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Defect formation and kinetics of atomic terrace merging
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Pairs of atomic scale terraces on a single crystal metal surface can be made to merge controllably under
suitable conditions to yield steps of double height and width. We study the effect of various physical param-
eters on the formation of defects in a kinetic model of step doubling. We treat this manifestly nonequilibrium
problem by mapping the model onto a 1D random sequential adsorption problem and solving this analytically.
We also do simulations to check the validity of our treatment. We find that our treatment effectively captures
the dynamic evolution and the final state of the surface morphology. We show that the number and nature of
the defects formed is controlled by a single dimensionless paramekar g close to one we show that the
fraction of defects rises linearly witk=1-q as 0.284. We also show that one can arrive at the final state
faster and with fewer defects by changing the parameter with time.
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[. INTRODUCTION by the Kardar—Parisi—-Zhang equati¢24]. Irreversible de-
positon of macromolecules on surfaces and sociological epi-
Structural phase transitions on stepped metals have gainggmic model§25] also fall into this category. Our approach
much attention in recent years. Starting from some of thdo treating the step-doubling process is derived from treat-
first experiments by Lang, Joyner, and Somofjij who  Mments of random sequential adsorpti&EA) problems{26],
noticed single-height steps merging to form double-height’Vh'_Ch deal with irreversible adsorption of objects onto
steps on RB44 to time-lapsed scanning tunnelling micro- lattices.

scope (STM) measurements of the dynamics of the step- In this paper we conside_r a simple moder] for the
doubling process more recentig,3] the field has been at- step-doubling process described by two parameters, a nucle-

tracting more attention. The study of surface structure and, iﬁtlon rate, and a zippering rate. We f|_rst map this p_roblem
onto a 1D random sequential adsorption problem with two

particular, the formation of defects during the step—doublingk-

Iogiqal properties of the surfaces. Varjous experimeﬂﬁaﬂ lize the methods of RSA to solve the problem analytically.
studies have been performed to elucidate the dynamics of thgje gre able to make predictions for the fraction of defects
evolution of these step-doublmg processes. There has _al%g]d perfectly doubled steps in the asymptotic stages of the
been a lot of theoretical effort aimed at Understand|n%rocess_ We aISO predict the dynamica| evo|uti0n Of the de_
stepped surfaces. Different issues that have been addressg@e to which the surface has undergone doubling. The the-
include the role of thermal kink energies and step-step interoretical predictions are then checked against extensive simu-
actions in determining the equilibrium morphology of vicinal lation results and found to be in good agreement. We finally
surfaces[6—9], step dynamics incorporating step-step inter-make contact with experimental results and show how our
actions[10-14, Schwoebel barriers and diffusigi5] as analysis can be used to extract information about the dynam-
well as mechanisms for step bunchifi—19. Research has ics of the process.
also focused on the role of step energy, step-step interactions, The paper is organized as follows. We first introduce our
and step curvature on the dynamical process of step doublingodel for the step-doubling process, which utilizes a coarse-
[20-23. However, there is a further aspect of step doublinggrained picture of the surface. We then solve the problem in
that can be addressed independently of the atomic-scale ithe special limit where the zippering rate is infinite by map-
teractions. This is the persistence of disorder after the dowing it exactly to the problem of RSA of dimers on a 1D
bling process is complete. We show that we can quantify théattice. We then step back and set up the general mathemati-
limits of disorder by considering only the kinetics of the cal framework for RSA of more than one species. We then
problem, without referring to the underlying microscopic use this framework to tackle the problem of accounting for
mechanisms. The generality of our approach allows fodefects. We then generalize this to the case where our field of
wider applicability since one expects analogous limits for aview does not encompass the whole sample but just a part of
wide class of surface restructuring problems. it, since this is closer to the experimental situation. We then
An important characteristic of the step-doubling procesdliscuss the time dependence of the surface morphology. Next
is that, under the optimal conditions, it is manifestly non-we present our simulation methods, and we finally conclude
equilibrium. Steps seem to double irreversitiiyless condi- by discussing our results.
tions are changgdand hence equilibrium statistical mechan-
ics treatments are suspect. The problem is thus a part of a
whole set of interesting problems. These include nonequilib- It is found that steps commence coalescing at a point con-
rium epitaxial growth models, many of which are describedtact where a step edge bulge touches the neighboring step

IIl. THEORETICAL ANALYSIS
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the nucleation raté (defined as the number of nucleations
that occur per unit time on a sample that has no doubled
T step$ and the zippering ratg (defined as the rate of change

of the length of a doubled step in units of the step width
This zippering rate is observed to be large enough that many
steps undergo complete doubling. Our analysis will focus on

this regime of small/Z.
l When the step-doubling process has reached its final state,
two main kinds of defects are observed to remain. The first
(a) kind are isolated step edges whose neighbors to both the
right and left have doubled with their other neighbors leaving
the step “isolated(see Fig. 1. The second kind are frus-
trated dead ends, which are formed when a step merges to its
left at one point along the step and to its right at another
point. We wish to understand how the nucleation and zipper-
ing rates affect the formation of these defects.

A. Final state

(b) The simplest model assumes that nucleation points occur
randomlyover the entire sample with a probability per unit
time determined by. The steps then coalesce at a steady rate
(Z2). To attack this problem we first imagine mapping a
square section of the sample to a coarse grained lagee
Fig. 1. Here each column represents a step. A lattice site can
either be occupied or unoccupied. Occupied sites represent
sections of a step that have doubled. A step that initiates a
nucleation event forms a bulge and doubles with its down-
stairs neighbofto the right as in Fig. Llas observed experi-
mentally. Any given step is equally likely to double with its
upstairs or downstairs neighbor. The asymmetry is only in
the doubling process, which sets the position of the doubled
step edge to be at the edge of the downstairs step of the
doubling pair. This has no bearing on our calculations of the
final state disorder and kinetics that are to follow. Thus oc-
cupied lattice sites occur in pairs, one each on adjacent steps.
A nucleation event where a step-edge bulge touches its
142 3 45 downstairs neighbor is represented as shown in Fig. 1 in the
(d) coarse-grained picture. Taking the coarse-grained view in-
volves the loss of some specific information about the sys-
FIG. 1. (a) A schematic view of single and double steps. The t€m. One looses information about the exact position of a
lines represent step edges. The thick lines denote double step edgBéicleation point and also the exact shape of the doubling
The terrace on the left of an edge is higher than the one to the righgtep. Positions in the vertical and horizontal direction can
Also shown is a single step-edge bulge touching its downstair®nly be specified up to a single step width. Thus the coarse
neighbor thus initiating a nucleation. The two edges will subse-graining will also fail to capture the meandering of indi-
quently zip together, as indicated by the arrows, to form a doublesidual steps.
step.(b) A coarse-grained lattice representation of the situation in  Once a nucleus has been formed the two steps will even-
(8). Shaded sites represent occupied sites, i.e., sites belonging totgally form a double stepunlessit gets frustrated as de-
double step(c) A frustrated dead end forms when steps 1 and 2scribed previouslyand in Fig. 1. If we examine the system
attempt to double and steps 2 and 3 also attempt to double startingfter all evolution has ceased, there are thus at least two
at another nucleation poingd) An isolated step i.s formed Whgn possible entities: a perfectly doubled step, which occupies
steps 1 and 2 and steps 4 and 5 double leaving step 3 with ngyo columns of the coarse grained lattice, and a frustrated
partner to double with. pair, which occupies three columns. There are in principle
higher order defects that can occupy more coluiisee Fig.
edge below iff2,3] (see Fig. 1 This is called a nucleation 2). For example one can have an extended structure where
event. Once a nucleus has been formed the two steps bedime doubling of steps 1 and 2 is frustrated by the doubling of
coalescing steadily in both directions from the nucleus. Thisteps 2 and 3 at another point, which in turn is frustrated by
process is referred to as zippering. Thus there are two disteps 3 and 4 nucleating a doubling event and so on. To be
tinct rates that govern the formation of the doubled structureable to proceed with an analysis we need to understand what

()
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Though the solution to the RSA problem is standard
[26,30, we present the solution for completeness and to set
the stage for the next subsection. We first defiqeo be the
probability that a randomly chosen site is part of a sequence
of at least nconsecutive empty sites. We can then write
down the time evolution of this probability for=1

dP,
d—t” =—k(n=1)P, = 2kPpy;. (1)

The first term accounts for the sequence being broken by the
adsorption of a dimer within tha sites, which can be done

in n—1 ways. The second term refers to a dimer overlapping
the sequence from either end if the sequence has atreast
(@) (b) © +1 sites. This can be done in two ways. In order to solve this

FIG. 2. Examples of higher order defects: A defect structureSet of equations, we first define the conditional probability

spanningn+2 columns is defined to be of order(A) A frustrated g”:P”./ Pn-1. Usf'.”% Eq'(l)’, we can write down the set of
dead end: a defect of order one, which spans three coluiBn# equations satisfied by thg's.
defect of order two spanning four column€) A defect of order dg,

three spanning five columns. at = —Kgh — 2K(gnGn+1 ~ gﬁ)- (2

kind of defects are important and under what conditions. WeNow at timet=0, the lattice is empty and all th;’s are
first consider the simplest case where the zippering rate iglentically unity. This implies that all thg,'s are unity att
taken to be infinite. =0. Therefore the initial conditions tell us that all tg's
satisfy the same equationtatO since the second term on the
right-hand side in Eq(2) does not contribute. However, this
B. Infinite zippering rate means that as time progresses @iye evolve in an identical
In this casd is assumed to be some finite number, while f@shion, all of them being equal, with the second teever
Z is taken to be infinite. Novany nucleation will lead to a  contributing. Thusg,=f(t) is simply a function of time and
perfectly doubled step as the steps zipper together instantd9€s not depend on. We can, therefore, look for solutions
neously. There will be no frustrated dead ends in this scet® EQ- (1) of the form
nario. However, there will be isolated steps, both of whose P.=f(t)P,_,. (3)
neighbors have doubled with other steps. The question then " -
is how many of these isolated steps will be present in thdJsing this with Eq.(1) gives a differential equation fai(t)
final state when all evolution is complete. [which can also be obtained directly from E@)] that may
To answer this gquestion, we first note that a nucleatiorbe solved to yield th@nsatz
attempts the occupation of two columns in the coarse grained k(=D
lattice picture. If the columns are unoccupied before the at- Ph=€ Py. 4)
tempt, the nucleation is successful and both columns are o¢t may be readily verified that thensatzconsistently satisfies
cupied. Thus in any given time step when a succesful nuclegq. (1). Now using(1) and(4), we get
ation occurs two adjacent columns are fully occupied.
Furthermore, once these columns have been occupied subse- dpy = — oketp (5)
quent successful nucleations cannot overlap either of these dt !
columns. We can now visualize the process as occurring on a, . .
1D lattice, each site of which corresponds to a column on ouYVhICh yields
original lattice. A successful nucleation event leads to the In P;=2e+¢ (6)
occupation of two consecutive sites on this 1D lattice. Each ) ) ] o -
nucleation attempt, therefore, corresponds to a randorherec is an arblt.rary. constant. Using the initial condition
choice of a pair of consecutive sites. If both these sites arfhat att=0, the lattice is empty and henég=1, we get
unoccupied, the attempt is successful and as a result both the c=-2. 7)
sites are occupied. This processeigactly RSA of dimers
(objects that occupy two lattice sijesnto a 1D lattice. Inthe We thus have an explicit solution fdt;
RSA process a dimer attempts to adsorb onto the lattice at p. = it
. | ; . =exd2e ™ -2]. (8)
every time step, corresponding to the nucleation attempts in
our system. Dimers cannot overlap just as in our systenThis tells us that wheh— o, P, — e 2. The fraction of sites
already doubled steps cannot double again with a differenthat are unoccupied in the final state is, therefose?
step. Thus in the limit of an infinite zippering rate our prob- ~13.5%. Thus even in the case where we only have per-
lem mapsexactlyto an RSA problem of dimers adsorbing fectly doubled steps, the percentage of total area covered by
onto a 1D lattice. the doubled steps is 86.5%. There vélivaysbe 13.5% of
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the surface covered by isolated single-step defects. In the t t

case of a finite system we expect 13.5% defective area on  P2= exp[—f k(t")dt’ —f [2f(t")[k(t") +K'(t")]
average. We will later consider the case where the fdo 0 0

is small but finite. Here we expect not only isolated step

edges, but also frustrated dead ends and possibly defects of + 2k'(t’)[f(t)2]]dt'] (12
higher order.

and hence frong10) for all P,, for n=2. Forn=1 we have

dpP;
In real experimental situationf2,3,27, one observes not dt

only perfectly doubled steps, but also frustrated dead ends _ _ _

(defects of order oneln this section we will lay down the Which upon integration gives

mathematical framework that we will use to treat the occur- o

rence of defectsSupposeve are in a regiméow 1/Z) where 1-Py(t=»)= f (2kP, + 3k’ Py)dt. (14)

we haveonly two significant entities: perfectly doubled steps 0

?ch égfjglant:dagg ?frig?;t:dp;;edc tg,]g Zl;t:r?g t?\tree% %gfgﬁ:re;g;(tzw) is simply the fraction of space occupied by isolated

We may now think of the process as occurring on a 1D ead ends at asymptotic coverage. The two terms on the right

lattice with dimers(blocks of two lattice unitsrepresenting ?(jrguzllgpsl,%/e;t)?seanj(rjai::?nnercs);f(frsupsa':rC:te?jC%Lg;gde%strz(:pzlcl:ﬁners
erfectly doubled steps and trimefislocks of three lattice . . . . "
P y P s §:/ely. It is to be noted that this constitutes an exact solution

C. Accounting for frustrated dead ends
== 2kP2 -3k’ P3 (13)

units) representing frustrated dead ends adsorbing onto th ) ; i :
lattice at different rates. The dimer attempt rate is denoted b r_the pr_oblem of RSA of a binary mixture in 1.D with
rbitrary time dependence of the attempt rates. It is also to

k and the trimer attempt rate ly. These attempt rates are in ! ; )
general functions of time, the nucleation rate, and zipperin N noted.that this af‘a'ys's may be extended to include de-
rate. The problem of determining these attempt rates will b ects'of hlg_her order if one knows the att(_ampt rates for all the
dealt with in the next section. For now we take them to be>PE¢!€S being considered. We now consider the cas'el'){/ﬂth
arbitrary functions of time. The kinetics of this process cor—.smtaII but ?(t)r?zero an_d COTFUte the [gteagdzk explicitly
responds to the problem of RSA of a binary mixt(i28,29 In terms of the experimental parameterand 2.

though with attempt rates that are functions of time. As be-

fore we first defineP,, to be the probability that a randomly D. Nonzero but small I/
chosen site is part of a sequenceatfleast nconsecutive We now apply the formalism developed in the previous
empty sites. We can then write down the time evolution Ofsection to our problem where we are given the experimental
this probability forn>2 parameterst andZ. The case whel/Z is small but nonzero
is important as it is closer to reality. Most experimental situ-
@ = —k(n-1)P, - 2kPyy — K'(N = 2)P, = 2K'Ppusg ations havel/Z values,. which are . typically of order
dt 103-101 [21,27. To begin our analysis we need to under-
—2K'P,..». 9) stand for what values df/Z different orders of defects be-

come important. Intuitively one expects that for small

The first term accounts for the sequence being broken by thghoughl/Z, considering only defects of order one would be
adsorption of a dimer within the sites, which can be done @ 900d approximation. To estimate how smdl needs to
in n—1 ways. The second term refers to a dimer overlapping® We first consider the mean-free path of a successful
the sequence from either end if the sequence has atreastnucleation on an empty lattice. By mean-free path we mean
+1 sites. This can be done in two ways. The third, fourththe average length to which the doubled step grows before it
and fifth terms are similar to the first and second except tha cut off by other nucleations.
they refer to the adsorption of trimers in an analogous fash- Heuristically one can say that higher order defects will
ion. Introducing the conditional probabilitieg,=P,/P,,  not be important when the mean-free path is much larger
and using the initial conditions, we find thgt=f(t) is only ~ than the size of the lattice we are dealing with, i®.> M.
a function of time and does not depend miWe, therefore, Itis important to notice that, thOUgh we use a square lattice,
introduce the ansatz the M referred to here is the relevant size in the direction
along the steps independent of what lattice size we may con-
P, = f(t)Pp1. (10)  sider perpendicular to the step-edge direction. We now focus
on a regime of low/Z that satisfies the above condition with
Using this in conjunction with Eq(9) and the initial condi- the assumption that we only have frustrated dead ends. The
tion P,,=1 yields explicit condition will be worked out later in this section.
We can now view the whole process as occurring on a 1D
f(t) = g okt)+K )t (11) lattice of sizeM corresponding to the problem of RSA of a
binary mixture. In our system there are only dimers trying to
This, along with Eqs(9) and(10), yields an explicit solution adsorb onto the lattice except they may turn into a trimer if
for P, another dimer overlaps one of its units within the time it
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| 2M-2k-Z(tj~t)/2)
] Py(j) = (l - M—zAt> (17)
k—Zt/2 |
k
|
zexp[— 2 = 2= Z(t; - taQIZ)At} : (18)
Zt - Thus the total probability that the nucleation evdatattice
M o constants from the edge, leads to a perfectly doubled step is
= Sesar st a1 Pa(i)fj[ Pu(i) (19
M—k—Z12 | .
I
— z]f[ exp{— WZ(M - Zti)Ati]
1 I

I
><H exp[— WZ[M - 2k-2Z(t - ta)/z]m,} (20)
FIG. 3. Left: Scenario after a timtg=t(<t,) after the first nucle- ]
ation on an empty lattice. The nucleation-occurtethttice sites
from the nearest horizontal edge. The doubled stiemoted by the Bla
shaded regionhas grown to a lengt@t. The sites where a nucle- =ex ‘f WZ(M - Zt)dt
ation would lead to frustratiofdenoted by the “walled” sitgsum- =0
ber AM -Zt). Right: A situation after a tim¢=t after a successful =ty
nucleation. “Walled” sites denote the places where a nucleation f
could lead to the growing doubled step being “cut off” before it t
reaches a lengthy=Il on one side.

) #2(1\4 -2k - ZUZ)dt} (21)
=0

2l a({k\* k
takes to zippeM steps. We thus view this as a RSA process —exp[ Z ]ex;{— E(( M) M)} '
with the rate at which trimers try to adsorb determined by the
probability q of the above-mentioned overlap occurring. We It is equally probable for the first nucleation to occur at any
now compute this probability explicitly in terms dfand Z. site along a column. We, therefore, have to average over all

We first defineq to be the probability that a nucleation possible values df that are integers from zero td/2. This
event leads to a perfectly doubled step oreamptylattice. If ~ gives
| is the nucleation rate over ti X M sample then the prob-
ability of any one element initiating a nucleation in timé 9= (A
is 1/M?At. Now consider a nucleation evektlattice con-

stants away from the nearest horizontal edge ofNhe M . p[ 2|] o keMi2 p[ 41 (( K )2 K )]
=ex — X
M

(22)

(23

(24)

>Z(M—Zti)

by zipping. Fort >t, only one end grows since the other end
11
ation can lead to frustration is(i—2k-2Z(t-t,)/2). Now —exp[ I}(Z)Ew_ﬁ
the nucleation and zippering rates. It is to be noted that to
P.(i) = (1 —WAI
of considering only order-one defects is valid. To do this, we

lattice (see Fig. 3.
Upto a timet,=2k/Z, both ends of the doubled step grow
has already reached the edge of the lattice. This part of the 2 12 4
process takes a timig=2(M-2k)/Z. Fort<t, the number ~exp TS ZJ exp - E(X —x) |dx (25
of sites where a nucleation can lead to frustration (12
-Zt). For t,+t,>t>t, the number of sites where a nucle- 1
I\2
the probability at a time;<t, past a nucleation that the zI\1/) 2 erf[(2> ] (26)
doubling steps do not get frustrated in the n&kwf time is ) -
given by Thus we have a relation between the probability of a
nucleation leading to a perfectly doubled step and the ratio of
(15) preserve invariance under rescaling tigegan only depend
on the ratio of the rates and not on their absolute magnitude.
Happily, Eq.(26) respects this invariance.
We now return to the question of when the approximation
|
%exp[—WZ(M _Zti)At]- (16)  compute the value of the mean-free path of a successful
nucleation, defined earlier, explicitly. We first compute the
probability that the doubled step length on one side of the
Similarly for t,+t,>t;>t,, we get point of nucleation exceedg. At any timet; after the nucle-

041603-5



A. GOPINATHAN AND T. A. WITTEN PHYSICAL REVIEW E 70, 041603(2004

ation event the probability that the doubling step does not get ]
stopped by doubling events in its path in the next time step Pali) =| 1 - zuAt
(At) is given by

2(M-2t)
) (31

The extra factoru reflects the probability that the site in
27 question is available for occupation.may be roughly re-
lated in a “mean-field” sense to the average fraction of un-
occupied sites at that time. As an approximation we take this
| fraction to beP; for the case with an infinite zippering rate.
- _ L an o Then going through the above analysis will yield a “cor-
exp[ M26(IO Zn/Z)At}. (28) rected” value ofg. We find thatq goes up by a factor that is
about 6.2% whemg~ 0.5 and less than 0.1% whep~0.9.
Here we take the probability of not stopping the zipperingThus we find that neglecting these effects does not alter our
end of the doubling step in the negtt of time to be the results by much.
probability of having no nucleation in timaAt at any site It is to be noted that when the only structures present were
raised to the power of the number of sites where such gerfectly doubled step$Z=c), the mapping to the RSA
nucleation would lead to stoppageee Fig. 3. Now the total  problem was exact. Now we have two kinds of entities. The
probability is simply the product of thE;’s that can be writ- doubled steps still cannot be overlapped and are put down

6(1-24/2)
P(i) = <1 - WAt>

ten as the exponential of an integral yielding randomly. They are still amenable to RSA analysis. How-
ever, the frustrated dead ends can become defects of order

6l(1)\2 two (Fig. 2) when the sections of them that are still single

P(I>19) = exp{— E(M) ] (29 steps merge with a neighboring step if available. If this oc-

curs during the process when there are still pairs of single

Knowing this probability distribution we can calculate the Steps that can form perfectly doubled steps, it will affect the

mean lengthl), which is what we defined as the mean-free dynamics and hence the asymptotic fraction of different spe-
path. The mean-free path is thus cies. It is this process that we neglect as a first approxima-

tion. Later simulation results show that this is a reasonable

* dp A\ 12( 7\ 12 assumption.
(= 2f —Idl = M(—) (—) ) (30 We now consider how the competition parameias al-
o dl 6 ' tered when the surrounding lattice is not empty as discussed

above. The value of] does depend on the environment in

Using the explicit formula foKl) in terms ofl/Z above, the  which the nucleation occurs. We can imagine three possible
condition for neglecting higher order defects reduces/®  scenarios(i) Columns on either side of the freshly nucleated
<41/6~2.09. As noted before for most realistic experimen-double step are already occupiédbubled. In this caseq
tal situations, this situation is easily satisfied. Simulation re=1, since this nucleation cannot be frustratéid. Columns
sults presented later support our assumption. on both sides are emptgingle. In this case we may use the

Now, the value ofg derived above neglects the influence result for the empty lattice, since for low enoubtz, as we
of nucleations other than the ones that can frustrate the initisdrgued before, the state of columns further away will not
zippering double step. For example, a nucleation directly bematter muchJiii) One side of the freshly nucleated double
low and aligned with the original growing double step will step is occupied. The correct value to be used here will be
block sites where nucleations could have frustrated the origig'/>. The relative probabilities of these scenarios occurring
nal growing double step. This is also true for nucleations orwill evolve as a function of time. In order to account for this
columns on either side of the original doubling step. In gen-we ought to use the more general treatment, wigezan be
eral a nucleation occurring many columns away may stillan arbitrary function of time, presented in the previous sec-
influence the probability of the original nucleation forming a tion. However since most of the defects form in the early
perfectly doubled step. Intuitively we would expect that thestages, we anticipate that the asymptotic fraction of defects
further such a column is from the original nucleation, the lesswill not be altered significantly if we use a constant value of
its influence will be. Indeed for a nucleation occurringol- g, evaluated for the empty lattice. Our simulation results con-
umns away the probablity that its effect will propagate to thefirm this view. The dynamics will, however, be sensitive to
column where the original nucleation took place will go aschanges ing, and this will be addressed in the section on
(1/2). This is because, for this to happen, we n¢euicle- time dependence. For now we tago be a fixed constant
ations(for each intervening columneach of which will oc-  throughout the process.
cur roughly with a probability proportional tb/Z. Thus for We can now view the process as a RSA of a binary mix-
small enough values df/Z, we may neglect the effect of ture of dimers and trimers on a 1D lattice. A dimer adsorbs
columns that are further away. However to be sure that this isnto the lattice with a probabilityy and a trimer with a
not a big effect we need to ascertain the effect of nucleationprobability 1-q. If kg is the overall attempt rate at which
on columns that are closest to the original doubling step. Taucleations are tried on the 1D lattice, then the dimers have
do this, we need to take into account the probability that san attempt rat&=Kk,q and the trimers have an attempt rate
site at which a nucleation could lead to frustration may notk’ =ky(1-q). We now use the results derived for the process
be available for occupation. Thus Ed.6) will read on an infinite 1D lattice with dimers attempting to adsorb at
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04 ' ' ' ' ' ' ' ' ' tion can be used to infer the ratléZ by simply looking at
ok <> the number of defects in the final structure. One thus gains
& information about the dynamics of the process from the final
035} - 7 1 state.
03l ///O i E. Scaling of the fraction of defects
§ wosh ¢ | A point of interest is the case where> 1. Here the nucle-
2 e ations are the rate-limiting step and the zippering occurs al-
£ oof . e { most instantaneously. In this case— 0 and we retrieve the
s o - Z=x case where we can explicitly solve fét; yielding
0151 7 1 Py(t=x)=€"2 Thus even in this situation 13.5% of the steps
ol 7 | remain as isolated step defects.
' 7 In the limit of g—1 the mapping to the RSA problem
oosk ™ i becomes exact. We now consider the scaling of the number
of frustrated dead ends with=1-q in this limit. The frac-
T s e 5 s o s oo 3 tionof frustrated dead enddefects of order ones given by
q w

- !
FIG. 4. Plots of fraction of doublets and triplets as a function of Prr = K'Psdt (39

g. The fraction of a species is the number of that species divided by

the size of the latticg60 herg. Solid and dashed curves are ob- -

tained by numerical integration of 34 and refer to the fraction of =J ko(1 — Q) Padt (36)
frustrated dead ends and perfectly doubled steps, respectively. The 0

simulation results for the fraction of frustrated dead efoisen

circles and perfectly doubled steggdiamond3 are also shown and »
are plotted withq values computed using the E@6). —koef exfd — kot ]P,dt (37)
0
a ratek and trimers at a ratk’ (as in the previous sectipn " ,
Using the fact that hereandk’ are constants Eq12) yields :koff exf- kot]exp{— Kt + 2a kKt 4 kI: %
' ’ 0
P,= exp{— ikt 26k, K i (2 . K )] K
k+k k+k x @ 2(k+kt _ <2 + ,)}dt_ (38
(32) k+k
and hence fron(10) an explicit solution for allP, for n  Herek=ko(1—¢) andk’=kge. Using these in the above ex-
=2. Forn=1 we have pression and retaining terms to lowest ordekiwe obtain
dpP e -
d—tl = - 2kP, - 3k'P3 (33) P =koee™ f ex~ 2kot + 2¢™]dt (39
0
which upon integration gives o
o —ee? J exd — 2x + 2e7¥]dx (40)
1-Py(t=o0) = J (2kP, + 3k’ P5)dt. (39 0
0
=0.284 .. e. (41

P,(t=x) is simply the fraction of space occupied by isolated
dead ends at asymptotic coverage. The two terms on the righithus for smalle the fraction of frustrated dead ends rises
are simply the fraction of space occupied by the dimers antinearly with e with a slope of 0.284. Figure 5 shows a plot
trimers or double steps and frustrated dead ends respectivelyf values ofp;, obtained from the simulations described in
Figure 4 shows a plot of the fraction of various species as &ec. lll versus. The error bars on the individual data points
function of g. This is the only parameter in the problem asare about 5%. The line plotted is a best fit line to the points
the asymptotic coverages are clearly independent of the oveand yields a slope of 0.28£0.01 and an intercept of
all ratek,. Thus we have demonstrated that both the natur®.0000+£0.0002. This agrees very well with our prediction
and number of defects in the final state depend only on thand shows thap;, indeed rises linearly witle with a slope of
dimensionless parametar It is to be noted that the isolated 0.28. The observed number of frustrated dead ends thus
single step populatioinot shown does not change much gives us explicit information about the competition param-
(8% —13.5% with g in contrast to double steps and frus- eterq and hence the experimental rates.

trated dead ends. This is in qualitative agreement with ex-
perimental result$27]. It is also to be noted that whem
=<0.58, the fraction of width occupied by the defects exceeds In the above analysis we assumed thHtdoubling oc-
that occupied by perfectly doubled steps. This characterizaeurred as a result of nucleations that occurred within the

F. Accounting for nucleations outside the field of view
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0.014

length {I) which is what we defined as the mean-free path.
The mean-free path is thus

0.012- B

12 1/2
- w=m(%)" (2" @3

00081 i Now we assume that thenly nucleations that will have an
effect on the region of observation occur either in this region
or (I) above or below this region. This is because a zipper
originating from a nucleation farther away is likely to be cut
off by nucleations in its path. As before we consider the
scenario at a timéafter a nucleation event inside the region
of interest,k lattice constants away from the nearest edge of
the M X M lattice on an otherwise empty lattice. The prob-
ability that this nucleation leads to a perfectly doubled step
% ows o1 o5 ooz oo oos oo oos ool oos  may be derived in a manner analogous to the way we derived
e=1-g Eqg. (22). There are two factors contributing to this probabil-
ity. First, there is the probability of being frustrated by nucle-

FIG. 5. Plot of fraction of frustrated dead ends versesl-q  ations inside the field of view. This is exactly the same as
showing the linear relation. The open circles are simulation result§afore. We denote this &, which is given by
and the straight line is a best fit to these points. The best-fit line has n’

a slope of 0.28+0.01 and an intercept of 0.0000+0.0002. 2| 4 k\2 k
P, = ex -7 exp) — — (—) -—1r. (44)

Z|\M M
region of observation. Clearly this need not be the case.

Nucleations that occur outside the region of observation carrhis follows from Eq.(22). The second factor which we now
lead to doubled steps within this region. In a typical experi-consider is to account for nucleations occurring outside the
mental situation for example one would likely examine somefie|ld of view. Now the probability at a timé <t, past a

subsection of the sample and take that subsection as beifgcleation that the doubling steps do not get frustrated in the
representative. We thus need to account for unobservegext At of time is given by

nucleations in order to make contact with experiment.

Most of the analysis done before still holds for this case. L I 4
Nucleations occurring outside the field of view will increase Poudi) = (1 - W(DF’z(p}At) (45)
the overall attempt ratésince there will be doubled steps
formed by nucleations occurring outside and zippering in Heret,=2k/Z as before(p) refers to the average probability
They will also make it more probable for a given nucleationthat a nucleation within a mean-free path distance of the
to be frustratedsince nucleations occurring outside can alsopgrizontal edge of the field of view, zippers to the edge with-

frustrate doubling steps within the field of vigwf we are oyt peing cut off. This is simply the average of the probabil-
interested only in the asymptotic fraction of defects, we dojy given by Eq.(42) over this region,

not need to consider changes in the overall attempt rate. The

only difference will arise in computing the probability that a Z \2\ 12 Z\"Y))

given attempt at a doubled step succeeds without being frus- (p) = (a) m?eff (a) IVEL (46)
trated, i.e., our competition parametgrWe take the region

of observation to be aM X M lattice embedded in a larger p 4ccounts for the probability that a nucleation is indeed
lattice, which is 34 X 3M. The choice is simply made based 5qgjhle at the site in question. We simply chooseFipthe

on convenience and for ease of comparison with simulationsyq tion for the infinite zippering rate cafgqs.(8) and(4)].

First we recall the concept of a mean-free path for a zipperthe tactor of 4 comes from the fact that there are four col-
ing double step. We defined this to be the average length tgmng along which a nucleation from outside can zipper in to

which a zippering double step can grow from the nucleationsrate the original nucleatiotsee Fig. 3 We can write

point without being hindered by a nucleation in its path.yown a similar expression for timeds<t <t,+t, wheret,
Taking into account the probability per unit time of a nucle—:2(M ~2K)/Z.

ation occurring in the path and the zippering speed, it was

Py

0.006 - B

0.004 - B

0.002 - b

shown that the probability of a zippering double step grow- | 2
ing to a lengthgreaterthanly is Pgm(i) = (1 —M—2<I)P2<p>At> . (47
2
p(l > o) = exp{— g<|_0> } (42) The_change here is in the exponent, which changes from 4 to
Z\M 2, since once one end has reached the edge, there are only

two columns left along which a nucleation from outside can
wherel is the nucleation rate over @i X M area. Knowing zipper in to cause frustration. We now take the product
this probability distribution, we can calculate the meanP, P2, and integrate over time to get
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-4 fa -2l o “r—— - - - - T
Pou=exp 5 (1Xp) fo Padtexp 7 (IXp) JO Padt|. oal ot
&
(48) 035 //
We similarly consider the probability that a nucleation event .| Q/’
that occurs outside the regiqwithin (I) of the edge of the § .
region of interestresults in a perfectly doubled step, %’ 0251 ///
2l -2l 21z E o -
PO=exp - = |exp| —2(I><p>f Pdt|. (49 §g D
z M 0 015} 7
This comes from putting=0 in the produc®P;,P,, This has o1l //'/
to be weighted by the probability that the particular nucle- el

o

33

ation results in a zipper that makes it to the edge. This prob  ©
ability as calculated befor€eq. (42)) is . . . . . . . . .
0 0.1 02 0.3 04 05 0.6 0.7 0.8 0.9 1

I j)\?
pli) = exp[— %(lﬁ) ] (50) ;
FIG. 6. Plots of fraction of doublets and triplets as a function of

Now we simply average the probability of getting a perfectly q. Solid and dashed curves are theoretical curves and refer to the
doubled step over all positiorgboth inside and outsidevith  fraction of frustrated dead ends and perfectly doubled steps respec-
the appropriate weights following the steps to get ). It tively. These are identical to the curves in Fig. 4. The simulation
is to be noted that if the distance from the edge of the field ofesults for the fraction of frustrated dead er@dpen circley and
view to the edge of the outer boundary is less than the meamerfectly doubled stepgliamond$ are also shown, but with being
free path, therl) in the above expressions is to be replacedcomputed using the relation for the case of an open subsystem. The
by this distance. The integrals cannot be performed to yield &Ows on selected data points indicate how much they would shift
closed form answer. These, however, can be numericallg g were calculat_ed using the _rela_tion for the case of a cIosc_ad
evaluated for specified values bfZ. The dependence of the sys_tem. The fra_ctlon of a spemes is the number of that species
fraction of species of remains the same as before. Only the 41Vided by the size of the lattice20 here.
relation betweerg and1/Z has changed. Figure 6 shows a
plot of the fraction of various species as a functiorgoft is ~ are doubled corresponds #o=1. At the beginningt=0) we
to be noted that, for the same value I6Z, an open sub- start with a situation where all the steps are singhe-0).
system will have a smaller value of and hence a larger Now consider the situation after a timieWe define the av-
number of frustrated dead ends than a closed system of tiefage time it takes for a perfectly doubled step to form to be
same sizg(see Fig. J. This is what one would intuitively t,=3M/2Z. We assume it takes routhy half the time for a
expect. frustrated dead end to form and defige 3M/4Z. We make

One can use this analysis to infer the number and naturthese approximate estimates since we would just like to give
of defects in a larger sample simply by looking at a smalla qualitative sense of the time dependence. Now all double
patch and inferring the value &fZ. However, care must be
taken if the calculated value dffZ for the larger sample !
exceeds about 0.5. One must then do an extended analy:
incorporating a finite number of higher order defects dictatec  osr
by the value ofl/Z. It is to be noted that this treatment
contains several ad hoc approximations and should only b os
taken as a rough estimate and a proposed methodology.

©

07r

G. Time dependence e

Competition parameter: q

Until now we have been looking at the asymptotic
(t— o) limit of the surface morphology. In this nonequilib- 05
rium problem however the final morphology is dictated by
the dynamic evolution, and hence it is interesting to look at
this evolution. Experimentally too there has been recently
much progress in studying the time evolution of the stef
doubling proces$2—ﬂ. [ 01 0.15 0.2 0.25 03 0.35 0.4

We first introduce an order parameigrwhich we define "
to be the fraction of sites that have undergone doubling. A FIG. 7. Competition parameter versug for the closed system
completely empty matrix in which all steps are single corre-(dashed lingand the open subsystefsolid line). Values ofq are
sponds tay=0, and a completely full state in which all sites lower for the open subsystem case for the same valuétZof

0.4
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steps initiated before time-t, and all frustrated dead ends
initiated before timet—t; have formed completely. Entities
initiated within this interval have formed partly. So we have

t-t, t-ty t t-t’
t) = 2kP.dt’ + 2k'Padt + [ 2K'P, e dt’
0 t

0 -t 2

t t — t/ 0.5
+f 2k P3——dt’. 51y =
t-ty t3 0.4
The first two terms account for the completely formed s
(completed double steps and frustrated dead )estdsctures.
The third and fourth terms account for the structures that ar 2
partly formed. The factor of two in all the terms comes from
the fact that each doubled step occupies two columns. Th
frustrated dead ends also effectively occupy two colugims
terms of arepthough they span three columns. Since we
have explicit solutions foP, and P; as functions of time we
can computel(t). The only parameter we have not yet evalu-  FIG. 8. Plots ofy(t) versus time, measured in units of tens of
ated is the overall attempt ratg. We may think of each simulation steps, for two different values gz [0.05(lower curve
doubled step as being caused by one nucleation and eaehd 0.1(upper curvg]. The solid curves are obtained by numerical
frustrated dead end being caused by two. Then the attemptaluation of Eq(52) for the case with a time-dependent competi-
rate of dimers plus twice the attempt rate of triplets ought tdion parameterq(t). Dashed curves are obtained by numerical
be equal to the nucleation rate per column. evaluation of Eq(51) for the case with a time-independent compe-
tition parameteryy. Simulation results obtained féfZ=0.05(open
K+ 2k" =Kkoq + 2Ko(1 - Q) (52)  circles and1/Z=0.1 (diamonds3 are also shown.

Time

—ko(2 - ) = 1 proximation by considering sites adjacent to a double step,
M’ but belonging to a large set of consecutive empty sites hav-

ing a different value ofy and so on. However, we find that

the first level of approximation is sufficient for our purposes.

| Thus we take the competition parameter to have a time-

—_—. (54) dependent value
M(2-q) P

Having evaluated, we can now computg/(t) explicitly in A(t) = 0o X (P) + 1 X (1=Py). (55
terms ofl, Z, andM. Figure 8 shows a plot of the computed We now solve the set of equatioik2), (55), and(54) self-

#(t) (dashed ling as a function of time for two different consistently by an iteration procedure starting with the solu-
values ofl/Z (0.05 and 0.1 Z=2 in both cases. The differ- tion for the case with a constant competition paramejgr,
ence between the two curves shows that the dynamics iEhe results after a couple of iterations are plotted in Fig. 8 as
guite sensitive to the parameters. Thus combining the inforsolid lines. One immediately sees that these agree with the
mation about the defects in the asymptotic structure and aimulation points much better at later times. Thus our treat-
measurement of the time dependence/@j will allow usto  ment allows us to capture the time evolution of the surface
uniquely determine both the nucleation and zippering rategnorphology fairly accurately.

The mismatch between the analytical and simulation curves
at late times was anticipated before and comes from the as-
sumption of a constarg. To fix this, we use the solution for Il SIMULATION

the case with the time-dependent competition parangter We now describe the simulation that produced the data in
To do this, we need to computgt). Now, the value ofg Figs. 2-5. This simulation uses the coarse-grained represen-
depends on where a particular nucleation event takes placttion of Fig. 1, but makes none of the assumptions leading
As mentioned before, if the nucleation takes place at a sitéo the curves in Figs. 2-5. It thus serves as a test of our RSA
which belongs to a set of two empty sites with doubled stepsipproximations. We use avfl X M matrix to mimic a square

on either side, the value @fis unity since this doubling step section of the sample. Every column of the matrix is re-
cannot be frustrated. This situation would occur with a prob-garded as a step. We have two experimental parameters that
ability 1-P5. This includes the probability of picking iso- we may use: the nucleation rdtand the zippering raté. A

lated single steps where nucleations are not possible, resuliypical simulation cycle is as follows1) A randomly chosen

ing in the attempt being rejected. As a first approximation wesite of the matrix is addresse®) If a chosen site is unoc-
assume that nucleation attempts at all other pla@éth cupied and its neighbor to the right is also unoccupied, then
probability P;) have the value o) computed for an empty these two sites are allowed to combine to form a nucleus
lattice qp. In principle we can systematically refine this ap- with a probabilityp=1/M?Z. This takes care of the relative

(53

which yields

kO:
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rates of nucleation and zippering. Now these two sites araucleation ratd and the zippering ratg. In the case where
considered occupied3) Steps 1 and 2 are repeated makingZ is infinite, the problem can be mapped exactly to the ran-
sure sites are not addressed twice until all sites of the matrisgom sequential adsorptiagiRSA) of dimers on a lattice. The
have been addresse@) All steps that have previously ini- fraction of isolated steps in this case is given by
tated doubling are allowed to grow by one lattice unit at each=13.5%

free end, if possiblel5) Steps 1-4 are repeated until no new  In most experimental situations, the ratiZ is small but
nucleations are possible and the surface is comprised only ofonzero. For this case we show that the problem can be
perfectly doubled steps, frustrated dead ends, and isolatexpproximately mapped to a generalized RSA problem with
single steps(6) The results are averaged over hundreds ofwo kinds of entities; perfectly doubled stepdimery and

runs for different values of the ratid Z. frustrated dead endgrimers. The condition forl/Z being
small enough is given by
A. Final state 1/Z < 476 ~ 2.00. (56)

The size of the matrix used w&$=60 because the STM
experiment described ifi27] has a field of view roughly
60-terraces wide and 60-terraces tall. In the range of para
eter values, we looked at the number of defects that were n
simple frustrated dead ends were few15% of the defects
for q=0.5 and decreasing with increasigy thus justifying
the rationale for our theoretical assumption. When these | |/ Z\Y2,12 | \12

i

A more practical estimate comes from the point at which
n%he simulation results begin to disagree with the theory,
hich yieldsl/Z=0.46. We show that the fraction of defects
%Eoth isolated single steps and frustrated dead )ethejsends

on a single dimensionless paramegegiven by

z

were encountered they were decomposed into constituent | —erf

dead ends and counted as that many effective frustrated dead 2
ends. For example, an order-two defect was counted as one Figure 4 shows how the fractions of different defects de-
frustrated dead end and one isolated step. Figure 4 plots theend ong. For g close to one we showed that the fraction of
results of the simulation for various values IdZ. We see defects rises linearly wite=1-q as 0.284. In a typical
very good agreement between the simulation and values prexperimental situation the sample surface extends beyond the
dicted by theory for small/Z. We also see that the theory field of view. Accounting for nucleations that occur outside
begins to break down for large valuesléZ (>0.46). Itisto  the field of view changes the waydepends on/Z, though
be noted that the largest number of perfectly doubled stepthe fraction of defects still depends grin the same way as
occurs in the limit ofZ>1 and is about 43.75%. This is before(as in Fig. 4. Figure 7 shows how the competition
consistent with our prediction for thé=« case. parameter depends om/Z for both the cases above. Count-
We also consider the case where the region of interest iig the number of defects in the final state will allow one to
part of a larger region. We utilize the samle=60 matrix and  use Fig. 4 to computg and then use Fig. 7 to infer the actual
we now count the defects and doubled steps in the centradalue ofl/Z for the system. We provide a specific example
20% 20 submatrix. Figure 6 plots the results of the simula-of such a calculation in the next section. We also found that
tion for various values of/Z. The agreement between the we could describe the kinetics of the doubling process, both
theoretical curve and the simulation values appear to be quitgualitatively and quantitatively, using our RSA approach.
good in this case, too. Some implications of the nature of the kinetics are also dis-
cussed below.

B. Time dependence

We also look at the evolution of the order paramefer V. DISCUSSION OF RESULTS
during a simulation run. The simulation is done on a 60
X 60 matrix as before. The fraction of sites that are occupied We now compare our results to experimental data so as to
(doubled is registered after every 10 simulation time steps.be able draw some physical conclusions. In the experiments
This data is recorded for hundreds of whole simulation runsby Wanget al. [27] it was noted that under certain optimal
For each block of 10 time steps we then record the avegage conditions, a 100 nm by 100 nm section of the sample ex-
over all the runs. Figure 8 shows a plot of the averagedibited 5-6 frustrated dead ends after structural evolution
evolution of the order parameter as a function of simulatiorhad reached an asymptotic stage. The step-zippering rate was
time for two different values of/Z. We see that the simula- measured to be 3.7 A5 The case to which this data ought
tion data and the theoretical curves agree quite well. It is td0 be compared is the one where the region of interest is
be noted that there are no adjustable parameters. embedded in a larger region. From Fig. 6 we immediately
Thus overall the simulation results are in agreement witrs€e that to get 5-6 frustrated dead ends in & 60 matrix,
the theory and the theory effectively captures both the dywe requireq~0.7. This gives us a value for the ratiéZ

namics and the details of the asymptotic surface morphology= 0.12. Knowing the experimentally measured zippering
rate, we can also deduce the true nucleation rate. In our

model we haveZ=2 measured in units of step width per

simulation time step. The step width is about 1.65 nm, which
We will now summarize some of the major results of thetells us that each simulation time step corresponds to 2

paper. The two main parameters in this problem are the< 1.65/0.37% 9 seconds. Thus the true nucleation rate in this

IV. SUMMARY
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case would be 0.1/®=0.0133 nucleations per second over There are, however, several details that we have ignored
the 100 nm by 100 nm section of the sample. Our analysii this analysis. Firstly, it was noticegd] that zippering oc-
hence helps pin down the true experimental parameters singurs much more slowly when the steps are surrounded by
ply by looking at the defects in the asymptotic stage. already doubled steps. Secondly, we have not taken into ac-
~ Our analysis of the dynamics also gives us more usefugount correlations between neighboring zippers. Another av-
insights. In particular we notice th&;~exp(—kt)P; [from  enye of interest would be to integrate the time distribution of
Eq.(10)]. This tells us that the rate of defect formation dropspycleation events postulated by Khare, Einstein, and Bartelt
exponentially faster than t'he rate at vyhic_h perfectly double 20] with our RSA analysis. One could also incorporate
steps form. Often one wishes to minimize the number okjgher-order defects by a straightforward elaboration of our
defects. The way to do that would be to have a very loWyeaiment. Thus it appears that our RSA approach will be
nucleation ratgfor a given zippering raje However, then applicable to a range of such propagating surface-

reaching the final state would take a very long time. Sinc -
we anticipate that most of the defects will be formed in theereconstrucnon processes. Though we know of only one such

o . . rocess at the moment, many others are sure to emerge as
intial stages, we could start with a low nucleation rate and’ y 9

after some time jump to a much higher rate. This Wouldatomic scale knowledge of adsorption on solid surfaces

mean reaching the final state much faster with only a smaffT"PfoVes.
increase in the number of defects. As an example we ran a
simulation withl/Z=0.05 on aM =60 lattice. The number of

defects was roughly one, and it took 3600 time steps to go to We have shown here how emergent features of the step-
completion. A run where we started with the same value ofjoubling process can be quantitively understood. Our ap-
I/Z and then switched to a value 20 times higliZ=1)  proximation of the process as a form of random sequential
after 500 time steps yieldetvo defects and took only 700 apsorption leads to successful predictions in regions of ex-
time steps to complete. In contrast if we run the simulationyerimental interest. The approximation permits simple analy-
for 1/Z=1 from the beginning, we get approximately 12 de-g;s et it shows that naive analysis based on equilibrium
fects. Thus we gained a factor of five in time for @ minor gaistics is misleading. The inadequacy of an equilibrium
Increase n the _number of defects. One can alSO_'m"j‘g'nﬁeatment is further apparent in the time dependence of our
trying different t|me-depend_ent protocols to optimize theresults. Changing the growth conditions over time can have a
number of defects and the time. striking effect on the final state.

our pre_dictio_n for the qunam_ic _evolution of _the order pa- We have focused on predicting the incidence of a particu-
rameter(Fig. 8) is qualitatively similar to experimental data lar type of defect—the frustrated dead end—but the method

by Niu et al. [4]. The authors use a phenomenological ap-° i . .
proach to fit their data using second-order rate kinetics3'VS @ Way of _understandmg higher-order composite defects
Though the fit is good, the analysis neglects the fact that onl{> we_II. I_Experlmental mastery O.f propagating surface .Self'
neighboring steps can double. Another approach by Khar rganization, _su.ch as step doubling, will improve over time.
Einstein, and Bartelf20] analyzes the dynamics in terms of Along with this improvement, we expect stochastic models,

first passage times of random walkers using a fit with threUch @s the present one, to be valuable guides in achieving

adjustable parameters. However as the authors note, they 8183|red structures.
not take into account the formation of defects, such as the
isolated steps and frustrated dead ends. Our analysis allows
us to inspect the dynamics with no adjustable parameters if The authors would like to thank V. Belyi, Y. Wang, and

we first extract the relevant parameters from an inspection 08.J. Sibener for useful discussions. A.G. would also like to
the asymptotic structure. It also takes into account the forthank R. Bao, L. Tseng, and E. Yuzbashyan for engaging
mation of defects and their effect on the subsequent dynaneonversations on the topic. This work was supported by the
ics. This cannot be ignored for a manifestly nonequilibriumNational Science Foundation via its MRSEC program under
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