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Rigidity transition in polymer melts with van der Waals interaction
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We study the onset of rigidity near the glass transi{iGT) in a short-chain polymer melt modelled by a
bead-spring model, where all beads interact with Lennard-Jones potentials. The properties of the system are
examined above and below the GT. In order to minimize high-cooling-rate effects and computational times,
equilibrium configurations are reached via isothermal compression. We monitor quantities such as the heat
capacityCp, the short-time diffusion constant3, the viscositys, and the shear modulus; the time-dependent
shear modulu&(t) is compared with the shear modulusobtained from an externally applied instantaneous
shear. We give a detailed analysis of the effects of such shearing on the system, both locally and globally. It is
found that the polymeric glass displays long-time rigid behavior only below a tempefgtunereT; < Tg.
Furthermore, the linear and nonlinear relaxation regimes under applied shear are discussed.
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[. INTRODUCTION modulus to emerge, becomes more complex than in percola-

tion driven systems. Where precisely the onset of rigidity
ccurs is an open questiph5]. There is a body of literature

on the behavior of the viscosity near the glass transition

7ed b h g h " fhich will be used to discuss our results. There is, however,
terized by a nonzero shear moduli@bove the transition much less information about the onset of rigidity as mea-

and aldlvergfmg wscos?t?aelow theftr_an;_moh In;m |mgor- %ured by the emergence of a shear modulus.
tant class of systems the onset of rigidity can be Understood 1o 4rticle proceeds as follows. Section Il provides some

in terms of percolatiofil,3-9. Connectivity percolation co- - ganera| - conceptual background information regarding the

incides }Ni:]h the onsedt. c_;f arlll entropiq co:j”npc_)rr]]entbto rigidityGT, and in particular the behavior of the viscosity. Section Il
[4-6], of the type traditionally associated with rubkid0)]. discusses our model and the computational tools that we

Mechanical rigidity requires a rigid percolating backbone. 'fhave used. Section IV presents the main results obtained

the interaction forces are central this means a multiply Cong., ) these simulations and some brief explanations. In addi-

nected backbone, and consequently rigidity would appear g, v, the viscosity and the shear modulus we have calcu-

a higher concentration of bonds than connectivity percolauorpated a short-time diffusion constant and the heat capacity.

[11]. This physical picture provides a well-defined approaChSection V, before the Conclusion, discusses the results within

to unders_tanding t_he behavior of the viscosity and the sh_eau:]e current framework of polymeric glasses and provides
modulus in the neighborhood of the onset of entropic rigid-g, 6 insight into the theoretical concepts discussed.
ity, and has been the focus of several recent stugdies].

The onset of the mechanical rigidity arising from covalent
bonds has been extensively studied in network glasses at Il. RIGIDITY AND THE GLASS TRANSITION
temperatures well below the glass transiti{@T). In a mean-
field argument, this component of rigidity sets in when the
density of floppy modes approaches zero, or the number o
constraints exceeds the number of degrees of freedom. F
bond-bending networks, this means a mean coordinatioﬁ
number(ry=2.4[12-14.

In this paper we consider the onset of rigidity in a poly-
mer melt which occurs as the temperature is lowered belo
the GT. There is no obvious length scale emergimgiori as

The onset of rigidity in disordered systems has been th
focus of a number of studies over the last decdded. At

For a polymer melt, in contrast to the rigidity that sets in
ith increasing cross-link density, lowering the temperature
ives the system reversibly toward a homogeneous glass
ase with no obvious diverging length scale. Attempts have
een made to invoke the percolation of the slow regions near
the glass transitiofil 7,18. Also, in a particular model where
rigid bonds can be formed upon cooling, a link is made to a
“nechanical rigidity transition based on constraint counting

the chains bind together under the attractive van der Waal 19,29. We will focus on the behavior of the viscosity and

interactions between monomers forming disordered struc e shear modulus and analyze their critical behavior in a
9 .. simple numerical model of a polymer melt made of short

l'ﬂ‘eely jointed chains. Discussions will be made using exist-
%g models of the physical properties of the system near the
glass transition.

Historically viscosity has played an important role in ana-
*Electronic address: bjoos@uottawa.ca lyzing glasses. The glass transition was associated for prac-

where the viscosity is expected to diverge and a finite she
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tical purposes with a specific number for the viscosity: (T—TC)‘9 p< E) @
n~ .

=10 poise or 16° Pa s, where the material could be con- T T
sidered not to flow during experimental time scales. ¢
The glass transition is known as a “pseudo-second-ordddnlike the MCT approach, the above equation yields a criti-

transition,” since the discontinuities are not sharp and occueal temperature for viscosity divergentg below Tg. While
over a range of temperaturg&l]. As well, a glassy system is experimental data from polymeric liquids are well described
not actually in equilibrium, because aging phenomena anwvithout the activation energy contribution, the extra term
flow have a non-negligible effect at long times. At best, weensures the same universality class for all glass forifi2&]s
refer to a metastable equilibrium which, on our time scales One can also consider the GT in terms of the “energy
(as in the case of short experimental timean be treated as landscape” of the system, a hypersurface punctuated by local
an equilibrium system. minima of varying depth, where the shape depends on the
A commonly used approach to the glass transition hayolume and the sampling on the temperat{##,25,30,31
been mode-coupling theoryMCT), derived from micro- In terms of energyJs can be seen as a temperature at which
scopic density fluctuations within a liquif22,23. A dy-  the system is “trapped” in a relatively deep local minimum
namic phase transition is predicted at approximately 1.1—1.8nd the free energy barriers effectively prevent further explo-
times Tg, involving a divergence in the zero shear-rate vis-ration of phase space. Polymeric glasses do not behave like
cosity 7, other, more simple glasses, such as SiSimple glasses
have a more precisely defined energy landscape, whereas
polymeric glasses have more configurational possibilities,
7=(T-Tuo) >, (1) yielding more local minima which can be sampled via local
rearrangements. As such, polymers tend to create relatively
“fragile” glasses, characterized by a non-Arrhenius variation
of the viscosity with temperature. In terms of the glass tran-
sition temperature, it has been observed fhatrises with
chain length or molecular weight until a plateau arowid
=100[24].

which could be masked by thermal activation effef24].
More importantly, idealized MCTwhich does not take into
account “hopping” processes, for instappeedicts an ergod-
icity breaking atT=Tyc [22]. It has also been proposed that
there is, in fact, some type of “crossover point” to the Vogel-

Fulcher-Tamman(VFT) regime (see [22] and references In general, glassgs display a more cc_)mplex response 0
. . low-frequency shearing than purely elastic systems. Nonlin-
therein. The latter is a more successful framework for ana-

Ivzing alass-forming liquids and is defined by the VET law ear mechanical responses are common in glass systems after
yzing gla g1q y " ergodicity breaking25], and the relaxation of a simple glass
an empirical equation of the form

will depend on local rearrangement. In polymer systems
there is an additional component arising from the extension
E of the chains. This, as well as energy landscapes, will be

act . . . . iy
N= 1 exP(T—T ) (2 useful tools in interpreting the mechanical response within
0 our glassy polymer melt. Some aspects of relaxation below

the GT are well understoo@5,32 in terms of aging subse-

The VFT temperaturd@, is expected and has been observegduent to a temperature_ quench or in response to_a mec'hanical
to be very close to the Kauzmann temperaftigediscussed deformatlon,_ after which glasses can relax fairly qU|CI_<Iy.

in Refs.[22,25. Ty is the temperature which defines a hy- However, this has not, to our knowledge, been examined
pothetical state with zero configurational entropy or the for-USiNg an instantaneous simple shear experiment.

mation of an “ideal” glass. Such a state is never reached
because of the large slowing down of the systeriatim-
pressive fits to the VFT equation have been achig2éc27] lll. MODEL

above the glass transition. These fits also provide a means to A. The bead-spring model
characterize the fragility of glasses: the clo$gris to T, the
more fragile the glas$28,29. Nevertheless, the range of
applicability of the VFT equation is under contention; some
research indicates that it cannot go as lowlgswhile other
studies suggest that it is best applied close to the(§&E
Ref. [25] for a review.

A dynamical scaling approach was recently proposed t
explain the divergence in relaxation time below the [28].
The GT is characterized by dynamical heterogeneity, in th
only some of the material is able to move due to a lack o
free volume. At a critical temperatufiig,, there is not enough 1 ri
free volume for any particles to move and local motion is Urene(r) :Ek% In 1‘(53) (4)
effectively prohibited. This approach assumes percolation-
like universal behavior among glass-forming liquids with anwhere Ry=1.5, k=30. In addition, all particles interact
additional activation energy term of the following form: though the truncated Lennard-Jones potential,

We have used the well-known bead-spring model based
on work by Kremer and Gre$83] and more recently applied
with success by the research group of Bindetr al.
[22,26,34—-3% Their work has focused on issues suchaas
and g relaxation, cooling-rate dependencies, and cage effects
on approachings from above. In this model, the neighbor-
ing beads along each chaithere are ten monomers per

hain and a total oN=1050 monomejsinteract through the
initely extensible nonlinear elastiEENE) potential
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o\ [o)\® P=1.0¢ ;/ o3 to achieve a similar system to that of Binder's
Upy(riy) = 4e (r_> _( ) +C, <250, (5 research groufj26,34—37. The compression is done in the

. . BD NVT ensemble by reducing affinely the system size at a
whereC is chosen such that the potential is zero at the cutofspecified rate. The largest compression rate of a side of the
radius. box, in Lennard-Jones units, was around 0.045/m. Us-

The length is rescaled using=1 and the temperature is ing a smaller compression rate was shown to cause negli-
expressed in units of ;/kg. Combining the two potentials gible change in quantities such as viscosity and energy. Natu-
yields an optimum bond length of 0.86which inhibits crys-  rally, the rate of compression will inevitably have some
tallization by introducing a competing length scale. effect on determining at what temperatufg the glass be-

comes “stuck.” However, we believe that, by continuously
changing the volumeand thus the precise shape of the en-
B. Approaching the glass phase along an isotherm ergy landscape the system can eventually find a lower en-

Usually the GT is approached at const&hby lowering ~ €rgy minimum. The final volume is established at a given
the temperatur¢26,34—37. In order to avoid problems as- temperature foP=1 using a constant pressure damped-force
sociated with high cooling ratg86] and to reduce compu- algorithm [39]. The system is then allowed to evolve in a
tational time, we propose a method whereby the samples cdRicrocanonical ensemble by molecular dynaniie). We
be “frozen” or not, as the case may be, by compression at Beed to run in that ensemble to collect information on the
desired T. Although we are still measuring changes in acorrelators required to calculate viscosity and shear modulus
given quantity with respect to temperature with a constantelated quantities. The equations of motion were integrated
pressure, we are effectively using a different thermodynamitith the standard velocity Verlet algorithf89] and a time
path to define the state of a sample. There is a very comple&ep ofdt=0.005/mo?¢_ ;. During this portion of the simu-
discussion of thermodynamic paths in Rg7]. However, it lation, both the pressure and the temperature were seen to
does not discuss defining a thermodynamic state using dffictuate around their expected values.
isothermal path. Our method seems to allow a better explo-
ration of phase space and, consequently, a more physically
meaningful final state for low temperatures. In a pure
Lennard-Jones simulation, for instance, we found that crys-
tallization requires less CPU time when compressing the sys- The time-dependent shear modulbét) measures the re-
tem than when simply cooling [88]. The temperatures stud- sponse of the system to a shear stgipapplied at=0, and
ied range from 1.8, ;/kg to 0.2¢ ;/kg, allowing us to explore is defined ag10]
the liquid, supercooled, and glassy regimes. We entered the

r

C. Viscosity and shear modulus from the stress
autocorrelation function

glass phase along both an isochore and an isobar. However, G(t) = @/ﬂ, a# . (8)
we retained only the simulation results along the isobar, as €ap

pressure variations along the isochore proved somewhat U%:a is an off-diagonal macroscopic stress tensor element and

. . . . ﬁ
physical. The main problem was a progressive increase Qfjicitly includes inter- and intrachain interaction&(t)

pressufre W('jth .Iowsrlpggtemp_e}rha}turg_belﬁiw(smnarﬁrestyltsl can be calculated from the stress fluctuations in the quiescent
were found in Ref.[35]). IS discrepancy  elfectively gt using the fluctuation dissipation theorem which states

amounts to that [10]
(2, A, :
T N,V - V\JIT N,V G(t) = G—<0aﬂ(t0)oaﬁ(t0 + t)>1 aF :81 (9)
which is clearly forbidden. Along the constant volume path,Where
the system goes through what would have been a two-phase
region in the thermodynamic limit. 1[N N s U
For a given sample, we create an initial “gas” of polymers Oog=" v > M Lig = > —J:—U‘ST . (10)
i=1 i<j i ij

at the desired temperature, having ensured their separation
and random orientations. The chains reach their individuadrne sums are over all the particles in the system indexed
equ_ilibrium configurations in ai_\JVT ens_emble using an alf from 1 to N. G(t) is a very powerful tool: it allows us to
gorithm based on the Langevin equation, called Browniarypiain g zero-shear limit for the shear modulus without ex-
dynamics(BD) in Ref. [39]: ternal deformation, which can have a non-negligible effect
d?x; oy dx, on the ste.a_dy state. Nonergodic glassy materials are espe-
mﬁ =- x + ml“a -W(t). (7) cially sensitive _to conﬁg_urauongl changes_. Insteadt) sim-
! ply uses the microscopic density fluctuations and the subse-
This algorithm allows the system to reach equilibrium in ourquent response to give us a clear picture of how the stress
“expanded” volume quickly and realistically, by simulating a evolves in a system. At—«, G(t) becomes the “equilibrium
heat bath in the form of a friction coefficiefitand by intro- ~ modulus,” G, and, att— 0, G(t) becomesG.,, the infinite-
ducing a random forc&V in the form of Gaussian noise. frequency modulug40,41. To our knowledgeG,,has never
Subsequently, the system is compressed to the pressubeen compared to the usual shear modulus, which is mea-
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sured by a system'’s response to a shear deformétemSec. local diffusion of a particle, which is limited by the proxim-
[Il E below). The zero-shear-rate viscosity is obtained by theity to its neighbors. In the glassy regime, there may be little

appropriate Green-Kubo formula: or no diffusive behavior. Nevertheless, the approximately
" constant slope is an indicator of how much local mobility a
77:_[ G(t)dt (11) given monomer or chain can have within its cage.
0

from which one can obtain the relaxation time as E. The shear modulus from the shear deformation

We have also calculated the shear modulus directly by
= i_ (12) applyin.g a simple shgar deformat.ion to a given sample. We
G. start with a cube of sidé. For a given straire,,, an affine

In the past, viscosity measurements have been made usinge deformation in the direction is appliedin a plane

nonequilibrium molecular dynamic@NEMD) to avoid the th. _its normal ‘?"0”9 they direction. An atom initially in
problem of long time tails of correlation functions at tem- POSition (x.y,2) is displaced to(x+ey,y,2). The bound-
peratures approachinf [27]. This issue was resolved by 2res of the simulation box consequently are shiftedxig,
fitting G(t) to the Kohlrausch-Williams-Wattgkww) or  10mM 0 t0&,y and forxmaxfromdL tfo exyy L. -;T]'s |shapplled Al
stretched-exponential function and integrating to infinity, vigdS @ one-time, instantaneous deformation. The shear modulus
[40] is then calculated with an off-diagonal element of the stress

tensor, once the system is equilibrated:

B
G(t) = G(O)eXP[_ (5) } . (13 = [oyy(exy) — ny(o)].

0

(17)
The quality of the fi I i aies| o

e quality of the fits as well as previous rese sug- _ o , _—
gest that this approach reflects well the behavior of the sys- The shearing is applied in the five other directions, sub-

tem over long time scales. Although there is a certain add;Sttutingxy by yz —xy, etc. Individual samples lack symme-

tional error associated with the fit, it allows us to keep ally and therefore the various deformations will not usually

system in its “true,” undriven state. The errors were large fod!Ve the same stres_s components. The evolut|qn of the re-
T very close toTe (T~Tg+0.02, due to the increasing sidual stress is monitored, until a stress plateau is reached in

length of the tails the deformed system. Deformations ©££0.01 to 0.2 were
The nature of.the tail changes significantly below theperformed.AsimpIe shear deformation is more rigorous than

glass transition, and the KWW fit of E13) is no longer a pure shear deformation, which relies heavily on the as-

appropriate. The slow relaxation of the glass through ther—Sumptlon of isotropy throughout the systdi. In a pure

mally activated processes is better represented by the powg ear deformatlon_, a_sample WOUI.d have been streiched
alongx by &,, resulting in a compression along the two other
law form [40,4] N Y X .
directions bye,,/2 in a volume preserving system.

G(t) = Ggg+ AL, (14)

In physical terms the power law fit uses the distribution of F. Heat capacity
energy barriers explored by the system during the simulation Finally, we monitored the changes in the heat capaCity
time to predict the long-time behavior. acrossTg. Although other methods exist for calculati@p
via MD simulations, the best approach was to calculate the
D. Short-time diffusion coefficients potential energy in th&lVT ensemblgBrownian dynamicg
To get an idea of the mobility of the chains and the indi-for €ach temperature. Knowing the volume and the pressure
vidual particles, we define short-time diffusion coefficients@t €ach temperature, we can obtain the specific heat per par-

using the Einstein relationd)y,, for individual particlesi,  ficle Cp in units of kg from
and Dy, for the centers of mass of individual chaips 1(&H)
Co=—| = (18)
_Arit) -ri(0)1» PTNVOT/ yp
Dy=—"__-~—" ", (15
6t whereH=E+PV is the enthalpy.
—r. 2
Doy = {r;® -r;0)] >_ (16) G. The simulations
6t

Most simulations were carried out on the “Bugaboo”
Ignoring initial displacements, we simply retain the slope ofBeowulf Cluster at Simon Fraser University, with computa-
the first approximately linear part of the mean-square distional times for one complete sample at a given temperature
placement vs time graph, calculated around 30@00n the  (ab initio and including all correlations and sheaningt
asymptotic limit if the particles are delocalized, there wouldaround 6 days on a single processor. Approximately ten
be on a longer time scale a linear regime with a smallesamples of 1050 particles are examined for each temperature,
slope. If they are localized{Ar))? will be bounded. In the with each given sample being used to calculate approxi-
liguid phase, the first linear regime essentially reflects themately 400 “correlators” of length 30 0@Q.
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FIG. 1. Packing fractionb as a function of temperature. The ~ FIG. 2. Heat capacitCp found by numerically deriving the
intersection of the two slopes in the glassy and liquid regimes acenthalpyH with respect to temperature. The dotted line shows the

curately determine3g, shown with the arrow and dotted line. location of T as determined from Fig. 1. Note that the dropdp
asT is lowered ends at=0.44, coinciding with the appearance of

V. RESULTS long-term rigidity (see Fig. 6.
A. The glass transition temperature Tg characteristic increase over several orders of magnitude
aroundTg, along with the corresponding curves of E¢®)
3nd(3) obtained using a simple nonlinear curve-fitting algo-
rithm (Fig. 3). We also attempt a fit using the MCT approach

. ; . in EQ. (1). The results are summarized in Table | and follow
equivalently, the packing fractio) across the GT10,42 the gaﬁné trends as those found in RE22,35 for a similar

alo_ng the _|so_baP:_1. The intersection of t_he slopes in the system. The attractive Lennard-Jorj&d] interaction has a
solid and liquid regimes separates two regions of nearly con

stant volume expansivity. It yields an unambiguous value oféhorter cutoff 2.24, instead of our 2.5, leading to system-
P Y-ty g atically lower critical temperatures. Varnik and Bindé7]

T5=0.4650.005, as shown in Fig. 1 and Table I. The vanay, ave looked at the increase in viscosity with lowering of the

t'ngmt of :’ P&';"th res%eicnt tSO ter}]i)gra\t/ljre prtl)wcliets dar;?trne;hesn'temperature in the same system but with the melt driven by a
ate. 2As discusse ec. 1l Ep was caiculated Iro € force field. The values offyc and Ty are quite different
derivative of the enthalpy with respect to temperature alon

an isobar(Fig. 2). Such an approach has been extensivel;g/Emder those conditions, expectedly lower.
used to calculatd, and as expected, is characterized by We get an idea of fragility by plotting the logarithm of the

. : viscosity » versus the inverse temperature, a characteristic
a sharp increase arouniy; [21]. The Increase, however, Ts-scaled Arrhenius curve for glassy syste(®R&y. 4). Evi-
tarl:ets platcef ?r:/ era temﬁera}gu[)e mter(\j/al, ?Qd Ilt |st_n%t Cfleatﬁence of fragility(deviations from Arrhenius behaviobe-
\(Ilei E%r ; Th?a Csl:;\:te osf '?hue ragi dusriese ?)Sccu(:s (;(f[ao'% 4GOan dcomes apparent as we approach the GT. Typical experimental
ends at 0.50. Th&; determined above from the change in data from polymeric glasses generally show very fragile be-

SR - havior f h plot$25].
value of the volume expansivity lies in the middle of the avior from such plot§23]
rapid rise. The beginning of the rapid rise suggests that a C. The shear modulus fromG(t)
major change in the entropy s taking p"’?lce at t_h_at POINt. AS  \e have also examined ho®(t), the time-dependent
we shall see later, this point has a special significance. shear modulus, changes as we cross the glass transition

Te, using the common and accessible metklooth experi-
mentally and by simulationof examining the volumeor

B. The viscosity

Now that we can identify the GT within our system, we . Fit using Eq. (3)
can examine the relevant dynamical quantities around this 107 ____VFTﬁt?,O,,‘,"Eq_ @ °
point. First, we obtain the expected viscosity curve with the

TABLE |. Relevant temperatures characterizing the glass and \
rigidity transitions: Tg is the glass transition with the associated
MCT critical temperaturely,c, the VFT temperaturd,, and the =T
critical temperatureTc obtained from Eq.(3). In addition, we 10'E s 4
presentT,, corresponding to the onset of true rigidity, found by ) X X X . . .

Te Tme To Te i FIG. 3. Viscosity 7 above the glass transition, along with the

0.465+0.005 0.51+0.02 0.41+0.02 0.422+0.006 0.44+0.01corresponding fits from Eqg2) and (3). The dotted vertical line
marksTg obtained previously.
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FIG. 6. Various approaches to determining the shear modulus.
Ggqis simply the value of3(t) att=150 time unitgthe rigidity on
very short time scalgswhile G is obtained by fitting the function
(Fig. 5. The main difference between solid and liquid re-1© Ed-(14) att—e. Finally, x is calculated from Eq(17) via a
gimes occurs in the long-time tails 6f(t). While a KWW fit non_—negllg|ble deformation of t_he sgmple. The mset shows the be-
of Eq. (13) can be used fof >Tg, a power law of the form havior around the Q'I(d_otted ling with the locations oﬂ'l_(th_e
of Eq. (14) must be applied fc’)rT<TG [40.41. Simply ontsedt gf long-term rigidity and Ty,c (the MCT temperatupeindi-
evaluating the value oGéq:G(t) at the end of our correla- cated by arrows.

tion function(t=150Vmo?/e) gives a good idea of the initial paps due to some degree of nonergodicity in the system. We
degree of relaxation possible in our system, or the she&annot put a precise value on the time scale of the long-term

modulus at short time scales. However, we would like Origidity, only that it is much greater than that of the simula-
examine the “true,” long-time relaxation of the glass, whichjgp.

is generally not accessible at simulation time scales. As such,

we find G4 (att— o) using a nonlinear fit to the power law

of Eq(14), giving nonzero values OGeq beginning atT, D. The shear modulus from a finite deformation
:0.44_10.01, and an approximatgly Iinear increase with de- \we also confirm OUG,,q results by checking whether or
creasing temperature, as shown in Fig. 6. The deca&§(0f ot they represent the shear modujusn its regular sense,

is very slow, and most of the information necessary for the fit ¢ the response to a shear deformatj@nthe value ofG,

can be extracted from the initial decay region, shown in they our short simulation time scales and the valuégf by
inset of Fig. 5. Similar power law behavior has been found infit are shown in Fig. 6. This preliminary comparison is prom-
cqlloidal gel simulationg41]. We are further convinced of jsing, since botlGeq and u(e=0.1) begin acquiring nonzero
this approach by the apparent change of slop&gfat the  \ajyes at the same temperatufe defined in the previous
point whereG,, becomes nonzer,, begins acquiring non- - section: they are both good indicators of the onset of true
zero values at higheF (nearTyc=0.51, the idealized MCT igidity. Clearly u(s=0.1) is much smaller thaiG; while
temperaturg In other words, apparently “solid” glasses can G Calculates the shear modulus via the internal fluctuations,
have an almost liquidlike response at longer times, provideq, requires external constraints to be imposed, thus altering
the temperature is just above or just beldw. This is per-  he system. As such, we look for the limi(e — 0). Figure 7
shows the functionu(e) for a set of samples at three given
temperatures. This calculation was done by ensuring that the
stress had reached a plateau before evalugtingia Eqg.
(17) . Clearly, this glass displays highly nonlinear behavior
and we have, as of yet, no function with which to fit the

FIG. 4. Glassy behavior of the polymer melt shown in a typical
Arrhenius plot, indicating that the glass is primarily fragile.

1000 F ! 82 T !

8.0
100 & 78 E

7.6

10

10 20 30 40

points. The limite—0 is computationally prohibitive to

& —— = reach. The error inu as seen from Eq17) grows as 1é
1 T=055 1 Figure 7 does, however, indicate thate— 0) likely tends to
Geq It also suggests that the regime of elastic deformation
01k Powerlaw it 1 for these glasses is approximately 2—3 %.
1 10
t E. The short-time diffusion coefficients

FIG. 5. Stress autocorrelation functi@(t) decay above and To gain more insight into the structural behavior of the
belowTg, as calculated from Eq9), along with the corresponding Melt near the glass transition we look at the short-time dif-
KWW and power-law fits from Eqg(13) and (14). Note the very  fusion coefficientsDy andDc), of the monomers and center
slow power law decay. Inset: Initial decay of the power lawTor Of mass of chains respectively, defined in Sec. Il D. The
=0.4 shown on a linear plot. measurements reflect, on average, how much local motion is
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FIG. 7. Shear modulug as a function of shear for three tem-  FIG. 9. Cage effect as seen by dividing the monomer by the
peratures below the GT. We interpret @Bg, as the zero-shear limit chain diffusion constants at short times. The maximum occurs near
to check whether these two methods agree. Note how the statistidss (dotted ling, as the cage progressively “closes in.”

get much worse at smadl. . )
Waals interactions through the change of slope of the pack-
possible for a given particle. As expected, as we decrease 1Y fraction with temperature, or the change in the value of

temperature, there is decreased local diffusion as we aﬁﬁe volume expansivity. This led to a value di

A " : " =0.465+0.005. At the glass transition the heat capacity at
proach the rigidity transition and G(Bee Fig. 8. In addition .constant pressur€p exhibits a sharp rise with increasing

we notice that, in the gla_ssy regime, the mOnomers ma'ma'pemperature. The above determinggloccurs in the middle
significantly more short-time mobility than the chains close f the rise. As seen in Tabll a number of other temperatures

to Tg. The chains, on the other hand, are more constramecﬁ.ave been obtained in our study of the onset of rigidity

;h?pls f\ljvriiuetrerlr?u::;iherg tI?( J?ee gbreek:/ae\glosr tr?;t tg%nroarﬁzrbrought about by the kinetic arrest occurring ndat The
M —CM P - 19 beginning of the rise ilCp coincides withT;=0.44+0.01 the

motion becomes increasingly dominant as we approggh > oo
oint of onset of rigidity as measured B, and u, and the
from above. There could be enough free volume for som('gnd of the rise withl,c=0.51+0.02, the MCT critical tem-

monomers to move short distand@s]. This has been illus- perature, the divergence point in the viscosity predicted by

gﬁlitzeedd t;égr]'ﬁ C?k?e? rﬁgﬁgﬂr? iqg}ﬁtgaals%smiegg;;rg;”& mode-coupling theory. These coincidences do not appear for-
bility within their “cage” formed by the neighbors. This is, in tuitous. The rapid rise il€p suggests a temperature interval

fact, an important precursor to the system becoming not onli'/]vqhere the configuration space explored by the glass in the
“slow,” but also rigid. AtTg the monomers still have suffi- aking changes rapidly. The end of the rise may very well

cient mobility to absorb deformations. This mav explain wh be the temperature at which thermally activated processes
y C ' y exp Yend and the assumptions of idealized MCT become valid.
the onset of shear rigidity is beloW.

Tuc is expected to be higher thdr, [43]. Below Ty, the
liquid can still flow with the help of thermally activated
hops. The temperature of rigidity onset was determined by
studying the behavior of the viscosityand the shear modu-
We have determined the glass transition temperature fdus upon cooling. The divergence point gfis obtained by
our system of freely jointed chains interacting with van derextrapolation, while the onset of rigidity is measured fairly
close to the transition. So we will begin with the latter. R¢

V. DISCUSSION

e by all indications the system has no long-time shear resis-
8.0x10° " tance. BothGgq=lim;_..G(t) and u, obtained by an actual
5.0x10° | . o o deformatiqn of the system, are still zer@,;q:G(t~150),
a0x10° | . D:M the short-time shear modulus, becomes nonzero ardygad

. . But Gg, its long-time limit, only sets in af;=0.44+0.01. At
® 3oxt0r the same temperatuge becomes nonzero, although the val-
2.0x10° LR, ues ofu are not the same as those ®f, for typical defor-
1.0x10° " e mations ofe=0.05 or 0.1(see Figs. 5 and)6We will elabo-
. . ) . )
. . e® rate on these differences later in the discussion. The
oop § ° important point is that they agree on the temperature of ri-

T

0.34 0.36 0.38 040 042 044 046 048

gidity onset. On the other hand, the divergence point of the
viscosity » was determined using several models, two of

which incorporate thermally activated processes, which be-
come operative belowyc. They predict divergences at
=0.41+0.02 from a fit to the VFT layisee Eq(2)] and T¢
=0.422+0.006 from the Colby fornjsee Eq.(3)]. One

FIG. 8. Average short-time diffusion of monome(®,,) and
centers of mass of chain®c)) aroundTg. The substantial in-
crease inDy begins slightly belowTg (indicated by the dotted
line).
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should, however, note that these are obtained by extrapolat- 15

——e=0.01 7

ing from the lowest temperature at whighhave been mea- :‘fg'gg
sured, 0.49. The true statesTgtor T are not attained due to Dy

—r—ea0.1 1

—e—=0.2

the dramatic slowing down beloWwg. The extrapolated val- 101
ues are smaller thahy, but not inconsistent with it. They are o
not expected to be as reliable because they are not measured
directly. The fact thaf; is smaller tharnTg determined from
the change in volume expansivity raises the question about
the true location of the glass transition. Does this mean that ok . .
the beginning of the rise i€, should be used as the true 10 100 1000 10000
onset of the glass transition, or is it thatTg{, although there t
is structural arrest, sufficient free volume remains to allow L
; FIG. 10. Decay of the shear stresg, after various initial shear
for small deformations at no cost of energy? ! - -
. . deformations aff=0.3. We can see both the initial stress and the
A number of aspects of this study are worth commentin .
. . . . .shape of the subsequent decay in the system. Note that fordarge
on further. First there is always a time scale associated wit . A _
L L there is very little initial stress imparted, followed by a fast decay.
rigidity, as it is well known that the shear response depends

on frequency. What we are trying to determine is the statiGy ..o 55r0aches rely on physical bonds as constraints, the
shear modulus, or zero frequency limit. The long time asso-

ciated with this modulus, as measured, is still short compareaame principles could apply to our system. Furthermore, we

with temperatures related to aging. We started measuring®lice from Fig. 8 thabey is very small afT,.

. . : g Finally we would like to comment on the difference be-
quantities when the system showed no sign of evolving. Ir{weenG and . the latter obtained from the applicati f
S . . eq , pplication o

other words, aging is on a different time scale than stress

Co . . : an instantaneous simple shear to the system. The nonlinear
relgxagon times. An pnrglatgd Issue on time sgale 'S th? d(aﬂBehavior of Fig. 7 is further explained in Fig. 10. Both the
e e Exfement e el srss and te degree f eation are gy depen-
of 101.3 Pa s for the viscc;sity afs. This correspbnas to the dent one (Fig. 10. For larger shea_rlng, the initial stress is
experimental time scale of min?J.thr hourg [21] while a sma}ller and the .subsequent decay is very fafSF' A collapse was
computer experiment, under the best of conditions occurreallzed by plqttlng the strgss §caled o its initial _value VErsus
over nanoseconds sé) aboutiemaller. It is intriguin,g to Time scaled with a relaxatlt_)n time equal to the time to reach

: - . . half the stress. The relaxation times obtained follow the same
note that the VFT fit and the Colby fit yield viscositiesTgf

of the order of 18in our units, which withG,. of the order trend asu. The shearing is likely irreversible at large strain.

of 1 gives a relaxation time of the order of 1@t Tg, In effect, large deformations appear to have a sub§tant|al
. : effect on the structure of the system, perhaps changing the
longer than the time scale of our computer experiments .
. . ) Shape of the energy landscape and causing the system to be

closer to 16 time units or 16 time steps.

Another point is the nature of the onset of rigidity. What in a different local minimum. Small shear, however, does not

happens aT,? Studies under waj4] show that the distri- generally have the same effect and a larger residual stress

bution of displacements on all time scales studied is unimorc1ains as the system tries to return to its original configu-

. . ration (the same energy wellHaving described the basic
dal as previously observddb5], so there is no separate long- ; ) 4 X .
: M . behavior associated with shearing, we can alternatively ex-
lived rigid backbone that accounts for the resistance tq _. § T > )
. amine the local “polymeric” contribution to the mechanical
applied shear. Second, the local structure of the system re- . - :
relaxation of the glass. Considering Fig. 11, we can see that

mains identical, as expected from a GT. In other words, ther? . . .
is no evidence of any clusters of tightly packed particles The " smalle, _the C*.‘f”““.s are slightly stretcheq, but can easily
’ ecover their equilibriunRg value, whereR; is the average

average distance to the nearest neighbors of a given partlci%dius of gyration of the chains. For larger strains, the initial
does not change appreciably with temperature. The concep

of dynamical heterogeneity may be more applicable to this

system[45,44, in that the lack of mobile clusters on fairly 2.31 Q. =0 ]
long time scales belowW, accounts for rigidity. Instead of o »  ¢=0.05
having covalent bonding, the van der Waals rigidity in our ‘~ o =02
system may arise from “jamming” constraints produced by 228 % .
mechanisms such as the cage effect, which relies primarily o

on the presence of stiff chains to prevent motion.

The fact that the appearance of long-term rigidityTat
=0.44 coincides with the bottom of the characteristic “dip”
in the heat capacity curv&ig. 2) is indicative of an increase
in system stability as the temperature is lowered. In network
glasses, the number of floppy modes in the system deter-
mines the jump inCp (also related to the fragility of the
glasg [47]. And these floppy modes start appearingTat FIG. 11. Evolution of the average radius of gyrati®g, of the
Other approaches have been able to asso@atevith the  polymer chains, after a large=0.2) and small(e=0.05 deforma-
change in entropy of constraint breakirigi6]. Although tion att=0 together with the undeformed, “equilibriunRs (e=0).

225
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deformation of chains is disproportionately high and thereglass transition have focussed on the divergence of the vis-
can be no recovery on intermediate time scales. We can ireosity. We provide an additional perspective by looking also
terpret the degree of recovery in the chain as the main factait the emergence of the shear resistance. Whereas the point
characterizing the viscoelastic behavior in polymer m@fs  of divergence of the viscosity is difficult to assess directly
ten represented by spring-dashpot moylelsince chain  because of structural arrest, it appears easier to approach the
length has a direct, substantial effect on relaxation mechapoim of onset of the shear modulus. That b@k, and u
nisms. Because of the absence of permanent crosslinks, theyve the same onset is encouraging. The work demonstrates
chains slip during relaxation. For this reason the entropiGhe effectiveness of the stress correlators, from wigghis
contribution to rigidity is not dominant. This contribution is obtained, compared to the application of an external defor-

also intrinsically difficult to resolve with the degree of noise mation which yieldsu. The T¢=0.465 determined from the
In the data. 'I_'he rigidity pbserv_ed n Fh.'s. system can bechange in packing fraction lies in the middle of the rapid rise
viewed as mainly mechanical. Finally, rigidity should occur

o : . . . Pf the heat capacity. With decreasing temperature, there is a
earlier in a system of longer chains, since each particle wil

short transition period of short-term rigidity beginning near
have, on average, fewer degrees of freedom. Tuc=0.51(the end of the rise irCp), presumably due to a

lack of ergodicity, followed by the appearance of a long-term
nonzero shear modulus ay=0.44 (the beginning of the

Our isothermal compression method has allowed us tesise). We believe that we have only begun to explore what
better examine the state of the melt above and bdlgwDur  shear resistance can teach us about the GT: from nonlinear
studies of rigidity bring additional insight into the nature of mechanical properties and frequency dependences to issues
the GT. Previous studies on structural issues related to thelated to aging.

VI. CONCLUSION
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