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I. INTRODUCTION

How site-specific DNA binding proteins locate their tar-
gets on DNA is an issue of primary importance for under-
standing the functioning of DNA. With the development of
new experimental techniques, this problem is getting much
of attention, see, e.g.,[1–8]. Sliding, hopping and uncorre-
lated three-dimensional diffusion are generally taken into ac-
count as possible searching mechanisms, and their relative
role in target location is being discussed and experimentally
investigated. In the seminal work of Berg, Winter and von
Hippel (BWH), one-dimensional diffusion(sliding) along
DNA was proposed as a necessary ingredient of the target
search[9]. More recent papers[4–6] confirm the importance
of sliding in the search process, along with three-dimensional
paths (disattachment of a protein from DNA and reattach-
ment to a different segment of DNA) [7].

A completely coherent description of the search process is
nevertheless still lacking. In a recent paper[4], Bruinsma
remarks, e.g., that the time spent by a lac-repressor on each
DNA site in the frame of the BWH theory is too short to
allow the structural changes necessary for the protein to rec-
ognize its target. He thus indicates the need for a slowing
down effect and suggests that “indirect read-out” mecha-
nisms, associated to the DNA flexibility, can account for it.
Note that the DNA sequence, responsible for the DNA flex-
ibility and shape, is crucial also for this kind of slowing
down effect.

On the other hand, all existing models of target search
dynamics describe the sliding motion as astandard random
walk. In theoretical analysis of experiments it is indeed taken
for granted that the protein motion is governed by a linear
diffusion, kx2l=2Dt. While the linear diffusion assumption is
natural for 3-dimensional paths(when protein is not bound to
DNA and diffuses in solution), for the sliding phase of mo-

tion, it implies that the DNA is essentially “seen” by the
protein as a homogeneous chain. This homogeneity of DNA,
however, seems incompatible with the recognition function,
which always involves a form ofreading, so that it is natural
to assume an influence of the DNA sequence on the sliding
dynamics[10]. This influence could result in slowing down,
pauses and stops which, in turn, could invalidate the random
walk assumption. These slowing effects can have have a dif-
ferent origin from that suggested by Bruinsma[4]; note, nev-
ertheless, that different mechanisms can coexist, and that in
any case the dynamic effects of(direct or indirect) sequence
sensitivity are considered.

Our aim in the present paper is to show that sequence
dependence of the DNA-protein interaction can induce
strong deviations from standard diffusion for a generic pro-
tein sliding on DNA. To this regard, we use a probabilistic
model for the sliding motion of a protein on DNA in which
the influence of the base sequence is accounted through the
DNA-protein reading interaction[11]. As a result we show
that the protein follows a noise-influenced sequence-
dependent motion which deviates from standard diffusion,
reaching normal diffusion only at asymptotically large times.
The presence of an anomalous diffusion(AD) regime speeds
up the mobility of a protein thus greatly facilitating the target
search. The speed-up effect of the anomalous diffusion is
shown schematically later in Fig. 4. The cross-over from
anomalous to normal diffusion occurs at times typically
needed for a protein to cover the distance at which the po-
tential averages out(of order 100 bp in our model). On the
other hand, indirect measurements hint on the typical mean
path length traversed by the protein during a single DNA
binding event, of the same order of magnitude(e.g., around
170 bp in [7]). Thus, the anomalous diffusion(AD) should
actually dominate the binding phase, and cannot be ne-
glected. This is the main result of our work. As we will
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discuss, the anomalous behavior is very general and only
depends, qualitatively, on the presence of a rough sequence-
dependent interaction, so that it results to be very robust and
not limited to the specific model defined here.

The paper is organized as follows. In Sec. II we introduce
the model using T7 RNA-polymerase as a specific example
of a sliding protein. In Sec. III we investigate the main prop-
erties of the sliding dynamics including the sub-diffusive re-
gime and the crossover to normal diffusion. In Sec. IV we
provide some arguments supporting the generality of our re-
sults in connection to applications to other enzymes. Finally,
in Sec. V, results and conclusions of the paper are summa-
rized.

II. THE MODEL

A target sequence usually consists of few(say,r) consecu-
tive base pairs(bps). Specific sequence recognition is often
mediated by hydrogen bonds(H-bonds) to a set of four spe-
cific, spatially ordered chemical groups of the bps[12,13].
Each base pair(AT, TA, GC or CG) in DNA exposes indeed,
on its major groove side, four specific chemical sites. Among
them, some are able to form a hydrogen bond as acceptors,
others are hydrogen bonds donors. Other sites are occupied
by groups that are not of interest here. The set of chemical
sites on each bp provide a specific chemical pattern, allowing
at the same time the protein binding and a specific recogni-
tion mechanism at the single bp level(see Fig. 1). Besides
this mechanism, other features of DNA such as shape and
flexibility, as well as electrostatic interactions between pro-
tein and DNA[14,15] may also be involved in the recogni-
tion process. In this paper, we will focus mainly on the first
mechanism, i.e., we assume that proteins check the sequence
at each position on DNA by exploiting the same set of hy-
drogen bonds they form with the DNA at the target site. We
thus represent the DNA binding sites at positionn as a se-
quence ofr vectorsbn (one for each bp), of the form Bn
=sbn,bn+1, . . . ,bn+r−1d, according to the rule

bn = Hs1,− 1,1,0dT for AT, s0,1,− 1,1dT for TA,

s1,1,− 1,0dT for GC, s0,− 1,1,1dT for CG
J s1d

where +1, −1, 0 denote, respectively, an acceptor, a donor,
and a missing bond, that each of the four base pairs can form
with an external ligand at positionn on the DNA[12]. We
also assume that the H-bonds formed in the DNA-protein
complex at the recognition site are known(this information
can be obtained from a crystallographic analysis of the
DNA-protein complex). The protein can then be represented
by an sr 34d recognition matrix Rdescribing the pattern of
H-bonds formed by the protein and the DNA at the recogni-
tion site. The protein-DNA interaction energy is then defined
by counting the matching and unmatching bonds between the
recognition matrix and the DNA sequence at siten,

Esnd = e trsR ·Bnd, s2d

wheree denotes each H-bond energy, tr the trace, and the dot
refers to usual matrix multiplication.The typical H-bond en-
ergy is of order of a few kcal/mol, but in fact the actuale
could be much less due to screening introduced by the water
layer around DNA. In the lack of realistic estimates of this
parameter, we will use in the following the dimensionless
quantity be as an adjustable model parameter. The DNA is
thus viewed as a one-dimensional vector lattice characterized
by a rough on-site potentialEsnd, on which a random walker
(a protein) moves, with rates(probability per unit time)

rn→n8 = min„1/2,1/2 exps− bDEn→n8d…,

rn→n = 1 − rn→n+1 − rn→n−1; s3d

wheren8=n±1 andb=1/kBT. Time is measured in one-step
time units (t.u.). An estimation for the lower bound of the
time unit can be obtained through simple hydrodynamic con-
siderations[11,16], yielding 1 t.u.<10−7 s.

FIG. 1. Four base pairs. Arrows indicate the
location of the hydrogen accepting
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The presence of an activation barrier for the translocation
on neighboring sites can be accounted for by introducing a
uniform threshold energy levelEt, so that

DEn→n8 = maxfEt − Esnd,Esn8d − Esnd,0g. s4d

Note that the effective translocation barrier also depends on
the position, through the on-site energy. As a specific ex-
ample, we consider the case of the T7 RNA-polymerase slid-
ing on the bacteriophage T7 DNA. For this case it is known
that the recognition site is the five bps sequenceGAGTC
extending from position −11 to −7 in theT7 promoter. The
interaction matrixR can be inferred from the crystallo-
graphic studies of Cheetamet al. [17], as

R=1
1 1 0 0

1 − 1 0 0

1 1 0 0

0 1/2 0 0

0 0 1/2 1
2 , s5d

where the presence of 1/2 is due to one shared DNA-protein
H-bond mediated by a water molecule and therefore consid-
ered as two half bonds.

It is important to stress that a certain number of assump-
tions have been made in order to set up our model. Not all of
them can be experimentally confirmed, at present. In particu-
lar, the additivity of the different H-bond contributions, im-
plicit in Eq. (2) for the binding energy, has to be verified. In
the next section we shall present the results for diffusion
dynamics, which, qualitatively, are largely independent on
the interaction details.

III. THE PROPERTIES: SUBDIFFUSIVITY AND
CROSSOVER TO NORMAL DIFFUSION

Theoretically, one can easily calculate the stationary dis-
tribution of a population of proteins on the energy landscape
as r`snd~exp(−bEsnd), only dependent on the site energy
and on temperature. This implies that the energy minima,
that correspond to the recognition sites, will be, on average,
the most populated. We then calculate the mean square de-
viation from the average of the spatial displacement,kDn2l
=Si=1

N (nistd−nis0d)2, where the average over initial positions
and different histories(Monte-Carlo runs) is made. The three
casesEt=minfEsndg;Emin, Et=0 andEt=maxfEsndg;Emax

have been examined. In the limitbe=0 the linear diffusion is
recovered, as one expects(the limiting value 2D=1 is ob-

tained in the caseEt=Emin, i.e., for a flat potential without
thresholds). Nevertheless, in the finite temperature case, we
obtain large initial deviations from the normal diffusion be-
havior. More precisely, for all thresholds we find that at the
initial stage the diffusion displays anomaloussub-diffusive
features, with

kn2l = 2Atb, b , 1, s6d

whereA andb depend on the fixed threshold level; see Fig.
2. The appearance of the initial subdiffusive regime is not
surprising, and has been observed both for random trap and
random barrier potentials; see, e.g.,[18]. Our case in Eq.(3),
however, represents a mixture of these two cases, for which
to our knowledge, there are no studies for the initial time
behavior. On the other hand, note that in Eq.(3) the hopping
ratesrn→n+1, rn→n−1 are not random variables but depend on
the gradient of the energy landscape, logsrn→n+1/ rn+1→nd
=sEn+1−End / skBTd. This has the important consequence that
in the continuous(Langevin) approximation of the process
(see, e.g.,[19]), the effective potentialU stays Gaussian lo-
calized with the typical differenceUsnd−Usn−1d<Î2sE in-
dependent ofn, sE being the energy variance. This is differ-
ent from Sinai model where typicalUsnd grows withn asÎn,
this leading to anomalouskx2l, (lnstd)4 behavior. Since the
Sinai model is not applicable to our case, we will be using in
the following a rather crude approximation(6) to describe
the crossover from initial subdiffusion to a linear diffusion
regime. A quantitative characterization of the initial transient
regime is given in Table I, for the three values ofEt. The
diffusion constantD` for the three threshold levels is esti-

FIG. 2. Diffusion dynamics for the T7 RNA-polymerase-DNA
interaction (symbols), for energy parameters:Et=Emin, be=0.5
(squares); Et=Emin, be=1 (open circles); Et=Emax, be=1 (tri-
angles). Time is measured in time units. Solid lines show the dy-
namics obtained on an artificial Gaussian energy landscape with
Emin=−Ne, Emax<Ne /2 (see the discussion in Sec. IV).

TABLE I. The short time sub-diffusive parametersA andb fitted in the initial time interval[0, 100], and
those characterizing the asymptotic regime,D` b`, fitted in tP f83106,107g. The equilibrium diffusion
constantD* is estimated from themfpt analysis. All values are obtained forbe=1.

Et 2A b 2D` b` 2D*

Emin 0.82±2% 0.49±1% 4.4 10−3±1% 0.94±1% 4.4 10−3

0 0.48±2% 0.56±1% 4.3 10−3±1% 0.93±1% 4.3 10−3

Emax 0.04±3% 0.61±1% 0.25 10−3±2% 0.83±1% 0.2 10−3
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mated from the linear fitkDn2l=2Dt at large timestP f8
3106,107g. We checked that an effective linear behavior is
roughly reached by evaluating the parameterb` in the same
range(see Table I). Asymptotically, a standard diffusion is
recovered(on the large scale the potential roughness aver-
ages to zero). The asymptotic diffusion constantD decreases
for increasingbe. The initial deviation from a random walk
s1−bd and the time needed to reach the asymptotic limit both
increase withbe; the typical one-step time(or time unit t.u.)
should be roughly, for real proteins, of the order of a micro-
second[4,16], thus giving crossover times up to seconds
corresponding to mean displacements up to hundreds of bps
(data not shown; more details will be given elsewhere). A
theoretical estimate of the large time effective diffusion con-
stant can be obtained from mean first passage time(mfpt)
analysis. According to Ref.[20], for a discrete one step pro-
cess, such as the one considered here, the mfptTn0

n to go
from a referring positionn0 to positionn.n0 can be evalu-
ated, once a reflecting barrier is fixed in a positiona,n0, as

Tn0

n = o
i=n0

n
1

r i→i−1r`sidoj=a

i

r`s jd. s7d

Note thatTn0

n depends on the threshold levelEt through the
rate rn→n−1, according to Eq.(3). For large enoughTn0

n ,

kDn2l < 2DTn0

n . s8d

Making the choicea=0, the theoretical diffusion constant
D* as a function ofbe can be evaluated using Eq.(8). The
result is shown in Fig. 3 together with the corresponding
numerically evaluated diffusion constants. We observe a
good agreement showing that Eqs.(7) and (8) provides a
credible analytical estimate of the asymptotic diffusion con-
stantD. Note that the diffusion constant decreases exponen-
tially for be→` (in practice, it is already!1 for be<1)
and the corresponding mfpt exponentially increases in the
same limit. This behavior reflects the divergence of the typi-
cal extent of the sub-diffusive transient, which becomes
more and more important asbe approaches 1. At the same
time, an increase ofbe makes the linear diffusion approxi-
mation less and less appropriate. Figure 4 shows qualita-

tively the mistake one makes estimating the timeDtsbe , ld
needed for an enzyme to cover the distance ofl base pairs,
induced by the linear diffusion approximation.

Some comments are in order. As one can see from Fig. 4,
the relative mistake,Dtsbe , ld / tsbe , ld is a monotonically de-
creasing function ofl, diverging for l →0 and decreasing as
Dt`sbed / l2 for times t= l2/2D` much larger than transition
time period, whereDt`sbed=liml→` Dtsbe , ld. Thus, apply-
ing a linear diffusion approximation with the diffusion coef-
ficient D` would lead to a systematic overestimation of the
time needed for a protein to diffuse along a DNA. Note that
protein is likely to attach and disattach many times from the
DNA during the target search, each time diffusing over some
distancel i along the DNA so one has to know the distribution
of the distancespsld (or the rate of disattachment) in order to
estimate the net effect of initial subdiffusion on a protein
efficiency to find its target. Further studies and inputs are
needed to clarify this question.

The model allows also us to consider the possibility that
very unfavorable positions(with a large number of mis-
matches) could induce protein conformational changes to a
different conformation that does not allow the formation of
any H-bond, inducing a regime of “free sliding”[21]. A
threshold energy level should in this case separatereading
regions fromfree slidingregions, where the DNA is seen as
homogeneous. The energy landscape should then be rede-
fined above this threshold to a constant value: we will put
Esnd=Esl if EsndùEt, and refer to this second possibility as
“ two-state model.” In this case, the redefinition of the energy
landscape leads to a faster diffusion, even if still sub-
diffusive, in the very initial time. This effect is more evident
for low threshold values, i.e., as the energy redefinition in-
volves an increasing number of sites. Indeed, among the
many particles initially distributed uniformly over a large
region, all those that are on a flat part of the potential will
start to diffuse freely with a diffusion constant equal to unity.
These particles therefore contribute initially to the diffusion
with a large term. After having slid freely for a certain time,
however, they will fall in E,Et regions, and be partially
trapped in the potential wells. After a transient time, a sub-
diffusive behavior similar to the previous case is indeed

FIG. 3. 2D* = ksn−n0d2l /Tn0
n as a function of the adimensional

parameterbe (full lines), and the corresponding 2D directly evalu-
ated by fitting the large time diffusion(symbols), for corresponding
different values of the threshold energy:Et=Emin (open circles),
Et=0 (triangles) andEt=Emax(diamonds). Time is measured in time
units (t.u.) and mean square displacement in squared base pairs
sbps2d.

FIG. 4. Dispersion(in bps2) versus time(in time units t.u.) for
our model(upper curve), and for linear diffusion(straight line), for
be=1. The linear diffusion approximation systematically overesti-
mates the time needed for an enzyme to diffuse over a distancel
=ÎsDnd2 base pairs along DNA. Segments between the two curves
show differences between the two descriptions. The relative mistake
Dt / t is <70% for l =30 and<37% for l =50.
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reached, that converges, on larger times, to the stationary
normal diffusion. A detailed analysis of the “two-state
model” is presented elsewhere[11].

Thus, one sees a substantial deviation from the random
walk during the sliding phase of a target search. In the next
section, we address the question about the generality of the
presented results, in application to larger and more complex
proteins such as, e.g., E. Coli RNA-polymerase, lac repres-
sor, EcoRI and EcoRV, i.e., for other H-bond reading en-
zymes.

IV. GENERALIZATION TO OTHER ENZYMES AND
BINDING MECHANISMS

First of all, note that the dynamics of the proposed model
depends only on the obtained energy profile, and that the
most important parameter is the single energy contributione,
that fixes the energy scale. This quantity, though experimen-
tally difficult to access, should nevertheless depend only on
the nature of the H-bond: one can thus reasonably expect it
to be roughly the same for all proteins. The actual threshold
mechanism is also unknown, but again we could reasonably
expect that it depends on general properties of the protein-
DNA interaction, and does not vary in nature from one pro-
tein to another.

What should represent the main difference between dif-
ferent proteins is therefore the length of the recognition se-
quence[22], or, more precisely, the number of bonds in-
volved in the reading. This parameter should be adapted in
order to mimic the sliding of different enzymes.

An examination of the whole set of possible hydrogen
bonds that DNA bps can form with external ligands[12,13]
shows that, among the 12 possible H-bond sites exposed on
the 4 different bps, those that are in central binding sites of
the bases(bnf2g andbnf3g) can induce both matches or mis-
matches, while the external ones(bnf1g andbnf4g) are either
matches or give zero contribution to the interaction energy. It
is thus possible to calculate explicitly the energy level distri-
bution for a generic enzyme looking for a total ofN matches
with N8 of them in the two central binding sites of the bases.
The only assumption made is that the matches are uncorre-
lated, which turns out to be a reasonable approximation for
quasi-random DNA sequences. The resulting energy level
distribution is a convolution of two binomials that rapidly
converges to a Gaussian asN andN8 increase[23]. It is then
easy to calculate the average and standard deviation of the
energy that result to bekEl=sN−N8de /2 and sE=sN
+3N8de /4, respectively. The minimum and maximum ener-
gies of the resulting distributions are given byEmin=−Ne,
Emax=N8e.

This leads us to conclude that, for not too small values of
N (andN8), the energy level distribution is approximatively a
Gaussian, and its width just depends onN andN8 (or, alter-
natively,Emin andEmax). Note, furthermore, that if bonds on
different positions are equiprobable,N8 should be roughly
equal toN/2, so that one ends with only one parameter. We
can expect therefore that the energy landscape for a generic
sliding protein, and therefore the sliding motion depends cru-
cially on the number of H-bonds made at the recognition site.

We have tested the previous arguments by building an
artificial energy profile, with random levels distributed so as
to reproduce the original distribution width and thus the
original Gaussian shape. In Fig. 2, simulations of the protein
sliding motion on the basis of this artificial energy landscape
are compared with previous results for different choices of
the model parameters. Despite the certain arbitrariness in the
definition of the artificial energy landscape, we obtain essen-
tially the same diffusive behavior as for the true DNA case.
In Fig. 5 we depict the diffusive behavior for three different
values of N, with N8=N/2: as easily predicted, the
asymptotic normal diffusion slows down when the number of
bonds increases. This parameter thus affects the asymptotic
diffusion regime as well as the initial subdiffusion and the
transition time.

V. CONCLUSIONS

In this paper we have considered the sliding motion of a
protein on DNA by means of a probabilistic model which
includes the information about the base sequence through the
base pair reading interaction. In the case of the T7 RNA-
polymerase we found that the protein executes a random mo-
tion which deviates from the standard random walk dynam-
ics usually assumed. We argued that the same qualitative
behavior should be valid also for other types of enzymes.
The presence of an anomalous diffusion regime at the early
stages of the process speeds up the mobility of the protein
facilitating the target search. The overall diffusive behavior
of the sliding protein can be characterized in terms of few
parameters: the typical interaction energye associated with
each DNA-protein bond, and the numberN of such bonds
formed at the recognition site. We conclude that only few
parameters determine the overall diffusive behavior of a slid-
ing protein on DNA: the typical interaction energye associ-
ated with each DNA-protein bond, and the numberN of such
bonds formed at the recognition site. One can therefore ex-
pect the same qualitative behavior described here on the ex-
ample ofT7 RNA-polymerase to be valid also for other types
of enzymes(if other kinds of specific chemical bonds inter-
vene in the recognition mechanism, as e.g. water-bridges,
minor groove H-bonds or hydrophobic contacts[13,24], the
corresponding energies should be evaluated and included in
the model; nevertheless, the number of specific bonds is

FIG. 5. Dynamic behavior, obtained on the artificial Gaussian
energy landscape, forN=10 (full circles), N=14 (open circles), N
=20 (squares), with be=1 (upper curves) or 0.2 (lower curves).
Time is measured in time units(t.u.) and mean squared distance in
squared base pairssbps2d; see the text for details.
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strictly a characteristic of each different enzyme-DNA inter-
action, and the diffusing behavior must still depend on this
number).

We finally remark that the presence of additional
sequence-dependent interaction in the recognition process,
such as the one involving geometrical and elastic character-
istics of the DNA, can also be included in our model. This
additional interaction, being sequence specific, would lead to
a redefinition of the energy landscape without affecting much
the qualitative results of the paper(they however are much
more difficult to model due to the scarcity of experimental
data). In particular, the previously discussed anomalous dif-
fusion regime is robust with respect to changes of the energy
landscape. Therefore, the influence of the DNA sequence on
the sliding motion of a protein on DNA makes the standard
random walk assumption for a sliding phase of the target

search incorrect for a large set of parameters. Accounting for
this anomalous diffusive motion should be included in real-
istic description of the sliding component of the target search
in order to discriminate the relative role of 1D sliding and 3D
diffusion in the search process.
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