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We study the onset of rigidity near the glass transition(GT) in a short-chain polymer melt modelled by a
bead-spring model, where all beads interact with Lennard-Jones potentials. The properties of the system are
examined above and below the GT. In order to minimize high-cooling-rate effects and computational times,
equilibrium configurations are reached via isothermal compression. We monitor quantities such as the heat
capacityCP, the short-time diffusion constantsD, the viscosityh, and the shear modulus; the time-dependent
shear modulusGstd is compared with the shear modulusm obtained from an externally applied instantaneous
shear. We give a detailed analysis of the effects of such shearing on the system, both locally and globally. It is
found that the polymeric glass displays long-time rigid behavior only below a temperatureT1, whereT1,TG.
Furthermore, the linear and nonlinear relaxation regimes under applied shear are discussed.
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I. INTRODUCTION

The onset of rigidity in disordered systems has been the
focus of a number of studies over the last decades[1,2]. At
the rigidity transition, a resistance to shear emerges, charac-
terized by a nonzero shear modulus(above the transition),
and a diverging viscosity(below the transition). In an impor-
tant class of systems the onset of rigidity can be understood
in terms of percolation[1,3–9]. Connectivity percolation co-
incides with the onset of an entropic component to rigidity
[4–6], of the type traditionally associated with rubber[10].
Mechanical rigidity requires a rigid percolating backbone. If
the interaction forces are central this means a multiply con-
nected backbone, and consequently rigidity would appear at
a higher concentration of bonds than connectivity percolation
[11]. This physical picture provides a well-defined approach
to understanding the behavior of the viscosity and the shear
modulus in the neighborhood of the onset of entropic rigid-
ity, and has been the focus of several recent studies[4–9].
The onset of the mechanical rigidity arising from covalent
bonds has been extensively studied in network glasses at
temperatures well below the glass transition(GT). In a mean-
field argument, this component of rigidity sets in when the
density of floppy modes approaches zero, or the number of
constraints exceeds the number of degrees of freedom. For
bond-bending networks, this means a mean coordination
numberkrl=2.4 [12–16].

In this paper we consider the onset of rigidity in a poly-
mer melt which occurs as the temperature is lowered below
the GT. There is no obvious length scale emerginga priori as
the chains bind together under the attractive van der Waals
interactions between monomers forming disordered struc-
tures. As we shall see, the region around the glass transition,
where the viscosity is expected to diverge and a finite shear

modulus to emerge, becomes more complex than in percola-
tion driven systems. Where precisely the onset of rigidity
occurs is an open question[15]. There is a body of literature
on the behavior of the viscosity near the glass transition
which will be used to discuss our results. There is, however,
much less information about the onset of rigidity as mea-
sured by the emergence of a shear modulus.

The article proceeds as follows. Section II provides some
general, conceptual background information regarding the
GT, and in particular the behavior of the viscosity. Section III
discusses our model and the computational tools that we
have used. Section IV presents the main results obtained
from these simulations and some brief explanations. In addi-
tion to the viscosity and the shear modulus we have calcu-
lated a short-time diffusion constant and the heat capacity.
Section V, before the Conclusion, discusses the results within
the current framework of polymeric glasses and provides
some insight into the theoretical concepts discussed.

II. RIGIDITY AND THE GLASS TRANSITION

For a polymer melt, in contrast to the rigidity that sets in
with increasing cross-link density, lowering the temperature
drives the system reversibly toward a homogeneous glass
phase with no obvious diverging length scale. Attempts have
been made to invoke the percolation of the slow regions near
the glass transition[17,18]. Also, in a particular model where
rigid bonds can be formed upon cooling, a link is made to a
mechanical rigidity transition based on constraint counting
[19,20]. We will focus on the behavior of the viscosity and
the shear modulus and analyze their critical behavior in a
simple numerical model of a polymer melt made of short
freely jointed chains. Discussions will be made using exist-
ing models of the physical properties of the system near the
glass transition.

Historically viscosity has played an important role in ana-
lyzing glasses. The glass transition was associated for prac-*Electronic address: bjoos@uottawa.ca
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tical purposes with a specific number for the viscosity:h
=1013 poise or 1012 Pa s, where the material could be con-
sidered not to flow during experimental time scales.

The glass transition is known as a “pseudo-second-order
transition,” since the discontinuities are not sharp and occur
over a range of temperatures[21]. As well, a glassy system is
not actually in equilibrium, because aging phenomena and
flow have a non-negligible effect at long times. At best, we
refer to a metastable equilibrium which, on our time scales
(as in the case of short experimental times), can be treated as
an equilibrium system.

A commonly used approach to the glass transition has
been mode-coupling theory(MCT), derived from micro-
scopic density fluctuations within a liquid[22,23]. A dy-
namic phase transition is predicted at approximately 1.1–1.3
times TG, involving a divergence in the zero shear-rate vis-
cosity h,

h = sT − TMCd−s, s1d

which could be masked by thermal activation effects[24].
More importantly, idealized MCT(which does not take into
account “hopping” processes, for instance) predicts an ergod-
icity breaking atT=TMC [22]. It has also been proposed that
there is, in fact, some type of “crossover point” to the Vogel-
Fulcher-Tamman(VFT) regime (see [22] and references
therein). The latter is a more successful framework for ana-
lyzing glass-forming liquids and is defined by the VFT law,
an empirical equation of the form

h = h` expS Eact

T − T0
D . s2d

The VFT temperatureT0 is expected and has been observed
to be very close to the Kauzmann temperatureTK discussed
in Refs. [22,25]. TK is the temperature which defines a hy-
pothetical state with zero configurational entropy or the for-
mation of an “ideal” glass. Such a state is never reached
because of the large slowing down of the system atTG. Im-
pressive fits to the VFT equation have been achieved[26,27]
above the glass transition. These fits also provide a means to
characterize the fragility of glasses: the closerTG is to T0 the
more fragile the glass[28,29]. Nevertheless, the range of
applicability of the VFT equation is under contention; some
research indicates that it cannot go as low asTG, while other
studies suggest that it is best applied close to the GT(see
Ref. [25] for a review).

A dynamical scaling approach was recently proposed to
explain the divergence in relaxation time below the GT[28].
The GT is characterized by dynamical heterogeneity, in that
only some of the material is able to move due to a lack of
free volume. At a critical temperatureTC, there is not enough
free volume for any particles to move and local motion is
effectively prohibited. This approach assumes percolation-
like universal behavior among glass-forming liquids with an
additional activation energy term of the following form:

h , ST − TC

TC
D−9

expS E

kT
D . s3d

Unlike the MCT approach, the above equation yields a criti-
cal temperature for viscosity divergenceTC belowTG. While
experimental data from polymeric liquids are well described
without the activation energy contribution, the extra term
ensures the same universality class for all glass formers[28].

One can also consider the GT in terms of the “energy
landscape” of the system, a hypersurface punctuated by local
minima of varying depth, where the shape depends on the
volume and the sampling on the temperature[21,25,30,31].
In terms of energy,TG can be seen as a temperature at which
the system is “trapped” in a relatively deep local minimum
and the free energy barriers effectively prevent further explo-
ration of phase space. Polymeric glasses do not behave like
other, more simple glasses, such as SiO2. Simple glasses
have a more precisely defined energy landscape, whereas
polymeric glasses have more configurational possibilities,
yielding more local minima which can be sampled via local
rearrangements. As such, polymers tend to create relatively
“fragile” glasses, characterized by a non-Arrhenius variation
of the viscosity with temperature. In terms of the glass tran-
sition temperature, it has been observed thatTG rises with
chain length or molecular weight until a plateau aroundM
=100 [24].

In general, glasses display a more complex response to
low-frequency shearing than purely elastic systems. Nonlin-
ear mechanical responses are common in glass systems after
ergodicity breaking[25], and the relaxation of a simple glass
will depend on local rearrangement. In polymer systems
there is an additional component arising from the extension
of the chains. This, as well as energy landscapes, will be
useful tools in interpreting the mechanical response within
our glassy polymer melt. Some aspects of relaxation below
the GT are well understood[25,32] in terms of aging subse-
quent to a temperature quench or in response to a mechanical
deformation, after which glasses can relax fairly quickly.
However, this has not, to our knowledge, been examined
using an instantaneous simple shear experiment.

III. MODEL

A. The bead-spring model

We have used the well-known bead-spring model based
on work by Kremer and Grest[33] and more recently applied
with success by the research group of Binderet al.
[22,26,34–36]. Their work has focused on issues such asa
andb relaxation, cooling-rate dependencies, and cage effects
on approachingTG from above. In this model, the neighbor-
ing beads along each chain(there are ten monomers per
chain and a total ofN=1050 monomers) interact through the
finitely extensible nonlinear elastic(FENE) potential

UFENEsr ijd =
1

2
kR0

2 lnF1 −S r ij

R0
D2G s4d

where R0=1.5, k=30. In addition, all particles interact
though the truncated Lennard-Jones potential,
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ULJsr ijd = 4«LJFS s

r ij
D12

− S s

r ij
D6G + C, r ij , 2.5s, s5d

whereC is chosen such that the potential is zero at the cutoff
radius.

The length is rescaled usings=1 and the temperature is
expressed in units of«LJ/kB. Combining the two potentials
yields an optimum bond length of 0.96s, which inhibits crys-
tallization by introducing a competing length scale.

B. Approaching the glass phase along an isotherm

Usually the GT is approached at constantP by lowering
the temperature[26,34–37]. In order to avoid problems as-
sociated with high cooling rates[36] and to reduce compu-
tational time, we propose a method whereby the samples can
be “frozen” or not, as the case may be, by compression at a
desiredT. Although we are still measuring changes in a
given quantity with respect to temperature with a constant
pressure, we are effectively using a different thermodynamic
path to define the state of a sample. There is a very complete
discussion of thermodynamic paths in Ref.[37]. However, it
does not discuss defining a thermodynamic state using an
isothermal path. Our method seems to allow a better explo-
ration of phase space and, consequently, a more physically
meaningful final state for low temperatures. In a pure
Lennard-Jones simulation, for instance, we found that crys-
tallization requires less CPU time when compressing the sys-
tem than when simply cooling it[38]. The temperatures stud-
ied range from 1.2eLJ/kB to 0.2eLJ/kB, allowing us to explore
the liquid, supercooled, and glassy regimes. We entered the
glass phase along both an isochore and an isobar. However,
we retained only the simulation results along the isobar, as
pressure variations along the isochore proved somewhat un-
physical. The main problem was a progressive increase of
pressure with lowering temperature belowTG (similar results
were found in Ref. [35]). This discrepancy effectively
amounts to

S ] P

] T
D

N,V
=

T

V
S ] S

] T
D

N,V
, 0 s6d

which is clearly forbidden. Along the constant volume path,
the system goes through what would have been a two-phase
region in the thermodynamic limit.

For a given sample, we create an initial “gas” of polymers
at the desired temperature, having ensured their separation
and random orientations. The chains reach their individual
equilibrium configurations in anNVT ensemble using an al-
gorithm based on the Langevin equation, called Brownian
dynamics(BD) in Ref. [39]:

m
d2xi

dt2
= −

] Ui

] xi
+ mG

dxi

dt
− Wistd. s7d

This algorithm allows the system to reach equilibrium in our
“expanded” volume quickly and realistically, by simulating a
heat bath in the form of a friction coefficientG and by intro-
ducing a random forceW in the form of Gaussian noise.
Subsequently, the system is compressed to the pressure

P=1.0eL J/s 3 to achieve a similar system to that of Binder’s
research group[26,34–37]. The compression is done in the
BD NVT ensemble by reducing affinely the system size at a
specified rate. The largest compression rate of a side of the
box, in Lennard-Jones units, was around 0.015Î«L J/m. Us-
ing a smaller compression rate was shown to cause negli-
gible change in quantities such as viscosity and energy. Natu-
rally, the rate of compression will inevitably have some
effect on determining at what temperatureTG the glass be-
comes “stuck.” However, we believe that, by continuously
changing the volume(and thus the precise shape of the en-
ergy landscape), the system can eventually find a lower en-
ergy minimum. The final volume is established at a given
temperature forP=1 using a constant pressure damped-force
algorithm [39]. The system is then allowed to evolve in a
microcanonical ensemble by molecular dynamics(MD). We
need to run in that ensemble to collect information on the
correlators required to calculate viscosity and shear modulus
related quantities. The equations of motion were integrated
with the standard velocity Verlet algorithm[39] and a time
step ofdt=0.005Îms 2«L J. During this portion of the simu-
lation, both the pressure and the temperature were seen to
fluctuate around their expected values.

C. Viscosity and shear modulus from the stress
autocorrelation function

The time-dependent shear modulusGstd measures the re-
sponse of the system to a shear straineab applied att=0, and
is defined as[10]

Gstd =
sabstd

eab

, a Þ b. s8d

sab is an off-diagonal macroscopic stress tensor element and
implicitly includes inter- and intrachain interactions.Gstd
can be calculated from the stress fluctuations in the quiescent
melt using the fluctuation dissipation theorem which states
that [10]

Gstd =
V

kT
ksabst0dsabst0 + tdl, a Þ b, s9d

where

sab = −
1

V
So

i=1

N

mviavib − o
i, j

N
r ij ar ij b

r ij

] Uij

] r ij
D . s10d

The sums are over all the particles in the system indexed
from 1 to N. Gstd is a very powerful tool: it allows us to
obtain a zero-shear limit for the shear modulus without ex-
ternal deformation, which can have a non-negligible effect
on the steady state. Nonergodic glassy materials are espe-
cially sensitive to configurational changes. Instead,Gstd sim-
ply uses the microscopic density fluctuations and the subse-
quent response to give us a clear picture of how the stress
evolves in a system. Att→`, Gstd becomes the “equilibrium
modulus,”Geq and, att→0, Gstd becomesG`, the infinite-
frequency modulus[40,41]. To our knowledge,Geq has never
been compared to the usual shear modulus, which is mea-
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sured by a system’s response to a shear deformation(see Sec.
III E below). The zero-shear-rate viscosity is obtained by the
appropriate Green-Kubo formula:

h =E
0

`

Gstddt, s11d

from which one can obtain the relaxation time as

t =
h

G`

. s12d

In the past, viscosity measurements have been made using
nonequilibrium molecular dynamics(NEMD) to avoid the
problem of long time tails of correlation functions at tem-
peratures approachingTG [27]. This issue was resolved by
fitting Gstd to the Kohlrausch-Williams-Watts(KWW) or
stretched-exponential function and integrating to infinity, via
[40]

Gstd = Gs0dexpF− S t

t0
DbG . s13d

The quality of the fits as well as previous research[25] sug-
gest that this approach reflects well the behavior of the sys-
tem over long time scales. Although there is a certain addi-
tional error associated with the fit, it allows us to keep a
system in its “true,” undriven state. The errors were large for
T very close toTG sT,TG+0.02d, due to the increasing
length of the tails.

The nature of the tail changes significantly below the
glass transition, and the KWW fit of Eq.(13) is no longer
appropriate. The slow relaxation of the glass through ther-
mally activated processes is better represented by the power
law form [40,41]

Gstd = Geq+ At−w. s14d

In physical terms the power law fit uses the distribution of
energy barriers explored by the system during the simulation
time to predict the long-time behavior.

D. Short-time diffusion coefficients

To get an idea of the mobility of the chains and the indi-
vidual particles, we define short-time diffusion coefficients
using the Einstein relations,DM, for individual particlesi,
andDCM, for the centers of mass of individual chainsj :

DM =
kfr istd − r is0dg2l

6t
, s15d

DCM =
kfr jstd − r js0dg2l

6t
. s16d

Ignoring initial displacements, we simply retain the slope of
the first approximately linear part of the mean-square dis-
placement vs time graph, calculated around 30 000dt. In the
asymptotic limit if the particles are delocalized, there would
be on a longer time scale a linear regime with a smaller
slope. If they are localized,skDrld2 will be bounded. In the
liquid phase, the first linear regime essentially reflects the

local diffusion of a particle, which is limited by the proxim-
ity to its neighbors. In the glassy regime, there may be little
or no diffusive behavior. Nevertheless, the approximately
constant slope is an indicator of how much local mobility a
given monomer or chain can have within its cage.

E. The shear modulus from the shear deformation

We have also calculated the shear modulus directly by
applying a simple shear deformation to a given sample. We
start with a cube of sideL. For a given strain«xy, an affine
shear deformation in thex direction is applied(in a plane
with its normal along they direction). An atom initially in
position sx,y,zd is displaced tosx+exyy,y,zd. The bound-
aries of the simulation box consequently are shifted forxmin
from 0 to«xyy and forxmax from L to «xyy+L. This is applied
as a one-time, instantaneous deformation. The shear modulus
is then calculated with an off-diagonal element of the stress
tensor, once the system is equilibrated:

m =
fsxys«xyd − sxys0dg

«xy
. s17d

The shearing is applied in the five other directions, sub-
stituting xy by yz, −xy, etc. Individual samples lack symme-
try and therefore the various deformations will not usually
give the same stress components. The evolution of the re-
sidual stress is monitored, until a stress plateau is reached in
the deformed system. Deformations of«=0.01 to 0.2 were
performed. A simple shear deformation is more rigorous than
a pure shear deformation, which relies heavily on the as-
sumption of isotropy throughout the system[5]. In a pure
shear deformation, a sample would have been stretched
alongx by «xy resulting in a compression along the two other
directions by«xy/2 in a volume preserving system.

F. Heat capacity

Finally, we monitored the changes in the heat capacityCP
acrossTG. Although other methods exist for calculatingCP
via MD simulations, the best approach was to calculate the
potential energy in theNVT ensemble(Brownian dynamics)
for each temperature. Knowing the volume and the pressure
at each temperature, we can obtain the specific heat per par-
ticle CP in units of kB from

CP =
1

N
S ] H

] T
D

N,P
, s18d

whereH=E+PV is the enthalpy.

G. The simulations

Most simulations were carried out on the “Bugaboo”
Beowulf Cluster at Simon Fraser University, with computa-
tional times for one complete sample at a given temperature
(ab initio and including all correlations and shearing) at
around 6 days on a single processor. Approximately ten
samples of 1050 particles are examined for each temperature,
with each given sample being used to calculate approxi-
mately 400 “correlators” of length 30 000dt.
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IV. RESULTS

A. The glass transition temperatureTG

We begin by establishing the glass transition temperature
TG, using the common and accessible method(both experi-
mentally and by simulation) of examining the volume(or
equivalently, the packing fractionF) across the GT[10,42]
along the isobarP=1. The intersection of the slopes in the
solid and liquid regimes separates two regions of nearly con-
stant volume expansivity. It yields an unambiguous value of
TG=0.465±0.005, as shown in Fig. 1 and Table I. The varia-
tion of CP with respect to temperature provides another esti-
mate. As discussed in Sec. III F,CP was calculated from the
derivative of the enthalpy with respect to temperature along
an isobar(Fig. 2). Such an approach has been extensively
used to calculateTG and as expected,CP is characterized by
a sharp increase aroundTG [21]. The increase, however,
takes place over a temperature interval, and it is not clear
what part of the curve should be used as the location ofTG
(see Fig. 2). The start of the rapid rise occurs at 0.44 and
ends at 0.50. TheTG determined above from the change in
value of the volume expansivity lies in the middle of the
rapid rise. The beginning of the rapid rise suggests that a
major change in the entropy is taking place at that point. As
we shall see later, this point has a special significance.

B. The viscosity

Now that we can identify the GT within our system, we
can examine the relevant dynamical quantities around this
point. First, we obtain the expected viscosity curve with the

characteristic increase over several orders of magnitude
aroundTG, along with the corresponding curves of Eqs.(2)
and(3) obtained using a simple nonlinear curve-fitting algo-
rithm (Fig. 3). We also attempt a fit using the MCT approach
in Eq. (1). The results are summarized in Table I and follow
the same trends as those found in Refs.[22,35] for a similar
system. The attractive Lennard-Jones[LJ] interaction has a
shorter cutoff 2.24s, instead of our 2.5s, leading to system-
atically lower critical temperatures. Varnik and Binder[27]
have looked at the increase in viscosity with lowering of the
temperature in the same system but with the melt driven by a
force field. The values ofTMC and T0 are quite different
under those conditions, expectedly lower.

We get an idea of fragility by plotting the logarithm of the
viscosity h versus the inverse temperature, a characteristic
TG-scaled Arrhenius curve for glassy systems(Fig. 4). Evi-
dence of fragility(deviations from Arrhenius behavior) be-
comes apparent as we approach the GT. Typical experimental
data from polymeric glasses generally show very fragile be-
havior from such plots[25].

C. The shear modulus fromG„t…

We have also examined howGstd, the time-dependent
shear modulus, changes as we cross the glass transition

FIG. 1. Packing fractionF as a function of temperature. The
intersection of the two slopes in the glassy and liquid regimes ac-
curately determinesTG, shown with the arrow and dotted line.

TABLE I. Relevant temperatures characterizing the glass and
rigidity transitions:TG is the glass transition with the associated
MCT critical temperatureTMC, the VFT temperatureT0, and the
critical temperatureTC obtained from Eq.(3). In addition, we
presentT1, corresponding to the onset of true rigidity, found by
extrapolation toGeq in Eq. (14).

TG TMC T0 TC T1

0.465±0.005 0.51±0.02 0.41±0.02 0.422±0.006 0.44±0.01

FIG. 2. Heat capacityCP found by numerically deriving the
enthalpyH with respect to temperature. The dotted line shows the
location ofTG as determined from Fig. 1. Note that the drop inCP

asT is lowered ends atT=0.44, coinciding with the appearance of
long-term rigidity (see Fig. 6).

FIG. 3. Viscosityh above the glass transition, along with the
corresponding fits from Eqs.(2) and (3). The dotted vertical line
marksTG obtained previously.
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(Fig. 5). The main difference between solid and liquid re-
gimes occurs in the long-time tails ofGstd. While a KWW fit
of Eq. (13) can be used forT.TG, a power law of the form
of Eq. (14) must be applied forT,TG [40,41]. Simply
evaluating the value ofGeq8 =Gstd at the end of our correla-

tion functionst=150Îms2/«d gives a good idea of the initial
degree of relaxation possible in our system, or the shear
modulus at short time scales. However, we would like to
examine the “true,” long-time relaxation of the glass, which
is generally not accessible at simulation time scales. As such,
we find Geq (at t→`d using a nonlinear fit to the power law
of Eq.(14), giving nonzero values ofGeq beginning atT1
=0.44±0.01, and an approximately linear increase with de-
creasing temperature, as shown in Fig. 6. The decay ofGstd
is very slow, and most of the information necessary for the fit
can be extracted from the initial decay region, shown in the
inset of Fig. 5. Similar power law behavior has been found in
colloidal gel simulations[41]. We are further convinced of
this approach by the apparent change of slope ofGeq8 at the
point whereGeq becomes nonzero.Geq8 begins acquiring non-
zero values at higherT (nearTMC=0.51, the idealized MCT
temperature). In other words, apparently “solid” glasses can
have an almost liquidlike response at longer times, provided
the temperature is just above or just belowTG. This is per-

haps due to some degree of nonergodicity in the system. We
cannot put a precise value on the time scale of the long-term
rigidity, only that it is much greater than that of the simula-
tion.

D. The shear modulus from a finite deformation

We also confirm ourGeq results by checking whether or
not they represent the shear modulusm in its regular sense,
i.e., the response to a shear deformation.m, the value ofGeq8
on our short simulation time scales and the value ofGeq by
fit are shown in Fig. 6. This preliminary comparison is prom-
ising, since bothGeq andms«=0.1d begin acquiring nonzero
values at the same temperatureT1 defined in the previous
section: they are both good indicators of the onset of true
rigidity. Clearly ms«=0.1d is much smaller thanGeq: while
Geq calculates the shear modulus via the internal fluctuations,
m requires external constraints to be imposed, thus altering
the system. As such, we look for the limitms«→0d. Figure 7
shows the functionms«d for a set of samples at three given
temperatures. This calculation was done by ensuring that the
stress had reached a plateau before evaluatingm, via Eq.
(17) . Clearly, this glass displays highly nonlinear behavior
and we have, as of yet, no function with which to fit the
points. The limit «→0 is computationally prohibitive to
reach. The error inm as seen from Eq.(17) grows as 1/e.
Figure 7 does, however, indicate thatmse→0d likely tends to
Geq. It also suggests that the regime of elastic deformation
for these glasses is approximately 2–3 %.

E. The short-time diffusion coefficients

To gain more insight into the structural behavior of the
melt near the glass transition we look at the short-time dif-
fusion coefficientsDM andDCM of the monomers and center
of mass of chains respectively, defined in Sec. III D. The
measurements reflect, on average, how much local motion is

FIG. 4. Glassy behavior of the polymer melt shown in a typical
Arrhenius plot, indicating that the glass is primarily fragile.

FIG. 5. Stress autocorrelation functionGstd decay above and
belowTG, as calculated from Eq.(9), along with the corresponding
KWW and power-law fits from Eqs.(13) and (14). Note the very
slow power law decay. Inset: Initial decay of the power law forT
=0.4 shown on a linear plot.

FIG. 6. Various approaches to determining the shear modulus.
Geq8 is simply the value ofGstd at t=150 time units(the rigidity on
very short time scales), while Geq is obtained by fitting the function
to Eq. (14) at t→`. Finally, m is calculated from Eq.(17) via a
non-negligible deformation of the sample. The inset shows the be-
havior around the GT(dotted line) with the locations ofT1 (the
onset of long-term rigidity) and TMC (the MCT temperature) indi-
cated by arrows.
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possible for a given particle. As expected, as we decrease the
temperature, there is decreased local diffusion as we ap-
proach the rigidity transition and GT(see Fig. 8). In addition
we notice that, in the glassy regime, the monomers maintain
significantly more short-time mobility than the chains close
to TG. The chains, on the other hand, are more constrained.
This is further illustrated by the behavior of the ratio
DM /DCM with temperature. Figure 9 reveals that monomer
motion becomes increasingly dominant as we approachTG
from above. There could be enough free volume for some
monomers to move short distances[28]. This has been illus-
trated by the cage effect[34]: as the chains become immo-
bilized nearTG, the monomers maintain some degree of mo-
bility within their “cage” formed by the neighbors. This is, in
fact, an important precursor to the system becoming not only
“slow,” but also rigid. AtTG the monomers still have suffi-
cient mobility to absorb deformations. This may explain why
the onset of shear rigidity is belowTG.

V. DISCUSSION

We have determined the glass transition temperature for
our system of freely jointed chains interacting with van der

Waals interactions through the change of slope of the pack-
ing fraction with temperature, or the change in the value of
the volume expansivity. This led to a value ofTG
=0.465±0.005. At the glass transition the heat capacity at
constant pressureCP exhibits a sharp rise with increasing
temperature. The above determinedTG occurs in the middle
of the rise. As seen in Table I a number of other temperatures
have been obtained in our study of the onset of rigidity
brought about by the kinetic arrest occurring nearTG. The
beginning of the rise inCP coincides withT1=0.44±0.01 the
point of onset of rigidity as measured byGeq andm, and the
end of the rise withTMC=0.51±0.02, the MCT critical tem-
perature, the divergence point in the viscosity predicted by
mode-coupling theory. These coincidences do not appear for-
tuitous. The rapid rise inCP suggests a temperature interval
where the configuration space explored by the glass in the
making changes rapidly. The end of the rise may very well
be the temperature at which thermally activated processes
end and the assumptions of idealized MCT become valid.
TMC is expected to be higher thanTG [43]. Below TMC, the
liquid can still flow with the help of thermally activated
hops. The temperature of rigidity onset was determined by
studying the behavior of the viscosityh and the shear modu-
lus upon cooling. The divergence point ofh is obtained by
extrapolation, while the onset of rigidity is measured fairly
close to the transition. So we will begin with the latter. AtTG
by all indications the system has no long-time shear resis-
tance. BothGeq=limt→`Gstd and m, obtained by an actual
deformation of the system, are still zero.Geq8 =Gst<150d,
the short-time shear modulus, becomes nonzero aroundTMC.
But Geq, its long-time limit, only sets in atT1=0.44±0.01. At
the same temperaturem becomes nonzero, although the val-
ues ofm are not the same as those ofGeq for typical defor-
mations ofe=0.05 or 0.1(see Figs. 5 and 6). We will elabo-
rate on these differences later in the discussion. The
important point is that they agree on the temperature of ri-
gidity onset. On the other hand, the divergence point of the
viscosity h was determined using several models, two of
which incorporate thermally activated processes, which be-
come operative belowTMC. They predict divergences atT0
=0.41±0.02 from a fit to the VFT law[see Eq.(2)] andTC
=0.422±0.006 from the Colby form[see Eq. (3)]. One

FIG. 7. Shear modulusm as a function of shear for three tem-
peratures below the GT. We interpret theGeq as the zero-shear limit
to check whether these two methods agree. Note how the statistics
get much worse at small«.

FIG. 8. Average short-time diffusion of monomerssDMd and
centers of mass of chainssDCMd aroundTG. The substantial in-
crease inDM begins slightly belowTG (indicated by the dotted
line).

FIG. 9. Cage effect as seen by dividing the monomer by the
chain diffusion constants at short times. The maximum occurs near
TG (dotted line), as the cage progressively “closes in.”

RIGIDITY TRANSITION IN POLYMER MELTS WITH … PHYSICAL REVIEW E 70, 041501(2004)

041501-7



should, however, note that these are obtained by extrapolat-
ing from the lowest temperature at whichh have been mea-
sured, 0.49. The true states atT0 or TC are not attained due to
the dramatic slowing down belowTG. The extrapolated val-
ues are smaller thanT1, but not inconsistent with it. They are
not expected to be as reliable because they are not measured
directly. The fact thatT1 is smaller thanTG determined from
the change in volume expansivity raises the question about
the true location of the glass transition. Does this mean that
the beginning of the rise inCP should be used as the true
onset of the glass transition, or is it that atTG, although there
is structural arrest, sufficient free volume remains to allow
for small deformations at no cost of energy?

A number of aspects of this study are worth commenting
on further. First there is always a time scale associated with
rigidity, as it is well known that the shear response depends
on frequency. What we are trying to determine is the static
shear modulus, or zero frequency limit. The long time asso-
ciated with this modulus, as measured, is still short compared
with temperatures related to aging. We started measuring
quantities when the system showed no sign of evolving. In
other words, aging is on a different time scale than stress
relaxation times. An unrelated issue on time scale is the defi-
nition itself of TG which is linked to the experimental time
scale. The glass makers, as mentioned in Sec. II, use a value
of 1013 Pa s for the viscosity atTG. This corresponds to the
experimental time scale of minutes(or hours) [21] while a
computer experiment, under the best of conditions, occurs
over nanoseconds, so about 1011 smaller. It is intriguing to
note that the VFT fit and the Colby fit yield viscosities atTG
of the order of 107 in our units, which withG` of the order
of 102 gives a relaxation time of the order of 105 at TG,
longer than the time scale of our computer experiments,
closer to 104 time units or 106 time steps.

Another point is the nature of the onset of rigidity. What
happens atT1? Studies under way[44] show that the distri-
bution of displacements on all time scales studied is unimo-
dal as previously observed[45], so there is no separate long-
lived rigid backbone that accounts for the resistance to
applied shear. Second, the local structure of the system re-
mains identical, as expected from a GT. In other words, there
is no evidence of any clusters of tightly packed particles. The
average distance to the nearest neighbors of a given particle
does not change appreciably with temperature. The concept
of dynamical heterogeneity may be more applicable to this
system[45,46], in that the lack of mobile clusters on fairly
long time scales belowT1 accounts for rigidity. Instead of
having covalent bonding, the van der Waals rigidity in our
system may arise from “jamming” constraints produced by
mechanisms such as the cage effect, which relies primarily
on the presence of stiff chains to prevent motion.

The fact that the appearance of long-term rigidity atT1
=0.44 coincides with the bottom of the characteristic “dip”
in the heat capacity curve(Fig. 2) is indicative of an increase
in system stability as the temperature is lowered. In network
glasses, the number of floppy modes in the system deter-
mines the jump inCP (also related to the fragility of the
glass) [47]. And these floppy modes start appearing atT1.
Other approaches have been able to associateCP with the
change in entropy of constraint breaking[16]. Although

these approaches rely on physical bonds as constraints, the
same principles could apply to our system. Furthermore, we
notice from Fig. 8 thatDCM is very small atT1.

Finally we would like to comment on the difference be-
tweenGeq andm, the latter obtained from the application of
an instantaneous simple shear to the system. The nonlinear
behavior of Fig. 7 is further explained in Fig. 10. Both the
initial stress and the degree of relaxation are highly depen-
dent on« (Fig. 10). For larger shearing, the initial stress is
smaller and the subsequent decay is very fast. A collapse was
realized by plotting the stress scaled to its initial value versus
time scaled with a relaxation time equal to the time to reach
half the stress. The relaxation times obtained follow the same
trend asµ. The shearing is likely irreversible at large strain.
In effect, large deformations appear to have a substantial
effect on the structure of the system, perhaps changing the
shape of the energy landscape and causing the system to be
in a different local minimum. Small shear, however, does not
generally have the same effect and a larger residual stress
remains as the system tries to return to its original configu-
ration (the same energy well). Having described the basic
behavior associated with shearing, we can alternatively ex-
amine the local “polymeric” contribution to the mechanical
relaxation of the glass. Considering Fig. 11, we can see that
for small «, the chains are slightly stretched, but can easily
recover their equilibriumRG value, whereRG is the average
radius of gyration of the chains. For larger strains, the initial

FIG. 10. Decay of the shear stresssxy after various initial shear
deformations atT=0.3. We can see both the initial stress and the
shape of the subsequent decay in the system. Note that for large«
there is very little initial stress imparted, followed by a fast decay.

FIG. 11. Evolution of the average radius of gyration,RG, of the
polymer chains, after a largese=0.2d and smallse=0.05d deforma-
tion at t=0 together with the undeformed, “equilibrium”RG se=0d.
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deformation of chains is disproportionately high and there
can be no recovery on intermediate time scales. We can in-
terpret the degree of recovery in the chain as the main factor
characterizing the viscoelastic behavior in polymer melts(of-
ten represented by spring-dashpot models), since chain
length has a direct, substantial effect on relaxation mecha-
nisms. Because of the absence of permanent crosslinks, the
chains slip during relaxation. For this reason the entropic
contribution to rigidity is not dominant. This contribution is
also intrinsically difficult to resolve with the degree of noise
in the data. The rigidity observed in this system can be
viewed as mainly mechanical. Finally, rigidity should occur
earlier in a system of longer chains, since each particle will
have, on average, fewer degrees of freedom.

VI. CONCLUSION

Our isothermal compression method has allowed us to
better examine the state of the melt above and belowTG. Our
studies of rigidity bring additional insight into the nature of
the GT. Previous studies on structural issues related to the

glass transition have focussed on the divergence of the vis-
cosity. We provide an additional perspective by looking also
at the emergence of the shear resistance. Whereas the point
of divergence of the viscosity is difficult to assess directly
because of structural arrest, it appears easier to approach the
point of onset of the shear modulus. That bothGeq and m
have the same onset is encouraging. The work demonstrates
the effectiveness of the stress correlators, from whichGeq is
obtained, compared to the application of an external defor-
mation which yieldsm. The TG=0.465 determined from the
change in packing fraction lies in the middle of the rapid rise
of the heat capacity. With decreasing temperature, there is a
short transition period of short-term rigidity beginning near
TMC=0.51 (the end of the rise inCP), presumably due to a
lack of ergodicity, followed by the appearance of a long-term
nonzero shear modulus atT1=0.44 (the beginning of the
rise). We believe that we have only begun to explore what
shear resistance can teach us about the GT: from nonlinear
mechanical properties and frequency dependences to issues
related to aging.
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