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We consider a nematic liquid crystal confined by two parallel planar interfaces, one being laterally homo-
geneous and the other provided by a substrate endowed with a periodic chemical stripe pattern. Based on
continuum theory we analyze the influence of the lateral pattern on the liquid-crystalline Casimir force acting
on the interfaces of the nematic cell at distanced due to the thermal fluctuations of the nematic director. For
d much larger than the pattern periodicity, the influence of the patterned substrate can be described by a
homogeneous, effective anchoring energy. By tuning this parameter we recover previous results for the liquid-
crystalline Casimir force. For the general case, i.e., smaller separations, we present numerical results.
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I. INTRODUCTION

Liquid crystals in general are sensitive over a wide spatial
range to the anchoring conditions of confining interfaces.
This holds also for lateral variations of anchoring conditions
generated either by surface topography[1–7] or patterning
[8–18] giving rise to numerous possible applications. In re-
cent years, the influence of the structured substrates on the
properties of liquid crystals has been studied and it has been
demonstrated that to a certain extent such nontrivial geom-
etries may optimize the performance of electro-optical
liquid-crystalline devices. For instance, a four-domain
twisted nematic liquid crystal display provides a wide view-
ing angle with no gray scale inversion[19] and using multi-
stable nematic liquid-crystal devices with micropatterned
substrate alignments reduces the energy consumption
[4,6,13,15].

The influence of the anchoring on the liquid crystal order
parameter translates into an effective interaction between the
confining interfaces which may be provided either by true
solid substrates or by an adjacent vapor phase where the
former case can support permanent lateral structures. Here
we consider liquid crystals deep in their nematic phase where
the orientational order is described by a director field with
long-ranged correlations. In the case of any mismatch be-
tween the prescribed alignment of the bulk and the sub-
strates, the director structure may not be uniform. In such a
case, the free energy of the system typically exhibits several,
metastable, minima which upon a change in the parameters
of the system—such as the film thickness, external, or inter-
nal forces—may turn into the global minimum resulting in a
structural phase transition[20]. This makes the stability of
the equilibrium configuration geometry dependent. In this
context one should keep in mind that perturbative ap-
proaches may miss the occurrence of first-order structural
phase transition. We shall consider the case of frustrated sys-
tems in which, however, the director structure remains uni-
form up to a critical thicknessdc. Within such a regime the

liquid-crystalline mediated effective interaction between the
confining interfaces due to the thermal fluctuations of the
director adds to background contributions due to structural
forces arising from presmectic layering[21–23] and en-
hanced ordering near the substrates[21] and due to disper-
sion forces[24] which exhibit only a weak temperature de-
pendence.

Using the continuum Frank free energy, we study the
fluctuation-induced interaction—the so-called liquid-
crystalline Casimir effect—between two parallel interfaces
where one is periodically patterned and the other one is ho-
mogeneous. We consider a periodicity in the local anchoring
energy and model the liquid crystal-substrate interaction by
the Rapini-Papoular surface free energy. We investigate the
modification of the fluctuation-induced force compared with
its behavior for substrates with uniform anchoring conditions
[25] as a function of the pattern periodicityz and the char-
acteristic length of the patternza (see Fig. 1).

Two model systems are considered. One consists of a sub-
strate with a pattern characterized by homeotropic anchoring
of alternating strengths facing a second substrate at a dis-
tanced which is characterized by a uniformly strong homeo-
tropic anchoring. For this system the mean director is con-
stant at any separation. By changing the boundary condition
via the change of the patterning ratioza/z, the character of
the force changes. Depending on whether the boundaries are
effectively similar-nonsimilar or similar-similar the force is
repulsive or attractive, respectively. For certain values of
za/z and of the reduced distanced/z, the liquid-crystalline
Casimir force vanishes. In the second system the pattern con-
sists of alternating stripes of homeotropic and degenerate
planar anchoring while the upper substrate still exhibits
strong homeotropic anchoring. In this case there is the pos-
sibility of texture formation[16]. However, for separations
smaller than a critical one the director structure is indeed
uniform [26]. For those ranges of the model parameters for
which the director is constant(see Sec. III B), we find a
nonmonotonic behavior for the fluctuation-induced force.

There are several techniques that can be used to create
periodic anchoring conditions such as photoalignment[15],
the selectively thiol-functionalized photo-orientation[16],
and atomic force lithography[11]. In the latter case pattern-*Electronic address: karimi@fluids.mpi-stuttgart.mpg.de
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ing at the nanometer scale is reached which allows one to
investigate more efficiently the influence of the patterned
substrate on the liquid crystal. The results of our study, for
example, might be helpful in designing thin patterned liquid
crystalline films for which the fluctuation-induced force
plays a role for the stability of the film.

In Sec. II we describe the system and the formalism origi-
nally introduced in Refs.[27–30] that we apply for calculat-
ing the fluctuation induced effective interaction. In Sec. III A
we investigate the force in the presence of a pattern of alter-
nating anchoring strengths and in Sec. III B with a pattern of
competing anchoring conditions. We present analytical re-
sults for patterns of small and large scales and numerical
results for patterns at intermediate scales. In Sec. IV we sum-
marize our results.

II. SYSTEM AND THEORETICAL MODEL

We consider a liquid crystal in a nematic phase and con-
fined by two parallel planar interfaces at a distanced (see
Fig. 1). The liquid crystal is described by the Frank free
energy[31]

F =
1

2
E

V

d 3xfK1s= ·nd2 + K2sn · = 3 nd2

+ K3sn 3 = 3 nd2g, s1d

wheren denotes the director of the liquid crystal,V is the
nematic volume, andK1,K2, andK3 are the splay, twist, and
bend elastic constants, respectively. The interaction between
the liquid crystal and the substrate is modeled by the Rapini-
Papoular surface free energy[32] given by

Fs = −
1

2
E

A

d 2x Wsxdsn ·ed2, s2d

wherex=sx,yd denotes the lateral coordinates of Cartesian
coordinatesr =sx ,zd, A is the surface area,W is the anchor-
ing energy per area, ande is the easy direction, i.e., the
preferred direction of the director at the substrate ifW.0.
For W,0 the director prefers the direction perpendicular to
e. In the following we restrict the discussion to the case that
e is perpendicular to both substrates, which leads to homeo-
tropic anchoring forW.0 and to degenerate(i.e., with no
preferred azimuthal angle) planar anchoring forW,0.

On the lower substrate located atz=0, we assume that the
anchoring energy varies periodically along thex direction.
The pattern consists of alternating stripes of anchoring ener-
gies per areaWa andWb. The substrate remains translation-
ally invariant in they direction. On the upper substrate lo-
cated at z=d we assume uniformly strong homeotropic
anchoring[see after Eq.(9)].

In general, the local director field is given by

nsx,zd = n0sx,zd + dsx,zd, s3d

where n0sx ,zd is the thermal average of the director and
dsx ,zd is the fluctuating part with vanishing thermal average
kdl=0.

A. Mean-field behavior

First we discuss the mean-field solutionn0sx ,zd of the
director field. In the case of homeotropic anchoring every-
where on the lower substrate, the uniform solutionn0
=s0,0,1d is the equilibrium configuration. On the other
hand, in the case of planar anchoring everywhere on the
lower substrate, the liquid crystal is subject to competing
surface interactions at the top and the bottom. For this so-
called hybrid cell—a cell with uniform homeotropic and uni-
form planar anchoring on each substrate—it has been shown
that the substrate whose anchoring is stronger can impose a
uniform director configuration up to a critical separation be-
tween the plates[33]. In the case of periodic pattern of ho-
meotropic and planar anchoring on the substrate(Sec. III B),
the full phase diagram of the system within mean field theory
and the structural phase transition between a uniform direc-
tor configuration and a distorted one can be studied by means
of numerical minimization of the free energy functional
[14,26]. However, one can naively expect that in this system
the tendency to form a uniform director field is enhanced
with respect to the hybrid cell due to the presence of the
interlaced homeotropic stripes. In the following we restrict
the discussion to separations smaller than the critical separa-
tion dc for which the director configuration is uniform and
focus on the fluctuations.

B. Fluctuations of the director

Next we consider fluctuations around the uniform director
n0=s0,0,1d. Since the directornsx ,zd is a unit vector the
fluctuations can be described byd=sdx,dy,−1
+Î1−d x

2−d y
2d.sdx,dy,−d x

2/2−d y
2/2d, where dxsx ,zd and

FIG. 1. The geometry of the nematic cell with cross sectionA
and volumeV=Ad. The upper boundary is characterized by strong
homeotropic anchoring. The lower substrate is patterned. The pat-
tern consists of periodic stripes of anchoring energies per areaWa

andWb with widths za and zb, respectively, so thatz=za+zb. The
easy directions[see Eq.(2)] at both boundaries are normal to the
interfaces and we consider such values ofWa andWb for which the
thermal average of the director fieldn0 is homogeneous.
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dysx ,zd are the two independent components. According to
Eq. (1) and within the one-constant approximation, the bulk
contribution to the statistical weight exps−bHbulkfngd for a
director configurationn is given by Hbulkfng=Hbulkfdxg
+Hbulkfdyg with

Hbulkfng =
K

2
E

V

d3xf¹nsx,zdg2, s4d

whereb−1=kBT is the thermal energy andK is the effective
elastic constant[34]. In the general case of an anisotropic
elastic free energy, the Hamiltonian can be diagonalized in
terms of longitudinal and transverse components(see Ref.
[25]): Hfn1,n2g= 1

2oi=1
2 ed3xfKis='nid2+K3s]znid2g where='

is the nabla operator with respect to the lateral coordinates.
Consequently, for this case the result for the force as ob-
tained from Eq. (4) has to be multiplied by1

2sK3/K1

+K3/K2d. Equation (4) amounts to considering Gaussian
fluctuations, i.e., the Hamiltonian is quadratic innsx,zd. This
is expected to give a qualitatively correct description of the
system except near an incipient structural phase transition.

As a local contribution the surface interaction is evaluated
at the interfacesz=0,z=d. The lower substrate is character-
ized by the patterning function

asxd = o
k=−`

`

QSx − kz +
za

2
DQSkz +

za

2
− xD , s5d

whereQsxd is the Heaviside step function,z is the periodic-
ity, za is the width of the stripe characterized byWa, and
zb=z−za is the width of the stripe characterized byWb (Fig.
1). The stripes form sharp chemical steps between them. The
function asxd is one at the regions characterized byWa and
zero elsewhere. Accordingly, for this model the surface in-
teraction[Eq. (2)] disregarding constant terms is given by
Hsurffng=Hsurffdxg+Hsurffdyg with

Hsurf
z=0fng =

1

2FWaE
A

d 2xfnsx,z= 0dg2asxd

+ WbE
A

d 2xfnsx,z= 0dg2f1 − asxdgG s6d

for the lower substrate. We assume homogeneous anchoring
on the upper boundary so that

Hsurf
z=dfng =

1

2
WE

A

d 2xfnsx,z= ddg2. s7d

Minimization of the HamiltonianHfng=Hbulkfng+Hsurf
z=0fng

+Hsurf
z=dfng leads to the following boundary conditions:

− K]znsx,zd + Wansx,zdasxd + Wbnsx,zdf1 − asxdg = 0,

z= 0, s8ad

K]znsx,zd + Wnsx,zd = 0, z= d, s8bd

wheren is eitherdx or dy. After integration by parts in Eq.(4)
and using the boundary conditions given by Eqs.(8a) and
(8b), the Hamiltonian Hfng reduces to Hfng

=−sK /2deV d3x nsx ,zd¹2nsx ,zd. In terms of the so-called ex-
trapolation lengthsla andlb

lasbd =
K

Wasbd
, s9d

the boundary condition(8a) on the patterned substratez=0
reads A1sx ,zd=−lb]znsx ,zd+(1+fslb−lad /lagasxd)nsx ,zd
=0. Assuming strong homeotropic anchoringW=` sl=0d at
the upper boundary, Eq.(8b) leads to the Dirichlet boundary
conditionA2sx ,z=dd;nsx ,z=dd=0.

As an aside, we note the relation between the present
model and those for surface critical phenomena. Rescaling
the fluctuating field byK /kBT, the Hamiltonian in Eq.(4) can
be written asHbfwg=kBTeV d3x 1

2s¹wd2 and the surface
interaction in Eq. (7) is represented by HSfwg
=kBTeAd 2xsc/2dw2, wherec=W/K is the inverse extrapola-
tion length of the critical order parameter profile at a surface
[35]. The limiting casesc=` andc=0 correspond to Dirich-
let andv. Neumann boundary conditions, respectively. The
bulk Hamiltonian for a system close to the critical point also
includes the termsst /2dw2 andsu/24dw4 of which the former
one vanishes at the critical point. In this sense the present
study corresponds to discussing, within the Gaussian ap-
proximation, a slab of a system at bulk criticality confined by
planar surfaces one of them endowed with a pattern of the
extrapolation length.

C. The fluctuation-induced force

We employ the path integral method introduced by Li and
Kardar for calculating the partition function of the system
[27,28] which amounts to integrate over all configurations of
the fluctuating field weighted by the Boltzmann factor and
subject to the boundary conditions. We impose the boundary
conditions by inserting delta functions into the path integral.
Thus the partition functionZ of the fieldn reads

Z =E Dnsr de−Hfng/skBTdp
x

d fA1sx,z= 0dg

3p
x

d fA2sx,z= ddg s10d

with the functional integral defined via a discretization on a
lattice hr nj in the limit of a vanishing lattice constant
eDnsr d;pne−`

` fdnsr nd /Î2pg [36]. Using the integral repre-
sentation of the delta function

p
x

d fAasxdg =E DCa expSi E d2x Ca AaD, a = 1,2,

s11d

and performing the Gaussian integral over the fieldn, we
obtain
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Z = NE p
a=1

2

DCa e−Heff, s12d

where Ca=1,2 are auxiliary fields defined atz=0 andz=d,
respectively,N is a factor independent ofd, and the effective
interaction reads

Heff = o
a,b=1

2 E d 2xE d 2x8 CasxdMa,bsx,x8dCbsx8d,

s13d

where M is regarded as a matrix both with respect to the
indicesa,b and the coordinatesx,x8:

M11sx,x8d = HF1 +
lb − la

la
asxdGF1 +

lb − la

la
asx8dG

+
lbslb − lad

la
fasxd − asx8dg]z

− lb
2]z

2JuGsx − x8,z− z8duz=z8=0,

M12sx,x8d = S1 +
lb − la

la
asx8d

− lb]z8DuGsx − x8,z− z8duz=d,z8=0,

M21sx,x8d = S1 +
lb − la

la
asxd − lb]zDuGsx − x8,z8

− zduz8=d,z=0,

M22sx,x8d =uGsx,x8,z− z8duz=z8=d, s14d

whereGsr ,r 8d=kBT/4pKur −r 8u is the bulk two-point corre-
lation function in three dimensions defined by
sK /kBTd¹2Gsr −r 8d=−dsr −r 8d.

In the remaining part of this section we follow the method
introduced in Refs.[29,30]. Due to the symmetries in thexy
plane it is useful to switch to the Fourier transformed quan-
tities. We note that if the patterning functionasxd=1, i.e., for
a homogeneous substratesla=lbd, the matrixM is diagonal
in the lateral Fourier spacesp ,qd. However, here the pattern-
ing function is piecewise either one or zero[Eq. (5)]. Due to
the periodicity of the patterning along thex direction, i.e.,
asxd=asx+zd, and the translational invariance along they
direction, the matrixM in the lateral Fourier spaceMsp ,qd
=eed 2x d 2x8Msx ,x8deip·xeiq·x8, has the following form
[29,30]:

Msp,qd = s2pd2dspy + qyd o
m=−`

`

Nmspx,pyd

3d Spx + qx +
2pm

z
D s15d

with the s232d matricesNm given by

N0 =1FS1 +
lb − la

la

za

z
D2

− lb
2]z

2GuGsp,z− z8duz=z8=0 + f0 S1 +
lb − la

la

za

z
− lb]z8DuGsp,z− z8duz=d,z8=0

S1 +
lb − la

la

za

z
− lb]zDuGsp,z8 − zduz8=d,z=0 uGsp,z− z8duz=z8=d

2 s16d

and

NmÞ0 =1
lb − la

la
amUFS1 +

lb − la

la

za

z
DGsp,z− z8d + Gsp̂m,z− z8dGU

z=z8=0
+ fm

lb − la

la
amuGsp,z− z8duz=d,z8=0

lb − la

la
amuGsp̂m,z8 − zduz8=d,z=0 0 2 s17d

with p=Îpx
2+py

2, p̂m=Îspx+2pm/zd2+py
2, the two-point cor-

relation function in lateral Fourier space

Gsp,z− z8d =
kBT

2Kp
e−puz−z8u, s18d

and

fm = Slb − la

la
D2

o
k=−`

`

8akam−kGsp̂k,0d, s19d

where the prime at the summation sign indicates that in the
sum the termk=0 is excluded. The patterning functionasxd
is represented as a Fourier seriesasxd=ok=−`

` ake
2pikx/z with
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ak =
1

L
E

−L/2

L/2

dx asxdexps− 2pikx/zd =
1

pk
sinspkza/zd,

s20d

whereL is the extension of the system along thex direction
(see Fig. 1). We mention that the patterning functionasxd is
coordinate dependent and the phase of the coefficientsak
depends on the choice of the position of the coordinate origin
used forasxd, but as expected the final result for the force
[Eq. (25)] is independent of this choice. We have checked
this numerically.

Each pair of the momentasp ,qd indicates one element of
the matrix M which is a s232d matrix itself [Eq. (15)].
Although M has an infinite number of elements and is not
diagonal it can be brought into a block diagonal form by an

even number of row and column permutations[29,30]. We
take the system to be periodically extended with periodL
=Nz along thex axis with N being an integer. This leads to
momentapx that are integer multiples of 2p /L. For px fixed
the factord spx+qx+2pm/zd in Eq. (15) leads to nonvanish-
ing matrix elements for allqx=−px−2pm/z with mPZ. This
allows one to identify the block structure of the matrixM.
For fixed j the momenta px=2p j /L+2pl /z and qx
=−2p j /L−2pk/z form the blockMj where l ,kPZ and j
=1,… ,N=L /z so that there is no multiple counting of the
momenta. One can read off the elements of the infinite-
dimensional block matricesMjspy,qyd from Eq. (15):

Mj ,klspy,qyd = 2p dspy + qydBklS2p j

L
,pyD s21d

with the matrixB given by

s22d

so that the matrix elementBkl reads

BklS2p j

L
,pyD = Nm=k−lS2p j

L
+

2pl

z
,pyD . s23d

Note that a reindexation of thespy,qyd subspace is not nec-
essary asM is diagonal with respect to it[Eq. (15)].

Now the value of the path integral[Eq. (12)] given by

Z = NsdetMd−1/2 s24d

can be calculated in Fourier space. The free energy −kBT ln Z
of the system usually lends itself to a decomposition into
bulk, surface, and finite-size contributions[37]. The term
−kBT ln N leads to the bulk free energy. The factorN intro-
duced in Eq.(12) is given byN=fdetG−1sr ,r 8dg−1/2 where
the determinant of the inverse of the two-point correlation
function Gsr −r 8d in an unperturbed nematic is calculated in
the space actually occupied by the nematic, i.e., the volume
V. Thus the result for the bulk free energy is given byFbulk
=kBTVe0

QmaxfdQ/ s2pd2gQ2 lnsKQmax
−3 Q2/kBTd where Qmax is

an ultraviolet momentum cutoff of the order of the inverse
size of the nematic molecules. The remaining part of the
free energy F=AsFsurf

z=0+Fsurf
z=dd+dFsdd is given by F

=skBT/2dln detM. Here thed-independent termsFsurf
z=0 and

Fsurf
z=d are the surface tensions associated with the interfaces at

z=0 andz=d, respectively, and the finite-size contribution
dFsdd is the fluctuation-induced interaction. In the present
model there are no other finite-size contributions. Using the

block structure ofM, we obtain ln detM =lnsp j=1
N detMjd

=o j=1
N lnsdetMjd. Thus the fluctuation-induced forceF

=−]dF equalsF=−skBT/2do j=1
N TrsMj

−1]dMjd. The final re-
sult for the force reads

F = −
kBTA

2p2 E
0

`

dpyE
0

2p/z

dpx TrfB−1spx,pyd]dBspx,pydg,

s25d

where we have carried out the thermodynamic limitL→` so
that the summation overj is replaced bysL /2pde0

2p/z dpx.
The trace over the continuous momentapy is also replaced
by sL /pde0

`dpy andA=L2. Equation(25) takes also into ac-
count that there are two independent fluctuating fieldsn (i.e.,
dx anddy) which lead to a doubling of the force. Note that in
Eq. (25) the trace is taken with respect to the remaining
discrete indicesk and l [Eq. (23)]. This can be calculated
numerically by truncating the matrixBkl at orderI, i.e., k, l
=−sI −1d /2 ,… ,0 ,… ,sI −1d /2. The forceF follows from ex-
trapolatingI →`.

III. RESULTS

In the limit d/z@1 the contributions from the matrices
Nm to detM decrease rapidly with increasingm [Eq. (15)]. In
this limiting case it is sufficient to consider only the contri-
bution fromN0spx,pyd, in the sense that truncating the matrix
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B [Eq. (23)] at I .1 leaves the integrand in Eq.(25) practi-
cally unchanged. Therefore it is instructive first to focus on
this limiting case, which may correspond to a nanopatterned
substrate facing a homogeneous substrate at a micrometer
separation, and to investigate analytically the behavior of the
force.

A. Pattern of different anchoring strengths

Here we consider a pattern characterized by stripes of
homeotropic anchoring so that bothWa andWb are positive.
In this case the fluctuations are suppressed at the substrates
[Eq. (6)]. Using Eqs.(16), (23), and (25) we find for the
force

Fsd @ zd = lim
z→0

− kBTA

2p2 E
0

`

dpyE
0

2p/z

dpx

3 TrfN0
−1spx,pyd]dN0spx,pydg

=
kBTA

pd3 E
0

`

dx
x2

x + d/leff

x − d/leff
exps2xd + 1

, s26d

where

leff =
zlalb

zalb + zbla
s27d

is introduced as an effective extrapolation length andx=pd
is the rescaled momentum. Thus in the limitd@z the pat-
terned substrate can be described by an effective anchoring
energy per area with the force found between two homoge-
neous substrates where one substrate is characterized by
strong anchoring and the other substrate is characterized by a
finite anchoring, i.e., a finite extrapolation lengthleff [38].

If la or lb is zero,leff vanishes and the force is long-
ranged and attractive

Fsd @ z,leff = 0d = −
kBTAzs3d

4pd3 , s28d

where zssd=ot=1
` t−s is the Riemann zeta function. This ex-

pression equals the one obtained for substrates both charac-
terized by homogeneous strong anchoring[25]. This implies
that in this limit the fluctuation-induced force is not affected
by the stripes with weaker anchoring. This behavior re-
sembles the one of the electrodynamic Casimir force be-
tween a flat and a rectangularly corrugated substrate[29] in
the limiting case that the periodicity is much smaller than the
amplitude 2h of the corrugation and the mean separationH
between the substrates. In this case the force equals the one
between two flat substrates at a reduced mean separationH
−h so that the force is not affected by the valleys of the
corrugated substrate.

At intermediate values ofleff there is a crossover from
attraction to repulsion(Fig. 2). At separations smaller than
l* .1.19leff, the boundaries effectively act as being homo-
geneous but dissimilar—one boundary characterized by
strong anchoring and the other boundary characterized by a
finite weak anchoring so that the force is repulsive[39]. The

asymptotic behavior of the force ford/leff!1 is given by

Fsz ! d ! leffd <
3kBTAzs3d

16pd3 S1 −
8 ln 2

3zs3d
d

leff
D . s29d

Thus in this regime the leading long-ranged repulsion term
,d−3, corresponding to two homogeneous substrates charac-
terized by infinitely strong and zero anchoring(Dirichlet-
Neumann boundary conditions), is weakened. At separations
larger than l*, the boundaries effectively act as being
similar—one boundary characterized by infinitely strong and
the other boundary characterized by finite yet strong anchor-
ing; therefore the force is attractive[39]. The asymptotic
behavior of the force ford/leff@1 is given by[compare Eq.
(28)]

Fsd @ leff,zd < −
kBTAzs3d

4pd3 S1 −
3leff

d
D . s30d

This means that the long-ranged attraction,d−3, correspond-
ing to two homogeneous substrates characterized by infi-
nitely strong anchoring, is reduced. In Fig. 3 the amplitude of
the fluctuation-induced forceFsd@zd, as given by the full
expression in Eq.(26), is shown as a function of the reduced

FIG. 2. The fluctuation-induced forceF as a function of the
reduced separationd/leff in the case in which the patterned sub-
strate can be described by an effective homeotropic anchoring[d
@z, see Eq.(26)]. A crossover from repulsion to attraction occurs
for a separation d/leff.1.19 followed by a minimum at
sd/leff ,F /kBTA/leff

3 d.s1.65,−0.003d.

FIG. 3. Amplitude of the fluctuation-induced forceF relative to
asymptotic behaviord−3 as a function of the reduced separation
d/leff in the case in which the patterned substrate can be described
by an effective homeotropic anchoring[d@z, see Eq.(26)]. At
d/leff=0 this amplitude attains the value 3zs3d / s16pd.0.072 lin-
early [Eq. (29)] and approaches the value −zs3d / s4pd.−0.096 for
d/leff→` [Eq. (30)].
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separationd/leff. In Fig. 4 the force[Eq. (26)] is shown as a
function of the patterning ratioza/z. Also in this case the
above considerations provide an understanding of the cross-
over from repulsion to attraction upon changing the pat-
terned substrate from the effectively weak to the effectively
strong anchoring regime.

In the opposite limiting cased/z!1, the force is given by

Fsd ! zd =
kBTA

pd3 1 za

z
E

0

`

dx
x2

x + d/la

x − d/la
exps2xd + 1

+
zb

z
E

0

`

dx
x2

x + d/lb

x − d/lb
exps2xd + 12 . s31d

Here the geometrically weighted average is analogous to the
results obtained within the proximity force approximation
[40]. This scheme amounts to using the force density ob-
tained from the homogeneous case and integrating over the
local contributions of the force densities corresponding to the
regions with anchoring energies per areaWa andWb, respec-
tively. The particular contributions from the regions close to
the chemical steps cause deviations from this approximation.
Therefore this result holds only for a low number density of
chemical steps, i.e., ford!z.

For intermediate values ofd/z we have calculated the
forceF numerically based on the complete expression given
by Eq. (25). In order to highlight the deviation of the
fluctuation-induced force in the considered patterned system
from the long-ranged behavior in the homogeneous cases, we
show in Figs. 5 and 6 the rescaled decrease of the force
relative to the decay,d−3 in the repulsion and attraction
regime, respectively.

B. Pattern of competing anchoring energies

In the following we generalize the system to a patterned
bottom substrate characterized not only by different anchor-
ing strengths but also different preferred molecular axes. We
consider a pattern consisting of alternating stripes of either
homeotropic or degenerate planar anchoring, i.e., positive
values forWa and negative values forWb, so that the liquid
crystal is subject to competing preferred orientations at the
bottom substrate while the upper substrate still exhibits
strong homeotropic anchoring. In this case fluctuations are
suppressed at the stripes of homeotropic anchoring and en-
hanced at the stripes of planar anchoring[Eq. (6)]. For those
ranges of the model parameters for which the frustrating ef-
fect of the interlaced planar anchoring does not modify the
mean orientation of the director, the uniform configuration of
the director is thermodynamically stable and the system can
be described as in the previous subsection. However, if the
planar anchoring becomes dominant, the uniform director
configuration is destabilized. For this case, we determine the
behavior of the fluctuation-induced force before the onset of
the ensuing structural phase transition.

We consider again first the cased/z@1 which allows us
to describe the force in terms of an effective anchoring en-

FIG. 4. The fluctuation-induced forceF as a function of the
patterning ratioza/z for a fixed reduced separationd/z (fulfilling
the requirementd@z, see Fig. 2) and fixed reduced extrapolation
lengthslasbd /z [Eq. (26)]. The crossover from repulsion to attrac-
tion indicates that upon increasingza/z the system transforms from
the effective strong-weak to the effective strong-strong anchoring
regime. For the given set of the parameters(la/z=5, lb/z=12, and
d/z=10), the force becomes attractive when more than 31% of the
substrate consists of strong anchoring parts withWa.Wb, i.e., la

=K /Wa,lb=K /Wb. Note that hereF is measured in units ofz3

instead ofleff
3 as in Fig. 2.

FIG. 5. Rescaled relative decrease of the fluctuation-induced
force in the case in which the pattern is characterized by alternating
anchoring strengths as a function of the reduced separationd/lb

compared to the repulsive forceFeff=3kBTAzs3d / s16pd3d between
two homogeneous boundaries characterized by infinitely strong and
zero anchoring energy, respectively. Ford!z Eq. (31) holds. Both
integrals in Eq.(31) happen to have the same form as in Eq.(26)
(which holds, however, ford@z) with leff replaced byla andlb,
respectively. According to the discussion in the second paragraph
following Eq. (26), for the parameter valuesza=zb and la/lb

=0.4 chosen here these integrals are positive ford/lb,0.48 for the
contribution associated withla andd/lb,1.19 for the contribution
associated withlb. Thus one expects that on the basis of Eq.(31) F
reduces toFrep as given by Eq.(29) for d/z→0. The solid curve
corresponds toF given by Eq.(31) and the other curves correspond
to the full numerical results obtained from Eq.(25) for the indicated
values ofz /lb. All curves appear to vanish ford/z→0 and thus
confirm the above expectation. Moreover, by increasing the period-
icity the difference between the solid curve and the numerical re-
sults vanishes and thus confirms Eq.(31) as a reliable approxima-
tion in the limit d/z→0.
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ergy and an effective extrapolation length. Within the same
approximation as in the preceding subsection, i.e., truncating
the matrixB at orderI =1, the force[Eq. (25)] is given by

Fsd @ zd =
kBTA

pd3 E
0

`

dx
x2

x − d/leff

x + d/leff
exps2xd + 1

, s32d

where

leff = zlalb/uzalb − zblau s33d

andx=pd is the rescaled momentum[41]. The form of this
force is that of the force for the hybrid cell[42] with the
bottom substrate described by an effective planar anchoring
Weff=zaWa/z+zbWb/z,0. Thus in this limit the patterning
enters only via this expression forWeff.

For z!d!leff the long-ranged repulsion between the
boundaries, characterized by strong and effectively weak an-
choring, is enhanced:

Fsz ! d ! leffd <
3kBTAzs3d

16pd3 S1 +
8 ln 2

3zs3d
d

leff
D . s34d

Upon approaching the critical separationdc=leff the force
increases and, within the Gaussian approximation, diverges
logarithmically atdc:

Fsd/dc → 1d < −
3kBTA

4pleff
3 FlnS1 −

d

dc
D + ln2 +¯G .

s35d

This behavior follows from the fact that ford=leff the de-
nominator of the integrand in Eq.(32) vanishes as23x3 for
x→0. Thus the pretransitional behaviorsd→dcd of the force
is related to the singularity of the soft modesx→0d.

The logarithmic divergence is a characteristic feature of
the perturbative method[Eq. (3)] if applied to a system sub-
ject to structural phase transitions[42–45]. Here the planar
anchoring destabilizes the uniform structure governed by the
strong homeotropic anchoring at the upper boundary. Upon
increasing the separationd the influence of the upper bound-
ary decreases and the destabilizing effect of the substrate
characterized by the planar anchoring increases so that upon
approachingd=dc the uniform structure becomes unstable
[33]. Beyond the critical separation, the director structure is
no longer uniform and the Gaussian Hamiltonian given by
Eq. (4) no longer describes the system. Ford*dc one must
consider the fluctuations around a nonuniform configuration
n0sr d. It is possible and even likely that the actual critical
film thickness for the structural phase transition is not given
by dc=leff as obtained in the present perturbative approach.

In the regime of the uniform director configuration, for
separations comparable to the periodicity we have calculated
the force numerically. As for Eq.(31), in the limit d/z!1
the force is given by the geometrically weighted average of
the local force densities

Fsd ! zd =
kBTA

pd3 1 za

z
E

0

`

dx
x2

x + d/la

x − d/la
exps2xd + 1

+
zb

z
E

0

`

dx
x2

x − d/lb

x + d/lb
exps2xd + 12 . s36d

In Fig. 7 the behavior of the fluctuation-induced force is
shown for the three different regimes.

IV. SUMMARY AND CONCLUSION

Based on the Frank[Eq. (1)] and Rapini-Papoular[Eq.
(2)] expressions for the bulk and surface free energy, respec-
tively, we have studied by field theoretical techniques the
contribution of Gaussian fluctuations of the orientational or-
der to the effective force acting on the planar and parallel
boundaries of a nematic film of thicknessd. The upper
boundary exhibits strong and homogeneous homeotropic an-
choring whereas the bottom boundary is characterized by a
one-dimensional, steplike periodic modulation with periodz
of either the strength or the orientation of the anchoring
which is homeotropic or planar(see Fig. 1). The system pa-
rameters are chosen such that the thermal average of the
nematic order configuration is spatially homogeneous
throughout the film. Our main results are as follows.

(1) For d@z, the fluctuation-induced force is propor-
tional to d−3 times a scaling function which attains the same

FIG. 6. Rescaled relative decrease of the fluctuation-induced
force in the case in which the pattern is characterized by alternating
anchoring strengths as a function of the reduced separationd/lb

compared to the attractive forceFattr=−kBTAzs3d / s4pd3d between
two homogeneous substrates characterized by infinitely strong an-
choring energies. Ford@z Eq. (26) holds. According to the discus-
sion in the second paragraph following Eq.(26) this integral is
negative for d/lb.0.68 for the parameter valuesza=zb and
la/lb=0.4 chosen here. Thus one expects thatF reduces toFattr

given by Eq.(30) for z /d→0. The solid curve corresponds toF
given by Eq.(26) and the other curves correspond to the full nu-
merical results obtained from Eq.(25) for the indicated values of
z /lb. All curves appear to vanish forz /d→0 and thus confirm the
above expectation. Moreover, by decreasing the periodicityz the
difference between the solid curve and the full numerical results
vanishes and thus confirms Eq.(26) as a reliable approximation in
the limit z /d→0.
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form as in the case that the patterned bottom substrate exhib-
its a homogeneous anchoring energy per areaWeff=zaWa/z
+zbWb/z with the different anchoring energies per area
Wasbd=K /lasbd weighted according to their lateral geometric
contribution[Eqs.(26) and(27) as well as(32) and(33)]. If
a change of the pattern of the anchoring strength causes the
corresponding effective boundary condition on the patterned
substrate to change from homeotropic weak to homeotropic
strong anchoring, the force exhibits a crossover from repul-
sion to attraction(see Figs. 2, 3, and 4). For a pattern of
competing anchoring energies in the case that the stripes
with planar anchoring are dominant relative to the stripes of
homeotropic anchoring, the fluctuation-induced force is re-
pulsive and nonmonotonic.

(2) For d!z, the proximity approximation is valid, i.e.,
the force is given by the geometrically weighted average of
the local force densities obtained from the homogeneous
substrates[Eqs.(31) and (36)].

(3) For intermediate separations, we have examined the
behavior of the force numerically. For a pattern of homeo-

tropic anchoring with alternating strengths, the rescaled rela-
tive decrease of the fluctuation-induced force as a function of
the reduced separation compared to the long-ranged force is
summarized in Figs. 5 and 6 for several values of the reduced
periodicity. We note that by increasing the reduced periodic-
ity the system approaches the limit of the proximity force
approximation given by Eq.(31) (solid line in Fig. 5), while
by decreasing the reduced periodicity the system approaches
the limit of the effective anchoring approximation given by
Eq. (26) (solid line in Fig. 6).

(4) For a pattern of competing anchoring energies, the
behavior of the force is summarized in Fig. 7. Also in this
case the full numerical solution interpolates between the
asymptotic formulas given for smalld [Eq. (36)] and larged
[Eq. (32)].

In addition to the force due to fluctuations of the director
in a nematic film, there are other forces as well acting be-
tween interfaces of the film such as the well-known van der
Waals dispersion force[24] so that the total force is the sum
of the fluctuation-induced and the dispersion forces. In the
case that the mean director is inhomogeneous so-called
structural forces appear in addition which are not present in
the homogeneous case considered here. For a film geometry
of thicknessd and areaA, the dispersion force decays as
−AH/ s6pd3d whereH is the so-called Hamaker constant. As
implied by Eqs. (26) and (32), the magnitude of the
fluctuation-induced force scales askBTA/d3. Thus, apart
from a numerical prefactor of order one, the overall ratio
between the dispersion force and the fluctation-induced force
is given byH /kBT. Since liquid crystals and glass substrates
have typically comparable indices of refraction, the Hamaker
constant is of the order 10−21 J [46] which is the same order
of magnitude askBT at room temperature. Therefore typi-
cally the dispersion and fluctuation induced force in liquid
crystals are of the same order of magnitude and thus compa-
rable. We mention that for a more adequate estimate of the
Hamaker constant the anisotropy of the liquid crystal has to
be taken into account[47]. For larger thicknesses the disper-
sion force decays fasters,1/d4d due to retardation[48], so
that for sufficiently thick films the fluctuation-induced force
dominates. Finally we note that while the direct measure-
ment of the fluctuation-induced force in liquid crystals has
not yet been accomplished, these forces affect in a character-
istic way the pattern formation of thin liquid-crystalline
dewetting films[49–51].
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