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When liquid-crystalline elastomers pass through the isotropic-nematic transition, the orientational order
parameter and the elastic strain vary rapidly but smoothly, without the expected first-order discontinuity. This
broadening of the phase transition is an important issue for applications of liquid-crystalline elastomers as
actuators or artificial muscles. To understand this behavior, we develop a lattice model of liquid-crystalline
elastomers, with local directors coupled to a global strain variable. In this model, we can consider either
random-bond disorder(representing chemical heterogeneity) or random-field disorder(representing heteroge-
neous local stresses). Monte Carlo simulations show that both types of disorder cause the first-order isotropic-
nematic transition to broaden into a smooth crossover, consistent with the experiments. For random-field
disorder, the smooth crossover into an ordered state can be attributed to the long-range elastic interaction.
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I. INTRODUCTION

Liquid-crystalline elastomers are complex materials con-
sisting of cross-linked polymer networks covalently bonded
to long, rigid, liquid-crystalline units[1–3]. Because of this
unusual structure, they combine the elastic properties of rub-
bers with the anisotropy of liquid crystals. Any distortion of
the polymer network affects the orientational order of the
liquid crystal, and, likewise, any change in the magnitude or
direction of the orientational order influences the shape of
the elastomer. These materials have a low-temperature nem-
atic phase, with long-range orientational order in the liquid-
crystalline units, and a high-temperature isotropic phase,
with no long-range orientational order. Near the isotropic-
nematic transition, a small change in temperature induces a
large change in the orientational order, which causes the elas-
tomer to extend or contract substantially. This thermally in-
duced extension and contraction enables liquid-crystalline
elastomers to be used as actuators or artificial muscles[4–6].

A key issue for basic and applied research on liquid-
crystalline elastomers is understanding the isotropic-nematic
transition. In conventional liquid crystals of small molecules,
this is a first-order transition, with a discontinuity in the mag-
nitude of the orientational order as a function of temperature.
By contrast, experiments on liquid-crystalline elastomers
show that both the orientational order and parameter and the
elastic strain vary rapidly but smoothly across this transition,
with no first-order discontinuity[4–10]. Apparently the ex-
perimental behavior is neither a first- nor a second-order
transition, but rather a nonsingular crossover between the
isotropic and nematic phases. Although the transition is sharp
enough for applications, it is puzzling from the theoretical
point of view. We would like to explain the broadening of
this phase transition in liquid-crystalline elastomers, com-
pared with the analogous transition in conventional liquid
crystals.

In a previous paper[11], we considered two possible ex-
planations for this broadening. The first possibility is that

some aligning stress shifts the transition past a mechanical
critical point [12], like a liquid-gas transition at high pres-
sure. This aligning stress might arise from an applied tensile
stress on the sample or from an anisotropic internal stress
due to cross-linking an elastomer in the nematic phase. The
second possibility is that the transition is broadened by
heterogeneity in the elastomer. In particular, we considered
heterogeneity in the local isotropic-nematic transition
temperature.

To assess these two possible explanations, we measured
the elastomer strain as a function of temperature over a range
of applied tensile stress. We used elastomer samples cross-
linked in the nematic phase, which should have a large an-
isotropic internal stress imprinted by the cross-linking pro-
cess, and samples cross-linked in the isotropic phase, which
should not have an anisotropic internal stress. By analyzing
the experimental data, we found three indications that the
broadening of the phase transition is caused by heterogene-
ity. First, the slope of strain versus temperature at the transi-
tion does not depend sensitively on the applied stress, in
contrast with the prediction for homogeneous elastomers.
Second, the broadening occurs even for samples cross-linked
in the isotropic phase. Third, the data for strain versus tem-
perature could not be fit well by the predictions of Landau
theory for homogeneous elastomers, but could be fit much
better by the homogeneous theory convolved with a hetero-
geneous distribution of transition temperatures.

Although our previous study showed the importance of
heterogeneity for the isotropic-nematic transition in liquid-
crystalline elastomers, this study still leaves two open ques-
tions. The first issue is the distribution of local strains. The
previous theory considered an average over local regions
with different transition temperatures. At any given tempera-
ture, these regions have different local nematic order param-
eters and different local strains. It is not clear how regions
with different local strains can fit together. The second issue
is the type of heterogeneity. The previous theory considered
a distribution of the local transition temperature, which could
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arise from chemical heterogeneity in an elastomer. This type
of heterogeneity would be regarded theoretically asrandom-
bonddisorder. It is not the only possible type of heterogene-
ity. Another possibility is a distribution of local stresses,
which could arise from local orientational order in different
directions at the time of cross-linking. This possibility would
be regarded theoretically asrandom-fielddisorder. Several
recent papers have considered random-field disorder in
liquid-crystalline elastomers[13–18]. These studies have
shown that random fields strongly affect mechanical proper-
ties and correlation functions in the low-temperature nematic
phase. However, they have not made predictions for the ef-
fects of random-bond or random-field disorder on the
temperature-dependent isotropic-nematic transition.

The purpose of this paper is to develop a lattice model for
liquid-crystalline elastomers, which addresses these theoret-
ical questions about the isotropic-nematic transition. In this
model, we explicitly consider both orientational order and
elastic strain, as shown in Fig. 1. Orientational order is de-
scribed by a nematic director, which is defined on each site
of a three-dimensional(3D) lattice, as in the Lebwohl-Lasher
model of liquid crystals[19]. By contrast, elastic strain is
defined by a single global lattice distortion variable. Because
the strain is assumed to be uniform, there is no problem of
fitting together regions with different strains. In this model,
we can consider either random-bond or random-field disor-
der. Random-bond disorder enters the model as a variation in
the strength of the local coupling constant between local di-
rectors on neighboring lattice sites, which implies a variation
in the local transition temperature. By comparison, random-
field disorder enters the model as a variation in the direction
of an aligning field that acts on each local director, which
implies a local stress on the elastomer. Both types of disorder
arequenched, meaning that they are fixed and cannot evolve
toward equilibrium.

Our study leads to four main results. First, we derive a
new theoretical formalism for liquid-crystalline elastomers,
which translates the Warner-Terentjev neoclassical rubber
elasticity [1–3] into a lattice Hamiltonian for interacting di-
rectors and strain. Second, we use Monte Carlo simulations
to determine the orientational order parameter and elastic
strain of a homogeneous elastomer as a function of tempera-
ture and applied stress. These simulations show that the ho-
mogeneous elastomer has a mechanical critical point, as ex-
pected from Landau theory. Third, we simulate an elastomer
with random-bond disorder and find a broadening of the
isotropic-nematic transition in both the orientational order

and the strain. This result is consistent with experimental
data for liquid-crystalline elastomers. Fourth, we simulate an
elastomer with random-field disorder and find that the tran-
sition is also broadened in this case, consistent with experi-
ments, provided that the random field strength is in the right
range. The result for the random-field system is surprising,
because random fields generally destroy long-range order
rather than broadening a transition to an ordered state. We
attribute this result to an effective long-range interaction me-
diated by the elastic strain.

The plan of this paper is as follows. In Sec. II we work
out the theoretical formalism, leading to an explicit lattice
Hamiltonian that can be simulated. In Sec. III we present the
simulations for homogeneous, random-bond, and random-
field elastomers and give numerical results for the isotropic-
nematic transition in each case. In Sec. IV we discuss these
numerical results and compare them with experiments and
with other theoretical studies of quenched disorder.

II. MODEL

In order to simulate the isotropic-nematic transition in
liquid-crystalline elastomers, we need a mathematical model
for the interacting orientational and elastic degrees of free-
dom. In this model, we define a local nematic directorni on
each sitei of a 3D cubic lattice. As in a conventional liquid
crystal, the directorni is equivalent to −ni. The directors
interact with a global lattice distortion tensorl, which rep-
resents the overall shape of the sample. A schematic view of
the directors and lattice distortion is shown in Fig. 1.

The Hamiltonian for this lattice model can be written as

F = o
ki,jl

Finteractionsni,n jd + o
i

Felasticsni,ld. s1d

The first term in Eq.(1) is an interaction that favors align-
ment of the directors on neighboring lattice sitesi and j . As
in the Lebwohl-Lasher model, this interaction can be written
explicitly as

Finteractionsni,n jd = − Jijsni ·n jd2, s2d

whereJij .0 is the local bond strength, which may be either
uniform or disordered. The second term in Eq.(1) is an elas-
tic term that couples the director orientation at lattice sitei
with the shape of the polymer chains, which are determined
by the overall lattice distortion tensorl. This term should
favor alignment of the directors along an orientation deter-
mined by the lattice distortion and, conversely, favor a lattice
distortion in an orientation determined by the directors.

To develop an explicit expression for this elastic term, we
use an argument based on the neoclassical rubber elasticity
of Warner and Terentjev[1–3]. In their theory, they derive
the general formula

Felastic=
m

2
FTrsø0 · lT · ø−1 · ld + lnSdetø

a3 DG , s3d

where m is the shear modulus,l is the lattice distortion
tensor,ø is the shape tensor of the polymer chains,ø0 is the
shape tensor at the time of cross-linking, anda is the average

FIG. 1. Schematic illustration of the lattice model for the
isotropic-nematic transition in liquid-crystalline elastomers. In the
isotropic phase, the directors are disordered, and there is no strain.
In the nematic phase, the directors are ordered along one axis, and
the material is extended with strain along that axis.
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polymer step length. They further work out a specific expres-
sion for the shape tensor in the freely jointed chain model.
That specific expression is not appropriate for a lattice
Hamiltonian, because it is based on aglobal average over a
system withimperfectnematic order. By contrast, in a lattice
model, there is a director on each lattice site, which repre-
sentsperfect localorientational order alongni at sitei. Any
imperfect long-range order must emerge spontaneously from
simulations of the interacting system. Hence, we should con-
struct a local shape tensorøi for site i, derived from the
directorni, which will enter into the trace formula of Eq.(3).

To construct the local shape tensorøi, we first consider a
coordinate system aligned along the directorni, in which øi
is diagonal. In that coordinate system, we have

øi
−1 = 1,'

−1 0 0

0 ,'
−1 0

0 0 ,i
−12 , s4d

where ,' and ,i are the anisotropic polymer step lengths
favored by the local mesogenic unit. In a general coordinate
system, the shape tensor components become

,i,ab
−1 = ,'

−1dab + s,i
−1 − ,'

−1dni,ani,b. s5d

A similar argument gives an explicit expression for the
lattice distortion tensorl. Suppose the lattice is uniformly
strained along the axism. In a coordinate system aligned
with this strain axis, we have

l = 1l−1/2 0 0

0 l−1/2 0

0 0 l
2 , s6d

wherel is the distortion factor—i.e. the strained length nor-
malized by the original length of the sample, which is related
to the straine by l=1+e. In a general coordinate system, the
distortion tensor components become

lab = l−1/2dab + sl − l−1/2dmamb. s7d

The third tensor required for neoclassical rubber elasticity
is the shape tensorø0 at the time of cross-linking. For now,
suppose the system is cross-linked in a totally disordered
state, with no long-range or even local orientational order. In
that case, a reasonable model forø0

−1 is the isotropic average
of ø−1. This average gives the tensor components

,0,ab
−1 = a−1dab, s8d

wherea−1=s2,'
−1+,'

−1d /3.
To determine the elastic term in the lattice Hamiltonian,

we substitute the tensor expressions(5), (7), and(8) into the
general formula of Eq.(3). In this substitution, we note that
detø is constant becauseø represents perfect local orienta-
tional order at a specific lattice site. Hence, the determinant
term adds an unimportant constant to the Hamiltonian, and
we can neglect it. After some algebra, the trace term leads to

Felasticsni,ld

=
m

2
Fsl2 + 2l−1d − gsl2 − l−1dS3

2
sm ·nid2 −

1

2
DG .

s9d

In this expression, the first term is the classical elastic free
energy for conventional isotropic elastomers and the second
term represents the anisotropy of liquid-crystalline elas-
tomers. As expected, the second term shows a coupling be-
tween the elastic strain and the director orientation. When the
lattice is strained, each local directorni tends to align along
the strain axism, with an aligning potential that increases as
the distortionl increases above 1. Conversely, when the di-
rectors are aligned, the lattice tends to extend along the av-
erage director. The strength of the coupling depends on the
parameter

g =
2,'

−1 − 2,i
−1

2,'
−1 + ,i

−1 , s10d

which represents the difference in polymer step lengths par-
allel and perpendicular to the local director. This parameter
expresses the anisotropy of the local mesogenic units and
controls how the local director interacts with the strain. It
ranges from 0(in the isotropic case,i=,') to 1 (in the
maximally anisotropic limit,i @,').

We must now consider the possibility of symmetry-
breaking fields acting on the elastomer. Symmetry-breaking
fields can arise from two possible sources. The simplest pos-
sibility is a uniform stresss applied to the elastomer. Such a
stress couples to the straine or, equivalently, to the distortion
l=1+e and gives an additional contribution to the Hamil-
tonian of −sl for each lattice site. A more subtle possibility
is a symmetry-breaking field quenched into the local shape
tensorø0 at the time of cross-linking. If the system has long-
range order at the time of cross-linking, thenø0 is anisotropic
with a single principal axisn0 at all lattice sites. If the system
has short-range order at the time of cross-linking, thenø0

i is
anisotropic with a different principal axisn0

i at each lattice
site i.

In principle, we can incorporate the long- or short-range
anisotropy ofø0

i into the model by writing a general expres-
sion for this tensor and substituting it into the trace formula
of Eq. (3). The detailed calculation is not algebraically trac-
table, but by symmetry we can see that the tensor compo-
nents,0,ab

i must involve a combination of the isotropic ten-
sor dab and the anisotropic tensorn0,a

i n0,b
i at site i. The

anisotropic term acts as an effective field on the directorni,
with a coupling of the form −shi ·nid2. The direction ofhi is
the local quenched-in axisn0

i , and the magnitude ofhi scales
with the magnitude of the local quenched-in nematic order.

By combining Eq. (2), Eq. (9), and the effects of
symmetry-breaking fields, we obtain the final expression for
the lattice Hamiltonian:
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F = − o
ki,jl

Jijsni ·njd2 + o
i
Fm

2
sl2 + 2l−1d

−
mg

2
sl2 − l−1dS3

2
sm ·nid2 −

1

2
D

− sl − shi ·nid2G . s11d

In this Hamiltonian, the statistical variables are the director
ni on each lattice sitei and the overall lattice distortionl. We
can assume that the distortion axism is aligned with the
principal axis of the director distribution.

This model of Eq.(11) can describe uniform elastomers or
elastomers with quenched random-bond or random-field dis-
order. Uniform elastomers are represented by a bond strength
Jij =J independent of position and by a local fieldhi =0. In
this case, the system can have an isotropic-nematic transition
with a transition temperatureTIN that depends onJ. Random-
bond elastomers are represented by a bond strengthJij that
depends on the position of the lattice sitesi and j . We can
regard this variation in the bond strength as a variation in the
local TIN, which could be caused by chemical heterogeneity
in the elastomer. Random-field elastomers are represented by
a local fieldhi that varies randomly with position. This varia-
tion models randomness in the local orientational order at the
time of crosslinking, which gives heterogeneous local
stresses on the elastomer. We can now perform simulations
to study the isotropic-nematic transition in each scenario.
These simulations are presented in the following section.

III. SIMULATIONS

We simulate the model of Eq.(11) using the Monte Carlo
method. We run the simulations on a 3D cubic lattice with
periodic boundary conditions. We use a 3D rather than a 2D
lattice, even though the simulations take longer in 3D, in
order to avoid a 2D Kosterlitz-Thouless transition[20]. We
normally use a lattice of size 36336336. However, we
have run a limited number of simulations on a larger lattice
of size 48348348, for the uniform, random-bond, and
random-field cases, and the results are generally consistent.
In the simulations, we take the uniform or average value of
the bond strengthJij to be 1 and the shear modulusm to be 1.
These parameters define a scale for the temperature. We let
the anisotropy parameterg have its maximum value of 1, in
order to see the greatest coupling between orientational order
and elastic distortion.

In each Monte Carlo step of the simulations, we attempt
one local director rotation per lattice site and one change in
the overall elastic distortionl. At each temperature, we
equilibrate for 3000 Monte Carlo steps and then collect data
for 2000 Monte Carlo steps. This number of steps is suffi-
cient to reach equilibrium at all temperatures except for cer-
tain cases of hysteresis, which are discussed below. From the
numerical data, we extract two parameters as functions of
temperatureT: the elastic distortionlsTd and the orienta-
tional order parameterSsTd, which is defined as the largest
eigenvalue of the tensorQab=k 3

2ni,ani,b− 1
2dab

l, averaged

over lattice sitesi. That parameter represents the degree of
ordering of the local directors along an average axis.

We begin with the local directors in a disordered configu-
ration and then cycle the temperature downward and back
upward, using the ending configuration at one temperature as
the starting point for the next. This temperature cycling mim-
ics the procedure in typical experiments and provides an ex-
plicit test for hysteresis. For most parameter sets, we vary the
temperature from 0.9 to 0.8 and back in steps of 0.05, for a
total of 41 runs over the temperature range. Each temperature
cycle requires approximately 48 h on a single processor of
the Huinalu linux supercluster at the Maui High Performance
Computing Center.

Because the temperature cycle gives two runs at each
temperature(except the lowest), we can assess whether each
run shows a stable, metastable, or unstable state. To test for
unstable states, we check whether the order parameterS has
stabilized by fitting it as a linear function of the Monte Carlo
step number over the final 2000 steps at each temperature.
We identify a state as unstable and remove it from our results
if the absolute value of the slope exceeds a threshold. In
practice, we find that the threshold of 3.2310−5 eliminates at
most two runs from each temperature cycle, one on cooling
and one on heating. To test for stability versus metastability,
we compare the values ofS for cooling and heating runs at
the same temperature. If these values are within six standard
deviations of each other, we assume they represent the same
stable state, so we average the two runs to obtain one data
point with improved statistics. If not, we assume that one
state is stable and the other metastable, so we report both in
our results.

A. Uniform elastomers

For an initial series of simulations, we consider uniform
elastomers, with no randomness in the bonds(all Jij =1) and
no random fields(all hi =0). The numerical results for these
simulations are shown in Fig. 2. For zero applied stresss,
the system has a first-order transition with hysteresis be-
tween the high-temperature isotropic phase and the low-
temperature nematic phase. On cooling, the orientational or-
der parameterSsTd jumps from 0.05 to 0.62 and the lattice
distortionlsTd jumps from 1.01 to 1.22(1%–22% strain), at
a scaled temperature of 0.81. On heating,SsTd jumps from
0.47 to 0.02 andlsTd jumps from 1.13 to 1.00(13%–0%
strain), at a scaled temperature of 0.85. The large jumps in
both of these order parameters and the width of the hysteresis
region show the strong first-order character of the transition.

When a symmetry-breaking stress is applied to the uni-
form elastomer, the phase transition changes drastically. An
applied stress increases both order parametersSsTd andlsTd
for all temperatures. As the stress becomes larger, the transi-
tion temperature increases, the first-order jumps in the order
parameters decrease, and the hysteresis region becomes nar-
rower. At a critical value of the stress between 0.06 and 0.08,
the first-order jumps vanish and the hysteresis goes away.
Beyond that stress, the system shows a smooth supercritical
evolution between the high-temperature disordered limit and
the low-temperature ordered limit. As the stress continues to
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increase, this supercritical evolution becomes increasingly
broad. This trend with increasing stress is consistent with the
prediction of de Gennes based on symmetry considerations
[12]. It is analogous to the critical point in the liquid-gas
transition under high pressure.

The simulations show that the orientational order param-
eter SsTd and the elastic strainesTd=lsTd−1 have roughly
the same dependence on both temperature and applied stress.
The linear scaling betweenSsTd andesTd is consistent with
the prediction based on symmetry considerations.

We note that the smooth evolution ofSsTd and esTd be-
yond the mechanical critical point agrees with experiments
on the isotropic-nematic transition in liquid-crystalline elas-
tomers. However, as discussed in the Introduction, our pre-
vious paper found experimental indications that the
isotropic-nematic transition is smooth even if an elastomer is
not under a supercritical stress[11]. For that reason, we need
to look for other mechanisms to broaden this transition.
Hence, we consider random-bond and random-field disorder
in the following sections.

B. Random bonds

To simulate disordered systems, we first consider elas-
tomers with variations in the local bond strength. We let the

parametersJij of Eq. (11) be quenched random variables,
which are fixed at the beginning of the simulation and do not
change in response to the statistical evolution of the directors
and the lattice distortion. We suppose that the variation ofJij
occurs in blocks, as shown in Fig. 3(a). Within each block,
Jij has a uniform value from a Gaussian distribution with
mean 1. From block to block, there are no correlations inJij .
Both the width of the Gaussian distribution and the size of
the blocks are parameters for the model, which are discussed
below. Because the isotropic-nematic transition temperature
depends on the bond strength, this model represents an elas-
tomer with blocks of different local transition temperature
TIN. This could occur if the elastomer is chemically hetero-
geneous, with different compositions in different local
regions.

In Fig. 4(a), we show the results for varying the magni-
tude of the disorder—i.e. the standard deviation of the
Gaussian distribution ofJij—for the fixed block size 12

FIG. 2. (Color online) Plots of the orientational order parameter
SsTd and the elastic distortionlsTd for a homogeneous elastomer
under several values of the applied uniform stresss. At zero stress,
both plots show a first-order isotropic-nematic transition with a
large hysteresis. As the stress increases, the first-order discontinuity
decreases and then vanishes as the system passes through a
mechanical critical point. Temperature is in units of the bond
strengthJ.

FIG. 3. Schematic view of the block structure in the simulations
with quenched disorder.(a) Random bond strength.(b) Random
field orientations.

FIG. 4. (Color online) Orientational order parameterSsTd for
simulations of elastomers with random-bond disorder.(a) Varying
magnitude of disorder, with fixed block size 12312312. (b) Vary-
ing block size of disorder, with fixed magnitude ±20%. As the dis-
order magnitude and block size increase, the transition is broadened
into a smooth crossover between the isotropic and nematic limits.
Temperature is in units of the average bond strengthJij .
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312312. To save space, we show only the plots of the
orientational order parameterSsTd, because the correspond-
ing plots of the lattice distortionlsTd look quite similar. For
weak disorder of ±5%, the system has a strong first-order
isotropic-nematic transition, which is almost identical to the
result for no disorder. Clearly the orientational order can av-
erage over this weak disorder strength. For a larger disorder
of ±10%, there is still a first-order transition, but the first-
order discontinuity inSsTd is smaller, and the width of the
hysteresis region is greatly reduced. When the disorder
reaches ±15%, there is no longer a first-order discontinuity
nor a hysteresis loop. Instead, the material evolves rapidly
but smoothly between the isotropic and nematic limits as a
function of temperature. For an even larger disorder of
±20%, the transition becomes even broader, with a reduced
slope inSsTd.

Figure 4(b) presents the results of varying the block size
for a fixed disorder magnitude of ±20%. For the large block
size 12312312 discussed above, or even for block size 6
3636, the random-bond disorder causes a smooth evolu-
tion between the isotropic and nematic states. However, for a
reduced block size of 33333, there is a first-order
isotropic-nematic transition, with a small first-order discon-
tinuity and small hysteresis. If the block size is reduced to
13131—i.e., each block is a single lattice site—then the
system has a strong first-order transition. Although the disor-
der strength is quite large, the result for block size 131
31 is almost identical to the result for no disorder. Hence,
reducing the block size is effectively equivalent to reducing
the magnitude of disorder. The orientational order can aver-
age over small blocks of large disorder, just as it averages
over large blocks of small disorder.

The results of this section show that random-bond disor-
der can change the nature of the isotropic-nematic transition
in liquid-crystalline elastomers, provided that the magnitude
and length scale of the disorder are sufficiently large. If those
conditions are satisfied, then the orientational order param-
eterSsTd undergoes a continuous change from a low value in
the high-temperature isotropic limit to a large value in the
low-temperature nematic limit. The lattice distortionlsTd
goes through a corresponding smooth evolution. Thus, this
type of disorder provides one mechanism to explain the ex-
perimental results.

C. Random fields

As an alternative to random bonds, quenched disorder
might affect liquid-crystalline elastomers through random
fields coupling to the local directors. To simulate random-
field effects, we let the fieldshi of Eq. (11) be quenched
random variables and let the bond strengthsJij be fixed at 1.
We suppose that the fieldshi have a fixed magnitudeh and
random orientation. As in the random-bond case, we suppose
that the randomness occurs in blocks, as shown in Fig. 3(b).
The random orientation is uniform at every site within a
block, and it has no correlations from block to block. The
magnitudeh of the random field and the size of the blocks
are thus two parameters for this model. Note that this model
represents an elastomer with different preferred orientations

of the local director in different blocks. This could occur if
the crosslinking process quenches heterogeneous local
stresses into the polymer network.

Simulation results for several values of the random-field
strengthh at fixed block size 12312312 are presented in
Fig. 5(a). For a small random fieldh=0.2, the system has a
first-order isotropic-nematic transition, which is fairly close
to the result for no disorder. For a slightly larger random field
h=0.3, the magnitude of the first-order discontinuity and the
width of the hysteresis region are both reduced. Forh=0.4,
the first-order transition is much weaker, and the system is
close to the smooth crossover between the isotropic and
nematic phases seen in the previous two sections. However,
for a larger random fieldh=0.8, the behavior is quite differ-
ent. Instead of broadening the isotropic-nematic transition,
the random field simply destroys the long-range nematic or-
der in an athermal way. In that high-field limit, each local
director is just aligned with its local random field, giving a
slight residual order parameterSsTd that is approximately
independent of temperature.

Figure 5(b) shows the simulation results for several values
of the block size at the fixed random-field strengthh=0.4. As
in the random-bond case, varying the block size has the same
effect as varying the random-field strength. For small block
size, the system has a first-order transition that is very close
to the result for no disorder. This behavior shows that the

FIG. 5. (Color online) Orientational order parameterSsTd for
simulations of elastomers with random-field disorder.(a) Varying
magnitude of random field, with fixed block size 12312312. (b)
Varying block size, with fixed random-field strengthh=0.4. As the
random-field strength and block size increase, the transition is
broadened and then the ordered nematic phase is destroyed. Tem-
perature is in units of the bond strengthJ.
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orientational order averages over small blocks of strong ran-
dom field. For larger block size, the phase transition gradu-
ally changes toward a smooth crossover between the isotro-
pic and nematic limits. Analogous simulations forh=0.8(not
shown) demonstrate that increasing the block size takes the
system from a strong first-order transition toward a limit in
which orientational order is destroyed for all temperature.

Overall, the simulations presented in this section show
that random fields can have two distinct effects on the
isotropic-nematic transition in liquid-crystalline elastomers.
Low random-field disorder broadens the isotropic-nematic
transition, but high random-field disorder destroys the nem-
atic phase in a temperature-independent way. The results for
low random-field disorder are consistent with experiments on
liquid-crystalline elastomers, but the results for high random-
field disorder show a very different type of behavior.

IV. DISCUSSION

In this paper, we have investigated three possible mecha-
nisms to explain the broadening of the isotropic-nematic
transition in liquid-crystalline elastomers. The first mecha-
nism is a stress that couples to the strain and hence to the
nematic order. Our simulations show that a small stress re-
duces the first-order discontinuity in the isotropic-nematic
transition and a critical stress causes this discontinuity to
vanish. Beyond that point, the elastomer has a smooth cross-
over between the isotropic and nematic limits as a function
of temperature. Hence, a supercritical stress gives the same
general trend as the experiments. However, our previous pa-
per found evidence that the smooth isotropic-nematic transi-
tion does not require a supercritical stress[11]. In particular,
a smooth transition is seen even in elastomers cross-linked in
the isotropic phase, even under the minimum applied stress
required for the experiment, conditions in which a supercriti-
cal stress is unlikely to occur.

An alternative possibility to explain the broadened transi-
tion is quenched disorder in the elastomer. One specific
mechanism to generate quenched disorder is chemical het-
erogeneity, which can be represented by random bonds in a
lattice model. Our simulations show that random-bond disor-
der can broaden the isotropic-nematic transition into a
smooth crossover, if the magnitude and length scale of the
disorder are large enough. This numerical result is consistent
with theoretical work on generic random-bond systems by
Imry and Wortis[21], which argued that weak random-bond
disorder should reduce the first-order discontinuity in a tran-
sition and larger disorder should eliminate the discontinuity
completely. It is also consistent with other simulation studies
of the isotropic-nematic transition in systems of small mol-
ecules with quenched random impurities[22,23]. Thus,
random-bond disorder provides a plausible mechanism to ex-
plain experimental results on liquid-crystalline elastomers.

Another type of quenched disorder is heterogeneous local
stresses, which can be represented by random fields in a
lattice model. In general, random fields have stronger effects
on ordered phases and phase transitions than random bonds.
In our simulations, we find that low random-field disorder
broadens the isotropic-nematic transition, consistent with the

experiments, but high random-field disorder destroys the
nematic phase over all temperatures.

Our random-field simulation results are surprising in com-
parison with theoretical expectations for random-field sys-
tems. In classic work on quenched disorder, Imry and Ma
[24] showed that arbitrarily small random fields should de-
stroy long-range order in adiscreteorder parameter(such as
an Ising model) for spatial dimension less than 2 and destroy
long-range order in acontinuousorder parameter for spatial
dimension less than 4. In our case, the nematic order param-
eter is continuous and the spatial dimension is 3. Hence, the
Imry-Ma argument implies that random fields should destroy
nematic order. The simulations of high random fields show
this effect, but the simulations of lower random fields show a
broad isotropic-nematic transition, which is a very different
effect.

One might ask whether this behavior results from an
Imry-Ma domain size that is large compared with the size of
the simulation cell. To answer that question, we can estimate
the Imry-Ma domain size. In the Imry-Ma argument, do-
mains form with a characteristic sizej such that the bound-
ary energy equals the field energy. In our 3D system of con-
tinuous directors, the boundary energy is of orderJj. To
estimate the field energy, recall that we are simulating blocks
of sites with the same random field, as shown in Fig. 3. Let
b be the linear size of a block. The field energy for a single
block is of orderoblockshi ·nid2<h2b3, and the number of
blocks per domain is of ordersj /bd3. As a result, the field
energy for a domain is of ordersh2b3dsj /bd3/2<h2b3/2j3/2.
This argument implies that increasing the block size causes
the random field to be more effective, as is seen in the simu-
lations. Comparing the boundary energy with the field energy
gives an Imry-Ma domain size ofj<J2/ sh4b3d. For the
simulated valuesJ=1, h=0.4, andb=12, this size is less than
1 lattice unit, much less than the system size. Thus, the be-
havior in our simulations does not arise from a large
Imry-Ma domain size.

We suggest that the new behavior in our simulations
arises from the coupling between the local directors and glo-
bal elastic strain variable. The Imry-Ma prediction is based
on an analysis of the energetics of local ordered domains.
This analysis assumes a short-range interaction in the order
parameter. By contrast, in our model for liquid-crystalline
elastomers, the local director at any lattice site interacts with
the global elastic strain, which in turn interacts with the local
director at every other lattice site. Hence, the elastic strain
mediates an effective long-range interaction between local
directors on different sites. This changes the assumptions in
the Imry-Ma theory and hence allows a broad isotropic-
nematic transition over a range of random-field strength.

For a specific numerical test of this suggestion, we per-
form simulations of a simplified modelwithout the global
elastic strain variable. The Hamiltonian for this model con-
sists only of the interaction of Eq.(2) plus the random fields
acting on the local directors. In this case, the interaction is
purely short-range, so the Imry-Ma argument should apply.
Indeed, the simulations show that random fields simply de-
stroy the nematic order and do not induce a broad isotropic-
nematic transition. This confirms the concept that a broad
transition is a new effect arising from a strain-mediated long-
range interaction.
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In a realistic system, the elastic strain-mediated interac-
tion is not infinite-range, as in our model. However, elastic
interactions do have a power-law form, and hence they can
have long-range effects. In a recent renormalization-group
study, Xing and Radzihovsky[18] have assessed the effects
of elastic interactions on liquid-crystalline elastomers with
random fields. They find that elastic interactions cause the
nematic order to be robust against the disordering effect of
random fields. Through a power-law expansion about spatial
dimensionality 5, they estimate that nematic order can be
stable down to a critical dimension well below 3. This is
apparently the same stabilization that we see numerically.
Thus, our simulation shows the consequence of this stabili-
zation for the temperature-dependent isotropic-nematic tran-
sition. It is interesting to note that similar considerations of
disorder and long-range elasticity have been seen in models
for magnetic phase transitions in colossal magnetoresistance
materials[25].

In conclusion, we have developed a lattice model of the
isotropic-nematic transition in liquid-crystalline elastomers.

The model considers a local directors coupled to a global
elastic distortion variable and allows both random-bond and
random-field disorder. Through Monte Carlo simulations of
this model, we find that a uniform elastomer has a mechani-
cal critical point, that both random-bond disorder and low
random-field disorder broaden the isotropic-nematic transi-
tion, and that high random-field disorder destroys the nem-
atic phase. The model therefore confirms that the width of
the isotropic-nematic transition can be controlled by hetero-
geneity in liquid-crystalline elastomers.
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