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We introduce a class of stochastic population models based on “patch dynamics.” The size of the patch may
be varied, and this allows one to quantify the departures of these stochastic models from various mean-field
theories, which are generally valid as the patch size becomes very large. These models may be used to
formulate a broad range of biological processes in both spatial and nonspatial contexts. Here, we concentrate
on two-species competition. We present both a mathematical analysis of the patch model, in which we derive
the precise form of the competition mean-field equations(and their first-order corrections in the nonspatial
case), and simulation results. These mean-field equations differ, in some important ways, from those which are
normally written down on phenomenological grounds. Our general conclusion is that mean-field theory is more
robust for spatial models than for a single isolated patch. This is due to the dilution of stochastic effects in a
spatial setting resulting from repeated rescue events mediated by interpatch diffusion. However, discrete effects
due to modest patch sizes lead to striking deviations from mean-field theory even in a spatial setting.
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I. INTRODUCTION

Traditional theoretical ecology, in which the time evolu-
tion of population densities is described by differential equa-
tions, has a long history[1–3]. For a single species the sim-
plest form of the governing equation is assumed to take the
form dN/dt=FsNdN, whereFsNd describes the growth of
the population. A common choice when modeling this
growth is to takeFsNd=rs1−N/Kd, wherer andK are two
constants. By analogy, when describing the interaction of
two species, it is natural to postulate that the populations of
the two species,N1 and N2, change according todN1/dt
= fsN1,N2d anddN2/dt=gsN1,N2d. The functionsf andg are
chosen according to whether the interactions are purely com-
petitive, predator-prey like, or include other effects such as
cooperation. We will refer to descriptions of this kind as
population based; they are arrived at without the need for a
detailed knowledge of the interaction between individuals
and rely instead on assuming that the terms which arise in
the governing equations represent the net effects of indi-
vidual interactions in some generic way. Equations of this
kind play such a central role in population biology, that many
subsequent elaborations of the theory have taken them as the
starting point: spatial variation is introduced by adding a drift
term ¹2Na sa=1,2d to the right-hand side of theath equa-
tion, and the models are sometimes interpreted as referring to
individuals by assuming that the functionsf and g also de-
scribe interactions at the level of the individual.

In the last decade or so, an alternative approach to that of
classical theoretical ecology described above has been devel-
oped. This involves abandoning the traditional population-
level description in favor of an individual-based description
in which explicit rules governing the interaction of individu-
als with each other and with the environment are given. The
popularity of these individual-based models(IBM’s ) is un-
doubtedly due to the continuing increase in the availability of

powerful computers, but they also have other attractive fea-
tures, such as the ability to directly model individual at-
tributes. At this point we should stress that we will assume
that the individuals of a given species in our models are
identical, and thus the term IBM should not be confused with
agent-based models which are often designed to study the
ecological effects of behavioral and physiological variation
among individuals. A better term might be individual-level
model (ILM ), but the term IBM has wide usage, and so we
will use it here. In this paper we will be concerned with
theoretical issues which relate to the connection between
models defined at the individual level and those at the popu-
lation level. Thus, the individuals in our models will be iden-
tical within a given species. The relation between
population-level and individual-level descriptions has been a
focus of discussion within the theoretical ecology commu-
nity for some time[4,5]. Some regard the nature of the
population-based models as obvious and either write them
down without comment or derive mean-field equations by
making an assumption of homogeneous mixing of the popu-
lations [6,7]. However, there is also some recognition that
the situation may be more complicated than this[8,9] and
that the transition to a partial differential equation required
for a spatial description, from the ordinary differential equa-
tion obtained by using mean-field theory, may not be as
simple as just adding the term¹2Na [10–12].

From a statistical physics perspective it is natural to ex-
pect that fluctuations may play an important role in these
systems and lead to important differences between micro-
scopic (IBM ) and macroscopic(population-level) descrip-
tions. A formal analysis of such issues has been presented for
simple birth and death processes[13] and annihilation reac-
tions [14] using the language of field theory and the renor-
malization group. Here, we take a different approach, using
van Kampen’s system size expansion, in order to probe the
connection between more complex IBM’s and mean-field
theories. This has some advantages; for instance, it is not
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necessary using this technique to first construct a corre-
sponding field theory and then extract the mean-field equa-
tions and the Gaussian fluctuations about them to model the
macroscopic behavior. There is also less of an emphasis of
the role of phase transitions, which are not usually of prime
interest in ecological models.

We would like to stress from the outset that our use of
“mean-field theory” or “mean-field model” is in the spirit of
statistical mechanics. By “mean field” we mean the neglect
of correlations between degrees of freedom, allowing one to
write the mean of the product of two stochastic variables as
the product of their means. Thus, a spatial model in which
statistical correlations are neglected is still a “mean-field
model” within this usage. This is in contrast to some papers
in population biology in which “mean-field” is reserved ex-
clusively to describe nonspatial models.

In this paper, the models which we study will be defined
only at the level of direct interaction among individuals and
in terms of local properties such as birth, death, and migra-
tion rates. The population-based properties of the model will
then be derived within a well-defined approximation scheme.
We will show that, beginning with reasonable models at the
individual level, the corresponding population-level models
are similar in structure to those that we would naively write
down, but have important differences. For instance, small-
scale diffusion may not simply translate into¹2Na terms and
the parameters defined at the individual-based level may not
map directly into their equivalents at the population level.

The individual interactions may be naturally introduced
using a “patch model.” From a biological perspective, a
patch can be thought of as a small spatial region within
which interactions between individuals occur. The patch is
assumed to be sufficiently small that there are no spatial
effects. In other words, there is complete mixing, and all
individuals have the same chance of potentially interacting
with each other. In the nonspatial version of the model this
simply amounts to stating that the probability of any indi-
vidual dying in unit time should be proportional to the den-
sity of individuals existing at that time, and for processes
which involve two individuals, the probability involved
should be that found when drawing two of these types of
individuals at random from a patch which contains all the
individuals in the system. Not all constituents of the patch
will correspond to individuals; some will correspond to
empty sites in the spatial version of the model. A more de-
tailed specification is given in Sec. II. Patch models such as
this have been used in many areas of science[15] and often
go under the name of “urn models.” Two early examples
were the Ehrenfest urn, which was used to discuss the foun-
dations of statistical mechanics, and the Pólya urn, which
was originally devised to describe contagious diseases[16].
In both cases the problem of interest can be mapped onto an
urn which contains balls of different colors—say, black and
white—which are drawn randomly one at a time. In the case
of the Ehrenfest urn, each time a ball is drawn it is replaced
by one of the other color. For the Pólya urn, the chosen ball
is replaced together with an extra ball of the same color. The
relation to the modeling of contagious diseases should be
clear: each occurrence of a particular color increases the
probability of further occurrences. Since the introduction of

these particular urn models, the notion has been generalized
considerably. For example, both models fall into the class of
urn models which have the properties that if a white ball is
drawn, it is replaced together witha white balls andb black
ones, and if a black ball is drawn, it is replaced together with
c white balls andd black ones. A further generalization is to
considerr different colors, with the drawn ball of colori
being replaced together withaij balls of color j si , j
=1, . . . ,rd [17]. It is also clear that two, or more, balls can be
drawn together or, as we will have occasion to assume in this
paper, two balls could be drawn for a fractionm of the time
and one ball for a fractions1−md of the time.

Urn models are concrete realizations of stochastic pro-
cesses with probabilities which depend only on the instanta-
neous state of the system—that is, Markov processes. They
have proved useful in several areas of the biological sci-
ences. Perhaps the most obvious application is in population
genetics, implicitly in the early work of Fisher and Wright
[18] and explicitly in later developments[19–25]. However,
they have also been used in a number of other areas such as
the study of radioactive particles in animals[26–28], the
study of patterns of vegetation[29], models of interaction
between species[30–32], and metapopulation models[33].
The last three applications are closest to the ones discussed
in this paper, but differ in that the balls represent forest or
grassland in the first case, species in the second case and
colonies in the third case, rather than individuals as in the
present paper.

Since urn, or patch, models are representations of Markov
processes, the continuous time version of their dynamics
may be described using a master equation. The use of master
equations is familiar to physicists, but they are still not
widely appreciated in the biological community(but see
above references and Refs.[34–36], for instance). Once the
process has been formulated in this way, we may use stan-
dard techniques to take the mean-field limit and so obtain the
corresponding population-based equation. Much of this pa-
per will be taken up with a comparison of results obtained
from the full model(averaged over many realizations) and
the mean-field results. Our approach will be particularly use-
ful in distinguishing situations where mean-field theory is a
good approximation to the full theory and situations where it
is not. We will mainly concentrate on competitive interac-
tions in systems with one or two species, but our method
applies equally well to predator-prey or epidemic models and
multispecies communities.

The outline of the paper is as follows. We first motivate
and define the rules for the nonspatial patch models in Sec.
II, starting with a single-species model and then generalizing
to a two-species competition model. The full stochastic na-
ture of the models is described using master equations, and
the associated mean-field models are derived. In the follow-
ing section we go one step beyond mean-field theory and
derive the dynamics of the Gaussian fluctuations about the
mean-field solutions. This is equivalent to not only following
the mean position of the probability distributions over time,
but also describing their broadening. In Sec. IV we present
numerical simulations of the fully stochastic nonspatial mod-
els, for both one and two species. We compare our results to
numerical integration of both the mean-field equations and
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the improved models with Gaussian fluctuations included.
We find that the agreement between mean-field theory and
simulations is excellent for larger patches, as is to be ex-
pected, but that the breakdown of mean-field theory occurs
precipitously below critical patch sizes which are still fairly
large. We proceed in Sec. V to generalize our patch model
formulation to spatially explicit population dynamics of two
species competition. From the master equation we derive the
spatial mean-field equations. We note important differences
between these equations and “intuitive” versions which have
appeared in the literature. These mean-field equations are
tested against simulations of the fully stochastic models in
Sec. VI. In this introductory paper we are unable to give a
comprehensive analysis of the two species model. Instead we
present two interesting scenarios and note the successes and
failures of the mean-field equations, which are strongly de-
pendent on patch size and the presence or absence of inter-
specific competition. We end the paper with our conclusions
along with a discussion of future directions. Two appendixes
contain technical details. The first concerns the system size
expansion for two species and the second the formalism for
spatial systems.

II. BASIC FORMALISM AND THE NONSPATIAL MODEL

In this section we will introduce the essential features of
our approach by formulating an individual based stochastic
model of competition between two species. We will then
show that in the limit of large population sizes, the time
evolution of this model reduces to the well known differen-
tial equations describing the population growth of two com-
peting species.

The two species will be labeledA andB. To motivate the
approach we will adopt, suppose that we model the interac-
tions ofA andB individuals in an area of land by subdividing
it into N plots of equal area. The plot sizes are chosen so that
each one either contains oneA individual, or oneB indi-
vidual, or neither anA nor a B. We will call the latter an
empty site and label it byE. In a spatial version of the model
we would give rules for howA, B, and E interact, specify
birth and death rates forA andB, and allow them to move to
nearest-neighbor sites. In later sections we will describe such
a model, but we will begin, for simplicity, by ignoring the
spatial aspects. We do this by imagining that we pluck all the
A, B, andE from their particular sites and put them into a
single large patch, with no record of their original spatial
locations. Any memory of which individuals were nearest
neighbors is now lost, and any two individuals picked at
random are just as likely to interact as any other two similar
individuals picked at random. In fact the time evolution of
the spatial model which would read, pick a site at random,
then pick a nearest neighbor of this site and implement the
interaction rule for the two chosen individuals, now reads,
pick two individuals from the patch and implement the reac-
tion rule for the two chosen individuals.

There are other, slightly different, ways of arriving at the
above picture. For example, instead of dividing up the area
of land into sites containing either one individual or no indi-
viduals, it could be divided up into a number of smaller

patches, each of which contains several individuals. In this
way of thinking, each small patch contains severalA, B, and
E types, which interact with each other in the same way as
for the large patch described above and which move by ex-
change interactions with neighboring patches. While this de-
fines a slightly different spatial model, the nonspatial version
of the model is the same: all the individuals from the various
patches are collected together into a single large patch.
Moreover, even the spatial version of the model is in some
sense a “coarse-grained” version of the original model—
several sites in that model when viewed on a coarser scale
can be reinterpreted as a site in the latter model. These fea-
tures will be explored in more detail when we discuss the
spatial aspects of these models in Sec. V. For the remainder
of this section we will consider only the nonspatial model.

Suppose to begin with we consider the simpler case of a
single species—that is, a patch containing onlyA andE in-
dividuals. We shall postulate that the population dynamics of
the system can be essentially described by three processes:
birth, death, and competition. The first and third processes
will involve two individuals,AE→AA (birth) andAA→AE
(competition), but the second process involves only one in-
dividual, A→E (death). These seem natural choices since,
while death can be modeled as constant, independent of the
density of individuals, the reduction in the numbers ofA due
to competition and the growth in numbers ofA due to births
will be density dependent. In other words, there will be a
tendency forAA to go toAE because of overcrowding, and
for AE to go toAA due to the presence of resources(space)
to sustain a new individual.

The time evolution of the model can now be described. At
each time step we sample the patch. On a fractionm of these
occasions we randomly choose two individuals and allow
them to interact and fors1−md of the draws we choose only
one individual randomly. If in the former case we draw two
E “individuals” or in the latter case oneE “individual,” we
simply put them back into the patch. For all other choices, an
interaction may occur, leading to the replacement of a differ-
ent set of individuals to those drawn. For each of these pro-
cesses we will introduce rate constantsb, c andd as follows:

AA→
c

AE, AE→
b

AA, A→
d

E. s1d

We now only need to know the probabilities of drawing vari-
ous combinations from the patch. Simple combinatorics
gives

probability of pickingAA= m
n

N

sn − 1d
N − 1

,

probability of pickingAE= 2m
n

N

sN − nd
N − 1

,

probability of pickingA = s1 − md
n

N
, s2d

where the factor of 2 in the second term comes from the fact
that the choicesAE and EA are identical. These results en-
able us to write down expressions for the transition probabil-
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ity, per unit time step, of the system of individuals going
from a state withn A individuals to a state withn8 A indi-
viduals. We denote this quantity byTsn8 und. Since only tran-
sitions fromn to n±1 may take place during one time step,
the only nonzeroTsn8 und are

Tsn − 1und = mc
n

N

sn − 1d
N − 1

+ s1 − mdd
n

N
,

Tsn + 1und = 2mb
n

N

sN − nd
N − 1

. s3d

The process defined by Eqs.(3) is a one-step Markov
process and so we can immediately write down a master
equation describing how the probability of havingn indi-
viduals present in the patch,Psn,td, changes with time[37].
The rate of change of this quantity with time is simply the
sum of transitions from the states withn+1 andn−1 A in-
dividuals to the state withn A individuals, minus the sum of
transitions from the state withn A individuals to the state
with n+1 andn−1 A individuals:

dPsn,td
dt

= Tsnun + 1dPsn + 1,td + Tsnun − 1dPsn − 1,td

− Tsn − 1undPsn,td − Tsn + 1undPsn,td. s4d

This set of coupled equations has to be solved subject to an
initial condition, typicallyPsn,0d=dn,n0

—that is, a condition
stating that there are known to ben0 individuals in the patch
at t=0. Care should also be taken with the boundary values
n=0 andn=N, since not all of the transitions are present in
these cases. From Eqs.(3) we see thatTs−1u0d and TsN
+1uNd are formally zero. As long as we defineTs0u−1d
=TsNuN+1d=0, we may use the general form(4) even for
n=0 andn=N.

The master equation(4) gives a complete description of
the time evolution of the nonspatial model. In the next sec-
tion we will discuss the model predictions in more detail.
Here we simply wish to make contact with the mean-field
(i.e., the deterministic) version of the model, obtained by
taking theN→` limit. This is most easily accomplished by
multiplying the master equation(4) by n and summing over
all values ofn. By shifting the variable in two of the sums on
n by +1 and −1, the following rate equation is obtained:

dknl
dt

= o
n=0

N

Tsn + 1undPsn,td − o
n=0

N

Tsn − 1undPsn,td, s5d

where angular brackets signify averages over the possible
states of the system. Defining

c̃ =
mc

N − 1
, b̃ =

mb

N − 1
, d̃ =

s1 − mdd
N

, s6d

and using Eqs.(3), Eq. (5) becomes

d

dt

knl
N

= 2b̃K n

N
S1 −

n

N
DL − c̃K n

N
S n

N
−

1

N
DL − d̃K n

N
L .

s7d

So far no approximation has been made in the derivation
of Eq. (7). However, we now take the limitN→`. In addi-
tion to eliminating the 1/N factor in the second term on the
right-hand side of Eq.(7), it allows us to replacekn2l by knl2.
This gives

df

dt
= 2b̃fs1 − fd − c̃f2 − d̃f, wheref ;

knl
N

. s8d

Herefstd is the density of individuals in a given area. It is
more conventional to write this in the form

dNA

dt
= NAsr − aNAd, whereNAstd = knl = Nfstd, s9d

and where

r = 2b̃ − d̃, a =
2b̃ + c̃

N
. s10d

Equation(9) is the mean-field equation of the model and is
the familiar logistic equation, usually written down as a phe-
nomenological description of the population growth of a
single species with intraspecific competition. Here it is de-
rived as theN→` limit of our stochastic model and thus
provides a reasonable description of our system when the
potential size(number ofA plus number ofE types) of the
system is relatively large. Of course, this limit is purely for-
mal. In practice what we mean that ifN is of the order 104;
for instance, then this approximation is good if we are only
interested in accuracies of up to 0.01%(if the next-order
corrections are of order 1/N) or 1% (if the next-order cor-
rections are of order 1/ÎN). This approximation obviously
cannot describe chance extinctions, which occur whenn is
small, nor does it predict a mean time to extinction for theA
population. In regimes where these effects are important, it
provides a poor description of the system, but this will inevi-
tably be true of any purely deterministic description.

The necessity of introducing the “empty site” individuals
E should be clear from the above derivation. In order to be
able to define a population density which changes with time
we need a null population which can be displaced if theA
species is successful and increase if theA population falters.
It is also very natural to have a ceiling on the growth ofA
individuals sNAøNd representing a limit on the available
resources. If noE’s were introduced in the two-species case,
the two population sizes would not be independent and
would simply add up toN. TheA population would obey Eq.
(9) and NB=N−NA. This is clear if we simply imagine re-
peating the above derivation for a two species system by
replacingE by B. Although the interaction rules would be
altered by this replacement, it would still be the case that
NA+NB=N. So it is vital to have “empty space” for individu-
als to exploit in order to obtain a realistic population dynam-
ics.

We have discussed the single-species case in some detail
since the construction of the master equation in the two-
species case(and, in fact, in theS-species case for arbitrary
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S) follows similar lines. We still draw two individualsm of
the time and one individuals1−md of the time, but the pro-
cesses and their rate constants are now

AA→
c11

AE, AB→
c21

AE, BA→
c12

BE, A→
d1

E,

BB→
c22

BE, AE→
b1

AA, BE→
b2

BB, B→
d2

E. s11d

The rate constantscaa, a=1,2, represent intraspecific
competition andcab aÞb, interspecific competition. Analo-
gous probabilities to Eqs.(2) of choosing particular combi-
nations ofA, B, andE are

AA:m
n

N

sn − 1d
N − 1

, AE:2m
n

N

sN − n − md
N − 1

, A:s1 − md
n

N
,

BB:m
m

N

sm− 1d
N − 1

, BE:2m
m

N

sN − n − md
N − 1

, B:s1 − md
m

N
,

AB:2m
n

N

m

N − 1
. s12d

Transition probabilities now have initial and final states
specified by two integers. The transition probability per unit
time from the statesn,md to the statesn8 ,m8d will be de-
noted byTsn8 ,m8 un,md. The nonzero transition probabilities
are

Tsn − 1,mun,md = mc11
nsn − 1d
NsN − 1d

+ s1 − mdd1
n

N

+ 2mc12
mn

NsN − 1d
,

Tsn,m− 1un,md = mc22
msm− 1d
NsN − 1d

+ s1 − mdd2
m

N

+ 2mc21
mn

NsN − 1d
,

Tsn + 1,mun,md = 2mb1
nsN − n − md

NsN − 1d
,

Tsn,m+ 1un,md = 2mb2
msN − n − md

NsN − 1d
. s13d

The master equation is an obvious generalization of Eq.(4):

dPsn,m,td
dt

= Tsn,mun + 1,mdPsn + 1,m,td

+ Tsn,mun − 1,mdPsn − 1,m,td

+ Tsn,mun,m+ 1dPsn,m+ 1,td

+ Tsn,mun,m− 1dPsn,m− 1,td

− hTsn − 1,mun,md + Tsn + 1,mun,md

+ Tsn,m− 1un,md + Tsn,m+ 1un,mdjPsn,m,td.

s14d

This equation simply expresses the increase inPsn,m,td due
to the four possible transitions into the statesn,md described
by Tsn,mun±1,m±1d and the decrease due to transitions out
of this state described byTsn±1,m±1 un,md. The boundary
and initial conditions are obvious analogs of those in the
one-species case. The generalizations of Eq.(5) are quite
simple, since none of the transition probabilities involving
changes only inm enter into the equation fordknl /dt and
none of the transition probabilities involving changes only in
n enter into the equation fordkml /dt:

dknl
dt

= o
n,m=0

N

Tsn + 1,mun,mdPsn,m,td

− o
n,m=0

N

Tsn − 1,mun,mdPsn,m,td,

dkml
dt

= o
n,m=0

N

Tsn,m+ 1un,mdPsn,m,td

− o
n,m=0

N

Tsn,m− 1un,mdPsn,m,td. s15d

We can now substitute the forms for Eqs.(13) into this equa-
tion and take the mean-field limitN→`. This allows us to
factor kmnl into kmlknl, as well askn2l into knl2 and km2l
into kml2 as before. The final result for the rate of change of
population densities is the competition equations

dNA

dt
= NAsr1 − a11NA − a12NBd whereNA = knl,

dNB

dt
= NBsr2 − a21NA − a22NBd whereNB = kml, s16d

familiar from population biology textbooks. The parameters
in Eqs. (16) are related to the parameters of the stochastic
model by

ra =
2mba

N − 1
−

s1 − mdda

N
, aaa =

ms2ba + caad
NsN − 1d

,

aab =
2msba + cabd

NsN − 1d
sa Þ bd. s17d

As we will see in Sec. V, essentially the same kind of
reasoning as that given above can be applied in the spatial
version of the model. Before discussing this, however, we
will investigate the large-N limit of Eqs. (4) and(14) a little
more carefully, obtaining corrections to mean-field theory
and comparing these to simulations.

III. BEYOND MEAN-FIELD THEORY FOR THE
NONSPATIAL MODEL

In the last section we gave arguments to show that the
mean-field versions of the stochastic models we had intro-
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duced were indeed the deterministic models conventionally
used to describe these systems. In this section we will apply
an elegant method due to van Kampen[37], which not only
allows us to obtain these results in a more systematic way,
but also gives a method of finding stochastic corrections to
this deterministic result for largeN. We will only work to
next-to-leading order in this paper. This will give a Gaussian
broadening toPsn,td, or Psn,m,td, with the peak of the dis-
tribution moving according to the relevant deterministic
equation. We will then compare these results with numerical
simulations of the full stochastic process. The large-N expan-
sion is very clearly explained by van Kampen in his book
[37], so we will content ourselves with giving a brief outline
of the method as applied to the one-species case. The two-
species calculation follows very similar lines.

We saw in the last section that, in the limitN→`, the
variablen became deterministic and equal toNfstd. In this
limit the functionPsn,td will be a d function. For large, but
finite N, we would expectPsn,td to have a finite width of
order NN−1/2=N1/2. Now n is once again a stochastic vari-
able, and it is natural to bring out the large-N structure of the
theory by transforming to a new stochastic variablej by
writing

n = Nfstd + N1/2j. s18d

We will not need to assume that the functionfstd satisfies
any particular differential equation; if we simply choose it to
follow the peak of the distribution as it evolves in time, then
the equation it satisfies will emerge. A new probability dis-
tribution functionP is defined byPsn,td=Psj ,td, which im-
plies that

Ṗ =
]P

]t
− N1/2df

dt

]P

]j
. s19d

When using this formalism it is useful to rewrite the master
equation(4) using step operators which act on an arbitrary
function of n according toEfsnd= fsn+1d and E−1fsnd= fsn
−1d. This gives

dPsn,td
dt

= sE − 1dfTsun − 1undPsn,tdg + sE−1 − 1d

3fTsun + 1undPsn,tdg. s20d

This form of the master equation is useful because the step
operators have a simple expansion involving powers of the
operatorN−1/2] /]j, which simplifies the identification of dif-
fering orders inN−1/2. We shall assume the initial condition
on the equation to bePsn,0d=dn,n0

.
Applying the method and identifying powers ofN1/2

yields the macroscopic equation

df

dt
= a1,0sfd s21d

to leading order and a Fokker-Planck equation

]P

]t
= − a1,08 sfd

]

]j
fjPg +

1

2
a2,0sfd

]2P

]j2 s22d

describing a linear stochastic process to next order. Here the
functionsa1,0sfd anda2,0sfd (we have used van Kampen’s
notation) are given by

a1,0sfd = 2b̃fs1 − fd − fsd̃ + c̃fd,

a2,0sfd = 2b̃fs1 − fd + fsd̃ + c̃fd. s23d

Since the Fokker-Planck equation(22) describes a linear
process, its solution is a Gaussian. This means that the prob-
ability distributionPsj ,td is completely specified by the first
two momentskjlt andkj2lt. Multiplying Eq. (22) by j andj2

and integrating over allj one finds

]tkjlt = a1,08 sfdkjlt,

]tkj2lt = 2a1,08 sfdkj2lt + a2,0sfd. s24d

The procedure is to solve Eq.(21) and obtainf as a function
of t. This function is then substituted into Eqs.(24) and these
equations solved forkjlt and kj2lt. In the case of the first
moment this may be performed quite generally to give

kjlt = kjl0expHE
0

t

dta1,08 „fstd…J . s25d

Choosing our initial condition to be

fs0d =
n0

N
, s26d

the initial fluctuations vanish andkjl0=0. Thuskjlt=0 for all
t.

This summarizes the method. We therefore start by solv-
ing Eq. (21), subject to Eq.(26). Defining

r ; 2b̃ − d̃, s ; 2b̃ + c̃, s27d

for convenience, the general solution forrÞ0 is

fstd =
r

s − Ae−rt , r Þ 0, s28d

where the constantA is determined by the initial condition

A = s −
r

fs0d
ffs0d Þ 0g. s29d

If fs0d=0, thenfstd=0 for all t. If r=0, a degenerate form
of the solution exists and is given by

fstd =
fs0d

1 + sfs0dt
sr = 0d. s30d

This solution can now be substituted into the equation for
kj2lt given in Eq.(24). An integrating factor for this equation
is e2rt /f4std, which yields upon use of the initial condition
kj2l0=0 whenrÞ0:
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kj2lt =
1

fs − Ae−rtg4h2s2b̃sc̃ + d̃df1 − e−2rtg

− sAf4b̃2 + 10b̃sc̃ + d̃d + c̃d̃ge−rtf1 − e−rtg

+ 2A2rf4b̃2 + 4b̃sc̃ + d̃d + c̃d̃gte−2rt

− A3s2b̃ + d̃de−2rtf1 − e−rtgj. s31d

Of course, care has to be taken when applying this approxi-
mation. If the distribution has significant interaction with the
boundaries atn=0 or n=N, the Gaussian approximation will
break down. So, for example, ifr.0, the peak of the distri-
bution will move fromn0 eventually coming to rest atNr /s.
While this is happening the probability distribution broadens,
eventually reaching its stationary value at

lim
t→`

kj2lt =
2b̃sc̃ + d̃d

s2b̃ + c̃d2
. s32d

On the other hand, ifrø0, the peak of the distribution will
eventually tend to zero, and so the Gaussian approximation
will break down at some finite time.

The case of two species follows in an exactly analogous
manner: one writesn=Nfstd+N1/2j and m=Ncstd+N1/2h
and defines a new probability distributionP via Psn,m,td
=Psj ,h ,td. The macroscopic equations obeyed byfstd and
cstd are again found to be identical to those given in Sec. II,
and P is again found to satisfy a Fokker-Planck equation
describing a linear process and is therefore a multivariate
Gaussian distribution. Details are given in Appendix A,
where one sees that analytic expressions for the analogs of
kj2lt cannot be obtained, in part at least, because the macro-
scopic equations cannot be solved in closed form. However,
we have solved them numerically, and we now go on to
compare the largeN results in both the one-species and two-
species cases with simulations of the original stochastic
process.

IV. SIMULATIONS OF NONSPATIAL MODELS

In order to better understand the range of validity of
mean-field theory and its Gaussian corrections, we have per-
formed numerical simulations of the nonspatial model de-
scribed above. The simulation of stochastic models of popu-
lation dynamics has progressed in line with the availability
of high-speed computers over the last two decades. During
the beginning of this period, books on the stochastic dynam-
ics of fluctuations in biological systems only mentioned
simulations fleetingly[38]; about a decade ago they had as-
sumed a more central role[39] and are now regarded as
essential in the understanding of these systems[40,41]. We
refer the reader to these last two references for more details
on how these simulations are carried out in practice.

In our numerical algorithm an ensemble of patches is it-
erated forward in time. To achieve reasonable statistics we
generally take the size of the ensemble to be several thou-
sand realizations. In each small time step a single individual
or a pair are selected from each patch in turn and with the

appropriate probabilities transitions are made and the new
individuals replaced.

We periodically average over the ensemble to measure
both the mean densities of individuals and the variance in the
densities. Concurrent with the stochastic simulation we also
integrate forward the mean-field equations and the equations
for the Gaussian variances[Eqs.(24) and (A5)–(A9)] to al-
low a direct comparison. Forward integration of the differen-
tial equations is performed using a second-order Runge-
Kutta scheme.

We will present some examples of our numerical work
which illustrate the main effects that we have found. We
have not performed an exhaustive numerical analysis due to
the large parameter space of the competition models. The
examples we give here are fairly typical of a wide range of
parameter space and are chosen to illustrate a variety of ef-
fects. Our results may be summarized by the statement that
as long as the size of the patch is large and the system is not
close to extinction(such that discrete effects play a strong
role), then the mean-field equations and the large-N correc-
tion yield a remarkably accurate description of the system
dynamics. However, there is a fairly sharp transition signal-
ing the failure of mean-field theory as the patch size is re-
duced below a critical value. For smaller patches, the quan-
titative precision of the mean-field theory fails badly. This
inaccuracy gives way to qualitative errors if one runs the
system close to extinction. In this case the probability distri-
bution of the populations is poorly approximated by a Gauss-
ian function and one is compelled to abandon mean-field
theory and its Gaussian corrections. It is significant that the
critical patch size depends sensitively on whether the patch
contains one or two species and whether there is interspecific
competition. To clarify these statements we now lead the
reader through some illustrative examples. An exhaustive list
of parameter values is given in Tables I and II.

In Fig. 1 we give an example of a moderately large patch
sN=100d containing a single species. The mean density soon
settles down to a(quasi-)steady-state value as does the vari-
ance in the population density. Mean-field theory and the
large-N corrections give very good agreement. In Fig. 2 we
show results for an identical situation but with the patch size
reduced from 100 to 10. In this case the quasi steady state is
meaningless since extinction events are frequent and the
mean density(measured over the ensemble of patches)
steadily decays to zero[38,42]. Note that the variance also
decays to zero, since as time proceeds more and more real-
izations go extinct and the probability distribution of popu-
lation densities is dominated by ad function peak at zero.
This illustrates the effect of discrete individuals for small
systems.

We now consider competition between two species in a
single patch. We only consider large patches, where, naively,

TABLE I. Parameter values for Figs. 1 and 2.

Samples N m b d c

Fig. 1 10 000 100 0.5 0.5 0.5 0.5

Fig. 2 50 000 10 0.5 0.5 0.5 0.5
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discrete individual effects may be neglected. In Fig. 3 we
study the simplest case in which theA and B individuals
have identical birth, death, and intraspecific competition
rates. There is no explicit interspecific competition(i.e., c12
=c21=0), although the finiteness of the patch leads to indirect
competition between all individuals[see Eqs.(16) and(17)].
The patch is taken to be very large with a capacity of 400
individuals. We find satisfactory agreement between simula-

tions and the mean-field theory and its large-N corrections. It
is somewhat surprising that on reducing the patch size from
400 to 200 (Fig. 4) the variance in the system increases
steadily, far exceeding the large-N corrections. Returning to
the large 400-capacity patch and now introducing a small
amount of interspecific competition(Fig. 5) we again find
that the large-N corrections fail to capture the growing fluc-
tuations in the system. We conclude from this and other
simulations that mean-field theory and its Gaussian correc-
tions can work well, but only for patches above a critical
size. This critical size is itself strongly dependent on the
number of species, various growth parameters, and the pres-
ence or not of explicit interspecific competition.

TABLE II. Parameter values for Figs. 3–5.

Samples N m b1 b2 d1 d2 c11 c22 c12 c21

Fig. 3 1000 400 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.0 0.0

Fig. 4 1000 200 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.0 0.0

Fig. 5 1000 400 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.0 0.1

FIG. 1. A comparison of theory to simulation for a single patch
containing a single species. The upper panel shows the time evolu-
tion of the population densityfstd=knl /N, wheren is the number
of individuals andN is the size of the patch. The lower panel shows
the time evolution of the variance,vstd=skn2l−knl2d /N2, of the
population. The subscriptA refers to the fact that the individuals
belong to speciesA. In this case the patch size has the relatively
large value of 100 and we see that theory and simulation are in good
agreement. See Table I for specific parameter values used in Figs. 1
and 2.

FIG. 2. The same as Fig. 1 but with the patch size reduced to 10.
In this case the mean population density falls to zero due to fluc-
tuation induced extinctions. The true variance first exceeds the large
N prediction and then falls steeply below due to the growing num-
ber of realizations which have become extinct.
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V. SPATIAL MODELS

We have already discussed the spatial versions of the
model in Sec. II. In one version of the model, the area under
consideration is divided into a large number of patches, each
containing a small number of individuals, which are then
identified with the sites of a regular two-dimensional lattice
(usually a square lattice). Competition takes place between
individuals of a particular patch, and the birth rate is simi-
larly only dependent on the population density of the paren-
tal patch, but individuals are allowed to migrate to nearest-
neighbor patches, if space is available(that is, if an empty
spaceE exists at the neighboring site). In terms of this pic-
ture, the lattice consists of an array of patches, which interact
through migration of individuals from one patch to a nearest-
neighbor patch. In the other version of the model introduced
in Sec. II, each patch contains only one individual; thus the
sites of the lattice represent individuals rather than patches.
In this case competition and birth processes, as well as mi-

gration, depend on the occupancy of nearest-neighbor sites.
In both versions of the model, the death rate is constant.

It is clear that many other variants are possible. In gen-
eral, the first model will be more applicable to situations
where individuals move on length scales which are much
larger than the communities they live in and the second
model more applicable when all these processes occur on
scales which are of the same order. However, we will see that
in the exploration of the nature of the mean-field limit and
the importance of stochastic effects, which is what interests
us in this paper, these differences play a secondary role. In
the next two sections we will follow the same program as
was carried through for the nonspatial case: describing the
stochastic process which defines the model, obtaining the
mean-field limit, and finally comparing the mean-field equa-
tions with simulations of the full model. Much of the math-
ematical detail will be relegated to Appendix B; unfortu-
nately, while many of the ideas are simple generalizations of
those introduced earlier, the mathematical notation becomes
(of necessity) rather complex and detracts from the points
which we wish to emphasize.

The simplest spatial process to describe is that of a single
species in the first version of the model. The processes in this
case may be broken down into three classes.

(i) For a fractionq1 of the events we randomly pick a site
i and then randomly draw two individuals from within the

FIG. 3. Comparison of theory to simulation for a patch contain-
ing two speciesA and B. Initially each species has a density of
one-quarter of the total patch capacity. The upper panel shows the
time evolution of the densities ofA and B [fstd and cstd, respec-
tively], while the lower panel shows the time evolution of the vari-
ance ofA compared with the large-N theory. In this case theA and
B individuals have identical birth, death, and competition param-
eters, and the interspecific competition is set to zero. The patch size
has the large value of 400. See Table II for specific parameter val-
ues used in Figs. 3–5.

FIG. 4. The same as Fig. 3 but with a patch size of 200. Note
that although the mean-field theory still works fairly well, the large-
N prediction for the variance is very poor. Even for such a large
patch, the fluctuations are increasing steadily with time.
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patch at that site. If twoE individuals are drawn, they are
simply replaced; otherwise, the following interactions may
occur [cf. Eq. (1)]:

AiAi→
c

AiEi, AiEi→
b

AiAi . s33d

(ii ) For a fractionq2 of the events we randomly pick a site
i and then randomly pick another sitej which is a nearest
neighbor ofi. One individual is drawn from the patch ati
and another from the patch atj . If these two individuals are
of the same type(two A’s or two E’s), no action is taken;
otherwise, migration with a rate constantm may occur:

AiEj→
m

EiAj, EiAj→
m

AiEj . s34d

(iii ) For a fraction 1−q1−q2 of the events we randomly
pick a sitei and then randomly draw a individual from within
the patch at that site. If anE individual is drawn, no action is
taken; otherwise, death may occur at a constant rated:

Ai→
d

Ei . s35d

The probabilities of choosing these various processes are in
the case of(i) and(iii ) simply modifications of Eqs.(2). The

modifications that are required are that alln should be writ-
ten asni to denote the number ofA’s in the patch at sitei, m
should be replaced byq1, s1−md by s1−q1−q2d, and all
terms multiplied byV−1, whereV is the number of sites in
the lattice. We assume that the number of individuals in each
patch is the same for all sites and is denoted byN. If the sites
i and j have already been chosen, the probabilities for the
processes(ii ) are

probability of pickingAiEj = q2
ni

N

sN − njd
N

,

probability of pickingEiAj = q2
nj

N

sN − nid
N

. s36d

The transition probabilities, master equation, and the deri-
vation of the population-level equation corresponding to this
model, are discussed in Appendix B. The lattice version of
this latter equation is given by Eq.(B8). On taking the con-
tinuum limit, defined by Eq.(B9), it becomes

]f

]t
= m̃¹2f + 2b̃fs1 − fd − c̃f2 − d̃f, s37d

wherefsx ,td is the continuum version ofknistdl /N in the
limit N→` and wheret is a rescaled time. This equation is
exactly the result(8) obtained in the nonspatial case, but with
the addition of a¹2f drift term. We can write Eq.(37) in a
more standard form by defining a diffusion constantDA
;m̃ and making the identification(10). This gives

]NA

]t
= DA¹2NA + NAsr − aNAd, s38d

where, as before,NA;Nf.
The discussion of the second version of the spatial model

follows similar lines. Now there is only one individual per
site, and thereforeni can only take on only two values: 0 and
1. In addition, birth and competition processes, as well as
migration, depend on the occupancy of nearest-neighbor
sites. Therefore there are only two classes of processes.

(i) For a fractionm of the events we randomly pick a site
i and then randomly pick another sitej which is a nearest
neighbor ofi. If these sites are bothE’s, no action is taken;
otherwise, migration with a rate constantm may occur ac-
cording to Eq.(34) or birth and competition may take place
with rate constantsb andc/2, respectively:

AiEj→
b

AiAj, EiAj→
b

AiAj, AiAj→
c/2

EiAj, AiAj→
c/2

AiEj .

s39d

The factor of 1/2 has been introduced into the rate constant
for competition in order be consistent with the nonspatial
case and the first version of the spatial case.

(ii ) For a fraction 1−m of the events we randomly pick a
site i. If the site contains anE individual, no action is taken.
Otherwise, death may occur at a constant rated given by Eq.
(35).

FIG. 5. A similar scenario to Fig. 3, with the addition of weak
interspecific interactions(one-fifth of the strength of the intraspe-
cific interactions, withA outcompetingB). Here, the patch size is
400, and the densities are fairly well approximated by mean-field
theory, although we see a slow decline in theB population. How-
ever, the fluctuations are again increasing with time and are not well
described by the large-N theory for large times.
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Since there is only one individual per each site, the prob-
abilities of pickingAiEj or EiAj are simply Eq.(36) with N
=1 andq2 replaced bym. Similarly, the probability of pick-
ing Ai is as in the first version, but again withN=1 and with
s1−q1−q2d replaced bys1−md. The only new feature is

probability of pickingAiAj = mninj . s40d

Just as before, we have assumed that the sitesi and j were
already chosen, so that the above probabilities only represent
the choices of types of individuals at these chosen sites(or
patches) and also the choice of the number of individuals in
an event(one or two). In the first model, we denoted the
number of sites in the lattice byV. This was independent of
N, the number of individuals in a patch. It was this latter
quantity that we allowed to become infinitely large, in order
to deduce the population-level description. In this second
version, there is only one individual per site, and so it is the
number of lattice sites(now denoted byN) which we take to
be infinitely large. More details of this approach are given in
Appendix B, where it is shown that, in the large-N limit, the
population-level description is again given by Eq.(37) —
albeit with slightly different definitions of the parameters.
This is not a surprise; we would expect there to be a large
number of IBM’s which differ in detail, but which have the
correct qualitative features, and give the same population-
level description.

The partial differential equation(38) is simply the ordi-
nary differential equation for the nonspatial case(8), but with
a term¹2NA added. So the corresponding spatial description
is indeed obtained by using the simplest prescription. How-
ever, this will not turn out to be the case when more than one
species are present. It is this scenario which is of most inter-
est to us in this paper; we have described the one species
case in some detail, largely because it is technically simpler
and therefore the crucial steps in the argument clearer. The
many species case may differ at the population level, but the
the setting up of the IBM’s and the derivation of the
population-level equations are a straightforward generaliza-
tion of the one-species case.

Let us once again begin with the first version of the model
where birth, competition, and death processes are purely lo-
cal (they take place in a single patch at a specific site on the
lattice) and only the process of migration involves nearest-
neighbor patches. All of the transitions are variants of those
in models previously considered in this paper. Specifically
the three classes of processes are the following.

(i) For a fractionq1 of the events we randomly pick a site
i and then randomly draw two individuals from within the
patch at that site. If twoE individuals are drawn, they are
simply replaced; otherwise, the interactions are given by the
6 two individual interactions in Eqs.(11) with a site indexi
added on to theA, B, andE individuals.

(ii ) For a fractionq2 of the events we randomly pick a site
i and then randomly pick another sitej which is a nearest
neighbor ofi. One individual is drawn from the patch ati
and another from the patch atj . If neither of these two indi-
viduals areE’s (no space) or both areE’s (no migration
possible), then no action is taken; otherwise, migration with
rate constantsm1 or m2 may occur:

AiEj→
m1

EiAj, EiAj→
m1

AiEj, BiEj→
m2

EiBj, EiBj→
m2

BiEj .

s41d

(iii ) For a fraction 1−q1−q2 of the events we randomly
pick a sitei and then randomly draw a individual from within
the patch at that site. If anE individual is drawn, no action is
taken; otherwise, death may occur at constant ratesd1 or d2:

Ai→
d1

Ei, Bi→
d2

Ei . s42d

The probabilities of choosing these various processes are in
the case of(i) and (iii ) simply modifications of(12). The
modifications that are required are exactly those we de-
scribed in the similar version of the one species case: then’s
andm’s should be written asni andmi respectively,m should
be replaced byq1, s1−md by s1−q1−q2d, and all terms mul-
tiplied by V−1. The migration ofA’s andB’s are independent
of each other and so are described in exactly the same way as
for single species. Details are given in Appendix B where it
is shown that, after the continuum limit has been taken, the
equations for

fsx,td ; lim
N→`

knistdl
N

and csx,td ; lim
N→`

kmistdl
N

s43d

are

]f

]t
= m̃1¹

2f + m̃1sf¹2c − c¹2fd + 2b̃1fs1 − f − cd

− c̃11f
2 + 2c̃12fc − d̃1f s44d

and

]c

]t
= m̃2¹

2c + m̃2sc¹2f − f¹2cd + 2b̃2cs1 − f − cd − c̃22c
2

+ 2c̃21cf − d̃2c. s45d

The second version of the two-species model hasni =0, 1
andmi =0, 1, with birth, competition, and migration depend-
ing on nearest-neighbor occupancies. The two classes of pro-
cesses are the following.

(i) For a fractionm of the events we randomly pick a site
i and then randomly pick another sitej which is a nearest
neighbor ofi. If these sites are bothE’s, no action is taken;
otherwise, migration may occur according to Eqs.(41), birth
according to

AiEj→
b1

AiAj, EiAj→
b1

AiAj, BiEj→
b2

BiBj, EiBj→
b2

BiBj ,

s46d

and competition according to

AiAj→
c11

AiEj, BiAj→
c12

BiEj, AiBj→
c21

AiEj, BiBj→
c22

BiEj ,

AiAj→
c11

EiAj, AiBj→
c12

EiBj, BiAj→
c21

EiAj, BiBj→
c22

EiBj .

s47d
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(ii ) For a fraction 1−m of the events we randomly pick a
site i. If the site contains anE individual, no action is taken.
Otherwise, death may occur according to Eqs.(42).

The probabilities of picking two individuals, one of which
is anE, are the same as in the first version of the model, but
with N=1 andq2 replaced bym. The probabilities of picking
a single individual are similarly related to those found in the
first version. The probabilities associated with pickingAiAj is
given by Eq.(40), BiBj by mmimj, and AiBj by mnimj. In
Appendix B we describe how, in the limit where the number
of lattice sites,N, becomes infinitely large, the continuum
versions ofknil and kmil again satisfy Eqs.(44) and (45).

So, in summary, both versions of the IBM’s we have dis-
cussed in this paper give rise to the same population-level
equations. This is true whether there is only a single species
in the system or whether two species are present. In the
one-species case this equation is given in standard form by
Eq. (38). To write the two-species equations(44) and(45) in
standard form we make the identification(17) and introduce
diffusion constants

DA = m̃1, DB = m̃2, D1 =
m̃1

N
, D2 =

m̃2

N
. s48d

This gives

]NA

]t
= DA¹2NA + D1sNA¹2NB − NB¹2NAd + NAsr1 − a11NA

− a12NBd, s49d

]NB

]t
= DB¹2NB + D2sNB¹2NA − NA¹2NBd

+ NBsr2 − a21NA − a22NBd, s50d

whereNA=Nf and NB=Nc. Unlike Eq. (38), these arenot
the standard equations found in population biology text-
books.

The additional terms which appear in Eqs.(49) and (50),
but not in the standard equations, are antisymmetric inNA
andNB and involve derivatives and so do not appear in non-
spatial models or spatial models with only one species. Their
structure is dictated by the way that migration is modeled at
the individual level. Since their occurrence is generic, they
will also appear in spatial models derived from IBM’s having
three or more species. Although these terms have not to our
knowledge been discussed in the context of ecological mod-
els, they are well-known in the context of interspecies diffu-
sion [43,44] in physics, and they also appear in quantum
field theory[45].

VI. SIMULATIONS OF SPATIAL MODELS

The simulations of spatial competition was performed in a
directly analogous fashion to the nonspatial model described
in Sec. IV. We confined ourselves to one spatial dimension
for simplicity. In addition, we only simulated the version of
the model where a patch of sizeN was placed at each site of
the one-dimensional lattice of sizeL. Within each patch the
usual dynamics of competition is played out. Furthermore, in
each small time step there is a small probability of dispersal
of individuals from a given patch to the two neighboring
patches, just as encoded in the master equation. We generally
started with initial conditions in which speciesA andB were
spatially separated and then proceed to intermix and compete
as individuals diffuse from patch to patch. The mean-field
equations(49) and(50) are again integrated forwards in time
using second-order Runge-Kutta methods. An exhaustive list
of parameter values is given in Table III.

In a spatial system such as this, extinction is much less of
a problem since should a patch become empty it will soon be
restocked from neighboring patches. Despite the weakened
effect of discreteness in small patches, we still find that the
behavior of the spatial systems differs significantly from
mean-field theory when patch sizes are below a critical value
(of approximate value 50 for the results presented here). As
before, we have chosen to present two typical scenarios.

In Fig. 6 we show the early- and late-time behavior for a
system in which initially theA individuals occupy the left
half of the system and theB individuals occupy the right
half. In the ensuing dynamics, theA andB individuals have
identical mobilities, growth rates, and intraspecific competi-
tion parameters. However, theA individuals are disadvan-
taged by having a slightly higher death rate than theB’s. This
is balanced by giving theA’s an interspecific competitive
advantage over theB’s. On varying the strengths of these
balancing forces it is possible to obtain invasion ofA’s from
left to right or invasion ofB’s from right to left. We have
chosen an example of the latter. It is seen that mean-field
theory does an excellent job in predicting the long-time dy-
namics of the system. In this figure the patch size is rather
large with a capacity of 100.

In Fig. 7 we repeat the exact simulation as before but
simply reduce the patch size from 100 to 10. In this case the
A individuals are severely affected by discrete extinction
events and their density is in poor agreement with mean-field
theory. Interestingly, the denserB individuals are fairly well
described by mean-field theory throughout the range.

We also studied an alternative balance of effects as fol-
lows. In Fig. 8 we show a situation in which the death rates
for the two species are the same, but now we reduce the

TABLE III. Parameter values for Figs. 6–9.

Samples L N q1 q2 b1 b2 d1 d2 c11 c22 c12 c21 m1 m2

Fig. 6 250 100 100 1/3 1/3 0.5 0.5 0.7 0.5 0.5 0.5 0.0 0.5 1.0 1.0

Fig. 7 1000 100 10 1/3 1/3 0.5 0.5 0.7 0.5 0.5 0.5 0.0 0.5 1.0 1.0

Fig. 8 500 100 50 1/3 1/3 0.5 0.5 0.5 0.5 0.5 0.2 0.0 0.5 1.0 1.0

Fig. 9 500 100 10 1/3 1/3 0.5 0.5 0.5 0.5 0.5 0.2 0.0 0.5 1.0 1.0
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amount of intraspecific competition among theB individuals.
Again, theA’s have an interspecific competitive advantage
over theB’s. In this case theA’s invade theB’s. Here the
patch size has the intermediate value of 50 individuals. We
see that mean-field theory performs relatively well.

On reducing the patch size for this particular scenario,
from 50 to 10(Fig. 9) we see the failure of mean-field theory
(which predicts invasion from left to right). The enhanced
fluctuations in the smaller patches lead to a quasidynamical
balance in the interfacial region betweenA’s andB’s. In this
region theA’s are beset by fluctuation-induced extinction
events and this makes them too weak to invade theB’s in the
usual manner of a Fisher wave. Instead, over longer scales
than shown in the figure, the density ofA’s slowly permeates
the B-rich region in a “creeping” motion.

VII. CONCLUSIONS

There are many ways to formulate population dynamics.
Popular descriptions tend to be either deterministic(mean-

field) equations or individual-based algorithms designed for
implementation on a computer. The extreme difference in
these two approaches has led to difficulties in directly com-
paring results. Disparities may be due to fundamental defi-
ciencies in one or both of the techniques or else be attribut-
able to “renormalization” of various parameters. In this paper
we have attempted to bridge the gap between mean-field
models and individual-based models. We have described a
very general framework with which to formulate population
dynamics using the language of “patches” to create a con-
crete picture of the stochastic process. The size of the patch
is the central parameter. Mean-field theory is recovered on
taking the patch size to infinity, while discrete stochastic ef-
fects become prominent for small patches containing a few
individuals. Again, we emphasize that in our usage “mean
field” refers to the approximation in which cross correlations
between stochastic variables is neglected, but still allows for
an explicitly spatial description.

From a biological perspective, a patch can be thought of
as a(small) spatial region within which interactions between
individuals occur. It is assumed that movement within this
scale is not biologically significant. In our spatial patch
model, movement of an individual between patches is bio-
logically significant since that individual will now have in-

FIG. 6. Comparison of mean-field theory(smooth lines) and
simulation(erratic lines) for two speciesA andB in a spatial setting
in which initially the A individuals occupy the left half of the sys-
tem and theB individuals the right half. The upper(lower) panel
shows early(late) times. Here, the patch size has the relatively large
value of 100.A outcompetesB (meaning thatc21.c12), but has a
higher death rate, and so is invaded byB. See Table III for specific
parameter values used in Figs. 6–9.

FIG. 7. The same as Fig. 6 but here the patch size is reduced
from 100 to the relatively small value of 10. Note that mean-field
theory is still in fairly good agreement with the high densityB
population, but shows significant deviation for the stochastically
weakenedA population.
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teractions with a new set of individuals in a neighboring
region. For systems in which interactions(not involving
movementper se) occur over larger scales, it will be neces-
sary to include additional inter-patch processes.

We have studied both nonspatial and spatial models. The
nonspatial case corresponds to a single patch containing a
number of individuals of both species. We have derived the
corresponding mean-field theory and its first-order correc-
tions (i.e., Gaussian fluctuations about the deterministic pre-
dictions). Generally, as long as the patch size is above a
critical value(which tends to be of the order of 100 in the
examples shown here) and the birth and death rates are such
that a sizable quasi-steady-state population is possible, then
the mean-field theory and its corrections give a satisfactory
description of the system. For smaller patches or for situa-
tions in which there is a non-negligible probability of extinc-
tion, it is crucial to account for the discrete nature of the
individuals. The population dynamics is inherently stochastic
and one must dispense with a deterministic description. By
tuning the patch size we have seen that the transition from a
mean-field like to a stochastic regime is rather sharp and
dependent on the existence of interspecific interactions(in
this case, competition).

The same general picture holds for the spatially explicit
models. We have discussed two types of spatial patch mod-

els. In one, at each spatial site there is a “micropatch” which
may hold at most one individual. Movement and competition
occurs between patches. In the other, each lattice site is a
patch of tunable size and competition occurs inside the
patch. Movement, of course, is still between patches. A care-
ful formulation shows that each model has the same spatial
mean-field limit. Of particular interest is the emergence of
novel nonlinear diffusion terms, which are only present when
two or more species are competing for space. These terms
are not written down in the standard “intuitively derived”
continuum equations of spatial competition models. They are
especially important in spatial regions in which the density
of one species is high, while the density of the other is
strongly spatially varying. This would occur, for instance, in
a region of space containing a population boundary for one
species(due to some environmental barrier) but not for the
other. We intend to investigate such effects in more detail in
a follow-up paper.

In our investigation of spatial mean-field models, we have
found them to be more robust than in the nonspatial case.
This is primarily due to the weakening of local extinction via
continual rescue effects from neighboring patches. It is still
the case, however, that as the patch size is decreased, the
quantitative precision of mean-field models suffers and with
smaller patches still(we have in mind patches of size 10 or

FIG. 8. A similar scenario to Fig. 6, but nowA and B have
identical death rates and yetB has less intraspecific competition
than A. In this exampleA invadesB. The patch size here has the
relatively large value of 50.

FIG. 9. The same as Fig. 8 except that the patch size is reduced
from 50 to 10. Note that the invasion ofA into B is severely slowed
due to the stochastic weakening ofA.
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less) new stochastically driven qualitative features emerge.
An example of this was given(Fig. 9) in which an invasion
process(in mean-field theory) was halted due to stochastic
weakening of the leading edge of the invading population
density.

In conclusion, we have presented a simple framework
with which to discuss fluctuation effects in population biol-
ogy. This framework is based on the use of patch models as
concrete realizations of stochastic processes. The transition
from mean-field behavior to fluctuation-dominated stochastic
dynamics is effected by reducing the size of the patch. The
critical patch size separating these two regimes depends sen-
sitively on the biological interactions present. This has been
an intensively theoretical work. In future work we intend to
apply the patch model to a variety of multispecies population
dynamics to address the importance of fluctuations and va-
lidity of mean-field theories in a quantitative and controlled
manner.
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APPENDIX A: LARGE- N ANALYSIS

This appendix contains the details of the large-N analysis
for the two species case which was described in Sec. III in
the one-species case.

It is once again useful to write the master equation(14) in
the form

dPsn,m,td
dt

= sEj − 1dfTsn − 1,mun,mdPsn,m,tdg

+ sEj
−1 − 1dfTsn + 1,mun,mdPsn,m,tdg

+ sEh − 1dfTsn,m− 1un,mdPsn,m,tdg

+ sEh
−1 − 1dfTsn,m+ 1un,mdPsn,m,tdg,

sA1d

where the step operatorsE are defined by their actions on
functions of n and m by Ej

±1fsn,m,td= fsn±1,m,td and
Eh

±1fsn,m,td= fsn,m±1,td.
Writing n=Nfstd+N1/2j and m=Ncstd+N1/2h, van Ka-

mpen’s method yields the macroscopic equations

df

dt
= a1,0sf,cd,

dc

dt
= b1,0sf,cd, sA2d

to leading order, and the linear Fokker-Planck equation

]P

]t
= F−

]a1,0

]f
G ]

]j
sjPd + F−

]a1,0

]c
G ]

]j
shPd

+ F−
]b1,0

]f
G ]

]h
sjPd + F−

]b1,0

]c
G ]

]h
shPd

+
1

2
a2,0

]2P

]j2 +
1

2
b2,0

]2P

]h2 , sA3d

to next order. This is a multivariate Fokker-Planck equation,
but it is again linear, and so its solution is a(multivariate)
Gaussian. Thea andb functions are given by

a1,0sf,cd = 2b̃1fs1 − f − cd − hc̃11f
2 + d̃1f + 2c̃12fcj,

b1,0sf,cd = 2b̃2cs1 − f − cd − hc̃22c
2 + d̃2c + 2c̃21fcj,

a2,0sf,cd = 2b̃1fs1 − f − cd + hc̃11f
2 + d̃1f + 2c̃12fcj,

b2,0sf,cd = 2b̃2cs1 − f − cd + hc̃22c
2 + d̃2c + 2c̃21fcj.

sA4d

Since the solution to the Fokker-Planck equation is a
Gaussian, we need once again only find the first two mo-
ments. They satisfy

d

dt
kjlt = F+

]a1,0

]f
Gkjlt + F+

]a1,0

]c
Gkhlt, sA5d

d

dt
khlt = F+

]b1,0

]f
Gkjlt + F+

]b1,0

]c
Gkhlt, sA6d

d

dt
kj2lt = 2F+

]a1,0

]f
Gkj2lt + 2F+

]a1,0

]c
Gkjhlt + a2,0,

sA7d

d

dt
kh2lt = 2F+

]b1,0

]f
Gkjhlt + 2F+

]b1,0

]c
Gkh2lt + b2,0,

sA8d

d

dt
kjhlt = F+

]a1,0

]f
Gkjhlt + F+

]a1,0

]c
Gkh2lt + F+

]b1,0

]f
Gkj2lt

+ F+
]b1,0

]c
Gkjhlt. sA9d

We set the initial conditions on the macroscopic equations
by asking that

fs0d =
n0

N
, cs0d =

m0

N
. sA10d

This impliesjs0d=0 andhs0d=0 and, by successive differ-
entiation of the macroscopic equations, that all derivatives of
kjlt and khlt at t=0 are also zero. We therefore take

kjlt = 0, khlt = 0, sA11d

for all t. Since the macroscopic equations with initial condi-
tions (A10) cannot be solved in closed form, neither can the
equations forkj2lt, kh2lt, or kjhlt.

APPENDIX B: SPATIAL MODELS

In this appendix we give details of the transition prob-
abilities and the master equations for the spatial models dis-
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cussed in Sec. V of the main text. The results are frequently
fairly straightforward generalizations of those found for the
nonspatial model; however, there are some surprises in store:
for example, the nontrivial spatial terms found in the mean-
field theory of the two-species model are only found by a
careful step-by-step derivation of the equations satisfied by
dknil /dt anddkmil /dt.

We begin with the first version of the one-species model.
The transition probabilities for the processes defined by Eqs.
(33) and (35) are, by analogy with Eq.(3),

Ts. . .ni − 1 . . .u . . .ni . . . d =
q1c

V

ni

N

sni − 1d
N − 1

+
s1 − q1 − q2dd

V

ni

N
,

Ts. . .ni + 1 . . .u . . .ni . . . d =
2q1b

V

ni

N

sN − nid
N − 1

. sB1d

The only change is the addition of the factorV−1, whereV is
the number of sites in the lattice, which represents the arbi-

trary choice of the lattice site. In the case where the transition
probabilities involve two neighboring patches, which is the
process described by Eqs.(34), the corresponding quantities
are

Ts. . .ni − 1,nj + 1 . . .u . . .ni,nj . . . d =
q2m

zV

ni

N

sN − njd
N

,

Ts. . .ni + 1,nj − 1 . . .u . . .ni,nj . . . d =
q2m

zV

nj

N

sN − nid
N

,

sB2d

wherez is the coordination number of the lattice(the number
of nearest neighbors of any given site) and represents the
choice of the nearest neighborj , oncei has been chosen. The
master equation for this process therefore reads

dPsnW,td
dt

= o
i

o
jPi

hTs. . .ni,nj . . . u . . .ni + 1,nj − 1 . . .dPs. . .ni + 1,nj − 1 . . . ,td + Ts. . .ni,nj . . . u . . .ni − 1,nj + 1 . . .dPs. . .ni − 1,nj

+ 1 . . . ,tdj + o
i

hTs. . .ni . . . u . . .ni + 1 . . .dPs. . .ni + 1 . . . ,td + Ts. . .ni . . . u . . .ni − 1 . . .dPs. . .ni − 1 . . . ,tdj

− o
i

o
jPi

hTs. . .ni − 1,nj + 1 . . .u . . .ni,nj . . . dPs. . .ni,nj . . . ,td + Ts. . .ni + 1,nj − 1 . . .u . . .ni,nj . . . dPs. . .ni,nj . . . ,tdj

− o
i

hTs. . .ni − 1 . . .u . . .ni . . . dPs. . .ni . . . ,td + Ts. . .ni + 1 . . .u . . .ni . . . dPs. . .ni . . . ,tdj. sB3d

Although this looks rather complicated, it is a straightfor-
ward generalization of Eqs.(4). In an effort to keep it as
simple as possible, only the number of individuals at sites
where changes occur(i or j) have been explicitly shown on
the right-hand side of the equation. The notationj P i denotes
a sum over all sitesj which are nearest neighbors ofi. On the
left-hand side of the equation,nW denotes the number of indi-
viduals in the set of all patches:nW ;sn1, . . . ,ni , . . . ,nj , . . .d.

To obtain the rate equation, we substitute Eq.(B3) into

dknkl
dt

= o
hnWj

nk
dPsnW,td

dt
. sB4d

Defining new quantities

c̃ =
q1c

N − 1
, b̃ =

q1b

N − 1
, d̃ =

s1 − q1 − q2dd
N

, m̃=
q2m

N
,

sB5d

as in Eq.(6), and introducing a rescaled timet= t /V, the
following equation is found:

d

dt
Kni

N
L = m̃DKni

N
L − c̃HK ni

2

N2L −
1

N
Kni

N
LJ

+ 2b̃HKni

N
L −K ni

2

N2LJ − d̃Kni

N
L , sB6d

where we have used the explicit forms(B1) and (B2). The
symbol D denotes the lattice Laplacian(with unit lattice
spacing):

Df i ;
2

z
o
jPi

sf j − f id. sB7d

The corresponding population-level description can be ob-
tained from Eq.(B6) by letting N→` which eliminates the
term of orderN−1 and allows us to replacekni

2l by knil2, as in
Sec. II. This leads to an equation forfi ;knil /N which is
given by
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dfi

dt
= m̃Dfi − c̃fi

2 + 2b̃fis1 − fid − d̃fi . sB8d

The final step that has to be taken in order to make contact
with the equations used in the traditional approach is to
move from the lattice to the continuum. To do this we need
to introduce a lattice spacing ofe and take it to zero so that

lim
e→0

2

z
o
jPi

sf j − fid
e2 → ¹2fsxd, sB9d

where the lattice sitei is now replaced by the position vector
x. In addition, the migration parameter has to be redefined, in
order to absorb a factor ofe2. The resulting equation is Eq.
(37), given in the main text.

The derivation of the population-level description for the
second version of the one-species model follows similar
lines. The particular differences between this version and the
one discussed above are described in the main text and, spe-
cifically, by Eqs.(39) and (40). The transition probabilities
for this second version are

Ts. . .ni − 1,nj . . . u . . .ni,nj . . . d =
mc

zN
ninj ,

Ts. . .ni + 1,nj . . . u . . .ni,nj . . . d =
mb

zN
s1 − nidnj ,

Ts. . .ni + 1,nj − 1 . . .u . . .ni,nj . . . d =
mm

zN
s1 − nidnj ,

sB10d

with similar equations withi and j interchanged, and

Ts. . .ni − 1 . . .u . . .ni . . . d =
s1 − mdd

N
ni . sB11d

Note that the transition probabilities in Eqs.(B10) are zero
unlessni and nj are both equal to 1(competition) or ni =0
andnj =1 (birth and migration), as required. The factorszN
andN account for the choices of sitesi and j and replacezV
andV, respectively, in the first version.

The master equation resembles Eq.(B3), except that the
single-site processes are now restricted to the death process
and the two-site processes are more extensive, involving
birth, competition, and migration. Defining

ĉ =
mc

N
, b̂ =

mb

N
, d̂ =

s1 − mdd
N

, m̂=
mm

N
, t =

t

N
,

sB12d

we find using Eq.(B4) and the decoupling approximation
kninjl=knilknjl,

d

dt
knil = m̂Dknil − ĉknilH1

z
o
jPi

knjlJ
+ 2b̂s1 − knildH1

z
o
jPi

knjlJ − d̂knil. sB13d

Denoting knil as fi, the terms in curly brackets become
fsx ,td in the continuum limit, and so once again we recover
Eq. (37), given in the main text.

The description of the IBM’s when two species are
present parallels that for one species. This similarity also
holds for the initial stages of the derivation of the
population-based equations, and so our description will be
brief for both of these aspects.

For the first version of the model, the transition probabili-
ties for birth, competition, and death processes are generali-
zations of Eqs.(13) [the modifications are exactly the same
as those made on Eqs.(3) to give Eqs.(B1)]. Those for
migration of A’s are Eqs.(B2), but with m replaced bym1
and N−nj replaced byN−nj −mj (or N−ni replaced byN
−ni −mi). For migration ofB’s, they have the same form, but
with m1 replaced bym2 and with the substitutionsni ↔mi
andnj ↔mj. The master equation forPsnW ,mW ,td is as before,
but now including the greater number of allowed processes.
There are two rate equations, found by substituting the mas-
ter equations into

dknkl
dt

= o
hnWj

o
hmW j

nk
dPsnW,mW ,td

dt
,

dkmkl
dt

= o
hnWj

o
hmW j

mk
dPsnW,mW ,td

dt
.

sB14d

Defining the new quantities

c̃ab =
q1cab

N − 1
, b̃a =

q1ba

N − 1
, d̃a =

s1 − q1 − q2dda

N
,

m̃a =
q2ma

N
, t =

t

V
, sB15d

as in Eqs.(B5), we now letN→` and replace averages of
products by products of averages to obtain the equations

dfi

dt
= m̃1Dfi +

2m̃1

z
o
jPi

sfic j − f jcid − c̃11fi
2 − 2c̃12fici

+ 2b̃1fis1 − fi − cid − d̃1fi sB16d

and
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dci

dt
= m̃2Dci +

2m̃2

z
o
jPi

scif j − c jfid − c̃22ci
2 − 2c̃21cifi

+ 2b̃2cis1 − fi − cid − d̃2ci . sB17d

Here fi ;knil /N and ci ;kmil /N. Writing fic j −f jci as
fisc j −cid−cisf j −fid we obtain Eqs.(44) and (45) in the
continuum limit.

For the second version of the two-species model, the tran-
sition probabilities are generalizations of the one-species
forms given by Eqs.(B10) and (B11). Specifically, for the
competition process the termcninj becomesc11ninj and, in
addition, there are transition probabilities which are propor-
tional toc12nimj, c21minj, andc22mimj. For the birth process,
the factors1−nid is replaced bys1−ni −mid andbnj by b1nj

or b2mj. The same holds for migration, but withb, b1, andb2

replaced bym, m1, and m2, respectively. Finally, for the
death processdni is replaced byd1ni or d2mi. The master
equation is straightforward, but tedious, to write down.

Defining the new quantities

ĉab =
mcab

N
, b̂a =

mba

N
, d̂a =

s1 − mdda

N
, m̂a =

mma

N
, t =

t

N
,

sB18d

we find using the decoupling approximation — in which
averages of products of any two of the variableshnW ,mW j are
replaced by the products of their averages—that

d

dt
knil = m̂1Dknil +

2m̂1

z FknilH1

z
o
jPi

kmjlJ
− kmilH1

z
o
jPi

knjlJG − ĉ11knilH1

z
o
jPi

knjlJ
− 2ĉ12knilH1

z
o
jPi

kmjlJ + 2b̂1s1 − knil

− kmildH1

z
o
jPi

knjlJ − d̂1knil, sB19d

and

d

dt
kmil = m̂2Dkmil +

2m̂2

z FkmilH1

z
o
jPi

knjlJ
− knilH1

z
o
jPi

kmjlJG − ĉ22kmilH1

z
o
jPi

kmjlJ
− 2ĉ21kmilH1

z
o
jPi

knjlJ + 2b̂2s1 − knil

− kmildH1

z
o
jPi

kmjlJ − d̂2kmil. sB20d

Defining knil andkmil asfi andci, respectively, we recover
Eqs. (44) and (45) in the continuum limit, up to slightly
different definitions of the birth, competition, migration, and
death rates.
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