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Liquid-crystalline Casimir effect in the presence of a patterned substrate
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We consider a nematic liquid crystal confined by two parallel planar interfaces, one being laterally homo-
geneous and the other provided by a substrate endowed with a periodic chemical stripe pattern. Based on
continuum theory we analyze the influence of the lateral pattern on the liquid-crystalline Casimir force acting
on the interfaces of the nematic cell at distadcgue to the thermal fluctuations of the nematic director. For
d much larger than the pattern periodicity, the influence of the patterned substrate can be described by a
homogeneous, effective anchoring energy. By tuning this parameter we recover previous results for the liquid-
crystalline Casimir force. For the general case, i.e., smaller separations, we present numerical results.
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[. INTRODUCTION liquid-crystalline mediated effective interaction between the
o ) - ) ~ confining interfaces due to the thermal fluctuations of the
Liquid crystals in general are sensitive over a wide spatialjirector adds to background contributions due to structural
range to the anchoring conditions of confining interfacesforces arising from presmectic layerin@1-23 and en-
This holds also for lateral variations of anchoring conditionshanced ordering near the substrai2$] and due to disper-
generated either by surface topografhy-7] or patterning  sion forces[24] which exhibit only a weak temperature de-
[8—-19 giving rise to numerous possible applications. In re-pendence.
cent years, the influence of the structured substrates on the Using the continuum Frank free energy, we study the
properties of liquid crystals has been studied and it has beeftuctuation-induced interaction—the so-called liquid-
demonstrated that to a certain extent such nontrivial geomerystalline Casimir effect—between two parallel interfaces
etries may optimize the performance of electro-opticalwhere one is periodically patterned and the other one is ho-
liquid-crystalline devices. For instance, a four-domainmogeneous. We consider a periodicity in the local anchoring
twisted nematic liquid crystal display provides a wide view- €nergy and model the liquid crystal-substrate interaction by
ing angle with no gray scale inversi¢h9] and using multi-  the Rapini-Papoular surface free energy. We investigate the

stable nematic liquid-crystal devices with micropatternedmedification of the fluctuation-induced force compared with
substrate alignments reduces the energy consumptio' behavior for substrates with uniform anchoring conditions

[4,6,13,15. [25] as a function of the pattern periodicityand the char-

The influence of the anchoring on the liquid crystal orderaCteriStiC length of the patterg), (see Fig. 1.

. S . Two model systems are considered. One consists of a sub-
parqn"!eter_ translates mt_o an effective mtt_aractlon between théetrate with a pattern characterized by homeotropic anchoring
confining interfaces which may be provided either by true

lid sub b d h h of alternating strengths facing a second substrate at a dis-
solid substrates or by an adjacent vapor phase wnere trlg'mced which is characterized by a uniformly strong homeo-

former case can support permanent .Iateral §tructures. He[POpic anchoring. For this system the mean director is con-
we consider liquid crystals deep in their nematic phase Wherg,,nt ot any separation. By changing the boundary condition
the orientational order is described by a director field W'thvia the change of the patterning ratig/¢, the character of

Iong—ranr?ed corre_fti((j)nsl.. In the cafsehof bar;z mi(sjmatch bt?the force changes. Depending on whether the boundaries are
tween the prescribed alignment of the bulk and the su effectively similar-nonsimilar or similar-similar the force is

strates, the director structure may not be unlforr.n.' In such pulsive or attractive, respectively. For certain values of
case, the free energy of the system typically exhibits severa /¢ and of the reduced distanc¢, the liquid-crystalline

rr}e';]astable, m|n|mahwh|cL1 ufplon E_cl?ange in the [)Iaramete asimir force vanishes. In the second system the pattern con-
of the system—such as the film thickness, external, or intergjqiq f alternating stripes of homeotropic and degenerate
nal forces—may turn into the global minimum resulting in a

" ) - planar anchoring while the upper substrate still exhibits
structural phase transitiof20]. This makes the stability of strong homeotropic anchoring. In this case there is the pos-

the equmbrlumhco?(;lglt(ﬂatlon geo_mdetr?/] dependet?t._ In thisgipility of texture formation[16]. However, for separations
context one should keep in mind that perturbative apwmaier than a critical one the director structure is indeed

proaches may miss the occurrence of first-order structurgjpiqm [26]. For those ranges of the model parameters for
phase transition. We shall consider the case of frustrated SYSihich the director is constartsee Sec. Il B, we find a

tems in which, .h_owevgr, the dlrec_tor_ structure remains unis, s monotonic behavior for the fluctuation-induced force.
form up to a critical thicknesd,. Within such a regime the

There are several techniques that can be used to create
periodic anchoring conditions such as photoalignniést,
the selectively thiol-functionalized photo-orientatigt6],
*Electronic address: karimi@fluids.mpi-stuttgart. mpg.de and atomic force lithographpl1]. In the latter case pattern-
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1
Fs=-—f d % Wx)(n - €)%, 2
2J
I wherex=(x,y) denotes the lateral coordinates of Cartesian

coordinates =(x,z), A is the surface aredV is the anchor-

ing energy per area, and is the easy direction, i.e., the
preferred direction of the director at the substrat&\Vif-0.

For W< 0 the director prefers the direction perpendicular to
e. In the following we restrict the discussion to the case that
e is perpendicular to both substrates, which leads to homeo-
tropic anchoring forW>0 and to degenerat@.e., with no
preferred azimuthal anglglanar anchoring fokV<0.

On the lower substrate locatedzxt0, we assume that the
anchoring energy varies periodically along tkelirection.

FIG. 1. The geometry of the nematic cell with cross secion 1N€ pattern consists of alternating stripes of anchoring ener-
and volumeV=Ad. The upper boundary is characterized by strongdi€S per areaV, andW,. The substrate remains translation-
homeotropic anchoring. The lower substrate is patterned. The paglly invariant in they direction. On the upper substrate lo-
tern consists of periodic stripes of anchoring energies per\Wea cated atz=d we assume uniformly strong homeotropic
and W, with widths £, and ¢, respectively, so thaf=7,+¢,. The  anchoring[see after Eq(9)].
easy directiongsee Eq.(2)] at both boundaries are normal to the  In general, the local director field is given by
interfaces and we consider such values\fandW, for which the
thermal average of the director fiefg) is homogeneous. n(x,2) =Nng(x,2) + (x,2), 3)

where ng(x,z) is the thermal average of the director and
ing at the nanometer scale is reached which allows one té(x,2) is the fluctuating part with vanishing thermal average
investigate more efficiently the influence of the patterned $)=0.
substrate on the liquid crystal. The results of our study, for
example, might be helpful in designing thin patterned liquid
crystalline films for which the fluctuation-induced force
plays a role for the stability of the film. First we discuss the mean-field solutiog(x,z) of the
In Sec. Il we describe the system and the formalism origi-director field. In the case of homeotropic anchoring every-
nally introduced in Refs[27-3(Q that we apply for calculat- Where on the lower substrate, the uniform solutiop
ing the fluctuation induced effective interaction. In Sec. Il A=(0,0,1 is the equilibrium configuration. On the other
we investigate the force in the presence of a pattern of altehand, in the case of planar anchoring everywhere on the
nating anchoring strengths and in Sec. Ill B with a pattern ofower substrate, the liquid crystal is subject to competing
competing anchoring conditions. We present analytical resurface interactions at the top and the bottom. For this so-
sults for patterns of small and large scales and numericatalled hybrid cell—a cell with uniform homeotropic and uni-
results for patterns at intermediate scales. In Sec. IV we sunform planar anchoring on each substrate—it has been shown
marize our results. that the substrate whose anchoring is stronger can impose a
uniform director configuration up to a critical separation be-
tween the plate§33]. In the case of periodic pattern of ho-
1. SYSTEM AND THEORETICAL MODEL meotropic and planar anchoring on the subst(&tx. IlI B),
the full phase diagram of the system within mean field theory
We consider a liquid crystal in a nematic phase and con@nd the structural phase transition between a uniform direc-
fined by two parallel planar interfaces at a distancesee  tor configuration and a distorted one can be studied by means

energy[31] [14,26. However, one can naively expect that in this system

the tendency to form a uniform director field is enhanced
with respect to the hybrid cell due to the presence of the

A. Mean-field behavior

~ 3 ) ) interlaced homeotropic stripes. In the following we restrict
F= 2 d XKV -n)*+Ky(n -V Xn) the discussion to separations smaller than the critical separa-
v tion d; for which the director configuration is uniform and
+Ky(n X V xn)?, (1)  focus on the fluctuations.

. L . B. Fluctuations of the director
wheren denotes the director of the liquid crystal,is the vetat I

nematic volume, an&,K,, andK; are the splay, twist, and Next we consider fluctuations around the uniform director
bend elastic constants, respectively. The interaction betweeh=(0,0,1. Since the directon(x,2) is a unit vector the
the liquid crystal and the substrate is modeled by the Rapinifluctuations can be described by d=(d, 4, ~1
Papoular surface free ener§2] given by +\1-65-562)=(8,,8,,-8212-5}12), where §,(x,2) and
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8,(x,2) are the two independent components. According to=-(K/2)/y d® v(x,2)V2u(X,2). In terms of the so-called ex-
Eg. (1) and within the one-constant approximation, the bulktrapolation lengths., and A,

contribution to the statistical weight exg8H,,, [ n]) for a
director configurationn is given by Hyydn]=Hpud &I
+Hpud 8] with
K[ 2
Houd v] = 5 d*X[Vu(x,2]%, (4)
\Y

where 87 1=kgT is the thermal energy anld is the effective

K

—_—, 9
Wab)

Nap) =

the boundary conditioii8a) on the patterned substrate 0
reads A;(X,2)=-Apd,v(X,2)+(1+[(\p—No) /N Ja(x)) v(x,2)
=0. Assuming strong homeotropic anchorigre (\=0) at

elastic constanf34]. In the general case of an anisotropic {,o upper boundary, E@8b) leads to the Dirichlet boundary
elastic free energy, the Hamiltonian can be diagonalized i'&onditionAz(x 7=d) = v(x,z=d)=0.

terms of longitudinal and transverse componegisee Ref.
[25]): H[ vy, VZ]:%EiZ::LdeX[Ki(VL 1)?+K3(d,7)%] whereV |

As an aside, we note the relation between the present
model and those for surface critical phenomena. Rescaling

is the nabla operator with respect to the lateral coordinategye fluctuating field by</kgT, the Hamiltonian in Eq4) can
Consequently, for this case the result for the force as obgg \yritten as Hyl ] =kaT[y d %(Vgo)z and the surface

tained from Eq.(4) has to be multiplied by3(Ks/K;

interaction in Eqg. (7) is represented by Hd¢]

+K3/K,). Equation (4) amounts to considering Gaussian =kgT/ Ad 2X(c/2) 2, wherec=WIK is the inverse extrapola-

fluctuations, i.e., the Hamiltonian is quadraticiitx, z). This

tion length of the critical order parameter profile at a surface

is expected to give a qualitatively correct description of the[:ﬂ_ The limiting cases=2 andc=0 correspond to Dirich-
system except near an incipient structural phase transition.|et andy. Neumann boundary conditions, respectively. The

As a local contribution the surface interaction is evaluatedy|k Hamiltonian for a system close to the critical point also
at the interfaceg=0,z=d. The lower substrate is character- jc|udes the termér/2) ¢? and(u/24)&* of which the former

ized by the patterning function

ax)= >, @(x—kg+é>®<k§+é—x), (5)
k=—o0 2 2

whereO(x) is the Heaviside step functiod,is the periodic-

ity, £, is the width of the stripe characterized hYy,, and

{p={— {4 is the width of the stripe characterized By, (Fig.

1). The stripes form sharp chemical steps between them. The

function a(x) is one at the regions characterized by and

zero elsewhere. Accordingly, for this model the surface in-
teraction[Eq. (2)] disregarding constant terms is given by

HSUI’f[n] = HSUI“[ 6)(] + Hsuri{ 5)/] Wlth

HEY ] = %{Waf d 2 v(x,z= 0)]%a(x)
A

+ be d2{v(x,z=0)]q1 -a(x)] (6)
A

for the lower substrate. We assume homogeneous anchoring

on the upper boundary so that
1
HEY Y] = wa d 2 v(x,z=d)]?. (7)
A
Minimization of the HamiltonianH[v]=Hpl v]+HZov]
+HZ9v] leads to the following boundary conditions:

- Ka,v(x,2) + Wyr(x,2)a(x) + Wyr(x,2)[1 —a(x)] =0,
z=0, (8a)

(8b)

wherev is eitherd, or &,. After integration by parts in Eq4)
and using the boundary conditions given by E@a) and
(8b), the Hamiltonian H[v] reduces to H[v]

Kdv(x,z) + Wp(x,2) =0, z=d,

one vanishes at the critical point. In this sense the present
study corresponds to discussing, within the Gaussian ap-
proximation, a slab of a system at bulk criticality confined by
planar surfaces one of them endowed with a pattern of the
extrapolation length.

C. The fluctuation-induced force

We employ the path integral method introduced by Li and
Kardar for calculating the partition function of the system
[27,28 which amounts to integrate over all configurations of
the fluctuating field weighted by the Boltzmann factor and
subject to the boundary conditions. We impose the boundary
conditions by inserting delta functions into the path integral.
Thus the partition functioZ of the field v reads

Z= f Du(r)e VD] s[A,(x,z=0)]

X[ 8[Ax(x,z=d)] (10)

with the functional integral defined via a discretization on a
lattice {r,,} in the limit of a vanishing lattice constant
IDu(r) =11,/ [du(r,)/ 2] [36]. Using the integral repre-
sentation of the delta function

Ha[Aa(x)]:fD\Ifaexp(ifdzx‘lfaAa>, @=1,2,

(11

and performing the Gaussian integral over the fieldve
obtain
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2
Z=N J [ Dw, e e, (12)
a=1

where ¥ -, , are auxiliary fields defined a&=0 andz=d,
respectively,\V is a factor independent af, and the effective
interaction reads

2
Heff: E

d fo d X W, (x)M,, g(X, X)W 5(x"),
a,p=1

(13)

PHYSICAL REVIEW E70, 041701(2004

Ap—Aa

le(x,x’):<1+ a(x)—)\bﬁz) G(x-x',7

a

- Z)|z’:d,z:O*

Moa(X,X") = G(X,X", 2= 2')| ;=g (14)

whereG(r ,r’)=kgT/47K]r —r’| is the bulk two-point corre-
lation function in three dimensions defined by
(K/KgT)V2G(r =r")==8(r-r").

In the remaining part of this section we follow the method
introduced in Refs[29,30. Due to the symmetries in they
plane it is useful to switch to the Fourier transformed quan-

where M is regarded as a matrix both with respect to thetities. We note that if the patterning functiax)=1, i.e., for

indicesa,B and the coordinates,x’:

Mq4(X,x") = { {1 + %‘a(x)] {1 +%‘a(x’)}

a a

N Ap(Np = Np)

N [a(x) —a(x’)]d,

- Rﬁﬂi} G(x =Xx",2=Z)| =y,

a homogeneous substrdte,=\), the matrixM is diagonal
in the lateral Fourier spad@,q). However, here the pattern-
ing function is piecewise either one or zgkxq. (5)]. Due to
the periodicity of the patterning along thedirection, i.e.,
a(x)=a(x+¢), and the translational invariance along the
direction, the matrixM in the lateral Fourier spadel(p,q)
=[fd2x d2'M(x,x")éP*dd*' has the following form
[29,3Q:

M(p,q) = (2m)?8(py +dy) > N(Pxpy)

m=—o

A~ Ag
My, x")=| L+ ——a(x’ 2mm
) ( N xa(px+qx+%) (15)
- M:(%f) Gx-x",z- z’)|Fd,Z/:0, with the (2 X 2) matricesN,, given by
|
Ao = Nala\? ) Ap—Nad )
[<1+%‘§) —Aﬁfﬁ] G(p.2=2) =0+ 0 (u%‘f—xbaﬂ) G(p.2=2)|zaz-0
No = N ¢ (16)
(1 +on s —xb&z) G(p,Z = 2|20 G(p.2= 2|y
Na &
and
Ap— A Ap— A " Ap— A
=b_"ag [(1 + ué‘)G(p,z— 7)) +G(Pz- z’)} +dn 222, G(p,z- Z)| rqro
)\a )\a § z=7'=0 )\a '
N0 = o (17)
b)\ aam G(f)m: Z - Z) 7'=d,z=0 0
a
[
with p=pZ+pZ, Pm=1/(px+ 2mm/ )2+p}, the two-point cor- Ny = g |2 A
relation function in lateral Fourier space b= ()\—> > 3@ iG(P.0), (19
a k=—o0

keT )
G(p.z-7)= ipe-p‘ﬂ : (18)

and

where the prime at the summation sign indicates that in the
sum the ternk=0 is excluded. The patterning functiax)
is represented as a Fourier seris) =3,__.a&™¢ with
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1 (12 _ 1 even number of row and column permutatid29,3Q. We
= EJ dx ax)exp(— 2mikx/{) = —I(Sln(wké“a/é), take the system to be periodically extended with petiod
. 77 =N¢ along thex axis with N being an integer. This leads to

(20) momentap, that are integer multiples of#2/ L. For p, fixed
the factors (p,+qy+27m/ ) in Eq. (15) leads to nonvanish-

wherelL is the extension of the system along thdirection ~ ing matrix elements for atf, =—p,—27m/{ with me Z. This
(see Fig. 1. We mention that the patterning functiafix) is ~ allows one to identify the block structure of the mathk
coordinate dependent and the phase of the coefficignts For fixed j the momenta p,=2nj/L+27l/{ and q
depends on the choice of the position of the coordinate origifF —2j/L—2mk/{ form the blockM; wherel ke Z and j
used fora(x), but as expected the final result for the force =1....,N=L/{ so that there is no multiple counting of the
[Eq. (25)] is independent of this choice. We have checkedMomenta. One can read off the elements of the infinite-

this numerically. dimensional block matricest;(py,q,) from Eq.(15):
Each pair of the momentg,q) indicates one element of 27
the matrix M which is a(2x2) matrix itself [Eq. (15)]. M; ki(Py,Qy) = 27 5(py+qy)BkI<Tapy) (21

Although M has an infinite number of elements and is not
diagonal it can be brought into a block diagonal form by anwith the matrixB given by

or No(ps ~ %,py) N-1(pe,py) N-2(ps + &, py)
B(pxzfj’py) =1 - Nl(pz_zgvpy) No(szpy) N——l(pz‘l'sz,py) R I
N2(p£t - %E)py) Nl(p$7py) NO(p:t + 2%r)py)

(22
[
so that the matrix elemeit,, reads block structure ofM, we obtain In deM:In(H}\‘zldeth)
. . :EJ-N:lIn(deth). Thus the fluctuation-induced forcer
N Eua. 2mj | 27l =—o4F IsF=—(kgT/2)=N. Tr(M29,M ). The final re-
" Py | = Nkt + Pyl (23) 4F equals B i=1Tr(M;"dgM;). The final re
L L ¢ sult for the force reads
Note that a reindexation of thg,,q,) subspace is not nec- KTA (* 2ml¢
essary aM is diagonal with respect to [Eqg. (15)]. F=- Bﬂ2 f dg,f dp, Tr[B‘l(pX,py)(9dB(px,py)],
Now the value of the path integrfiEq. (12)] given by 2 0 0
Z=N(detMm) ™2 (24) (25

where we have carried out the thermodynamic limit © so
. that the summation ovef is replaced by(L/2m)[2™¢ dp,.

0The trace over the continuous momenmptais also replaced
bulk, surface, and finite-size contributiofi87]. The term o ~ . M -P
—-kgT In \V'leads to the bulk free energy. The fact@rintro- by (L/m)/odpy andA—LZ._ Equation(25) takes _also_ mtp ac-
duced in Eq(12) is given by A'=[detGXr,r')]"V2 where count that thgre are two mdepe_ndent fluctuating fieddise., _
the determinant of the inverse of the two-point correlationﬁx andd,) which lead to a doubling of the force. Note that in

function G(r —r’) in an unperturbed nematic is calculated in Eq. (29) the trace is taken with respect 1o the remaining

the space actually occupied by the nematic, i.e., the volumg'screte indices and| [Eq. (23)]. This can be calculated

V. Thus the result for the bulk free energy is given By numerically by truncating the matri®,, at orderl, i.e., k,I
=k TVISmo{dQ/ (2m)2]Q2 IN(KQ:2,Q2/kgT) Where Quay is t‘r;('o'lalt)i 12,9, (1712 The foreeFollows from ex-
an ultraviolet momentum cutoff of the order of the inverse' oF 9 '
size of the nematic molecules. The remaining part of the

free energy F=AFEO+FZ9+6F(d) is given by F

=(kgT/2)In detM. Here thed-independent term§§=?f and

u

FZd are the surface tensions associated with the interfaces at In the limit d/¢>1 the contributions from the matrices
z=0 andz=d, respectively, and the finite-size contribution N, to detM decrease rapidly with increasimg[Eqg.(15)]. In
SF(d) is the fluctuation-induced interaction. In the presentthis limiting case it is sufficient to consider only the contri-

model there are no other finite-size contributions. Using théution fromNy(py, py), in the sense that truncating the matrix

Ill. RESULTS
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B [Eqg. (23)] at | >1 leaves the integrand in E(R5) practi- 0.004
cally unchanged. Therefore it is instructive first to focus on 0.002
this limiting case, which may correspond to a nanopatterned D )

substrate facing a homogeneous substrate at a micrometer |+ 0
separation, and to investigate analytically the behavior of the 5

force. ®-0.002

-0.004 H—~L—L 1L
A. Pattern of different anchoring strengths 1 2 3 4 5 6

Here we consider a pattern characterized by stripes of a4/ Aem

hoT}?Otmplc ﬁnchorlng .SO that boii, andedare ?}OSIUVS' FIG. 2. The fluctuation-induced forc& as a function of the
In this case t e Tluctuations are suppresse {:lt the su Stratr%ﬁuced separatiod/ \¢ in the case in which the patterned sub-
[Eq. (6)]. Using Egs.(16), (23), and (25) we find for the strate can be described by an effective homeotropic anch@ding

force >, see Eq(26)]. A crossover from repulsion to attraction occurs
—kTA [ 2ml¢ for a separationd/\g=1.19 followed by a minimum at
Fd> 0 = lim—2 J dpyj dp, (d/ Nefr, FIkgTAINZ ) = (1.65,-0.003.
% Tr[Nal(pX,py) daNo(P )] asymptotic behavior of the force fal/ Ao3<<1 is given by
kaTA (* X2 3ksTAL(3) 8In2d
- st N (20 Fll<d<ng =~ 225 () _SN28 ) o
md® J, x+d/>\eﬁex 02 + 1 16md 34(3) Nett
X = O/ \gst Thus in this regime the leading long-ranged repulsion term
Where ~d3, corresponding to two homogeneous substrates charac-
terized by infinitely strong and zero anchoritBirichlet-
I\ Neumann boundary conditionss weakened. At separations
Neft = AN (27) larger than\*, the boundaries effectively act as being

similar—one boundary characterized by infinitely strong and
is introduced as an effective extrapolation length argd  the other boundary characterized by finite yet strong anchor-
is the rescaled momentum. Thus in the lidit-{ the pat-  ing; therefore the force is attractivi@9]. The asymptotic
terned substrate can be described by an effective anchoringshavior of the force fod/\ > 1 is given by[compare Eq.
energy per area with the force found between two homoger28)]
neous substrates where one substrate is characterized by
strong anchoring and the other substrate is characterized by a Fd> A ) = — ke TAL(3) (1 _ 3’\eff) (30)
finite anchoring, i.e., a finite extrapolation lengtky [38]. eff 47 d /-

ranlf Ra OF Ap IS zero,)\eﬁ vanishes and the force is long- This means that the long-ranged attractied 3, correspond-
ged and attractive . . i
ing to two homogeneous substrates characterized by infi-
kg TAL(3) nitely strong anchoring, is reduced. In Fig. 3 the amplitude of
F(d> L he=0) =~ and® (28 the fluctuation-induced forcg-(d>¢), as given by the full
expression in Eq(26), is shown as a function of the reduced
where {(s)=2,t™° is the Riemann zeta function. This ex-
pression equals the one obtained for substrates both charac- T T T T I
terized by homogeneous strong anchotfigf]. This implies 0.02 d> (]
that in this limit the fluctuation-induced force is not affected
by the stripes with weaker anchoring. This behavior re-
sembles the one of the electrodynamic Casimir force be- b
tween a flat and a rectangularly corrugated subs{29gin
the limiting case that the periodicity is much smaller than the -0.04
amplitude 2 of the corrugation and the mean separatitn 1 1 ; )
between the substrates. In this case the force equals the one 1 2 3 4 5 6
between two flat substrates at a reduced mean sepatdtion /Do
—h so that the force is not affected by the valleys of the ¢
corrugated substrate. . FIG. 3. Amplitude of the fluctuation-induced forderelative to
At intermediate values Ok there is a crossover from asymptotic behaviod™ as a function of the reduced separation
attraction to repulsioriFig. 2). At separations smaller than /) in the case in which the patterned substrate can be described
N* =1.19\, the boundaries effectively act as being homo-py an effective homeotropic anchoriffig> ¢, see Eq.(26)]. At
geneous but dissimilar—one boundary characterized by/\ 4=0 this amplitude attains the valug(3)/(16m)=0.072 lin-
strong anchoring and the other boundary characterized by @arly [Eq. (29)] and approaches the valug(3)/(4) =—0.096 for
finite weak anchoring so that the force is repuldi88]. The  d/\— = [Eq. (30)].

O ]

-0.02

ksTA/dS
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s T T T T -0.18 T T T T
X1 EN e /C=5,M/C = 12,d/¢ =10 ] B Eq. (31) ——
A
W= 019 N Ay 10
q 0.0 f--—-——Sgm o mm e
“ -0.2 |- B omeee
% \:.‘\ ...........
~1x 1078 |- . wl§ 021
| .
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FIG. 4. The fluctuation-induced forc& as a function of the 0075 0.08 0085 009 0095 01

patterning ratiol,/ { for a fixed reduced separatiai ¢ (fulfilling

the requirement> ¢, see Fig. 2 and fixed reduced extrapolation
lengthsh )/ ¢ [EQ. (26)]. The crossover from repulsion to attrac-
tion indicates that upon increasidg/ { the system transforms from
the effective strong-weak to the effective strong-strong anchorin
regime. For the given set of the paramei@rg =5, \p/{=12, and
d/£=10), the force becomes attractive when more than 31% of th
substrate consists of strong anchoring parts With>W,, i.e., A5
=K/W,<A\p,=K/W,. Note that hereF is measured in units of®
instead of\3, as in Fig. 2.

/N

FIG. 5. Rescaled relative decrease of the fluctuation-induced
force in the case in which the pattern is characterized by alternating
%nchoring strengths as a function of the reduced separdiing
compared to the repulsive forcBg=3kgTAL(3)/(167d®) between

wo homogeneous boundaries characterized by infinitely strong and
zero anchoring energy, respectively. kbg { Eq. (31) holds. Both
integrals in Eq(31) happen to have the same form as in EZf)
(which holds, however, fod> () with A¢ replaced byr, and \y,
respectively. According to the discussion in the second paragraph
separatiord/Aegr. In Fig. 4 the forcgEq. (26)] is shown as a  following Eq. (26), for the parameter valueg,=Z, and Aa/\p
function of the patterning ratid,/{. Also in this case the =0.4 chosen here these integrals are positivelfag, < 0.48 for the
above considerations provide an understanding of the crossentribution associated witk, andd/\, < 1.19 for the contribution
over from repulsion to attraction upon changing the pat-associated with,. Thus one expects that on the basis of 81) F
terned substrate from the effectively weak to the effectivelyreduces taF, as given by Eq(29) for d/{—0. The solid curve
strong anchoring regime. corresponds to- given by Eq.(31) and the other curves correspond

In the opposite limiting casd/ /< 1, the force is given by to the full numerical results obtained from Eg5) for the indicated
values of{/\y,. All curves appear to vanish fat/{— 0 and thus
confirm the above expectation. Moreover, by increasing the period-

keTA[ Zo [~ x2 icity the difference between the solid curve and the numerical re-
Fd<(= e 2] "X+ dIn sults vanishes and thus confirms E81) as a reliable approxima-
0 ———fexp2x)+1 tion in the limit d/{—0.
X—d/\g
. é * dx X2 (31) B. Pattern of competing anchoring energies
)y  x+diN ' In the following we generalize the system to a patterned
x——d/)\beXp(ZX) +1 bottom substrate characterized not only by different anchor-

ing strengths but also different preferred molecular axes. We

consider a pattern consisting of alternating stripes of either
Here the geometrically weighted average is analogous to thekomeotropic or degenerate planar anchoring, i.e., positive
results obtained within the proximity force approximation values forW, and negative values faM, so that the liquid
[40]. This scheme amounts to using the force density oberystal is subject to competing preferred orientations at the
tained from the homogeneous case and integrating over theottom substrate while the upper substrate still exhibits
local contributions of the force densities corresponding to thestrong homeotropic anchoring. In this case fluctuations are
regions with anchoring energies per awgaandW,, respec- suppressed at the stripes of homeotropic anchoring and en-
tively. The particular contributions from the regions close tohanced at the stripes of planar anchorikgj. (6)]. For those
the chemical steps cause deviations from this approximatiomanges of the model parameters for which the frustrating ef-
Therefore this result holds only for a low number density offect of the interlaced planar anchoring does not modify the
chemical steps, i.e., fa<{. mean orientation of the director, the uniform configuration of

For intermediate values ai/{ we have calculated the the director is thermodynamically stable and the system can

force F numerically based on the complete expression giverbe described as in the previous subsection. However, if the
by Eg. (25). In order to highlight the deviation of the planar anchoring becomes dominant, the uniform director
fluctuation-induced force in the considered patterned systermonfiguration is destabilized. For this case, we determine the
from the long-ranged behavior in the homogeneous cases, weehavior of the fluctuation-induced force before the onset of
show in Figs. 5 and 6 the rescaled decrease of the forcehe ensuing structural phase transition.
relative to the decay-d™2 in the repulsion and attraction We consider again first the cadé{>1 which allows us
regime, respectively. to describe the force in terms of an effective anchoring en-
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-0.5 3kgTA d
Fldld,— 1) =~ - B3 In(l——)+|n2+--- .
-0.55 Ay d;
0.6 (39
5 0.65 This behavior follows from the fact that fa=\.4 the de-
% 2 nominator of the integrand in E¢32) vanishes a%x3 for
EL&' -0.7 x— 0. Thus the pretransitional behavig@r— d.) of the force

is related to the singularity of the soft mofe— 0).

The logarithmic divergence is a characteristic feature of
the perturbative methofEq. (3)] if applied to a system sub-
ject to structural phase transitiof$2—45. Here the planar
anchoring destabilizes the uniform structure governed by the
strong homeotropic anchoring at the upper boundary. Upon

/s increasing the separatiahthe influence of the upper bound-

FIG. 6. Rescaled relative decrease of the fluctuation-induced Y. decre_ases and the destab|I|Z|r_19 (?ffect of the substrate
force in the case in which the pattern is characterized by alternatin haracter!zed by the planar anchoring increases so that upon
anchoring strengths as a function of the reduced separdting pproachingd=d, th? uniform St,rUCture bgcomes U”Stab"?
compared to the attractive forck,=—ksTAL(3)/ (4md®) between [33]. Beyond_the critical separatlon, the dlrgcto_r strupture is
two homogeneous substrates characterized by infinitely strong afl0 longer uniform and the Gaussian Hamiltonian given by
choring energies. Fat> ¢ Eq. (26) holds. According to the discus- Ed- (4) no longer describes the system. Fbed; one must
sion in the second paragraph fo||owing E(QG) this integra| is Consider the ﬂuctuations around a nonuniform Configuration
negative for d/\,>0.68 for the parameter valueg,=¢, and no(r). It is possible and even Ilker that the actual critical
Na/\p=0.4 chosen here. Thus one expects tRateduces taF,,  film thickness for the structural phase transition is not given
given by Eq.(30) for {/d—0. The solid curve corresponds ® by d.=A. as obtained in the present perturbative approach.
given by Eq.(26) and the other curves correspond to the full nu-  In the regime of the uniform director configuration, for
merical results obtained from E¢5) for the indicated values of ~separations comparable to the periodicity we have calculated
I \p. All curves appear to vanish f@i/d— 0 and thus confirm the  the force numerically. As for Eq.31), in the limit d/{<1

above expectation. Moreover, by decreasing the periodicitye  the force is given by the geometrically weighted average of
difference between the solid curve and the full numerical resultghe |ocal force densities

vanishes and thus confirms E@6) as a reliable approximation in

-0.75

08 K

-0.85 L 1 | 1 |

the limit ¢/d— 0. kgTA ” x2
e limit £ Fd<g="e2 Z_aj dx
ad® | Jy  Xx+d,
ergy and an effective extrapolation length. Within the same Y d/)\anP(ZX) +1
approximation as in the preceding subsection, i.e., truncating . )
the matrixB at orderl =1, the force[Eqg. (25)] is given by + [ dx X 36)
9] § 0 X—= d/)\b '
kg TA X2 ——exp2x) + 1
Fd> )= F dxX an , (32 X+ d/\,
” _
0 = flexp2x) +1 In Fig. 7 the behavior of the fluctuation-induced force is
X+ d/)\eff

shown for the three different regimes.

where
IV. SUMMARY AND CONCLUSION

Neit = hahe/lEaho = Skl (33 Based on the FrankEqg. (1)] and Rapini-PapoulafEqg.
andx=pd is the rescaled momentufd1]. The form of this  (2)] expressions for the bulk and surface free energy, respec-
force is that of the force for the hybrid cgit2] with the  tively, we have studied by field theoretical techniques the
bottom substrate described by an effective planar anchoringontribution of Gaussian fluctuations of the orientational or-
We= LW,/ £+ 5Wp/ £<0. Thus in this limit the patterning der to the effective force acting on the planar and parallel
enters only via this expression foVg. boundaries of a nematic film of thickness The upper

For /<d<\. the long-ranged repulsion between the boundary exhibits strong and homogeneous homeotropic an-
boundaries, characterized by strong and effectively weak arghoring whereas the bottom boundary is characterized by a
choring, is enhanced: one-dimensional, steplike periodic modulation with period

of either the strength or the orientation of the anchoring
3kBTA§(3)< N 81In 21) which is homeotropic or planasee Fig. 1. The system pa-
16md® 37(3) Nett/ (34) rameters are chosen such that the thermal average of the
nematic order configuration is spatially homogeneous
Upon approaching the critical separatidp=\+ the force  throughout the film. Our main results are as follows.
increases and, within the Gaussian approximation, diverges (1) For d>¢, the fluctuation-induced force is propor-
logarithmically atd.: tional tod™3 times a scaling function which attains the same

Fl<d<<\egp) =
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I o= tropic anchoring with alternating strengths, the rescaled rela-
)\aa:_2-5b)\b i tive decrease of the fluctuation-induced force as a function of
the reduced separation compared to the long-ranged force is
summarized in Figs. 5 and 6 for several values of the reduced
periodicity. We note that by increasing the reduced periodic-
ity the system approaches the limit of the proximity force
approximation given by Eq31) (solid line in Fig. 5, while
by decreasing the reduced periodicity the system approaches
the limit of the effective anchoring approximation given by
Eq. (26) (solid line in Fig. 6.

(4) For a pattern of competing anchoring energies, the
/s behavior of the force is summarized in Fig. 7. Also in this
o i case the full numerical solution interpolates between the

FIG. 7. The fluctuation-induced force as a function of the re'asymptotic formulas given for small[Eq. (36)] and larged
duced separatiod/\y, in the case in which the pattern is character- Eq. (32)].
ized by competing anchoring energies. The solid curve shows the "1, 3 gition to the force due to fluctuations of the director
result for small periodicity({<d) where the pattern can be de- i, 5 hematic film, there are other forces as well acting be-
scribed by an effective anchoring energy per aég=CWa/{  yeen interfaces of the film such as the well-known van der
*{pWo/ £ <0 [Eq.(32)]. The dashed curve shows the result for large\yo 515 gispersion forcf24] so that the total force is the sum
periodicity (£>d) for which the proximity force approximation is ¢ the fiyctuation-induced and the dispersion forces. In the
valid [Eq. (36)]. The data poi_nts_+) show our full numerical results case that the mean director is inhomogeneous so-called
[Eq. (25)] for {/Ap=1.5. This illustrates that as expectédap- g crural forces appear in addition which are not present in
proaches the proximity force solutignlashed curvefor d/{—0  {he homogeneous case considered here. For a film geometry
and the effective anchoring solutigsolid curvg for d/{—c. of thicknessd and areaA, the dispersion force decays as

. —AH/(67rd® whereH is the so-called Hamaker constant. As
form as in the case that the patterned bottom substrate eXh'H‘hplied by Egs.(26) and (32), the magnitude of the

its @ homogeneous anchoring energy per ateg=,aWa/{  fiyctuation-induced force scales &gTA/dS. Thus, apart
+{pWp/¢ with the different anchoring energies per areadfom a numerical prefactor of order one, the overall ratio
Wam =K/ \ap) Weighted according to their lateral geometric petween the dispersion force and the fluctation-induced force
contribution[Egs.(26) and(27) as well ag32) and(33)]. If  is given byH/kgT. Since liquid crystals and glass substrates
a change of the pattern of the anchoring strength causes tiave typically comparable indices of refraction, the Hamaker
corresponding effective boundary condition on the patternedonstant is of the order 18 J [46] which is the same order
substrate to change from homeotropic weak to homeotropiof magnitude a¥gT at room temperature. Therefore typi-
strong anchoring, the force exhibits a crossover from repuleally the dispersion and fluctuation induced force in liquid
sion to attraction(see Figs. 2, 3, and)4For a pattern of crystals are of the same order of magnitude and thus compa-
competing anchoring energies in the case that the stripgsble. We mention that for a more adequate estimate of the
with planar anchoring are dominant relative to the stripes oHamaker constant the anisotropy of the liquid crystal has to
homeotropic anchoring, the fluctuation-induced force is rebe taken into accouri7]. For larger thicknesses the disper-
pulsive and nonmonotonic. sion force decays fastér-1/d* due to retardatiof48], so

(2) For d<<¢Z, the proximity approximation is valid, i.e., that for sufficiently thick films the fluctuation-induced force
the force is given by the geometrically weighted average oflominates. Finally we note that while the direct measure-
the local force densities obtained from the homogeneoument of the fluctuation-induced force in liquid crystals has
substrategEgs.(31) and(36)]. not yet been accomplished, these forces affect in a character-

(3) For intermediate separations, we have examined théstic way the pattern formation of thin liquid-crystalline
behavior of the force numerically. For a pattern of homeo-dewetting films[49-57.
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