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We introduce a class of stochastic population models based on “patch dynamics.” The size of the patch may
be varied, and this allows one to quantify the departures of these stochastic models from various mean-field
theories, which are generally valid as the patch size becomes very large. These models may be used to
formulate a broad range of biological processes in both spatial and nonspatial contexts. Here, we concentrate
on two-species competition. We present both a mathematical analysis of the patch model, in which we derive
the precise form of the competition mean-field equatiGarsd their first-order corrections in the nonspatial
casg, and simulation results. These mean-field equations differ, in some important ways, from those which are
normally written down on phenomenological grounds. Our general conclusion is that mean-field theory is more
robust for spatial models than for a single isolated patch. This is due to the dilution of stochastic effects in a
spatial setting resulting from repeated rescue events mediated by interpatch diffusion. However, discrete effects
due to modest patch sizes lead to striking deviations from mean-field theory even in a spatial setting.
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[. INTRODUCTION powerful computers, but they also have other attractive fea-
tures, such as the ability to directly model individual at-
Traditional theoretical ecology, in which the time evolu- tributes. At this point we should stress that we will assume
tion of population densities is described by differential equathat the individuals of a given species in our models are
tions, has a long historfl—3]. For a single species the sim- identical, and thus the term IBM should not be confused with
plest form of the governing equation is assumed to take thegent-based models which are often designed to study the
form dN/dt=®(N)N, where ®(N) describes the growth of ecological effects of behavioral and physiological variation
the population. A common choice when modeling this@mong individuals. A better term might be individual-level
growth is to take®(N)=r(1-N/K), wherer andK are two ~ Model(ILM), but the term IBM has wide usage, and so we

constants. By analogy, when describing the interaction ofVill use it here. In this paper we will be concerned with
Eheoretlcal issues which relate to the connection between

two species, it is natural to postulate that the populations o ) T
. : models defined at the individual level and those at the popu-
the two speciesN, and Np, change according W@Ny/dt ooy e) Thus, the individuals in our models will be iden-

=f(N1,N;) anddN,/dt=g(N;,N,). The functionsf andgare oo™ yihin - 5 given species. The relation between
chosen according to whether the interactions are purely Co'g)'opulation-level and individual-level descriptions has been a
petitive, predator-prey like, or include other effects such agqocys of discussion within the theoretical ecology commu-
cooperation. We will refer to descriptions of this kind as nity for some time[4,5. Some regard the nature of the
population based; they are arrived at without the need for @opulation-based models as obvious and either write them
detailed knOWledge of the interaction between indiVidua|Sdown without comment or derive mean-field equations by
and rely instead on assuming that the terms which arise ifhaking an assumption of homogeneous mixing of the popu-
the governing equations represent the net effects of inditations [6,7]. However, there is also some recognition that
vidual interactions in some generic way. Equations of thisthe situation may be more complicated than #8%] and
kind play such a central role in population biology, that manythat the transition to a partial differential equation required
subsequent elaborations of the theory have taken them as thar a spatial description, from the ordinary differential equa-
starting point: spatial variation is introduced by adding a drifttion obtained by using mean-field theory, may not be as
term V2N, (=1,2) to the right-hand side of theth equa-  simple as just adding the terfN,, [10—13.
tion, and the models are sometimes interpreted as referring to From a statistical physics perspective it is natural to ex-
individuals by assuming that the functiofisandg also de-  pect that fluctuations may play an important role in these
scribe interactions at the level of the individual. systems and lead to important differences between micro-
In the last decade or so, an alternative approach to that afcopic (IBM) and macroscopic¢population-level descrip-
classical theoretical ecology described above has been devéiens. A formal analysis of such issues has been presented for
oped. This involves abandoning the traditional population-simple birth and death procesqd$] and annihilation reac-
level description in favor of an individual-based descriptiontions [14] using the language of field theory and the renor-
in which explicit rules governing the interaction of individu- malization group. Here, we take a different approach, using
als with each other and with the environment are given. The&zan Kampen’s system size expansion, in order to probe the
popularity of these individual-based modé¢IBM’s) is un-  connection between more complex IBM’'s and mean-field
doubtedly due to the continuing increase in the availability oftheories. This has some advantages; for instance, it is not
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necessary using this technique to first construct a correthese particular urn models, the notion has been generalized
sponding field theory and then extract the mean-field equaconsiderably. For example, both models fall into the class of
tions and the Gaussian fluctuations about them to model thern models which have the properties that if a white ball is
macroscopic behavior. There is also less of an emphasis afrawn, it is replaced together withwhite balls ando black

the role of phase transitions, which are not usually of primeones, and if a black ball is drawn, it is replaced together with
interest in ecological models. ¢ white balls andd black ones. A further generalization is to

We would like to stress from the outset that our use ofconsiderr different colors, with the drawn ball of colar
“mean-field theory” or “mean-field model” is in the spirit of being replaced together withe; balls of color j (i,j
statistical mechanics. By “mean field” we mean the neglect1, ... r) [17]. It is also clear that two, or more, balls can be
of correlations between degrees of freedom, allowing one t@rawn together or, as we will have occasion to assume in this
write the mean of the product of two stochastic variables apaper, two balls could be drawn for a fractignof the time
the product of their means. Thus, a spatial model in whichand one ball for a fractioil —u) of the time.
statistical correlations are neglected is still a “mean-field Urn models are concrete realizations of stochastic pro-
model” within this usage. This is in contrast to some papergesses with probabilities which depend only on the instanta-
in population biology in which “mean-field” is reserved ex- neous state of the system—that is, Markov processes. They
clusively to describe nonspatial models. have proved useful in several areas of the biological sci-

In this paper, the models which we study will be definedences. Perhaps the most obvious application is in population
only at the level of direct interaction among individuals andgenetics, implicitly in the early work of Fisher and Wright
in terms of local properties such as birth, death, and migraf18] and explicitly in later developmenfd9-25. However,
tion rates. The population-based properties of the model wilthey have also been used in a number of other areas such as
then be derived within a well-defined approximation schemethe study of radioactive particles in animdg6-29g, the
We will show that, beginning with reasonable models at thestudy of patterns of vegetatiof29], models of interaction
individual level, the corresponding population-level modelsbetween specief30-33, and metapopulation mode[83].
are similar in structure to those that we would naively writeThe last three applications are closest to the ones discussed
down, but have important differences. For instance, smallin this paper, but differ in that the balls represent forest or
scale diffusion may not simply translate i8N, terms and  grassland in the first case, species in the second case and
the parameters defined at the individual-based level may natolonies in the third case, rather than individuals as in the
map directly into their equivalents at the population level. present paper.

The individual interactions may be naturally introduced Since urn, or patch, models are representations of Markov
using a “patch model.” From a biological perspective, aprocesses, the continuous time version of their dynamics
patch can be thought of as a small spatial region withirmay be described using a master equation. The use of master
which interactions between individuals occur. The patch iquations is familiar to physicists, but they are still not
assumed to be sufficiently small that there are no spatialidely appreciated in the biological communitput see
effects. In other words, there is complete mixing, and allabove references and Ref84-34, for instancg Once the
individuals have the same chance of potentially interactingprocess has been formulated in this way, we may use stan-
with each other. In the nonspatial version of the model thisdard techniques to take the mean-field limit and so obtain the
simply amounts to stating that the probability of any indi- corresponding population-based equation. Much of this pa-
vidual dying in unit time should be proportional to the den-per will be taken up with a comparison of results obtained
sity of individuals existing at that time, and for processesfrom the full model(averaged over many realizatiorsnd
which involve two individuals, the probability involved the mean-field results. Our approach will be particularly use-
should be that found when drawing two of these types oful in distinguishing situations where mean-field theory is a
individuals at random from a patch which contains all thegood approximation to the full theory and situations where it
individuals in the system. Not all constituents of the patchis not. We will mainly concentrate on competitive interac-
will correspond to individuals; some will correspond to tions in systems with one or two species, but our method
empty sites in the spatial version of the model. A more de-applies equally well to predator-prey or epidemic models and
tailed specification is given in Sec. Il. Patch models such asultispecies communities.
this have been used in many areas of scigi&gand often The outline of the paper is as follows. We first motivate
go under the name of “urn models.” Two early examplesand define the rules for the nonspatial patch models in Sec.
were the Ehrenfest urn, which was used to discuss the fourlt, starting with a single-species model and then generalizing
dations of statistical mechanics, and the Pdlya urn, whicho a two-species competition model. The full stochastic na-
was originally devised to describe contagious dise§$6s  ture of the models is described using master equations, and
In both cases the problem of interest can be mapped onto ahe associated mean-field models are derived. In the follow-
urn which contains balls of different colors—say, black anding section we go one step beyond mean-field theory and
white—which are drawn randomly one at a time. In the casalerive the dynamics of the Gaussian fluctuations about the
of the Ehrenfest urn, each time a ball is drawn it is replacednean-field solutions. This is equivalent to not only following
by one of the other color. For the Pdlya urn, the chosen ballhe mean position of the probability distributions over time,
is replaced together with an extra ball of the same color. Théut also describing their broadening. In Sec. IV we present
relation to the modeling of contagious diseases should baumerical simulations of the fully stochastic nonspatial mod-
clear: each occurrence of a particular color increases thels, for both one and two species. We compare our results to
probability of further occurrences. Since the introduction ofnumerical integration of both the mean-field equations and
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the improved models with Gaussian fluctuations includedpatches, each of which contains several individuals. In this
We find that the agreement between mean-field theory andiay of thinking, each small patch contains sevexaB, and
simulations is excellent for larger patches, as is to be exE types, which interact with each other in the same way as
pected, but that the breakdown of mean-field theory occurfor the large patch described above and which move by ex-
precipitously below critical patch sizes which are still fairly change interactions with neighboring patches. While this de-
large. We proceed in Sec. V to generalize our patch moddines a slightly different spatial model, the nonspatial version
formulation to spatially explicit population dynamics of two of the model is the same: all the individuals from the various
species competition. From the master equation we derive thgatches are collected together into a single large patch.
spatial mean-field equations. We note important differenceMoreover, even the spatial version of the model is in some
between these equations and “intuitive” versions which havesense a “coarse-grained” version of the original model—
appeared in the literature. These mean-field equations aseveral sites in that model when viewed on a coarser scale
tested against simulations of the fully stochastic models ircan be reinterpreted as a site in the latter model. These fea-
Sec. VL. In this introductory paper we are unable to give atures will be explored in more detail when we discuss the
comprehensive analysis of the two species model. Instead wapatial aspects of these models in Sec. V. For the remainder
present two interesting scenarios and note the successes asfithis section we will consider only the nonspatial model.
failures of the mean-field equations, which are strongly de- Suppose to begin with we consider the simpler case of a
pendent on patch size and the presence or absence of intsingle species—that is, a patch containing oAlgndE in-
specific competition. We end the paper with our conclusionglividuals. We shall postulate that the population dynamics of
along with a discussion of future directions. Two appendixeshe system can be essentially described by three processes:
contain technical details. The first concerns the system sizeirth, death, and competition. The first and third processes
expansion for two species and the second the formalism fowill involve two individuals, AE— AA (birth) and AA— AE
spatial systems. (competitior), but the second process involves only one in-
dividual, A— E (death. These seem natural choices since,
while death can be modeled as constant, independent of the
density of individuals, the reduction in the numbersAodue

In this section we will introduce the essential features oft0 competition and the growth in numbersAtlue to births
our approach by formulating an individual based stochasti®Vill be density dependent. In other words, there will be a
model of competition between two species. We will thenténdency forAA to go toAE because of overcrowding, and
show that in the limit of large population sizes, the time for AE to go toAA due to the presence of resour¢spacg
evolution of this model reduces to the well known differen- {0 Sustain a new individual.

tial equations describing the population growth of two com- ~ The time evolution of the model can now be described. At
peting species. each time step we sample the patch. On a fractiaf these

The two species will be labeledl andB. To motivate the occasions we randomly choose two individuals and allow
approach we will adopt, suppose that we model the interachem to interact and fofl - ) of the draws we choose only
tions of A andB individuals in an area of land by subdividing one individual randomly. If in the former case we draw two
it into N plots of equal area. The plot sizes are chosen so thdt “individuals” or in the latter case onk “individual,” we
each one either contains oreindividual, or oneB indi-  Simply put them back into the patch. For all other choices, an
vidual, or neither amA nor aB. We will call the latter an interaction may occur, leading to the replacement of a differ-
empty site and label it bE In a Spatia| version of the model ent set of Ind_IVI_duaIS to those drawn. For each of these pro-
we would give rules for howA, B, andE interact, specify ~Cesses we will introduce rate constabts andd as follows:
birth and death rates f@k andB, and allow them to move to c b d
nearest-neighbor sites. In later sections we will describe such AA—AE, AE—AA A—E. (1)

a model, but we will begin, for simplicity, by ignoring the i . .
spatial aspects. We do this by imagining that we pluck all the/Ve now only need to know the probabilities of drawing vari-

A, B, andE from their particular sites and put them into a ©YS combinations from the patch. Simple combinatorics

single large patch, with no record of their original spatial 9'V€S

locations. Any memory of which individuals were nearest n(n-1)

neighbors is now lost, and any two individuals picked at probability of pickingAA:,uN NETE

random are just as likely to interact as any other two similar

individuals picked at random. In fact the time evolution of (N=1)

the spatial model which would read, pick a site at random, . . _,, nN=nN

then pick a nearest neighbor of this site and implement the probability of pickingAE 2'LLN N-1

interaction rule for the two chosen individuals, now reads,

pick two individuals from the patch and implement the reac- n

tion rule for the two chosen individuals. probability of pickingA= (1 —M)N, 2
There are other, slightly different, ways of arriving at the

above picture. For example, instead of dividing up the areavhere the factor of 2 in the second term comes from the fact

of land into sites containing either one individual or no indi- that the choice\AE and EA are identical. These results en-

viduals, it could be divided up into a number of smaller able us to write down expressions for the transition probabil-

Il. BASIC FORMALISM AND THE NONSPATIAL MODEL
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ity, per unit time step, of the system of individuals going So far no approximation has been made in the derivation
from a state withn A individuals to a state wittn’ A indi-  of Eq. (7). However, we now take the limN— . In addi-
viduals. We denote this quantity Byn’|n). Since only tran- tion to eliminating the 1N factor in the second term on the
sitions fromn to n+1 may take place during one time step, right-hand side of Eq(7), it allows us to replacén?) by (n)2.

the only nonzerdr(n’|n) are This gives
EPTAL (Lt SRR dp .~ - ()
Tn=1n) = pe g7 + (L -pdg, d—‘f =2bp(1 - §) —~TP? - dep, wheredp= N @
n(N-n) Here ¢(t) is the density of individuals in a given area. It is

T(n+1jn) =2ub )

N N-1" more conventional to write this in the form

The process defined by EgE) is a one-step Markov dN
process and so we can immediately write down a master —A= NA(r —aN,), whereNj(t) =(n) =N¢(t), (9)
equation describing how the probability of havingindi- dt
viduals present in the patcR(n,t), changes with timé37].
The rate of change of this quantity with time is simply the
sum of transitions from the states with+1 andn-1 A in- ~
dividuals to the state with A individuals, minus the sum of r=b-d a= 2b+
transitions from the state with A individuals to the state ' N
with n+1 andn-1 A individuals:

and where

ol

(10

Equation(9) is the mean-field equation of the model and is

dP(n,t) =T(njn+1)P(n+1,t) + T(njn- 1)P(n - 1,t) the familiar_logistic eq_ua_ltion, usually Writter_1 down as a phe-
dt nomenological description of the population growth of a
—T(n-2n)P(n,t) = T(n + 1n)P(n,1). (4) single species with intraspecific competition. Here it is de-

rived as theN—oo limit of our stochastic model and thus

This set of coupled equations has to be solved subject to gorovides a reasonable description of our system when the
initial condition, typicallyP(n, 0) =6, , —that is, a condition  potential size(number ofA plus number ofE types of the
stating that there are known to bgindividuals in the patch system is relatively large. Of course, this limit is purely for-
att=0. Care should also be taken with the boundary valuesal. In practice what we mean thatNfis of the order 16
n=0 andn=N, since not all of the transitions are present infor instance, then this approximation is good if we are only
these cases. From Eq&) we see thaff(-1|0) and T(N  interested in accuracies of up to 0.01% the next-order
+1|N) are formally zero. As long as we defifE0|-1)  corrections are of order Nj or 1% (if the next-order cor-
=T(N|N+1)=0, we may use the general for() even for rections are of order XN). This approximation obviously
n=0 andn=N. cannot describe chance extinctions, which occur whes

The master equatio®) gives a complete description of small, nor does it predict a mean time to extinctiqn for &he _
the time evolution of the nonspatial model. In the next secPopulation. In regimes where these effects are important, it
tion we will discuss the model predictions in more detail. Provides a poor description of the system, but this will inevi-
Here we simply wish to make contact with the mean-fieldtably be true of any purely deterministic description.
(i.e., the deterministicversion of the model, obtained by  The necessity of introducing the “empty site” individuals
taking theN— oo limit. This is most easily accomplished by E should be clear from the above derivation. In order to be
multiplying the master equatiof#) by n and summing over able to define a population density which changes with time
all values ofn. By shifting the variable in two of the sums on We need a null population which can be displaced if he

n by +1 and -1, the following rate equation is obtained: ~ SPecies is successful and increase if Ahgopulation falters.
It is also very natural to have a ceiling on the growth/fof

d(n) individuals (No=<N) representing a limit on the available
dt 2 T(n+1nP(n,t) - Z Tn=-1nmP(n.t), (5)  resources. If n&E's were introduced in the two-species case,
n=0 n=0 the two population sizes would not be independent and
where angular brackets signify averages over the possibiould simply add up tN. The A population would obey Eq.

N N

states of the system. Defining (9) and Ng=N-N,. This is clear if we simply imagine re-
peating the above derivation for a two species system by
= MC g ub I= (1-pd ©) replacingE by B. Although the interaction rules would be
N-1’ N-1’ N altered by this replacement, it would still be the case that
_ Na+Ng=N. So it is vital to have “empty space” for individu-
and using Eqs(3), Eg. (5) becomes als to exploit in order to obtain a realistic population dynam-
ics.
dn = 2l~3<ﬂ(1 —E>> —'<‘:<E<E - 1)> —5<E>. We have discussed the single-species case in some detalil
dt N N N NAN N N since the construction of the master equation in the two-

(7)  species cas@nd, in fact, in theS-species case for arbitrary
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S) follows similar lines. We still draw two individualg of
the time and one individudll —u) of the time, but the pro-
cesses and their rate constants are now

11 C21 C12 dg

AA—AE, AB—AE, BA—BE, A—E,

C22 by by dp

BB—BE, AE—AA, BE—~BB, B—E. (11)

The rate constants,,, a=1,2, represent intraspecific
competition anct,; a# B, interspecific competition. Analo-
gous probabilities to Eqg2) of choosing particular combi-
nations ofA, B, andE are

Py ) AE:24 nN-n-m A -
ANN-1" "N N-1 SNk
m(m-1) m(N n-m) m

BB: u—  BE2u————— Bi(1-p)—,
“N'N-1 “NTON-1 1wy

AB:2u M (12
HNN-1

Transition probabilities now have initial and final states
specified by two integers. The transition probability per unit

time from the statgn,m) to the state(n’,m’) will be de-

noted byT(n’,m’|n,m). The nonzero transition probabilities

are

nin-1)

N(N - 1)
mn

N(N-1)’

n
T(n-1,mn,m) = ucy; +(1- ,u,)dlﬁ

+2uCyp

T(n,m-1jn,m) = Mng%

mn
N(N-1)’

(1- M)dz
+2ucy;

Nn(N-n-m)
N(N-1) °

m(N-n-m)
N(N-1)
The master equation is an obvious generalization of(Ey.
dP(n,m,t)
dt

T(n,m+ 1jn,m) = 2ub, (13

=T(n,mn+1,mP(n+1,m.t)

+T(n,mn-21,mP(n-1,m,)
+T(n,mn,m+ 1)P(n,m+ 1,t)
+T(n,mn,m-1)P(n,m-1,t)

—{T(n-1,m|n,m) + T(n+ 1,m|n,m)

(14)

PHYSICAL REVIEW E 70, 041902(2004

This equation simply expresses the increasB(m, m,t) due

to the four possible transitions into the stétem) described

by T(n,m|n+1,m+1) and the decrease due to transitions out
of this state described bj(n+1,m+1|n,m). The boundary
and initial conditions are obvious analogs of those in the
one-species case. The generalizations of [&f.are quite
simple, since none of the transition probabilities involving
changes only irm enter into the equation fou(n)/dt and
none of the transition probabilities involving changes only in
n enter into the equation fakm)/dt:

q N
A _ = > T(n+1,mnmP(n,mt)
dt n, m=0

N
- > T(n-1,mn,mP(n,mt),
n,m=0

q N
<dT> > T(n,m+ 1jn,mP(n,m,t)

nm:O
N
- > T(n,m-1jn,mP(n,m,).

n,m=0

(15

We can now substitute the forms for E¢$3) into this equa-
tion and take the mean-field limit — . This allows us to
factor (mn) into (m)(n), as well as(n?) into (n)? and {(n?)
into (m)? as before. The final result for the rate of change of
population densities is the competition equations

dN

d_tA =Na(r; —a11Na — a3,Ng) whereN, =(n),

dNg

o Ng(rp — @2;Na — a5,Ng) whereNg =(m), (16)

familiar from population biology textbooks. The parameters
in Egs. (16) are related to the parameters of the stochastic
model by

_ 2/.Lba, _ (1 _M)da _ M(Zba + Caa)
“NC1T T N T NN
aaﬁ_z'u(b—-'-cﬁ_) ( + ’3) (17)

N(N - 1)

As we will see in Sec. V, essentially the same kind of
reasoning as that given above can be applied in the spatial
version of the model. Before discussing this, however, we
will investigate the largeN limit of Egs. (4) and(14) a little
more carefully, obtaining corrections to mean-field theory
and comparing these to simulations.

IIl. BEYOND MEAN-FIELD THEORY FOR THE
NONSPATIAL MODEL

In the last section we gave arguments to show that the
mean-field versions of the stochastic models we had intro-
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duced were indeed the deterministic models conventionally &H

used to describe these systems. In this section we will apply e -a, o(¢ [51_[] az o) —7 g (22

an elegant method due to van Kamg@&], which not only

allows us to obtain these results in a more systematic wayjescribing a linear stochastic process to next order. Here the
but also gives a method of finding stochastic corrections tdunctionsa; o(¢) and a; o(¢) (we have used van Kampen’s
this deterministic result for largél. We will only work to  notatior) are given by

next-to-leading order in this paper. This will give a Gaussian

broadening tdP(n,t), or P(n,m,t), with the peak of the dis- ag o) = 25¢(1 - @) - ¢(Ei +Cdo),
tribution moving according to the relevant deterministic
equation. We will then compare these results with numerical o) = 25¢(1 — )+ ¢(a +34). (23

simulations of the full stochastic process. The lakgexpan-
sion is very clearly explained by van Kampen in his book Since the Fokker-Planck equati¢®2) describes a linear
[37], so we will content ourselves with giving a brief outline process, its solution is a Gaussian. This means that the prob-
of the method as applied to the one-species case. The twability distributionlI(£,t) is completely specified by the first
species calculation follows very similar lines. two moments &), and(&2),. Multiplying Eq. (22) by £ and&?

We saw in the last section that, in the linht— o, the and integrating over alf one finds
variablen became deterministic and equal Nb(t). In this

limit the function P(n,t) will be a & function. For large, but Ié) = aq o( P,
finite N, we would expectP(n,t) to have a finite width of
order NN"*2=N%2. Now n is once again a stochastic vari- IE = 20y o PUEN+ an (). (24)

able, and it is natural to bring out the larfjestructure of the ) ) )
theory by transforming to a new stochastic variakléy The procedure is to solve E(21) and obtaing as a function

writing of t. This function is then substituted into Eq24) and these
equations solved fot¢), and (£%),. In the case of the first
n=Ng(t) + N2, (18) moment this may be performed quite generally to give
t
We will _not nee_d to assume that tr_le funptid:(}t) satisfie_s (&)= (&)oeX J dra; o(p(7) (- (25)
any particular differential equation; if we simply choose it to 0

follow the peak of the distribution as it evolves in time, then
the equation it satisfies will emerge. A new probability dis-
tribution functionll is defined byP(n,t)=I1(£,t), which im- No
plies that #(0) = N (26)

Choosing our initial condition to be

dr Nl,zd_d)ﬂ (19 the initial fluctuations vanish an@),=0. Thus(&),=0 for all

ot dt 9¢° t.
This summarizes the method. We therefore start by solv-
When using this formalism it is useful to rewrite the mastering Eq.(21), subject to Eq(26). Defining
equation(4) using step operators which act on an arbitrary

b=

function of n according to&f(n)=f(n+1) and £ (n)=f(n p=2b-4d, o=2b+%, (27)
~1). This gives for convenience, the general solution fo# 0 is
Y = (- D[T(n- ImP(] + (€21 Hy=—" oo, (29
X[T(n+1n)P(n,1)]. (200 where the constar is determined by the initial condition
This form of the master equation is useful because the step A=o-—L— [4(0)#0]. (29)

operators have a simple expansion involving powers of the ¢(o)
operatoN~Y29/ 9¢, which simplifies the identification of dif-
fering orders inN"Y2. We shall assume the initial condition If ¢(0)=0, theng(t)=0 for all t. If p=0, a degenerate form

on the equation to b&(n,0)= Sy of the solution exists and is given by
Applying the method and |dent|fy|ng powers ®i/2 #(0)
yields the macroscopic equation pt)=———— (p=0). (30
1 +op(O)t

This solution can now be substituted into the equation for

dt = avdd) 21 (&%) given in Eq.(24). An integrating factor for this equation
is e’/ ¢*(t), which yields upon use of the initial condition
to leading order and a Fokker-Planck equation (%0=0 whenp+#0:
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TABLE |. Parameter values for Figs. 1 and 2.

Samples N ) b d c
Fig. 1 10 000 100 0.5 0.5 0.5 0.5
Fig. 2 50 000 10 0.5 0.5 0.5 0.5

appropriate probabilities transitions are made and the new

Of course, care has to be taken when applying this approxindividuals replaced.

mation. If the distribution has significant interaction with the

We periodically average over the ensemble to measure

boundaries an=0 orn=N, the Gaussian approximation will both the mean densities of individuals and the variance in the

break down. So, for example, >0, the peak of the distri-
bution will move fromng eventually coming to rest &p/ o

densities. Concurrent with the stochastic simulation we also
integrate forward the mean-field equations and the equations

While this is happening the probability distribution broadens,for the Gaussian variancg¢gqs. (24) and (A5)—<A9)] to al-

eventually reaching its stationary value at

im(é), = 229,
toee (2b+7T)?

On the other hand, ip=<0, the peak of the distribution will

(32

low a direct comparison. Forward integration of the differen-
tial equations is performed using a second-order Runge-
Kutta scheme.

We will present some examples of our numerical work
which illustrate the main effects that we have found. We
have not performed an exhaustive numerical analysis due to

eventually tend to zero, and so the Gaussian approximatiotine large parameter space of the competition models. The

will break down at some finite time.

examples we give here are fairly typical of a wide range of

The case of two species follows in an exactly analogouparameter space and are chosen to illustrate a variety of ef-

manner: one writes1=Ng(t)+NY2¢ and m=Ny(t) + N2y
and defines a new probability distributidih via P(n,m,t)
=II(¢, »,t). The macroscopic equations obeyed §y) and

fects. Our results may be summarized by the statement that
as long as the size of the patch is large and the system is not
close to extinction(such that discrete effects play a strong

(1) are again found to be identical to those given in Sec. Il fole), then the mean-field equations and the lakgeerrec-

and I is again found to satisfy a Fokker-Planck equationtion yield a remarkably accurate description of the system
describing a linear process and is therefore a multivariatdynamics. However, there is a fairly sharp transition signal-
Gaussian distribution. Details are given in Appendix A,ing the failure of mean-field theory as the patch size is re-
where one sees that analytic expressions for the analogs 8ticed below a critical value. For smaller patches, the quan-
(€%, cannot be obtained, in part at least, because the macr§tative precision of the mean-field theory fails badly. This
scopic equations cannot be solved in closed form. Howevefhaccuracy gives way to qualitative errors if one runs the
we have solved them numerically, and we now go on tooystem close to extinction. In this case th_e probability distri-
compare the largdl results in both the one-species and two-bution of the populations is poorly approximated by a Gauss-

species cases with simulations of the original stochastié? function and one is compelled to abandon mean-field
process. theory and its Gaussian corrections. It is significant that the

critical patch size depends sensitively on whether the patch
contains one or two species and whether there is interspecific
competition. To clarify these statements we now lead the
reader through some illustrative examples. An exhaustive list
In order to better understand the range of validity ofof parameter values is given in Tables | and Il
mean-field theory and its Gaussian corrections, we have per- In Fig. 1 we give an example of a moderately large patch
formed numerical simulations of the nonspatial model de{N=100 containing a single species. The mean density soon
scribed above. The simulation of stochastic models of popusettles down to gquasijsteady-state value as does the vari-
lation dynamics has progressed in line with the availabilityance in the population density. Mean-field theory and the
of high-speed computers over the last two decades. DurinfargeN corrections give very good agreement. In Fig. 2 we
the beginning of this period, books on the stochastic dynamshow results for an identical situation but with the patch size
ics of fluctuations in biological systems only mentionedreduced from 100 to 10. In this case the quasi steady state is
simulations fleetingly{38]; about a decade ago they had as-meaningless since extinction events are frequent and the
sumed a more central rolg89] and are now regarded as mean density(measured over the ensemble of patghes
essential in the understanding of these systpt0s41. We  steadily decays to zer(88,43. Note that the variance also
refer the reader to these last two references for more detaitfecays to zero, since as time proceeds more and more real-
on how these simulations are carried out in practice. izations go extinct and the probability distribution of popu-
In our numerical algorithm an ensemble of patches is itdation densities is dominated by &function peak at zero.
erated forward in time. To achieve reasonable statistics w&his illustrates the effect of discrete individuals for small
generally take the size of the ensemble to be several thowystems.
sand realizations. In each small time step a single individual We now consider competition between two species in a
or a pair are selected from each patch in turn and with thaingle patch. We only consider large patches, where, naively,

IV. SIMULATIONS OF NONSPATIAL MODELS
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TABLE Il. Parameter values for Figs. 3-5.

Samples N n b, b, d; d; Ci1 C C12 Co1
Fig. 3 1000 400 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.0 0.0
Fig. 4 1000 200 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.0 0.0
Fig. 5 1000 400 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.0 0.1

discrete individual effects may be neglected. In Fig. 3 wetions and the mean-field theory and its lafgeorrections. It
study the simplest case in which tieand B individuals  is somewhat surprising that on reducing the patch size from
have identical birth, death, and intraspecific competitior400 to 200(Fig. 4) the variance in the system increases
rates. There is no explicit interspecific competitid®e., c;,  steadily, far exceeding the largé<corrections. Returning to
=c,,=0), although the finiteness of the patch leads to indirecthe large 400-capacity patch and now introducing a small
competition between all individua|see Eqs(16) and(17)]. amount of interspecific competitiofFig. 5 we again find
The patch is taken to be very large with a capacity of 400that the largeN corrections fail to capture the growing fluc-
individuals. We find satisfactory agreement between simulatuations in the system. We conclude from this and other
simulations that mean-field theory and its Gaussian correc-

0.4 T r T tions can work well, but only for patches above a critical
¢ size. This critical size is itself strongly dependent on the
number of species, various growth parameters, and the pres-
0381 i ence or not of explicit interspecific competition.
0.36 | . 0.5 r T T
0.45 ]
034 F & mean-field theory | 04 i
0.35 mean-field theory |
0.32 - simulation ] 03 ]
0.25 ]
0.3 L L L 0.2 ]
0 50 100 150 t 200
0.15 [ . . .
simulation
0.005 T T T T T T T T T 01 N
VA 0.05 .
00045 I % 50 100 750 200
large - N theory . t
0.004 b simulation | A 0.05 T Y T T T T T v
0.045 .
large - N theo: i
0.0035 H . 0.04 g i
0.035 .
0.003 - 0.08 T
0.025 J
0.0025 ) ! ! ) \ ! ! 1 ) 0.02 [ 7
0 20 40 60 80 100 120 140 160 180 {200 0015 F simulation i
FIG. 1. A comparison of theory to simulation for a single patch 0.01 1 ]
containing a single species. The upper panel shows the time evolu 0.005 | s
tion of the population density(t)=(n)/N, wheren is the number 0 ) \ ) .
of individuals andN is the size of the patch. The lower panel shows 0 20 40 60 80 100 120 140 160 180 {200

the time evolution of the variance,(t)=((n?)—(n)®/N?, of the

population. The subscripA refers to the fact that the individuals FIG. 2. The same as Fig. 1 but with the patch size reduced to 10.
belong to specieé. In this case the patch size has the relatively In this case the mean population density falls to zero due to fluc-
large value of 100 and we see that theory and simulation are in gootiation induced extinctions. The true variance first exceeds the large
agreement. See Table | for specific parameter values used in Figs.NLprediction and then falls steeply below due to the growing num-

and 2. ber of realizations which have become extinct.
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0~22 ) T T T T T T T L] 0-22 L] T L] L] T T L] T L]
¢’Wo.215 g 0.215 .
simulation (B’s) ¢ \V
. *T 021 . . ) .
0.21 - simulation (B’s)
0.205 .
0.205 . mean-field theory
0.2 |} X
0.2 B\
0.195
0.195 019 |
019 I simulation (A’s) y 0.185 - simulation (A’s)
0.185 i 1 1 [ 1 1 1 1 1 0-18 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450t 500 0 50 100 150 200 250 300 350 400 450t 500
0.0024 T T T T T T T T T V0-003 T T T T T T T T T
A
VA 0.007 |
0.0022 . . .
simulation 0.006 - simulation
0.005 | i
0.002 | i
0.004 | i
0.0018 - t 0.003 large-N theo 1
' large - N theory U & Ty
0.002 i
0.0016 |- i
0.001 .
1 1 1 1 1 1 1 1 1
0.0014 1 1 ! ! ! 1 1 ! 1 0
O 50 100 150 200 250 300 350 400 450 {500 0 50 100 150 200 250 300 350 400 450 {500

FIG. 3. Comparison of theory to simulation for a patch contain-  FIG. 4. The same as Fig. 3 but with a patch size of 200. Note
ing two speciesA and B. Initially each species has a density of that although the mean-field theory still works fairly well, the large-
one-quarter of the total patch capacity. The upper panel shows thd Prediction for the variance is very poor. Even for such a large
time evolution of the densities a% and B [#(t) and (t), respec- patch, the fluctuations are increasing steadily with time.
tively], while the lower panel shows the time evolution of the vari-

ance ofA compared with the largstheory. In this case tha& and gration, depend on the occupancy of nearest-neighbor sites.

R ) ) . . In both versions of the model, the death rate is constant.
B individuals have identical birth, death, and competition param- It is clear that many other variants are possible. In gen-
eters, and the interspecific competition is set to zero. The patch sizgral the first model v%ill be more applicagle to Si;[uati(g)ns

has the large value of 400. See Table Il for specific parameter Vabvhere individuals move on length scales which are much

ues used in Figs. 3-5. larger than the communities they live in and the second
model more applicable when all these processes occur on
V. SPATIAL MODELS scales which are of the same order. However, we will see that

We have already discussed the spatial versions of thih the exploration of the nature of the mean-field limit and
model in Sec. II. In one version of the model. the area undef'e importance of stochastic effects, which is what interests
consideration is divided into a large number of patches, eacﬁfe'T}g‘(;stvﬁ)lgpseéégensseﬁéﬁ%ﬁnfgﬁzvel?geaSZ?ﬁgn;zg;ﬁ:eéSm
containing a small number of individuals, which are ther‘was carried through for the nonspatial case: describing the

|dent|f|||ed with the |3|te_s of a regu_lgr ton;dlmelnsmrkl)al Iattlcestochastic process which defines the model, obtaining the
(usually a square lattige Competition takes place between ,oan fie|q limit, and finally comparing the mean-field equa-

individuals of a particular patch, and the birth rate is simi-45s with simulations of the full model. Much of the math-
larly only dependent on the population density of the parengmatical detail will be relegated to Appendix B; unfortu-
tal patch, but individuals are allowed to migrate to nearestpately, while many of the ideas are simple generalizations of
neighbor patches, if space is availaipteat is, if an empty  those introduced earlier, the mathematical notation becomes
spaceE exists at the neighboring sjteln terms of this pic-  (of necessity rather complex and detracts from the points
ture, the lattice consists of an array of patches, which interagihich we wish to emphasize.

through migration of individuals from one patch to a nearest- The simplest spatial process to describe is that of a single
neighbor patch. In the other version of the model introducedpecies in the first version of the model. The processes in this
in Sec. Il, each patch contains only one individual; thus thecase may be broken down into three classes.

sites of the lattice represent individuals rather than patches. (i) For a fractiong; of the events we randomly pick a site

In this case competition and birth processes, as well as mi-and then randomly draw two individuals from within the
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0.26 O D) | e modifications that are required are thatmlshould be writ-
LAY 0za b ‘W ten asn; to denote the number &'s in the patch at sité, u
- mean-field theory (A’s) should be replaced by, (1-u) by (1-0;-0,), and all
0.22 T terms multiplied byQ) ™, whereQ is the number of sites in
02l | the lattice. We assume that the number of individuals in each
\ patch is the same for all sites and is denoted\bif the sites
0.18 5\ 1 i andj have already been chosen, the probabilities for the
Y i processetsii) are
’ e mean-field theory (B’s)
e b T 5 . . n (N-n
0.14 v, probability of pickingAE; = qz—'(—ﬁ,
0.12 | simulation (B’s) "“”\- NN
o1 0 5Io 1cl>o 1;0 2(;0 2;0 3cl>o 3;)0 4(IJO 4éo t 500 . L n (N-n)
probability of pickingEA; =g, ——. (36)
0-0045 L) T T T T T T T T N N
Va-VB 0.004 | Gioutation (Bs)  simulation (A%S) g ;%}g"ﬁ The transition propabilities, mastgr equation, anq the deri—
0,005 N L . A vation of the population-level equation corresponding to this
it | :,u,""“m*w‘*f ’ model, are discussed in Appendix B. The lattice version of
0.003 [ \"h,»;’*"“"-v\,@’ o\ this latter equation is given by E¢B8). On taking the con-
0.0025 | ;WW#M i tinuum limit, defined by Eq(B9), it becomes
SN Y ¥ A
0.002 v 2 . b, ~ -~
— =MV¢+2bp(1l - ¢) T~ dé, (37)
0.0015 large-N theory (A’s) 1 or
0.001 large-N theory (B’s) 7 where ¢(x, 7) is the continuum version ofn;(7))/N in the
0.0005 T limit N— < and wherer is a rescaled time. This equation is
A T TR T SR S S S— exactly the resul(8) obtained in the nonspatial case, but with

0 80 100 150 200 250 300 350 400 450 500  the gddition of aV2¢ drift term. We can write Eq(37) in a
more standard form by defining a diffusion constdyy

FIG. 5. A similar scenario to Fig. 3, with the addition of weak = and making the identificatio(L0). This gives

interspecific interactiongone-fifth of the strength of the intraspe-
cific interactions, withA outcompetingB). Here, the patch size is N

400, and the densities are fairly well approximated by mean-field —= =DAV2Np+ Na(r —aN,), (398
theory, although we see a slow decline in Bigopulation. How- ar
ever, the fluctuations are again increasing with time and are not well

- : here, as beford\,=Nd.
described by the largi-theory for large times. w e LA . .
Y g y g The discussion of the second version of the spatial model

patch at that site. If twd individuals are drawn, they are follows similar lines. Now there is only one individual per
simply replaced; otherwise, the following interactions maysite, and thereforg; can only take on only two values: 0 and

occur[cf. Eq. ()] 1. In addition, birth and competition processes, as well as
c b migration, depend on the occupancy of nearest-neighbor
AA—AE;, AE—AA. (33 sites. Therefore there are only two classes of processes.

(i) For a fractionu of the events we randomly pick a site
i and then randomly pick another sitewhich is a nearest
neighbor ofi. If these sites are both’s, no action is taken;
otherwise, migration with a rate constamtmay occur ac-
cording to Eq.(34) or birth and competition may take place
with rate constantd andc/2, respectively:

(i) For a fractiong, of the events we randomly pick a site
i and then randomly pick another sifewhich is a nearest
neighbor ofi. One individual is drawn from the patch &t
and another from the patch ptlf these two individuals are
of the same typd&two A’'s or two E’s), no action is taken;
otherwise, migration with a rate constantmay occur:

m m b b o2 o2
(i) For a fraction 1-6,-q, of the events we randomly (39

pick a sitei and then randomly draw a individual from within
the patch at that site. If aa individual is drawn, no action is
taken; otherwise, death may occur at a constantdate

The factor of 1/2 has been introduced into the rate constant
for competition in order be consistent with the nonspatial
§ case and the first version of the spatial case.
AE (35) (i) For a fraction 1 of the events we randomly pick a
o sitei. If the site contains ai individual, no action is taken.
The probabilities of choosing these various processes are idtherwise, death may occur at a constant cagéven by Eq.
the case ofi) and(iii) simply modifications of Eqg2). The  (35).
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Since there is only one individual per each site, the prob- m m m my
abilities of pickingAE; or E/A; are simply Eq(36) with N AE—EA;, EA—AE;, BE,—EB;, EB;—BE;.
=1 andq, replaced byu. Similarly, the probability of pick- (41)
ing A is as in the first version, but again witt=1 and with _
(1-q,-0y) replaced by(1-pu). The only new feature is _ (iii) l_:o_r a fraction 1-,-q, of the events we randomly
pick a sitei and then randomly draw a individual from within
probability of pickingA/A; = unin;. (40)  the patch at that site. If a8 individual is drawn, no action is

. . ken; otherwi h m r nstan :
Just as before, we have assumed that the Bitesl | were taken; otherwise, death may occur at constant rafes d,

already chosen, so that the above probabilities only represent dg da

the choices of types of individuals at these chosen siies A—E;, B—FE. (42)
patcheg and also the choice of the number of individuals in
an event(one or twg. In the first model, we denoted the
number of sites in the lattice . This was independent of
N, the number of individuals in a patch. It was this latter
guantity that we allowed to become infinitely large, in order
to deduce the population-level description. In this secon%
version, there is only one individual per site, and so it is thet
number of lattice siteénow denoted by) which we take to
be infinitely large. More details of this approach are given in
Appendix B, where it is shown that, in the largelimit, the
population-level description is again given by E§7) —
albeit with slightly different definitions of the parameters.

The probabilities of choosing these various processes are in
the case of(i) and (iii) simply modifications of(12). The
modifications that are required are exactly those we de-
scribed in the similar version of the one species casenthe
ndm’s should be written ag, andm, respectivelyu should

e replaced by, (1-u) by (1-g;,—0,), and all terms mul-
iplied by Q1. The migration ofA’s andB’s are independent

of each other and so are described in exactly the same way as
for single species. Details are given in Appendix B where it
is shown that, after the continuum limit has been taken, the
equations for

This is not a surprise; we would expect there to be a large (D) _(m(D)
number of IBM’s which differ in detail, but which have the ¢(x,7) = lim =5~ and y(x,7) = lim == (43)
correct qualitative features, and give the same population- N N
level description. are

The partial differential equatio(38) is simply the ordi-

nary differential equation for the nonspatial c&8g but with ip . o 5 2 ~

a termV2N, added. So the corresponding spatial description g, MV + My (VY= YV7¢) + 20, 4(1 ~ = ¢)

is indeed obtained by using the simplest prescription. How- _

ever, this will not turn out to be the case when more than one —Tp? + Ly —dig (44)
species are present. It is this scenario which is of most inter-
est to us in this paper; we have described the one speci@é‘d

case in some detail, largely because it is technically simplerlw, _

and therefore the crucial steps in the argument clearer. The— = V2 + My(4V2¢h — V1)) + 20,001 — b — i) — Coptf?
many species case may differ at the population level, but the’”

the set_tmg up of thg IBM’s and the derivation of the " 2521¢¢—62¢. (45)
population-level equations are a straightforward generaliza-
tion of the one-species case. The second version of the two-species modelha®d, 1

Let us once again begin with the first version of the modelandm;=0, 1, with birth, competition, and migration depend-
where birth, competition, and death processes are purely Idng on nearest-neighbor occupancies. The two classes of pro-
cal (they take place in a single patch at a specific site on theesses are the following.
lattice) and only the process of migration involves nearest- (i) For a fractionu of the events we randomly pick a site
neighbor patches. All of the transitions are variants of thosé and then randomly pick another sitewhich is a nearest
in models previously considered in this paper. Specificallyneighbor ofi. If these sites are both’s, no action is taken;
the three classes of processes are the following. otherwise, migration may occur according to E@kl), birth

(i) For a fractiong, of the events we randomly pick a site according to
i and then randomly draw two individuals from within the by by b, b,
patch at that site. If twde individuals are drawn, they are AE —AA, EA—AA, BE —BB;, EB —BB;
simply replaced; otherwise, the interactions are given by the T e

6 two individual interactions in Eqg11) with a site index (46)
add__ed on to thé\_, B, andE individuals. _ _ and competition according to

(i) For a fractiong, of the events we randomly pick a site
i and then randomly pick another sitewhich is a nearest ‘11 €12 C21 €22
neighbor ofi. One individual is drawn from the patch &t AA—AE;, BA—BE;, AB—AE; BB—BE,,
and another from the patch ptlf neither of these two indi-
viduals areE's (no spacg or both areE's (no migration ‘1 €12 Ca1 €22
possiblg, then no action is taken; otherwise, migration with AA— EA;, AB—EBj, BA—EA; BB—EB.
rate constantsn, or m, may occur: (47
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TABLE lll. Parameter values for Figs. 6-9.

Samples L N ] (oF} by b, dy d, C11 Co2 C12 C21 my my
Fig. 6 250 100 100 1/3 1/3 0.5 0.5 0.7 0.5 0.5 0.5 0.0 0.5 1.0 1.0
Fig. 7 1000 100 10 1/3 1/3 0.5 0.5 0.7 0.5 0.5 0.5 0.0 0.5 1.0 1.0
Fig. 8 500 100 50 1/3 1/3 0.5 0.5 0.5 0.5 0.5 0.2 0.0 0.5 1.0 1.0
Fig. 9 500 100 10 1/3 1/3 0.5 0.5 0.5 0.5 0.5 0.2 0.0 0.5 1.0 1.0
(i) For a fraction 1 of the events we randomly pick a VI. SIMULATIONS OF SPATIAL MODELS
sitei. If.the site contains ai |nd|V|du§1I, no action is taken. The simulations of spatial competition was performed in a
Otherwise, death may occur according to Ed). directly analogous fashion to the nonspatial model described

~ The probabilities of picking two individuals, one of which i, 5ec v We confined ourselves to one spatial dimension
is anE, are the same as in the first version of the model, buty, gimplicity. In addition, we only simulated the version of
with N=1 andg, replaced byu. The probabilities of picking e model where a patch of sitéwas placed at each site of
a single individual are similarly related to those found in theyo one-dimensional lattice of size Within each patch the
first version. The probabilities associated with pick®gy is | ;5a| dynamics of competition is played out. Furthermore, in
given by Eq.(40), BiB; by umm;, andAB; by unm. In o501 small time step there is a small probability of dispersal
Appendix B we describe how, in the limit where the number ¢ i qiyiduals from a given patch to the two neighboring
of Ia_ttlce sites,N, becomes. |nf|n|.tely large, the continuum patches, just as encoded in the master equation. We generally
versmqs of(n;) and(my) agaln.satlsfy Eqs(.44),and(45). _ started with initial conditions in which speciésandB were

So, in summary, both versions of the IBM's we have dis-gpatially separated and then proceed to intermix and compete
cussed in this paper give rise to the same population-leve{s individuals diffuse from patch to patch. The mean-field
equations. This is true whether there is only a single speciesquationg49) and(50) are again integrated forwards in time

in the system or whether two species are present. In thgsing second-order Runge-Kutta methods. An exhaustive list
one-species case this equation is given in standard form by parameter values is given in Table Il

Eq. (38). To write the two-species equatio®4) and(45) in In a spatial system such as this, extinction is much less of
standard form we make the identificatich) and introduce 4 problem since should a patch become empty it will soon be
diffusion constants restocked from neighboring patches. Despite the weakened
iy My effect of discreteness in small patches, we still find that the

Dp=y, Dg=y, Dlzﬁ, D,= N (48)  behavior of the spatial systems differs significantly from

mean-field theory when patch sizes are below a critical value
This gives (of approximate value 50 for the results presented hére
before, we have chosen to present two typical scenarios.
Na _ 2 2 2 In Fig. 6 we show the early- and late-time behavior for a
o7 - DAV Na* Da(NaVNg = NgV N + Na(rs —8uNa - o o5 Wwhich initially theA individuals occupy the left
half of the system and thB individuals occupy the right

~a1Ng), (49) half. In the ensuing dynamics, thfeandB individuals have
identical mobilities, growth rates, and intraspecific competi-
Neg = DgV2Ng + Do(NgV2N, - NAV2NG) tion parameters. However, thee individuals are disadvgn—
ar taged by having a slightly higher death rate thanBlse This

(50) is balanced by giving thé\'s an interspecific competitive
advantage over th&'s. On varying the strengths of these
whereNay=N¢ and Ng=N¢. Unlike Eq.(38), these areot  balancing forces it is possible to obtain invasionAd from
the standard equations found in population biology textdeft to right or invasion ofB’s from right to left. We have
books. chosen an example of the latter. It is seen that mean-field
The additional terms which appear in Eg49) and(50),  theory does an excellent job in predicting the long-time dy-
but not in the standard equations, are antisymmetribljn  namics of the system. In this figure the patch size is rather
andNg and involve derivatives and so do not appear in nondarge with a capacity of 100.
spatial models or spatial models with only one species. Their In Fig. 7 we repeat the exact simulation as before but
structure is dictated by the way that migration is modeled asimply reduce the patch size from 100 to 10. In this case the
the individual level. Since their occurrence is generic, theyA individuals are severely affected by discrete extinction
will also appear in spatial models derived from IBM’s having events and their density is in poor agreement with mean-field
three or more species. Although these terms have not to odheory. Interestingly, the densBrindividuals are fairly well
knowledge been discussed in the context of ecological moddescribed by mean-field theory throughout the range.
els, they are well-known in the context of interspecies diffu- We also studied an alternative balance of effects as fol-
sion [43,44 in physics, and they also appear in quantumlows. In Fig. 8 we show a situation in which the death rates
field theory[45]. for the two species are the same, but now we reduce the

+Np(r2 = aNa — azNp),
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FIG. 6. Comparison of mean-field theotgmooth lines and FIG. 7. The same as Fig. 6 but here the patch size is reduced
simulation(erratic lines for two speciesA andB in a spatial setting ~ rom 100 to the relatively small value of 10. Note that mean-field
in which initially the A individuals occupy the left half of the sys- theory is still in fairly good agreement with the high densiy
tem and theB individuals the right half. The uppetower) panel ~ Population, but shows significant deviation for the stochastically
shows earlylate) times. Here, the patch size has the relatively largeWeakenedA population.
value of 100.A outcompete® (meaning that,;>c,,), but has a
higher death rate, and so is invadedBySee Table Il for specific
parameter values used in Figs. 6-9.

field) equations or individual-based algorithms designed for
implementation on a computer. The extreme difference in
these two approaches has led to difficulties in directly com-
paring results. Disparities may be due to fundamental defi-
amount of intraspecific competition among Béndividuals.  cjencies in one or both of the techniques or else be attribut-
Again, theA's have an interspecific competitive advantageaple to “renormalization” of various parameters. In this paper
over theB's. In this case théA’'s invade theB’s. Here the we have attempted to bndge the gap between mean-field
patch size has the intermediate value of 50 individuals. Wenodels and individual-based models. We have described a
see that mean-field theory performs relatively well. very general framework with which to formulate population
On redUCing the patCh size for this pal’ticular ScenariOdynamiCS using the |anguage of “patches" to create a con-
from 50 to 10(Fig. 9) we see the failure of mean-field theory crete picture of the stochastic process. The size of the patch
(which predicts invasion from left to rightThe enhanced s the central parameter. Mean-field theory is recovered on
fluctuations in the smaller patches lead to a quasidynamicabking the patch size to infinity, while discrete stochastic ef-
balance in the interfacial region betweAls andB's. In this  fects become prominent for small patches containing a few
region theA's are beset by fluctuation-induced extinction jndividuals. Again, we emphasize that in our usage “mean
events and this makes them too weak to invadeBthen the  fie|d” refers to the approximation in which cross correlations
usual manner of a Fisher wave. Instead, over longer scalasetween stochastic variables is neglected, but still allows for
than shown in the figure, the denSlty@’B SlOle permeates an exp||c|t|y Spatia| description_
the B-rich region in a “creeping” motion. From a biological perspective, a patch can be thought of
as a(small) spatial region within which interactions between
individuals occur. It is assumed that movement within this
scale is not biologically significant. In our spatial patch
There are many ways to formulate population dynamicsmodel, movement of an individual between patches is bio-
Popular descriptions tend to be either determinigti@an-  logically significant since that individual will now have in-

VIl. CONCLUSIONS
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FIG. 8. A similar scenario to Fig. 6, but now and B have FIG. 9. The same as Fig. 8 except that the patch size is reduced

identical death rates and y& has less intraspecific competition from 50 to 10. Note that the invasion Afinto B is severely slowed
than A. In this exampleA invadesB. The patch size here has the due to the stochastic weakening Af
relatively large value of 50.

els. In one, at each spatial site there is a “micropatch” which
region. For systems in which interactiorigot involving may hold at most one individual. Movement and c_ompt_etitic_m
movemeniper s§ occur over larger scales, it will be neces- ©CCUrs between pat_ches. In the oth.e.r, each Iattlc;e _sne is a
sary to include additional inter-patch processes. patch of tunable size and competition occurs inside the
We have studied both nonspatial and spatial models. Theatch. Movement, of course, is still between patches. A care-
nonspatia| case Corresponds to a Sing|e patch Containing ful formulation shows that each model has the same Spatial
number of individuals of both species. We have derived thénean-field limit. Of particular interest is the emergence of
corresponding mean-field theory and its first-order correchovel nonlinear diffusion terms, which are only present when
tions (i.e., Gaussian fluctuations about the deterministic pretwo or more species are competing for space. These terms
dictions. Generally, as long as the patch size is above are not written down in the standard “intuitively derived”
critical value (which tends to be of the order of 100 in the continuum equations of spatial competition models. They are
examples shown herand the birth and death rates are suchespecially important in spatial regions in which the density
that a sizable quasi-steady-state population is possible, theri one species is high, while the density of the other is
the mean-field theory and its corrections give a satisfactorgtrongly spatially varying. This would occur, for instance, in
description of the system. For smaller patches or for situaa region of space containing a population boundary for one
tions in which there is a non-negligible probability of extinc- speciegdue to some environmental barpidyut not for the
tion, it is crucial to account for the discrete nature of theother. We intend to investigate such effects in more detail in
individuals. The population dynamics is inherently stochastia follow-up paper.
and one must dispense with a deterministic description. By In our investigation of spatial mean-field models, we have
tuning the patch size we have seen that the transition from gound them to be more robust than in the nonspatial case.
mean-field like to a stochastic regime is rather sharp andhis is primarily due to the weakening of local extinction via
dependent on the existence of interspecific interactiams continual rescue effects from neighboring patches. It is still
this case, competition the case, however, that as the patch size is decreased, the
The same general picture holds for the spatially explicitquantitative precision of mean-field models suffers and with
models. We have discussed two types of spatial patch modsmaller patches stillwe have in mind patches of size 10 or

teractions with a new set of individuals in a neighboring
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lesg new stochastically driven qualitative features emergeto next order. This is a multivariate Fokker-Planck equation,
An example of this was give(Fig. 9) in which an invasion but it is again linear, and so its solution is(multivariate
process(in mean-field theorywas halted due to stochastic Gaussian. Ther and 8 functions are given by
weakening of the leading edge of the invading population - ~
density. ay o(d 1)) = 201p(1 = p = h) = {€11¢° + dyp + ZC100001},

In conclusion, we have presented a simple framework
with which to discuss fluctuation effects in population biol- — o ~
ogy. This framework is based on the use of patch models as B d.9) = 20041 = ¢~ ¥) (Caat+ dop + gy,
concrete realizations of stochastic processes. The transition - ~
from mean-field behavior to fluctuation-dominated stochastic  @2,o(¢, %) = 201(1 = ¢ = ) + {€116° + dyp + 21,0043,
dynamics is effected by reducing the size of the patch. The
critical patch size separating these two regimes depends sen- Bo o ) = 252!#(1 —p— i)+ {522¢;+32¢,+ TE01 b}
sitively on the biological interactions present. This has been ’
an intensively theoretical work. In future work we intend to (A4)

apply the patch model to a variety of multispecies population  sjnce the solution to the Fokker-Planck equation is a

dynamics to address the importance of fluctuations and vasaussian, we need once again only find the first two mo-
lidity of mean-field theories in a quantitative and controlled ments. They satisfy

manner. d
d d
d—t<§>t={+ j;°}<§>t+{+ “1*°}<n>t. (AS)
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=2+ 0
This appendix contains the details of the lafg@nalysis - ¢ |

for the two species case which was described in Sec. Il in (A7)
the one-species case.

APPENDIX A: LARGE- N ANALYSIS

&)+ 2[+ ‘9;’;0]@77» +az

It is once again useful to write the master equatipf) in d [ Jpa, | P,
the form =2 *T;O (Emp+ 2| + (9;0 (P)+ Baon
dP(n,m,t A8
EOID ~ (6.~ [T - i, mP(n,m )] (A9
_ d da da aB
+ (&= D[T(n+ 1,mln,mP(n,m,)] d—t<§7]>t = {+ &;O]@m + [+ a;l’o](nz% + [+ T;’O]@Z%
+(€,~ D[T(n,m=-1|n,mP(n,m,1)]
v+ Prolig (A9)
+(& = DIT(,m+ 1n,mP(n,m,1)], P
(A1) We set the initial conditions on the macroscopic equations
where the step operato&are defined by their actions on by asking that
functions of n and m by S?lf(n,m,t):f(nil,m,t) and n Mo
gH(n,m,H=f(n,mx1,1). ¢(0)=NO, ¢(0)=W- (A10)
Writing n=Ne(t) +NY2¢ and m=Ny(t) +NY27, van Ka-
mpen’s method yields the macroscopic equations This implies £0)=0 and »(0)=0 and, by successive differ-
q d entiation of the macroscopic equations, that all derivatives of
d—(f = ay o P ), d_lf = Bro( ), (A2) (& and(n) att=0 are also zero. We therefore take
=0, =0, All
to leading order, and the linear Fokker-Planck equation & ( (A11)
for all t. Since the macroscopic equations with initial condi-
Jll _ {_ 07011'0} i(gﬂ) N [_ (9a1,0:| i(ﬂH) tions (A10) cannot be solved in closed form, neither can the
it I | ¢ ap | ok equations foK&), (1), or (€n.
[— —(wm}i@ ) {— g ”]i(n )
dp |dn ay | dn APPENDIX B: SPATIAL MODELS
. laz 052_13 . Eﬂz 0(92_21, (A3) In this appendix we give details of the transition prob-
2 2T 2070y abilities and the master equations for the spatial models dis-
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cussed in Sec. V of the main text. The results are frequentlyrary choice of the lattice site. In the case where the transition
fairly straightforward generalizations of those found for theprobabilities involve two neighboring patches, which is the

nonspatial model; however, there are some surprises in storgiocess described by Eq&4), the corresponding quantities
for example, the nontrivial spatial terms found in the meangre

field theory of the two-species model are only found by a
careful step-by-step derivation of the equations satisfied by
d({n;)/dt and d{m;)/dt.

We begin with the first version of the one-species model. T(.ni=1n+1 . nunj.) = @Q(N - n<),
The transition probabilities for the processes defined by Egs. ZON N
(33) and(35) are, by analogy with Eq.3),
Q1cn (nl 1)
TG..m=1..... .
( N | n; ) ONN-1 T _ gomn; (N n|)
(...ni+l,nj_1...|...ni,nj. )—EN N y
N (1-gi—gdn;
Q N’ (BZ)
T _2g;bnm (N-ny . . .
(om+lofm..)= 0 N N-1 (B1)  wherezis the coordination number of the lattice number

of nearest neighbors of any given $itend represents the
The only change is the addition of the facfor!, whereQ is  choice of the nearest neighbroncei has been chosen. The
the number of sites in the lattice, which represents the arbimaster equation for this process therefore reads

dP(n,t
(n) =2 2ATC.mn e+ =1 PG+ 10 -1 )+ TG L] = 1+ 1. )P - 1,0,
i jei
1.0+ 2 TG+ 1 PG +1. ) +T(C.ni...|...ni=1..)P(..ni=1... )}
i
—EE{T(...ni—l,nj+1...|...nl,n] JPC.mn )+ T+ -1 nyny PG . b))
1 Jel
—E{T(...ni—l...|...ni PG DTG+ PG L D) (B3)
1
[
Although this looks rather complicated, it is a straightfor- d/n n, 1/n

ward generalization of Eqg4). In an effort to keep it as
simple as possible, only the number of individuals at sites
where changes occuyr or j) have been explicitly shown on
the right-hand side of the equation. The notatjieni denotes
a sum over all sitegwhich are nearest neighborsiofOn the
left-hand side of the equation,denotes the number of indi-
viduals in the set of all patcheB=(n,...,n;,....n;,...).

To obtain the rate equation, we substitute Ep) into

)
)|

0)-4)
) o

UEREIRE

where we have used the explicit forr81) and (B2). The
symbol A denotes the lattice Laplaciafwith unit lattice

N

spacing:
d{ny) dP(n, t)

ekl e (B4)

t w dt
. y E(f (B7)

Defining new quantities Zjci
~__®C b= a.b d= (1-9,-gxd _ _gm ' . o
c= N-1' N-1’ N » M= N’ The corresponding population-level description can be ob-
(B5) tained from Eq(B6) by letting N— < which eliminates the

as in Eq.(6), and introducing a rescaled time=t/(}, the
following equation is found:

term of orde™N™! and allows us to replac(emf} by (n,)?, as in
Sec. Il. This leads to an equation fg=(n;)/N which is
given by
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de¢y ~ ~ ~ d N R 1

O ug -t + By(L-4)-dh.  (B9) 9y =macny - & =3 (mp

dT d7' ZjEi
The final step that has to be taken in order to make contact + 25(1 -(n)) }2 ()¢ - a(”i)- (B13)
with the equations used in the traditional approach is to Zjei

move from the lattice to the continuum. To do this we need

to introduce a lattice spacing efand take it to zero so that Denoting (n) as ¢, the terms in curly brackets become

5 _ ¢(x,t) in the continuum limit, and so once again we recover
lim => (_¢J_¢') — V2(x), (B9) Eq. (37), given in the main text.
=0 Zjgi € The description of the IBM's when two species are
present parallels that for one species. This similarity also

where the lattice siteis now replaced by the position vector holds for the initial stages of the derivation of the
x. In addition, the migration parameter has to be redefined, ifopulation-based equations, and so our description will be
order to absorb a factor af. The resulting equation is Eq. brief for both of these aspects.
(37), given in the main text. For the first version of the model, the transition probabili-
The derivation of the population-level description for the ties for birth, competition, and death processes are generali-
second version of the one-species model follows similagations of Eqs(13) [the modifications are exactly the same
lines. The particular differences between this version and thas those made on Eqe3) to give Egs.(B1)]. Those for
one discussed above are described in the main text and, spaigration of A's are Eqs.(B2), but with m replaced bym,
cifically, by Egs.(39) and (40). The transition probabilites and N-n; replaced byN-n;—m; (or N-n; replaced byN
for this second version are —n;—m). For migration ofB’s, they have the same form, but
with m; replaced bym, and with the substitutiong; < m
c andn; < m;. The master equation fd?(i,m,t) is as before,
T(...ni—1,n; . L) = ’u—ninj, but now including the greater number of allowed processes.

zN There are two rate equations, found by substituting the mas-
ter equations into
TC..m+1n... | =—=(1-nmn;,
d{ny) dP(n,mt) dimy) dP(n,m,t)
B I s
U W t U W t
m
TC.m+1n-1.. ]...mn ...):’(ZL—N(l—ni)nj, (B14)

(B10) Defining the new quantities

with similar equations with and | interchanged, and

~ ~ -0~ gp)d
(1-wd = _WCep 7 _ UiPe ~ _(1-G1~G)ds
= Tﬂni. (Bll) Cllﬁ N _ 1’ ba N _ 1! da N 1]

TC.n=1...]...n...)

Note that the transition probabilities in Eq&10) are zero

unlessn; andn; are both equal to Icompetition or n;=0

andn;=1 (birth and migratiop, as required. The factozN A o= doMe t (B15)
andN account for the choices of sitesndj and replace() “ N Q

and (), respectively, in the first version.

The master equation resembles E§3), except that the
single-site processes are now restricted to the death proc
and the two-site processes are more extensive, involvin
birth, competition, and migration. Defining

a8 in Egs.(B5), we now letN— o and replace averages of
Broducts by products of averages to obtain the equations

ub (1-pwd do, 2m,

. MC ~ ~ .MM t . ~
= b= TN Mt TN o, =M+ 712 (it = dyth) =1l — Zeroth ¥
B12 ~ ~
(B12 +2b1i(1 = b = ) — dih (B16)
we find using Eq.(B4) and the decoupling approximation
(i =(mXn;), and
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d d . 2y
d_¢—m2A¢| "‘_2 (b = ¢ i) = Cooth? = Zoorthiy d_<ni>:m1A<ni>+£l { E<m]>}
T jei T z Jel
* 201~ = ) = Aot (B17) ~(m) { E<n>” —en<ni>{ E<nj>}
JEI Jel
- 26 s +20,(1 -

Here #=(n)/N and g=(m)/N. Writing ¢~ ¢ as Craly) zjei<mj> (L= {m)
i(h;— ) — i(dj— ¢) we obtain Eqs(44) and (45) in the 1
continuum limit. _<mi>){_2 (n,»)} _al<ni>, (B19)

For the second version of the two-species model, the tran- Zjci

sition probabilities are generalizations of the one-species

forms given by Eqs(B10) and (B11). Specifically, for the
competition process the teromn; becomesc;ynin; and, in

addition, there are transition probabilities which are propor""nd

tional to c;,n;m;, C;;min;, andc,mm;. For the birth process,

the factor(1-n;) is replaced by(1-n;—m) andbn; by b;n;

or b,m;. The same holds for migration, but with b, andb,

replaced bym, m;, and m,, respectively. Finally, for the

death processin, is replaced byd;n; or d,m;. The master

equation is straightforward, but tedious, to write down.
Defining the new quantities

N w3 b, - 1-wd, . m, t
Caﬁ:_é' ba:,u_! a ( M) ' a:M y T= 1)
N N N N N
(B18)

L) =i (m) + 22 {<m.>{ 2<nj>}
jei

- <ni>{§2 <mj>H c22<m.>{ 2 <mj>}
jei jei

E<n> +2b,(1 = ()

jEI

1 .
—<mi>>{;2 <mj>} - dy(m).
jei

= 2C,,(my)

(B20)

Defining(n;) and{m;) as ¢ and ¢, respectively, we recover
we find using the decoupling approximation — in which Egs. (44) and (45) in the continuum limit, up to slightly
averages of products of any two of the variablgsm} are  different definitions of the birth, competition, migration, and
replaced by the products of their averages—that death rates.
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