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This investigation extends earlier studies of a shear-transformationc3d@Ze theory of plastic deformation

in amorphous solids. The main purpose is to explore the possibility that the configurational degrees of freedom
of such systems fall out of thermodynamic equilibrium with the heat bath during persistent mechanical defor-
mation and that the resulting state of configurational disorder may be characterized by an effective temperature.
The further assumption that the population of STZ’s equilibrates with the effective temperature allows the
theory to be compared directly with experimentally measured properties of metallic glasses, including their
calorimetric behavior. The coupling between the effective temperature and mechanical deformation suggests an
explanation of shear-banding instabilities.
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[. INTRODUCTION example, in papers by Onet al. [10], Cugliandoloet al.
[11], Sollich et al. [12], Berthier and Barraf13], and Lacks

This is the third in a recent series of studies of shear{14]. Some aspects of these ideas are related to work by
transformation-zonéSTZ) models of plastic deformation in Mehta and EdwardglL5]. As proposed in Ref§10-14, Tq
amorphous solids. In the earlier two papers, Falk, Pechenildiffers from the ordinary thermal temperatufein circum-
and | showed how to use principles of symmetry and energgtances where the slowly changing configurational degrees of
balance to constrain the form of STZ theories at low tem-{reedom of the system fall out of equilibrium with the heat
peratured1] and then used those ideas to construct a finitebath—a situation that occurs when molecular rearrangements
temperature theorf2] whose predictions could be compared are driven by plastic deformation. My ideas have emerged in
with the behavior of metallic glasses observed by Keital.  part from discussions with Lemaitrgl6], who has ap-
[3] and Luet al. [4]. Our version of STZ theory was intro- proached the concept of effective temperature from a differ-
duced originally in[5]. It differs from the flow-defect theo- ent point of view.
ries of Turnbull and Cohef6], Spaepen and Tay@,8], and More specifically, | assume that, in a nonequilibrium sys-
Argon [9] primarily in that, instead of simply postulating an tem, the STZ density is driven toward, exp(—1/y), where
equation of motion for the STZ density, we included a rudi- y=Kkg Teff/ Ez. In this regard, the reduced effective tempera-
mentary model for the irreversible, internal dynamics ofture y is very nearly, but not quite, the same as Spaepen’s
these zones. This augmented STZ theory exhibits an exeduced free volumg7,8|. Here,E; is a characteristic energy
change of dynamic stability between jammed and flowingassociated with STZ formation and, is a density of the
states at a stress that we identify as a yield stress. Our maorder of the number of molecules per unit volume. This as-
conclusion in[2] was that the transition between linear New- sumption implies that the local energgr density fluctua-
tonian viscosity and nonlinear superplasticity reported intions of the slowly varying configurational degrees of free-
[3,4] can be explained quantitatively as a transition betweerom are described by a Boltzmann distribution with effective
thermally activated creep at low stress and the onset of plasemperaturelq¢;. That is, | assume that persistent deforma-
tic flow at the STZ yield stress. tion accompanied by molecular rearrangements produces a

My first purpose here is to address several issues thateady state of disorder in an amorphous system. In the ab-
were left outstanding if2]. The most important of these sence of constraints other than number and energy conserva-
were questions pertaining to the STZ density. In order tdion, the statistical distribution of density fluctuations must
retain an essential simplicity if2], we found it best to leave maximize an entropy, and therefore that distribution should
the theory in a form in which that density approached abe described by a temperature. To be consistent with the
temperature-independent value in the limit of small but non-underlying assumption that the STZ'’s are sparsely distributed
vanishing driving force. We pointed out that this limiting in the material, they must account for only a small fraction of
density, after indefinitely long aging, ought to relax to its the configurational degrees of freedom. Thus the probability
thermal equilibrium value and that we would need to incor-of finding STZ's should be accurately proportional to a
porate such an aging mechanism into a next version of thBoltzmann factor exp-E,/kgTet;) and should be far out in
theory. More generally, we argued that the subtle interplayhe wings of this statistical distribution.
between limiting behaviors at small strain rates and small The underlying structure of an STZ theory based on the
temperatures provides an important clue about the fundeeffective-temperature hypothesis is outlined in Sec. Il. Here |
mental nonequilibrium properties of these systems. reintroduce the fully nonlinear STZ theof$] in a version

My present hypothesis is that the STZ density is governeduitable for use at nonzero temperatures. As we pointed out
by an effective temperatur€.; of the kind discussed, for in [2], the so-called “quasilinear theory” used in the preced-
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ing papers has serious shortcomings, specifically a lack ofthich must have roughly the same order of magnitude as the
realistic memory effects and unrealistically large plastic devolume of an STZ—that is, a few cubic or square atomic
formation at small stresses. It also has an unattractive asyrmgpacings. The remaining factor on the right-hand side of Eq.
metry between the rates of shear transformations and dilg2.1) is the net rate per unit volume at which STZ’s trans-
tional rearrangements, which must be corrected in order tgorm from “~” to “+” orientations.R(3)/ 7, andR(<3)/ 7, are
deal systematically with thermal effects. Section Il concludespe rates for “+” to “~” and “~” to “+” transitions, respec-
with a statement of the f_uIIy nonlinear equations of mO“O”tiver. The dimensionless stress ss/i, where x is an
for the internal-state variables. In Sec. lll, 1 present argUective shear modulus that will turn out to be an accurate
meEts n favr(])r of the efffeclzqtlv?—t(_amperalture gypothﬁst,)ls andpproximation for the yield stress at the temperatures of in-
nmoanveaﬁig?]lijr? estimate of the limiting valueyoat small but {erest herer, sets a time scale for the molecular rearrange-
g strain rates. | then show how these arguments ts. A hall . t defined h . ite th
can be used to determine an equation of motionyfor ments. As we shall seep 1S not defined here in quite the
The remainder of this paper is devoted to exploring the>@me way as it was '[2.]' . . .
predictions of these equations of motion and comparing them_ A basic assumption in this paper is that, in contrast to Eq.
with the results of metallic glass experiments, primarily (3-3 in [2], we can rewrite the master equation for the den-
those of Lu et al. [4 on bulk amorphous Sitiesn. inthe form
Zryq oTi13 CUo NijBex 5 | discuss a wide range of such n
measurements including the steady-state stress versus strain- 7 n, = R(¥3¥)n, - R*9n, + (T + p)<_°c ~1lx _ m)_
rate data and the stress-strain curves obtained at various h h h
strain rates and temperatures, in analogy to our presentation (2.2)
in [2]. With this version of the theory, | can go on to compute
specific-heat curves obtained by differential scanning caloThe first pair of terms on the right-hand side describes the
rimetry and also can discuss the way in which those measame switching back and forth of the STZ's that appears in
surements may be interpreted in terms of effective tempereeq. (2.1), and the last terms describe the rates of creation and
tures. | conclude with some remarks about how shearannihilation of zones. In writing the latter terms, | am using
banding instabilities may arise in theories of the kindthe principle of detailed balance to fix the ratio of the anni-
introduced here. hilation and creation factors, and accordingly am omitting
Il. BASIC EQUATIONS OF MOTION the quadra_tic term that we _us_ed a]. As bef_ore, the rate
factor multiplying the annihilation and creation terms con-

Let us start by summarizing briefly the assumptions andists of the driven parf and the spontaneous thermal part
definitions used inf1,2]. Assume that, instead of being struc- ,(T). Our usual notation is
tureless objects as in the flow-defect theoried@+9], the
STZ'’s are two-state systems which, in the presence of a shear n, +n_ n,—n.
stress, can transform back and forth between just two differ- A= Tn A= o 2.3
ent orientations. Importantly, these STZ’s are created and - -
annihilated during irreversible deformations of the material.gng
As in [2], consider first a two-dimensional system and sub-
ject it only to pure shear deformationd.he transformation 1 - - 1 - -
of the two-dimensional results into a form suitable for analy- S = E[R(_ S -R+9. CO= E[R(_ $) +R(+9)],
sis of three-dimensional experiments is discussed at the be-
ginning of Sec. IV. It is described in more detail [ig].) In
this case, we need to consider only situations in which the S
orientation of the principal axes of the stress and strain ten- 5 = C_(§) (2.4
sors remains fixed. That is, we do not need to consider situ-
ations in which a fully off-diagonal tensorial version of the Then, using Eq(2.1) and definingey=X\ n.., we have
STZ theory is necessary, as in the necking calculations re-
ported in[17]. Therefore, it is sufficient to assume that the 70 €' = € CR[A T(3) - A], (2.5
population of STZ’s consists simply of zones oriented along
the two relevant principal axes of the stress tensor and, with- :
out loss of generality, to let the deviatoric stregsbe diag- 1A = 2CS)[AT(S) - A] - (I' + p)A, (2.6)
onal along thex, y axes. Specifically, les,=-s,=s and

Sy=0. Then choose the “+” zones to be orientetbngategl and
along thex axis and the “~" zones along theg axis, and . _
denc?te the population density of zones orgi]enr:gd in the “+/-" A = (T +p) (e - A). (2.7)
directions by the symbat.. The next step is to use the energy-balance argument in-
With these conventions, the plastic strain rate is troduced in[1] to evaluate the quantitii. Both the effective
\ temperature and the fully nonlinear rate facR{g) will in-
h=—edy=é'= :O[R(—'é)n— -RONJ.  (2.)  troduce features that were not presentlihor [2]; therefore

it will be useful to rewrite this analysis. As in the earlier
Here,\ is a material-specific parameter with the dimensionspapers, we start by writing the first law of thermodynamics
of volume (or area in strictly two-dimensional modgls in the form
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o
expg - —= |,
vi(T)
wherep, is a dimensionless prefactaxVd' is the activation

The left-hand side of Eq2.8) is the rate at which plastic Vvolume required for a dilational rearrangement, apd) is
work is done by the applied stress is. On the right-hand usually identified as the free volume. In fact, [@] we
side, ¥ is the recoverable, state-dependent, internal energtfeatedv+(T) as a phenomenological function, not necessarily
associated with the STZ’s. Because the STZ’s in this formuthe same as the free volume, and evaluated it directly from
lation represent only a very small fraction of the configura-the measured viscosities with no use of the Vogel-Fulcher or
tional degrees of freedor¥ is not the energyor enthalpy ~ Cohen-Grest formulai21]. We then suggested, in analogy to
obtained by calorimetric measurements. Therefore, this picthe fully nonlinear STZ mod€5], that the shear rates ought

p(T) _ po
70

2s= 2 BIATE) - ATS=
0

dﬂtllf(A,A) +Q(5A,A). (2.19

70

(2.8)

ture is different from the one presented[ih2], where we
did compare¥ qualitatively to calorimetric datfl8—2Q. In
either case must be proportional to the density of STZ’s

and must have the dimensions of energy per unit volume;

therefore it is convenient to write it in the form

A
3

The last term on the right-hand side of Hg.8—i.e.,

\I,(ArA) :EGOA‘//(m)y (29)

to have the form

AVShear(é)> hearz) — hear-3
o ) AVS"EA(E) = AVE*eS,

(2.17)

Setting the exponential prefactor equal to unity in Eq17)
defineSTal to be the value of the dimensional r&&)/ 7y in
the limit'S— . Since the dominant temperature dependence

R(S) = exp(—

O—is the energy dissipation rate per unit volume. The cen®f this rate should occur via the functian(T) in the expo-

tral hypothesis of1] is thatI" is simply proportional to the
rate of energy dissipation per STZ—that is,

OGAA) = ATE A M),
70

We then can use Eq&.6) and(2.7) to write Eq.(2.8) in the
form

2C)ALT (S - m[S=[¢«(m) — my' (M)][T'(S,A,m) + p(T)]
X (67 = A)+ ¢ (MA{2C(3)
X[T(S) - m]-[[(§A,m)+p(T)Jm}
+ATGA,m), (2.11)

(2.10

which can be solved easily fdf or, more conveniently, for
'=r+p:

20@)[T®) - ml[E- ¢/ (m)] + p(T) ]

FEAm)+ (D)= A[ A= my/ (me X+ y(m) (e = A)

=TGEAm). (2.12
Our equations of motion are now
70" = €gC(S)A[T (3) - m], (2.13

nn=2CEITE -ml - (TEAmE™, (214
and

oA =T G A, m) (e = A). (2.15

Next we must specify the rate factoR§S) and p(T). In
[2], we identifiedp as being associated with dilational fluc-
tuations and wrote it in the form

nent, we may expect that, is at most a slowly varying
function of T. With the definitionAVS"®2y((T) = a(T), we
have

C(5) =exp[— a coshd)] cosh[a sinh(§)] (2.18

and

T(S) =tanh[a sinh(S)]. (2.19
In the applications to be considered here, there seems to be
no reason to expect two different activation volumes or two
different time constants for dilational and shear rearrange-
ments; therefore | shall assume thav3'=AV5" and p,
=1. Then,
p(M) =D, (2.20

Eventually, we shall need to include pressure dependence in
the function a(T), but that too will be unnecessary for
present purposes.

The final step in deriving equations of motion fhrandm
is to choose/(m) so that the numerator in the expression for

" in Eq.(2.12 is non-negative for all values &f To do this,
compute the inverse function @f that is, find the function
&(m) such that7 (§)=m. Then, becaus& is a monotonically
increasing function of its argument, the chog&m)=¢£&(m)
assures us that both(S)—m ands-£&(m) change sign at the
same value o and, therefore, that the product of these two
factors is never negative. For the specific choic& @fiven

in Eq. (2.19:
_ SR DR E Sl
ém) = “{ \/1 +4a2|n (1 —m) ¥ 2a|n(1 —mﬂ
(2.21)

and
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=(0) + Jm Em)dm. (2.22
0

#(0) is an as-yet undetermined constant which, as it turns
out, we shall not need to evaluate. The result is

TEA,m = {2cR)[T® - m|[3- &m)]+ p(T)}, m

(2.23

M(A m)

where

M(A,m) = A - méme X+ y(m)(e X - A). (2.249

Positivity of I requires thatM(A,m) remain positive
along all the system trajectories determined by E@sl4)
and(2.19 in the space of variable& andm. This happens
automatically as long as all trajectories start at points where _ _ ) o
M(A,m)>0. The locus of points along whicti(A,m) FIG. 1. Graph of the dimensionless functiony(S), S=s/u
changes sign is a dynamical boundary for these trajectories: /S for @=6. Also shown are the related functiofi¢s) and 15.
the dissipation rate diverges at that boundary, and the trajec-
tories are strongly repelled from it in a way that does not Equationg2.25 and(2.26) describe the same exhange of
allow them to cross into unphysical regions where the dissistability at a yield stress that we found in earlier papers
pation rate is negative. An interesting feature of this fully[1,2,9. At low temperatures, wherp(T)—0, the steady-
nonlinear case is that the boundary always occurs whén  State solutions of Eq2.26) arem=7(5) (the jammed state
slightly smaller than unity because of the weak divergence oWith €”'=0) andm=1/3 (the flowing state withe?' + 0). The
the function §{m) when m—1. For example, setting\  two curves cross a=5, where§7(5)=1. The jammed
=e"x and using Eq(2.21) with =2, | find that the upper state is dynamically stable &<, and the flowing state is
limit of m is 0.983 732. We shall see that the interestingstable fors>9,. For values ofa(T) appreciably larger than
values ofa are generally much larger than this, of order 10unity, the solution of this equation & ~1; thus the yield
or more, in which case the upper limit ofi is practically  stress issyzﬁ
indistinguishable from unity. For nonzerop(T), the stable branch of the steady-state

These equations of motion simplify greatly if we note thatsolutions of Eq(2.26—say, m=my(3)—is
A=e' js always the only stable stationary solution of Eq.

(2.15 and use this relation to eliminatefrom the beginning my(3) = 1 (1 +ETE) + (M) )
of the analysis(There seems to be no conventional experi- 2C(3)
mental method for adjusting. and y independently of one

, . , ' . ' :
0.0 0.5 1.0 15 20
Scaled Deviatoric Stress s/sy

anothen Then we have _ _\/(1+ TG oL p(T) Y )
2C(9) '
Toe” = e XCR)[T (3) — m], (2.29 (2.29
_ i This function is shown in Fig. 1 along with graphs wof
2C[7(5) —m|(1 —m9S —mp(T
ToMm= OLTE - mil S~ mp( ), (2.26  =7(5) andm=1/5, which are the asymptotic values o§(3)
1 -mé(m) in the limit p— 0, below and above the yield stress, respec-
and tively. In order that these two sets of curves not lie exactly on
top of each other, | have chosers6, which will turn out to
_ 20RTE - _ + (T correspond to a relatively high temperature of about 730 K,
= GI7TE 1 m]i( f(m)] ol )_ (2.27 and have used E@2.20) to evaluatep in Eq. (2.28).
-mé(m

Note that the effective temperatugenow appears explicitly
only in the strain-rate equatiof2.25, where it determines
the density of STZ's that must appear in front of the rate We now need an equation of motion for the effective tem-
factor. Conveniently, the as-yet undetermined enery) peraturey. Before writing such an equation, however, it will
disappears entirely when we assume thas always in equi- be useful to discuss some underlying concepts.

librium with the configurational degrees of freedom at their  The theory as described so far contains three distinct time
effective temperature. Note also that this approximation willscales. The first of these ig, the roughly temperature-
have no effect on any of the steady-state calculations prandependent time associated with STZ transitions that are
sented below. driven by stresses of order the yield stress or larger. This

Ill. EFFECTIVE TEMPERATURE
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time will turn out to be very short, of the order of microsec- zeroT,,, the stress versus strain-rate graph must start at the
onds. A second time scale ig/p(T)=7, which is the origin and rise with a slope 2(T.), where 7(T.,) is the
strongly temperature-dependent time associated with spontgiscosity measured by averaging the stress over times longer
neous(i.e., stress-independgrthermally activated molecu- than wﬁéise This section of the curve at smatP' will ex-

lar rearrangements. At low temperatures,becomes very trapolate tos=s, at a strain rate—saygp'(Tx)=sy/[277(Tw)].
I(_)nlg.lThe third time scale is the inverse of the strain rateqr sirain rates® > &’(T..), the curve returns ts=s,. The
(€”) "= 7eps which is determined by the externally imposed gyqes.Einstein relation pertains to the portion of this func-
loading. tion that goes into the origin at small strain rates. Thus, as

forvgzhaggilé?c:r:rﬁc]e trheag:irTﬁpes l,svrfgfﬁ)?'f rie:aﬁﬁ;gnistﬁile long as we measure diffusion and viscosity over times longer
S Teps<S 7T -1 ; ; H
situation in which the temperatufieis so low that molecular than wygise We can estimate the diffusion constaT..)

rearrangements are not thermally activated and the actu:’?fl€2 €”(T..), and conclude thaltB .Tfoces S, as before, inde-
rearrangements, when they occur, are effectively instantd2€ndent of what value ok”=€"(T..) we chose at the
neous. Thus, under steady-state conditions, the number §eginning.

events in which rearrangements occur is not proportional to We can use the above argument—not much more than a
the time but to the strain. As already stated in the Introducdimensional analysis—to make an order-of-magnitude esti-
tion, steady-state deformation with molecular rearrangemate forT.. The tensile yield stress that we used2j was
ments must produce a steady state of disorder in an amoi-.9 GPa, which gives us an approximate valuesprThen
phous system—a statistical distribution of density T, ~50 ¢3 K, where€, is the molecular length scatemea-
fluctuations which, in turn, ought to maximize an entropysured in angstroms. 1f,~3, thenT,.~10° K. A similar

and therefore be described by an effective temperaturgough estimate emerges if we guess on dimensional grounds
Therefore, after very long times and as longrgg<, the  that E,~ u €3, where u is the shear modulus. Then, using
quantity y must approach a definite value—sgay,. A more  the value of Young’s modulus given ifd], we have y..
mathematically precise way of saying this, which reminds us- s,/u~0.02. If E;~2 ev, then again we find.~ 108 K.

that we must be looking in the limit in which bot,sand7r  These estimates are consistent with Liu's suggesfs]

are very much longer tham, is that y— x.. if we take the  thatT,, is the glass temperature, which also is roughly of the
limit €”'— 0 after T—0. order of 1G K for these materials.

To make a rough estimate fqt., we can use the Stokes-  Wiith this understanding of the role and approximate mag-
Einstein fluctuation-dissipation relation in a way that will nitude of the effective temperature, we now can deduce an
require careful discussion. An oversimplified derivationequation of motion for it by returning to the principle of
starts by noting that, because there is a yield ssgisthese  energy balance. As noted above, one of the main differences
models, the viscosity is;=s,/(2 ). Then, if the only rel-  petween this model and that discusse¢@is that, here, the
evant time scale in the model g, it follows that the dif-  energy stored in the STZ'’s is only a very small fraction of the
fusion constanD, measured over times much longer thanenergy contained in the configurational degrees of freedom.
Teps MUSt be proportional t6%”', where( is the character- Thus we can assume that the energy dissipated by the STZ’s
istic displacement of a molecule during an STZ-like during plastic deformation simply adds to the energy of con-
rearrangement—i.e., roughly a molecular spacing. Finallyfigurational disorder. It then seems reasonable to assume
the Stokes-Einstein relation says tliatckg T../ 7 €, where  that, over the range of temperatures of interest tegperoxi-
T..=Ez x-/kg. It follows that kg T.,<€3s,, independent mately 550—700 K for the data reported[y), the specific
of €. heat of the configurational degrees of freedom is a

One problem with this analysis is that the viscosity in theconstant—sayCp=kg co/ €3, wherec, is a dimensionless
Stokes-Einstein formula is the linear response coefficient reaumber of order unity. The associated configurational energy
lating flow to driving force in the limit of vanishing stress is Cy T.¢;, and the energy-balance equation—i.e., the equa-
and strain rate, whereas it is used here at the yield stress. #on for the rate at which this energy is changing per unit
reIaEed and possibly mitigating problem is that the “temperay;yq. Cp Te—becomes the equation of motion .
ture” T., that we supposedly are evaluating with the Stokes- |y accord with the discussion in the preceding paragraphs,

Einstein formula is a very-low-frequendgssentially static | hropose to write this equation of motion in the form
noise strength that determines the spatial distribution of en-
p(T)

ergy and density fluctuations but not the rates at which those . off T

fluctuations vary in time. The temporal rates are determined ~ CoTert= Q|1 - S EOK(X)TKB(T‘ Ter). (3.2)

by the strain rate&®', which, in this limit, is small but much ” 0

faster than the essentially negligible rearrangement rates ifFhe first term on the right-hand side says that the energy
duced by true thermal fluctuations. dissipated during plastic deformation, at r&eper unit vol-

It helps to visualize the situation as follows. At zérofor ~ ume, is absorbed by the configurational degrees of freedom.
small strain rates, the graph of stress as a function of straifihe second term proportional @ is the one that says that
rate consists simply of a horizontal linests,. Now add to  this process must drive the system toward a limiting state of
this system a slow noise source with characteristic frequerdisorder in whichTg— T... This equation can be used only
cies of order, saywp.ise Which couples only to the configu- when time variations are very much slower than the micro-
rational degrees of freedom. Let the strength of this noisecopic ratea-al, because the preceding argument for a limit-
source be determined by an effective temperatyrédt non-  ing value of T is valid only in those circumstances. Thus,
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we cannot expect this theory to be accurate for strain ratethat in [2] is that, here, we must form tensorial generaliza-
higher than aboutey/ 7o)exp(—1/x..); however, such rates tions of the functions (5) and &(m). This can be done most
are well above the experimental range. simply by writing 7;(3)=(5;/[5))7(®and  &;(m)
The term in Eq.(3.1) proportional top(T) says thafTer  =(my/|m|)&(m).
—T in the absence of external driving and does so at a rate With these transformations, we recover precisely our ear-
which becomes very small at low temperaturééy) is an  lier formulas, Eqs(2.25), (2.26), (3.4), and(3.5), as thexx
equilibration coefficient, defined with a facteg for conve-  components of the tensor equations. The single difference is
nience. They dependence oK reflects the fact that the that, because the experimental strain rdflgis not rescaled
equilibration rate must depend on the state of disorder. Ias arés andm, the parameteg, in Eq. (2.25 is replaced by
what follows, | shall assume that €,=\4/3¢,. The low-temperature exchange of stability still
K(x) = ke, (3.2 occurs Wher_%=§y Where"éyT(éy).:l; therefore, at the tem-
peratures of interest here, we still hae;& 1 ands = u. The
so thate, K(y) is proportional to the density of sites at which experimental data are expressed in terms of the tensile stress,
the equilibration transitions take place. It will be simplest atwhich becomesr=(3/2)s,,= \3u5=0,3, wherea, is the ten-
first to let the equilibration parametg=1, which means that sile yield stress.
the latter sites are the same as the STZ's. However, as we The first quantity that we must compute is the Newtonian

shall see, other possibilities are interesting. viscosity ny—that is, the linear viscosity in the limit of van-
Next, convert Eq(3.1) into an equation fos by writing,  ishingly small stress and strain rate. A§ 2}, comparing our
as in Eq.(2.10: theoreticalnpy with the experimental measurements reported
_ in [4] provides initial constraints on several of the parameters
— M€ that appear in our equations. In the snallmit, we have
s,AA) = e XT'(s,m). 3.3 ~
A ) 70 &m 33 T(S)=as and C(5) =C(0)=exp—a). Then we can deduce
The functionl’ (ot T+ p) is from qu.(z.lg, (2.20, and (2.28 that, to lowest(linean
order in,
2C(9[7(5) —m][S—&m)] + p(T)mf(m)
rsm = 2 _
1-mgm) my(3) = 395 (4.1)

(3.9

Note that the term proportional {g(T) in I" disappears in an Using Eq.(2.26) and noting that the producty(Ss is small
undriven system because— 0 in that case. We then find  of orders? we have

TZEO X = €T EM) (x. - x) + kp(T)E™ B’X(% - X) 2CE[7(3) —~my(®)] = me®p(T), (4.2
(3.5  so that, using Eq(2.25), we find

In order to avoid adding another arbitrary constant of order

unity, | have usedy..=ut3/E; in evaluating the coefficient &= S e CETE) -myd)] = —Oe‘l’XmO(é)p(T)
of I' in Eqg. (3.5. Equation(3.5), along with Egs.(2.25), 7o
(2.26), and (3.4), provides a complete specification of the (4.3

equations of motion for this model.
To evaluatey from Eq.(3.5), note from Eq.(3.4) thatT is
small of ordefs?, so thaty~ T/ T in the small§, steady-state

IV. LIMITING BEHAVIORS AT SMALL STRESS limit. Therefore,

At this point in the development, it is necessary to rewrite
the two-dimensional STZ equations of motion in a form in ol €0 e Tz
which they can be applied directly to three-dimensional ex- G~ 3Toa(T)s &P - T o(T) (4.4
periments, especially those reported[4j. To do this, | as-
sume that the stresses and strain rates are uniform throughaitig
the experimental samples and follg@;17] by assuming that

| can simply replace the variabl&s €”', andm by traceless &, \5;7_0 T
symmetric tensors. In the case of a uniform sample with n(T) = lim IX exp Z+a(M|. (4.5
uniaxial applied stress in, say, tRelirection and free, stress- 2026 €aT)

less surfaces normal to tlyeandz axes, each of these tensors

is diagonal with elements proportional t@,~-1/2,-1/2.  genendent stress relaxation rates discusseidinin these

The total stress tensar; has only one nonzero element, measyrements, samples first were compressed at relatively
ox=0. Define nP=(1/2m; m;=(3/4m, so that m  gmail strain rates and then held at fixed total streft#
—\3/4 m. and, similarly, 3= (1725 51]—(3/4)§ ands  while the stress was measured as a function of time. The
=\3/48,,. The only way in which this analysis differs from equation of motion that we must solve therefore is

We also can use this analysis to compute the temperature-
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- total _

€

O
= o
XX S+€xx_oi

E (4.6)

where E is Young’s modulus. Using the preceding small-

stress approximations and again assuming thiatthermal-
ized in these experimentg=T/T,), we find
- eéE TZ - £
S~ - Texpg ——=-aT) [s=-——, (4.
37'00'ya( ) p{ 7o )} tm 40
which implies that the exponential relaxation time is
(M
t(T) = ’7“? (4.9

This relation is consistent with the conclusion of &ual. [4]
that both y(T) andt,(T) scale with the same temperature-
dependent rate factor. HoweverHE96 GPa as reported by
[4], these theoretical values tfare too small by a factor of
about 50. This discrepancy may be due to the thermalizatio

PHYSICAL REVIEW E 70, 041502(2004)

16
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10+

log,, [1,(T) (Pa sec)]

g0 700 800 900 1000 1100 1200

Temperature T (K)
FIG. 2. Experimental values of the Newtonian viscosiky(T)

taken from Luet al. [4] and the analytic fit to these points obtained
Hy choosing parameters in Eq2.20) and(4.9) as explained in the

assumption, which might not be consistent with the way in"®<"

which these measurements were made.

In [2], we used our expression faj(T) and the experi-
mental values for this quantity given i@] to obtain esti-
mates ofp(T) (up to a scale factgifor eight separate values
of the temperature. However, our present formula for th
Newtonian viscosity, Eq4.5), is more complicated than the
one in[2] because it now contains a temperature-depende
STZ density, proportional to expl/y)=exp-Tz/T), as
well as the temperature-dependent rate fagidr). More-

over, it will be useful for present purposes to have a smootlg

functional representation g#(T) rather than just values at
separate points. Accordingly, | have fit E@.5) to the ex-
perimental data using the Cohen-Grest form[24] as a
purely phenomenological fitting function fa(T). That is, in
Eq. (2.20, | have used

_ Tr
- P S |
T-To+ (T=Tp?2+T,T

a(T) (4.9

whereTg, Tp, andT; are fitting parameters with the dimen-
sions of temperature.

Clearly, we cannot obtain a unique fit for all the param-
eters in Eqs(4.5) and(4.9) from just the viscosity data, so
we now must make some physical assumptions. The guidin

principle is to make the simplest possible choices and to adg~
complications only if they become necessary. In this spirit, 3

we may assume that there is only one temperature that che
acterizes the glass transition. In £4.9), that temperature is
To. If we then adopt Liu’s hypothes[22] thatT,, is the glass
temperature, we should choosg=T,. On the basis of vari-
ous clues, including calorimetric analyses, | estimate tha
T,.=T,=800 K. This value is consistent with my guess that
the temperatures used in the experiment§ddfare all well
below Ty; that is, the behaviors seen in these experiment:

€

Next we must estimat&,. In the preceding dimensional
analysis, we guessed th@}/T.,~ u/s,~ 50, which would
imply that T,~40 000 K. This estimate, however, is uncer-
tain by a least a factor 2. A better strategy, | think, is to
assume that the Newtonian viscosity is dominated at the

rnigher temperatures shown i4], Fig. 10, by the factor

exp(T,/T) in Eq. (4.5. That fitting strategy yieldsT,
=25 000 K, which is within the previous uncertainty and is
the value that | will use here. It means tiigt=2 eV, which
eems plausible for a vacancy-formation energy.

Figure 2 shows the fit to the Newtonian viscosity as a
function of temperature witi,=25 000 K, T;=800 K, Tg
=600 K, T;=28 K, and 7= u7y/ €,¢=2% 107! Pa sec. The
eight points at the lowest temperatures in Fig. 2 are the ones
that we used ii2]; the four points at higher temperatures are
also taken fronj4], Fig. 10. Figure 3 shows the correspond-

20

10
3

]

T T T
900 1000 1100

Temperature T (K)

T T T
500 600 700 800 1200

seem characteristic of states in which the material is soften-

ing rapidly with increasingr but is still stiff enough to re-
semble a solid in resisting deformation.

FIG. 3. The dimensionless functian(T) determined by fitting

the viscosity data shown in Fig. 2.
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FIG. 5. Tensile stress as a function of the steady-state strain rate
'ef(’l( (in sec?). The data points, taken from Let al. [4], correspond
to the nominal temperatures as shown, and the solid theoretical
curves are computed using those temperatures. The dashed curves
are computed using, from left to righf=588, 598, and 607 K.

FIG. 4. Graphs of the scaled deviatoric stréss/s, as func-
tions of the scaled, steady-state strain I’ﬂg(éT)'eE)l( for four differ-
ent temperatures.

ing function a(T). The values ofe in the range of experi-

mental interest, roughly 600-700 K, are of order

8—15—that is, in about the same range as the values th&Y Lu et al. [4], clearly is broken here. The trend toward
Falk and 1[5] found to fit the original MD simulations. lower stresses at lower temperatures can be understood as a

As in [2], | assume that the tensile yield stress at theNonlinéar property of the effective temperature theory. As the
experimental temperatures is the same as the room temperiiain rate increases. increases and the driving force re-
ture value reported ifdj—i.e., o,=1.9 GPa. Thugzo,/\3 quired to maintain that strain rate decreases accordingly. Be-

e., oy=1. . S

_ . , causen(T) increases rapidly with decreasifig we may
;ééffo?é SV;/(':ET the above value afp, we have &/ 7o understand the curves that are plotted as functions of

nN(T)'eﬂ( in Fig. 4 to be a sequence in whidly; increases as
T decreases.
The important question is whether this nonscaling behav-
ior is ruled out by experiment. Figure 5 shows a direct com-
We are now ready to explore the properties and experiparison of the data frorf4] with theoretical curves for eight
mental predictions of this effective temperature theory at valdifferent temperatures, in analogy to Figiabin [2]. The
ues of the stress and strain rate where the response to loadinglue k=2 was chosen to optimize the fit to the data at
becomes nonlinear. Look first at the steady-state solution643 K. If we use the temperatures cited 4}, the agreement
obtained by using Eq2.25 to compute the strain ratevith is reasonably accurate for 623 K and abgagart from a few
€— €) and by setting the time derivatives on the left-handapparently outlying poinjsand also(perhaps fortuitouslyis
sides of Egs(2.26) and(3.5) to zero. The stresses and strain satisfactory for the two points at 573 K. The theoretical
rates found in this way correspond to those obtained bgtLu curves for the latter set of temperatures are shown by solid
al. [4] from the late, steady-state stages of their constantlines in the figure.
strain-rate measurements. The steady-state values of the re-However, the agreement is not so good at 593 and 603 K,
duced effective temperatupemay, in principle, be obtained and is especially poor at 613 K. In interpreting this disagree-
by calorimeteric measurements as discussed below. ment, remember that we evaluated) in [2] point by point

It is simplest to start by setting=1 in Eq.(3.2) which, as  from the viscosity data given if4] and then checked that
mentioned earlier, means that the thermal fluctuations thahese values were the same as those that the latter authors
drive the effective disorder temperature toward the temperahad used in scaling their strain rates. Thus we did not use the
ture of the heat bath occur predominantly at the STZ sitesnominal values of the temperatuFan any of those analyses.
The only other adjustable parameter in steady stake l8g-  Here, on the other hand, | have fitT) by an analytic ex-
ure 4 shows the dimensionless strésss a function of the pression, Eqs(2.20) and (4.9), and have used this function
scaled strain ratey(T)el, for S=1, k=2, and for four dif-  of T in plotting the curves shown in Fig. 5. The problem is
ferent temperatures in the range of the metallic glass data that the viscosity data for the lowest four temperatures
[4]. It should be compared with Fig. 3 @2], in which these  shown in Fig. 2 does not fit onto a smooth curve. Since there
curves lie accurately on top of one another up through thés no reason to believe that the material is undergoing any
yield stress. This scaling behavior, which was discovered exgualitative change in this temperature rarigég], we must
perimentally by Katoet al. [3] and explored in more detail presume that either the reported temperatures or the Newton-

V. ANALYSIS AND COMPARISON WITH EXPERIMENTS
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ian viscosities—or both—are inaccurate.Accordingly, instead

of using the nominal temperatures 593, 603, and 613 K in 2000 4
drawing the theoretical curves in Fig. 5, | have used 588,

598, and 607 K, respectively, and have indicated these re&

sults by dashed lines. Note that these small shifts in temperag 1500
ture produce large shifts in the predicted Newtonian viscosi-g

ties and thus move the data points closer to the smooth curvg

in Fig. 2. More importantly, the low-temperature data are @ ;440
largely in the region where the linear Newtonian behavior is &
becoming nonlinear superplasticity; therefore the ability of = T 663 K
the theory to account for the data seems significant. In short
although the effective temperature theory systematically de-

643 K

parts from the strong scaling behavior obtained[24, it 1 683 K
appears that these departures are within the present unce
tainties in the experimental data. oo o4 a2z o3 o4
Our one remaining point of contact with the data of Lu Strain
et al. [4] is the transient response shown in their constant
strain-rate experiments. As {i2], we can use these experi- £ g Theoretical stress-strain curves €§=0.1 sec? at

mental results to obtain separate estimates of the parametgfsee different temperatures.
€ and 7 instead of just their ratio. To compute the corre-
sponding stress-strain curves, write the equation of motion

inctotal (i H H
for the total straine® (including elastic straip T/T,—that is, that the samples are completely equilibrated

initially by annealing at the experimental temperatures.
o ¢ Turn now to the thermodynamic properties of this theory,
—YZ= 'Egg(ta' - —Oe—lfxc(g)[T(g) -m], (5.1)  which were missing in the earlier versig2] but now can be
E To explored in detail. Given our assumption that the configura-
tional energy is simply proportional to the effective tempera-

and solve this simultaneously with Eq2.26) and(3.5) for fure, we can convert the equation of motion farin the

'S, m, and y at fixed 'e;"xta'. In preparation for plotting stress-

strain curves, we can lef2® replace time as the independent absence of driving—i.e., Eq3.9 with I'=0—into an equa-_
variable, in which case, appears separately as well as in thetion for the specific heat measured in a differential scanning
combinatione,/ 7. Thus, fitting the transient response yields calorimetry(DSC) experiment. Let the heating rate beT.

separate estimates fef and 7. Then Eq.(3.5 becomes

The parameteg) must be a large number in this version
of the STZ theory, because the fraction of the volume cov- dx _ & xp(T) WX(I B ) (5.2
ered by STZ'’s is proportional te), exp(—1/x), not just toe] dT Co7o  h € T, X): '

by itself as in[2]. At x=x.., this fraction would be unity ik
were about X 10*. 1 find thate)= 10" works well for mak-
ing the theoretical stress-strain curves agree with the exper
mental ones shown if], Figs. 1 and 2. With that value, the
equilibrated fractional density exp(-T,/T) is of order
0.002 atT=648 K; thus the effective temperature theory pro-
duces estimates of the STZ density that are in accord wit[f
the idea that this density should be small, which was no=
necessarily the case if2]. With ;=10 and our earlier
estimate e/ 7o=6.3x 10" sec!, we have 7~ 107° sec,
which seems reasonable if we remember tatis the STZ
transformation rate in the limit of infinite applied stress.
With these parameters, plus=2, =1, andcy=1 in Eq.
(3.5 andE/oy=50, the stress-strain curves are essentially'_
identical to those shown in Figs. 1 and 2 [@] which, in 500 -
turn, were similar to the experimental ones showij4h In
this fully nonlinear theory, the initial rise of the stress is

The left-hand side is equal to the specific heat in UBRST ;.
Eigure 8 showdy/dT computed by solving Eq5.2) with

2000

1500

1000 5 4
3.2x 10" sec

ensile Stress

accurately determined by Young’s modulus, instead of bein( 0 ; ; ; , ; ; ; .

too small because the plastic response was unrealistical 0.0 0.1 02 03 04
enhanced at small stresses in the quasilinear version. Typic Strain

stress-strain curves, analogous to thosg?in are shown in

Figs. 6 and 7. As if2], initial values ofs andm are zero. | FIG. 7. Theoretical stress-strain curves fbr643 K at four

have assumed that the initial value pfis always equal to different strain rateg''!
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FIG. 8. Scaled specific heat curveg/dT corresponding to
simulated DSC measurements at a heating rate of 10 K per minute. FIG. 9. Steady-state values of the scaldunensionlesseffec-
The initial states, in order of decreasing peak height, have effectivéve temperaturey as functions of strain rate at four different
disorder temperaturek, =630, 640, 650, and 660 K. temperatures.

k=2, B=1, andcy=1 and a heating rate of 10 K per minute. ribbons of amorphous RgNi,P,,. Without detailed infor-
The initial temperature used for integrating this equation wagnation about other parameters of the kind obtained here
550 K, but the results are insensitive to this value as long aBom [4], we cannot try to reproduce the resulty 8] theo-
it is low enough. The different states of the system are specketically. Instead, | have used the parameters determined here
fied by the initial values ofy which, in temperature units for amorphous bulk Zy ,Ti;3dCu» NijgBey, 510 compute a
(i.e., expressed a&.;=T, x) were chosen here to be 630, graph analogous to the one[it8]. The results are shown in
640, 650, and 660 K. These curves resemble those found, fétig. 9 for four different bath temperaturds Note thaty
example, in De Het al. [18] or Tuinstraet al. [25]. Even-  approached/T;, at low strain rates and goes {0=0.032 at
tually they should be compared with data for large strain rates. At intermediate rates, such as those shown
Zrq oTi13 CU» NijgBeys, 5 such as that shown in Fig. 2 of in [18], the values ofy decrease a3 increases, consistent
Buschet al. [24], but that analysis would best be carried outwith the idea that the number of STZ’s needed to sustain a
in connection with experiments like those discussed in thdixed strain rate decreases when thermal fluctuations assist
next paragraph. Not shown in Fig. 8 is the prediction fromthe transitions. As anticipated [2], these curves cross each
Eq. (5.2 that, when the system is fully annealed at lowerother as they move to small strain rates. Figure 9 implies that
temperatures so that the initi@}; is well below 600 K, the this crossover might be observed experimentally in
spike becomes very sharp and moves to temperatures abo¥ey; 5Ti13 Lo NijgBers s
700 K. All of the preceding calculations have been based on the
The differences between the areas under specific heaguation of motion fory, Eq. (3.5), with the equilibration
curves of the kind shown in Fig. 8 are equal to the differ-parameteiB set equal to unity. Remember that the quantity
ences between the enthalpies of systems with the correspon@-kg T, is a characteristic formation energy for configura-
ing initial values ofy. Those values can be controlled experi- tional fluctuations that drive the effective temperatiiggy
mentally by shearing the system at fixed bath temperature®ward the bath temperatufe A value of 8 smaller than
and strain rates for long enough times that they achievenity implies that these fluctuations occur more frequently
steady state. On the theoretical side, we can compute thtban the STZ'’s, which seems plausib{€he opposite situa-
values of y as functions of temperature and strain rate bytion, 3> 1, might also occuy.Figure 10 shows what happens
finding the steady-state solutions of E¢3.26) and(3.5), as  to the steady-state stress versus strain rate curves if we
we have done to obtain the steady-state stresses in Figs.ciooseB=0.5. In order to be at least roughly consistent with
and 5. Thus our steady-state valuesyofan be determined experimental data—that is, in order that the two terms on the
experimentally. Precisely such measurements have been peight-hand side of Eq(3.5) be of comparable size whenis
formed by De Heyet al. [18], who interpreted their function near y.,—we must choose a much smaller valuexothan
x as a reduced free volume instead of a reduced effectivpreviously. Specificallyx=10"8 for the graphs shown in Fig.
temperature. The two interpretations may be effectivelyl0. The most important new feature is that the curve for the
equivalent for systems held at constant pressure because, uawest of the four temperatures shown hefe;573 K no
der that condition, the change in volume will be proportionallonger remains below the others as it does in Fig. 4, but now
to the effective temperature. rises above and goes through a maximum and then a mini-
Figure 4 in De Heyet al. [18] shows values ofy as  mum before returning to approximately its previous behav-
functions of strain rate at three different temperatures for thinor. This multivalued property is seen more clearly if, in-
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1 large and small flow or, equivalently, high and low effective
683K 643K 603K 573K temperature. That is, the system vyill encounter a shear-
banding instability and most likely will fail via shear frac-
ture. Figure 11 indicates that this instability appears only at

o
1

-1 temperatures lower than about 648 K and that the onset
l stress increases with decreasing temperature. The figure also
24 implies that, even at low temperatures, uniform flow should

be stable at sufficiently large driving forces.

A satisfactory theory of shear banding also needs a length
scale, because it must describe a smooth transition between
the jammed and flowing regions of the material. The effec-
tive temperature theory suggests that a natural way to intro-
duce this length isto add a diffusion term proportional to
V? x to the right-hand side of Eq3.5). The associated dif-

4 & 8 10 12 14 18 fusion constapt will be very much smaller than. the orQinary
log,, [Scaled Strain Rate] thermal' diffusion constant because configurational disorder
must diffuse extremely slowly at temperatures below the
o glass transition. We may even be able to estimate the mag-
_ FIG. 10. Graphs of the scaled deviatoric sti§ss/s, as func- iy ge of this diffusion constant from the arguments pre-
tions of the scaled strain ratey(T) b, for four different tempera- sented in Sec. Ill. Thus, the effective temperature theory
tures. This figure is analogous to Fig. 4, but the equilibration pa- Lo !
rameterg has been set equal to 0.5, seems to be giving us a plqe abogt h_ovy to solve the long-
standing problem of identifying an intrinsic length scale for
shear localization. A fully detailed development of these
ideas, however, is beyond the scope of the present paper.

-3

log,, [Scaled Deviatoric Stress s/sy]

-5

stead, we plot the reduced effective temperatyras a
function of the stress, as shown in Fig. 11.

The multivalued behavior o} implies a shear-banding VI. CONCLUDING REMARKS
instability. (See, for example, the analyses by Olmsted and

co-workers[26—28 of shear banding in several similar situ- M . lusion is that the effecti
ations) In the usual simple-shear experiment in a strip ge- y main conclusion s that the efiective-temperature ver-

ometry, the shear stress remains constant across the sampl@n Of STZ theory looks promising but is far from being
in order to satisfy force balance. If the externally imposedduantitatively confirmed by comparison with experimental
shear rate is chosen so that the stress lies in the multivalugtpta. | see several directions for future investigations.

region, then the sample will have to break up into regions of First, there is a need to combine mechanical and calori-
metric measurements, in the manner described by De Hey

et al. [18], in order to test predictions of the kind shown in
Fig. 9. Such experiments may come as close as is possible to
0.032 - actually measuring the effective temperature and learning
whether it behaves as predicted. It also would be useful to
repeat the mechanical experiments with enough precision to
test the predicted deviations from scaling shown in Fig. 4 or
10. For this purpose, it might be well to use other materials
such as polymeric glasses or, perhaps, colloidal suspensions
in order to control the experimental conditions more pre-
cisely than seems possible with amorphous metals.

A second direction for further research is to develop the
theory of shear banding along the lines described above and
to test the results experimentally. For example, it should be
possible to predict and measure the onset of spatial instabil-
ity as a function of temperature and applied stress.

0.022 e L A R S E—— In my opinion, the principal theoretical question left un-
0.0 0.2 04 0.6 0.8 1.0 .
answered is the temperature dependence of the rate factor
Scaled Deviatoric Stress s/s p(T). This factor has been determined empirically here from
experimental measurements of the Newtonian viscosity, with
FIG. 11. Graphs of the scaled effective temperatur@s func-  NO theoretical justification whatsoever. The STZ theory de-

tions of the scaled deviatoric streSss/s, at four different tem-  scribed in this paper and if2] differs most markedly from
peratures. As in Fig. 10, the equilibration parametgB#0.5. the earlier flow-defect theories in that we ascribe the non-

0.030 +

0.028 S

0.026 4

0.024 4
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