tangent vectorẋss*d.
Note that the nonlocal radius need not exist(for open curves)
and is in principle a varying function oft, when the curve is
not invariant under translation along it.

Because the helix is invariant under translation along the
curve, implying thatB−A is perpendicular also to the tan-
gent vectorẋstd, we can chooset=0 so that

d2ssd ; d2ss,0d = r2S2s1 − cossd +
v2

r2 s2D . sC6d

The condition allowing one to get extremal points ford2ssd is

sin s+ s
v2

r2 = 0. sC7d

One trivial solution of this equation iss=0 and there is no
other solution for sufficiently high pitch to radius ratioc
=2pv / r. If c is decreased, new solutions appear, two at a
time, the smaller a maximum and the greater a minimum,
corresponding to the increasing packing of helix turns. We
are interested in the minimums* corresponding toA andB
staying on two consecutive turns, that isp,s* ,2p. For
sufficiently low c, the above equation then defines the im-
plicit function s*scd, and one has

rNL =
1

2
dfs*scdg sC8d

for all points of the helix. In the limitc!1, one hass*

.2p and thusrNL.pv=p/2, wherep=2pv is the pitch of
the helix, as expected. The particular valuec=c* , for which
the local and the nonlocal radii of curvature are equal, is then
defined by

dfs*sc*dg
2r

= 1 + sc*d2. sC9d

Thus, according to the definition of thickness given in
Appendix A,Dhelix=rL if c.c* , since the radius of curvature
is smaller than the nonlocal radius. A tube swelling around
the helix would stop increasing due to local singularities,
leaving space between the successive turns of the helix. On
the other hand, the nonlocal radius is smaller than the radius
of curvature ifc,c* , implying Dhelix=dfs*scdg /2. In such a
case, the tube would stop swelling due to self-intersection
between different turns, leaving a hole in the middle of the
helix. At c=c* , one obtains an optimal space filling helix
with a special pitch to radius ratio ofc* <2.512 (shown in
Fig. 4).

APPENDIX D: GEOMETRICAL CONSTRAINTS
DETERMINED FROM EXPERIMENTAL DATA

In this appendix we describe the data analysis used to
elucidate the geometrical constraints imposed by sterics and
hydrogen bonds(see Fig. 15). We have used a database of
600 different protein native structures[119] consisting of
sequences varying in length from 44 to 1017, with low se-
quence homology and covering many different three-
dimensional folds according to the Structural Classification
of Proteins scheme[120]. Panel(a) depicts the histogram of
the local radius of curvature associated with two classes of
triplets, the first[shown in light gray(red online)] featuring
stronga-helix-forming amino acids(LEU, ALA, GLU ) and
the second[shown in dark gray(blue online)] featuring
b-strand formers(VAL, ILE, TYR ) [13] and underscores the
vital role of chemistry in choosing from among the menu of
native state folds. The vertical dashed line indicates the
threshold length scale chosen in the model for the curvature
energy penalty. The remaining panels show histograms for
several quantities involved in the definition of hydrogen
bonds: theCa-Ca distance betweeni , i +3 atoms given thati,
i +1, i +2, i +3 all belong to a helix(b) and betweeni , j (with
j . i +4) atoms given thati, j , belong to ab strand(c); the

scalar productsb̂i ·b̂j (d) andsb̂i + b̂jd ·r̂ i j /2 (e) for i , j contacts
[with u j − i u =3light gray(red online) and with u j − i u .4 dark
gray (blue online) provided that no closer interstrand contact

is present amongi ±1, j ±1] ( b̂i is the binormal vector at
atom i and r̂ i j is the vector joining atomsi and j normalized

to unit length); and the scalar productb̂i ·b̂i+1 for consecutive
residues along ab strand(f). In each case, the dashed lines
and arrows depict the approximate constraints used in our
model. All histograms are normalized in such a way that a
flat distribution would have a constant unit height.

APPENDIX E: DETAILS OF MODEL AND MONTE-CARLO
SIMULATIONS

The protein backbone is modeled as a chain ofCa atoms
with a fixed distance of 3.8 Å between successive atoms
along the chain, an excellent assumption for all but non-cis-
proline amino acids[13]. The geometry imposed by chemis-
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try dictates that the bond angle associated with three con-
secutiveCa atoms is between 82° and 148°.

1. Tube geometry

Self-avoiding conformations of the tube whose axis is the
protein backbone are identified by considering all triplets of

Ca atoms and drawing circles through them and ensuring that
none of their radii is smaller than the tube radius[19]. At the
local level, the three-body constraint ensures that a flexible
tube cannot have a radius of curvature any smaller than the
tube thickness in order to prevent sharp corners whereas, at
the nonlocal level, it does not permit any self-intersections.

FIG. 15. (Color online) Statistical analysis of several quantities computed for residues classified as participating in secondary structures
in protein native state structures from the Protein Data Bank. Light(dark) gray [red (blue) online] histograms refer to residues participating
in a helices(b strand).
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The backbone ofCa atoms is treated as a flexible tube of
radius 2.5 Å, a constraint imposed on all(local and nonlocal)
three-body radii, an assumption validated for protein native
structures[48].

2. Sterics

Steric constraints require that no two nonadjacentCa at-
oms are allowed to be at a distance closer than 4 Å. Ram-
achandran and Sasisekharan[49] showed that steric consid-
erations based on a hard sphere model lead to clustering of
the backbone dihedral angles in two distincta andb regions
for nonglycyl and nonprolyl residues. The two backbone ge-
ometries that allow for systematic and extensive hydrogen
bonding[8–10] are thea helix and theb sheet obtained by a
repetition of the backbone dihedral angles from the two re-
gions, respectively[43]. Short chains rich in alanine resi-
dues, which are a good approximation to a stretch of the
backbone, can adopt a helical conformation in water(see
[121] for a detailed discussion of experimental conditions
necessary to achieve this). However, when one has more
heterogeneous side chains, the helix backbone could steri-
cally clash with some side-chain conformers resulting in a
loss of conformational entropy[122]. When the price in side-
chain entropy is too large, an extended backbone conforma-
tion results pushing the segment towards ab-strand structure
[43]. These steric constraints are approximately imposed
through an energy penalty(denoted byeR) when the local
radius of curvature is between 2.5 Å and 3.2 Å.(The mag-
nitude of the penalty does not depend on the specific value of
the radius of curvature provided it is between these values.)
There is no cost when the local radius exceeds 3.2 Å. Note
that the tube constraint does not permit any local radius of
curvature to take on a value less than the tube radius, 2.5 Å.

3. Hydrogen bonds

We do not allow more than two hydrogen bonds to form
at a givenCa location. In our representation of the protein
backbone, local hydrogen bonds form betweenCa atoms
separated by three along the sequence with an energy defined
to be −1 unit, whereas nonlocal hydrogen bonds are those
that form betweenCa atoms separated by more than four
along the sequence with an energy of −0.7. This energy dif-
ference is based on experimental findings that the local
bonds provide more stability to a protein than do the nonlo-
cal hydrogen bonds[123]. Cooperativity effects[124] are
taken into account by adding an energy of −0.3 units when
consecutive hydrogen bonds along the sequence are formed.
There is some latitude in the choice of the values of these
energy parameters. The results that we present are robust to
changes(at least of the order of 20%) in these parameters.

4. Geometrical constraints due to hydrogen bonding

For hydrogen bond formation between atomi and j , the
distance between these atoms ought to be between 4.7 Å and
5.6 Å (4.1 Å and 5.3 Å) for the local (nonlocal) case[see
Fig. 15(b) for the local case]. A study of protein native state
structures reveals an overall nearly parallel alignment of the

axes defined by three vectors: the binormal vectors ati and j
and the vectorr i j joining thei and j atoms. A hydrogen bond
is allowed to form only when the binormal axes are con-
strained to be within 37° of each other, whereas the angle
between the binormal axes and that defined byr i j ought to be
less than 20°[see Fig. 15(e)]. Additionally, for the coopera-
tive formation of nonlocal hydrogen bonds, one requires that
the corresponding binormal vectors of successiveCa atoms
make an angle greater than 90°[see Fig. 15(f)]. The first and
the last residues of the chain are special cases since their
binormal vectors are not defined. In order for such residues
to form a hydrogen bond(with each other or with other in-
ternal residues in the chain), it is required that the angle
between the associated ending peptide link and the connect-
ing vector to the other residue participating in the hydrogen
bond is between 70° and 110°. As in real protein structures,
when helices are formed, they are constrained to be right
handed. This is enforced by requiring that the backbone
chirality associated with each local hydrogen bond is posi-
tive. The chirality is defined as the sign of the scalar product
sr i,i+13 r i+1,i+2d ·r i+2,i+3 [125].

5. Hydrophobic interactions

The hydrophobic(hydrophilic) effects mediated by the
water are captured through a relatively weak interactioneW
(either attractive or repulsive) betweenCa atoms which are
within 7.5 Å of each other. Note that hydrogen bonds can
easily be formed between the amino acid residues in an ex-
tended conformation and the water molecules. Within our
model, the intrachain hydrogen bond interaction introduces
an effective attraction, because water molecules are not ex-
plicitly present. The hydrophobicity scale is thus renormal-
ized (e.g., even wheneW is weakly positive, there could be
an effective attraction resulting in structured conformations
such as a single helix or a planar sheet). A negativeeW is, in
any case, crucial for promoting the assembly of secondary
motifs in native tertiary arrangements.

Monte Carlo simulations are carried out with pivot and
crankshaft moves commonly used in stochastic chain dynam-
ics [126]. A METROPOLISprocedure is employed with a ther-
mal weight exps−E/Td, whereE is the energy of the confor-
mation andT is the effective temperature.

APPENDIX F: CORRELATION FUNCTIONS
IN THE DENATURED STATE

We will consider a polypeptide chain in aphasewhere the
local interactions dominate the behavior of the correlation
functions, to be studied below, at least at short and interme-
diate distances along the chain. We thus neglect the steric
interactions apart from the effect that they have on neighbor-
ing nodes of the chain. The correlation functions we will
consider involve the unit vectorst̂i parallel tor i+1−r i and the

binormalb̂i ;st̂i 3 t̂i−1d / ut̂i 3 t̂i−1u. Note that, in order to facili-
tate the calculations, our definition for the tangent vector is
different from the one used in Fig. 6 in Sec. IV. The geo-
metrical constraints of hydrogen bond formation are associ-
ated with the binormal vector, whose definition is
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unchanged—the binormal vector is perpendicular to the
plane defined byr i−1,r ,r i+1. Let ui P s0,pd be the angle be-
tween t̂i and t̂i−1 and fi P s−p ,pd the angle by which the
plane defined byr i−1,r i, andr i+1 is rotated along the axist̂i
with respect to the plane defined byr i−2,r i−1, and r i. Quite
generally the joint probability distribution of angles,
Psu2,f3,u3,f4, . . .d will depend on the entire ensemble of
interactions including the steric interactions. However in the
phasewe wish to study we will assume that this probability
distribution can be factorized, i.e., we will consider the case
where we have probability distributionsrsui ,fid for each
pair of anglesui ,fi with i =3,4, . . . and

Psu2,f3,u3,f4,u4, . . . d = r2su2dp
iù3

risui,fid, sF1d

where the contribution for the angleu2 between the first two
vectors of the chain,t̂1 and t̂2, has been selected out. The
average with respect toP will be written ask·lP whereas the
average with respect torisu ,fd will be denoted simply as
k·li. In the case of a protein sequence therisui ,fid depends
explicitly on the type of amino-acids in the neighborhood of
the ith position. It is this dependence that ultimately will
determine the propensity of a given segment of the protein
sequence to be in a given secondary structure. One can
straightforwardly derive the following recursion relations:

t̂i = − t̂i−2
sin uicosfi

sinui−1
+ t̂i−1scosuisinuicosficotui−1d

+ b̂i−1sinuisinfi , sF2d

b̂i = + t̂i−2
sinfi

sinui−1
− t̂i−1cotui−1sinfi + b̂i−1cosfi . sF3d

If one wishes to calculate the correlation functionkx ·t̂ilP,

wherex is t̂2, cot u2t̂2, b̂2, or any other combination of them,
then one needs to introduce other correlation functions in
order to have a closed ensemble of recursion equations. By
defining the vector

V i =1
kx · t̂ilP

kx · t̂i−1lP
kx · t̂icotuilP

kx · b̂ilPd
2 , sF4d

the recursion equations can be written in a compact form in
terms of the vectorsV ’s and thetransfermatrix Ti,

V i = TiV i−1, sF5d

where the nonzero matrix elements ofTi are

ti1,1= kcosuli,ti1,2= −K 1

sin u
L

i−1
ksin u cosfli ,

ti1,3= ksin u cosfli,ti1,4= ksin u sin fli ,

ti2,1= 1,

ti3,1= kcot u cosuli,ti3,2= −K 1

sin u
L

i−1
kcosu cosfli ,

ti3,3= kcosu cosfli,ti3,4= kcosu sin fli ,

ti4,2=K 1

sin u
L

i−1
ksin fli ,

ti4,3= − ksin fli,ti4,4= kcosfli . sF6d

Thus given the initial conditionV2, which depends only
on r2sud, all successiveV ’s can be calculated recursively
using Eq.(F5). Let us discuss the case of a uniform stretch
where risu ,fd, and thenceTi, does not depend oni (the
subindicesi will be omitted in this case). If the left and right
eigenvectors ofT, Wm, andWm, respectively, corresponding
to the eigenvaluelm, form a complete basis set the general
solution of Eq.(F5) can be written as

Vn = o
m=1

4

lm
n−2Wm ·V2W

m. sF7d

If all the eigenvalues are real and positive and ifl
;maxm=1,. . .,4hlmj then for largen

kt̂2 · t̂n+2l , ln, sF8d

and likewise forkb̂2·b̂nl. On physical grounds, we expect
that l,1, so that the correlation functions decay exponen-
tially with the distance measured along the chain. However,
it is quite common that some eigenvalues are complex. Since
the matrixT is real, complex eigenvalues occur in pairs of
complex conjugate values. If the pairl±=exps±ix−1/jd (x
and j are both real and positive) corresponds to the maxi-
mum modulus eigenvalue, then at largen we get, for ex-
ample, for the tangent-tangent correlation,

kt̂2 · t̂n+2l , cossx0 + nxde−n/j, sF9d

wherex0 depends on the initial conditions. Thus there is still
an exponential decay with a correlation lengthj (in units of
chain bond length), but there is also an oscillatory modula-
tion with another length scale 1/x, which corresponds to
short range order along the chain(notice that, in one-
dimensional systems such as our chain, long range order can-
not occur if the interactions are short range as in the present
case). This type of behavior, with 1/x,3.6, would be ex-
pected on a stretch of chain that adopts a helical conforma-
tion with 3.6 amino acids per turn.

We end this appendix with an example of such behavior
which can be worked out in full detail. For the case
risu ,fd=risu ,−fd (which corresponds to invariance under
chirality flipping), andri is independent ofi for i .2, then
tk,4= t4,k=0 with kÞ4. This implies that the matrixT be-
comes block diagonal with an eigenvalue equal tokcosfl
and kx ·b̂nl decays exponentially with a correlation length
−1/ lnkcosfl. Furthermore, sincet1,2t3,3= t1,3t3,2, one eigen-
value is zero and the remaining two are the solutions of the
second order equationl2+bl+c=0 with
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b = − t1,1− t3,3, c = t1,1t3,3− t1,3t3,1− t1,2. sF10d

Thus, if b2−4c.0, the two solutions are real and the
tangent-tangent correlation decays exponentially to zero. On
the other hand, ifb2−4c,0, the two solutions are complex
conjugate of each other, as described above, and in the par-
ticular case we are considering, i.e.,risu ,fd=risu ,−fd, one
finds for all n, that

kt̂1 · t̂n+2l =
cossx0 + nxd

cosx0
e−n/j, sF11d

where j=−2/ ln c, x=arccoss−b/2Îcd, and x0 depends on
the initial conditions.
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