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The equilibrium phase behavior of hard spheres with size polydispersity is studied theoretically. We solve
numerically the exact phase equilibrium equations that result from accurate free energy expressions for the
fluid and solid phases, while accounting fully for size fractionation between coexisting phases. Fluids up to the
largest polydispersities that we can study(around 14%) can phase separate by splitting off a solid with a much
narrower size distribution. This shows that experimentally observed terminal polydispersities above which
phase separation no longer occurs must be due to nonequilibrium effects. We find no evidence of reentrant
melting; instead, sufficiently compressed solids phase separate into two or more solid phases. Under appropri-
ate conditions, coexistence of multiple solids with a fluid phase is also predicted. The solids have smaller
polydispersities than the parent phase as expected, while the reverse is true for the fluid phase, which contains
predominantly smaller particles but also residual amounts of the larger ones. The properties of the coexisting
phases are studied in detail; mean diameter, polydispersity, and volume fraction of the phases all reveal marked
fractionation. We also propose a method for constructing quantities that optimally distinguish between the
coexisting phases, using principal component analysis in the space of density distributions. We conclude by
comparing our predictions to Monte Carlo simulations at imposed chemical potential distribution, and find
excellent agreement.
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I. INTRODUCTION

A. The hard-sphere model

Hard spheres are particles that do not interact except via
an infinite repulsion on contact. In a hard-sphere system
there is no contribution to the internal energyU from inter-
particle forces sinceU is zero for all the allowed configura-
tions (we ignore the inconsequential kinetic energy contribu-
tion). Minimizing the free energy F=U−TS is thus
equivalent to maximizing the entropyS: the structure and
phase behavior of hard spheres is determined solely by en-
tropy. TemperatureT only features as a trivial factor setting
the energy scale.

The hard-sphere model was originally introduced as a
mathematically simple model of atomic liquids(see, e.g.,
[1]), but has since also been recognized as a useful basic
model for complex fluids[2] such as sphericalcolloids. Col-
loidal particles coated with a thin polymeric layer so that
strong steric repulsions dominate the attractive dispersion
forces between the colloidal cores behave in many ways as
hard spheres. Indeed, crystallization can be observed at den-
sities similar to those predicted by computer simulation for
hard spheres, with a single-phase fluid below volume frac-
tions f<0.494, fluid-solid coexistence at up tof<0.545,
and a single-phase solid at higher volume fractions[3,4].
Measurements of the osmotic pressure and compressibility
similarly show very good agreement with predicted hard-
sphere properties[5].

There is, however, one important and unavoidable differ-
ence between colloids and the classical hard-sphere model:

whereas the spheres in the classical model are identically
sized, colloidal particles have an inevitable spread of diam-
eters. The magnitude of this spread is conveniently charac-
terized by the parameterd, which is often also referred to as
polydispersity and measures the standard deviation of the
diameter distribution normalized by its mean:

d =
ss2 − s̄2d1/2

s̄
. s1d

Here the averagess̄ ands2 are defined via

ri ; rsi =E ds rssdsi , s2d

with rssd thedensity distributionof the system. The latter is
defined so that the number density of particles with diameter
betweens ands+ds is given byrssdds. The total density
is thenr=eds rssd, andnssd=rssd /r is the normalized di-
ameter distribution. Theri are the moments of the density
distribution, with r0;r. The presence of polydispersity in
the system brings in a new parameter that allows us to dis-
tinguish between size distributions of different widths; the
shape of the diameter distribution is of course also relevant.
Compared to the monodisperse case, polydispersity causes
several qualitatively different phenomena which have re-
ceived much interest in recent years.

B. Phenomena arising from polydispersity

The effect of polydispersity on the phase behavior of hard
spheres has been investigated by experiments[3,6], com-
puter simulations[7–11], density functional theories[12,13],
and simplified analytical theories[10,14–20]. We will now
outline the main findings and introduce the relevant termi-
nology.
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First, it is intuitively clear[14] that significant diameter
polydispersity shoulddestabilize the crystal phase, because
it is difficult to accommodate a range of diameters in a lattice
structure. Experiments have indeed shown that crystalliza-
tion is suppressed above aterminal polydispersityof dt
<0.12 [3,6]. Since then much theoretical work has focused
on estimatingdt. Dickinsonet al. [7], for example, extrapo-
lated the decrease of the volume change on melting with
polydispersity to zero, obtaining an estimate ofdt<0.12. Pu-
sey[14] used a simple Lindemann-type criterion to estimate
that the larger spheres in a polydisperse system would dis-
rupt the crystal structure abovedt<0.06–0.12. McRae and
Haymet[13] used density functional theory(DFT) and found
that there was no crystallisation abovedt<0.05. Barrat and
Hansen[12] also employed DFT, estimating the free energy
difference between fluid and solid. Taken together, this body
of theoretical work suggests that the terminal polydispersity
arises from a progressive narrowing of the fluid-solid coex-
istence region with increasingd, with phase boundaries
meeting atdt [13,15] in a point that has been identified as
one of equal concentration[18] (rather than a critical point).

Bartlett and Warren[18] also foundreentrant meltingon
the high-density side of this point: ford just belowdt, they
predicted that compressing a crystal could transform it back
into a fluid. Figure 1 shows a sketch of this scenario.

Physically, the existence of reentrant melting would sug-
gest that, while in the monodisperse case the solid has the
lower free energy at all volume fractions abovef<55%, the
fluid can become preferred again at largef if the polydis-
persity is sufficiently large. This result is compatible with the
intuition that polydispersityreducesthe maximum packing
fraction in a crystal(since a range of diameters need to be
accommodated on uniformly spaced lattice sites), while it
increasesthe maximum packing fraction in the fluid, where
smaller spheres should be able to fill “holes” between larger
particles more easily.

This intuition can be made more quantitative by compar-
ing the fluid and solid free energies[21] with the aid of the
moment free energy(MFE) method described below. The

basic analysis by Bartlett and Warren[18] ignores fraction-
ation, i.e., the fact that coexisting phases need not have iden-
tical diameter distributions as long as they combine to give
the correct overall or “parent” distributionrs0dssd. Bartlett
and Warren did however also investigate fractionation effects
approximately, by using a MFE withtwo density variables
included,r0 andr1=rs̄. They concluded that the phase dia-
gram topology remained qualitatively unchanged; quantita-
tively, the point of equal concentration was shifted to higher
density and lower polydispersity. It has to be borne in mind,
however, that while the approach of[18] allowed coexisting
phases to have different mean diameters, it implicitly still
constrained them to have the samed. [This is because, within
the MFE method applied to the Schulz priorRssd
~sze−sz+1ds of [18], the density distributions rssd
=Rssdel0+l1s~szefl1−sz+1dgs in all phases are also Schulz,
with commonz and therefore commond=s1+zd−1/2.] On the
other hand, numerical simulations that allow for fraction-
ation show that a solid with a narrow size distribution can
coexist with an essentially arbitrarily polydisperse fluid
[8,9,11]. This suggests that the prediction of reentrant melt-
ing should be reexamined theoretically, allowing for such
fractionation effects. Conceptually, it also implies that the
concept of a terminal polydispersity is likely to be useful
only for the solid but not for the fluid, and we will see this
confirmed below.

Fractionation has also been predicted to lead tosolid-solid
coexistence[16,17,21], where a broad diameter distribution
is split into a number of narrower solid fractions. This occurs
because the loss of entropy of mixing is outweighed by the
better packing, and therefore higher entropy, of crystals with
narrow size distribution; accordingly, as the overall polydis-
persity of the system grows, the number of coexisting solids
is predicted to increase. Figure 2 sketches this effect, follow-
ing the treatment of[16]. There is no coexistence region
between fluid and solid, due to a simplification in the analy-
sis of [16]: rather than solving the phase equilibrium condi-
tions, only the free energies were equated between the fluid
and the(one or several) solid phases. The resulting lines in
the phase diagram generally lie inside the actual phase sepa-

FIG. 1. Sketch of the fluidsFd and solidsSd phase boundaries
for polydisperse hard spheres, following[18]. The boundaries are
plotted as polydispersityd versus volume fractionf. The fluid
boundary approaches the solid one until they meet at aterminal
polydispersitydt. For d just belowdt, this scenario suggestsreen-
trant melting: compressing the crystal to sufficiently high volume
fraction should transform it back into a fluid.

FIG. 2. Sketch of fluidsFd and multiple solidsSd phase coex-
istences in polydisperse hard spheres, following[16]. Approximate
phase boundaries are plotted as polydispersityd versus volume
fraction f. For sufficiently larged and f, coexistence of several
solids is predicted; see text for discussion.
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ration region, but give a rough guide to the phase transitions
that can occur. The parent diameter distribution considered
had a “top hat” form(uniform between given minimum and
maximum diameters), and for multiple solids fractionation
was assumed to be “hard,” with the parent distribution split
into nonoverlapping top hat distributions with identical poly-
dispersities.

Previous work as described above leaves open a number
of questions. The rather drastic, and differing, approxima-
tions for size fractionation used in previous studies of reen-
trant melting and solid-solid coexistence[16–18,21], as de-
scribed above, leave the relative importance of these two
phenomena unclear. Theoretical calculations that account
fully for fractionation remain restricted to highly simplified
van der Waals free energies[19]. Numerical simulations can
in principle also capture arbitrary fractionation behavior, but
have been carried out at constant chemical potential distribu-
tion [8,9,11]. As explained in more detail in Sec. VI, the
system’s overall particle size distribution can then change
dramatically across the phase diagram. This is in contrast to
the experimental situation and so limits the applicability of
the results.

Our main aim in this study is, therefore, to calculate the
equilibrium phase behavior of polydisperse hard spheres on
the basis of accurate free energy expressions, taking full ac-
count of fractionation and going beyond previous work on
fluid-solid and solid-solid coexistence. The experimentally
observed behavior of hard-sphere colloids will of course also
depend onnonequilibrium effects, e.g., the presence of a ki-
netic glass transition[22], anomalously large nucleation bar-
riers [23], or the growth kinetics of polydisperse crystals
[24]. Nevertheless, the equilibrium phase behavior needs to
be understood as a baseline from which nonequilibrium ef-
fects can be properly attributed. Also, more of the equilib-
rium behavior may be observable under microgravity condi-
tions, where the glass transition is shifted to higher densities
or even absent[25].

We begin in Sec. II by defining the free energies we use to
describe the fluid and solid phases of polydisperse hard
spheres. Section III reviews the moment free energy method
and its numerical implementation for solving the phase equi-
librium conditions. In Sec. IV we then describe the basic
features of the phase behavior that we find; a short account
of these results has appeared in[26]. Section V describes in
detail the fractionation effects that we predict, and introduces
a method for constructing optimal visualizations of polydis-
perse phase behavior. Section VI, finally, compares our re-
sults briefly to perturbative theories for the near-
monodisperse limit, and in more detail to Monte Carlo
simulations at constant chemical potential differences. The
agreement is very good, thus validating our approach. We
conclude in Sec. VII with a summary and outlook toward
future work.

II. FREE ENERGIES

Our starting point is the decomposition of the free energy
of a polydisperse system into an ideal and an excess part,

f =E ds rssdfln rssd − 1g + fexshrijd. s3d

In the ideal part, the argument of the logarithm should in
principle contain a factor ofl3ssd, where lssd is the de
Broglie wavelength of particles with diameters. We discard
this because it only contributes tof linear terms inrssd;
these are irrelevant for the calculation of phase equilibria.
The excessfree energyfex in Eq. (3) can, in principle, de-
pend on all details ofrssd and therefore on all of its mo-
ments ri, but we will be concerned withtruncatable free
energies[27]. For these, the dependence is only through a
finite number of moments, for us specificallyr0,… ,r3.

Strictly speaking, Eq.(3) gives the free energydensity; we
will continue to refer to this as the free energy for short.
Also, all quantities in Eq.(3) are dimensionless: we assume
that sphere diameters are measured in units of some refer-
ence values0, that all densities are made dimensionless by
multiplying by the volumev0=ps0

3/6 of a reference sphere,
and that all energies are measured in units ofT=1/b. Bolt-
zmann’s constantkB is set to 1 throughout. Free energy and
pressure are then in units ofT/v0, for example. Table I sum-
marizes the relations between important dimensionless and
dimensional quantities. Conveniently, with our choice of
units r3;f is simply the volume fraction of spheres.

For thefluid phase of polydisperse hard spheres, the most
accurate free energy approximation available is the generali-
zation by Salacuse and Stell[28] of the equation of state due
to Boublik, Mansoori, Carnahan, Starling, and Leland
(BMCSL) [29,30]; for the monodisperse case this reproduces
the Carnahan-Starling equation of state[31]. In our dimen-
sionless quantities, the BMCSL expression for the excess
free energy takes the form

fex = Sr2
3

r3
2 − r0Dlns1 − r3d +

3r1r2

1 − r3
+

r2
3

r3s1 − r3d2 . s4d

As anticipated above, this is truncatable, involving only the
momentsri =eds rssdsi (i =0, …, 3) of the density distribu-
tion. Bartlett [32] provided an elegant argument why—at
least within a virial expansion—such a moment structure of
the excess free energy for the hard-sphere fluid should in fact
be exact. Recent studies[33] have shown some deviations
between simulation results and the BMCSL approximation

TABLE I. Relations between dimensional and dimensionless
quantities. All dimensional quantities except for the unitsb , s0, and
v0 themselves are denoted by tildes.

Dimensionless Dimensional

s 5 s̃ /s0

f 5 bv0f̃

P 5 bv0P̃

rssd 5 v0s0r̃ss̃d
ri 5 sv0/s0

i dr̃i

mexssd 5 bm̃exss̃d
mi

ex 5 s0
i m̃i

ex

FRACTIONATION EFFECTS IN PHASE EQUILIBRIA… PHYSICAL REVIEW E 70, 041410(2004)

041410-3



for fluids with polydispersities ofd=0.25 and above. In our
study we explore polydispersities only up tod<0.14, and in
this range we expect the BMCSL approximation to be rea-
sonable.

For phase coexistence calculations we will also need to
have a compact expression for the excess free energy of the
polydisperse hard-spherecrystal. This is not at all a trivial
question. In principle, the structure of a polydisperse crystal
could be rather complex, with different sites inside the crys-
talline unit cell occupied preferentially by particles with dif-
ferent ranges of diameters. The system would then effec-
tively be an ordered solid solution(see, e.g.,[34,35]). Most
theoretical work makes the simplifying assumption that one
has a substitutionally disordered solid, where crystal sites are
assumed to be occupied equally likely by particles of any
diameter(see, e.g.,[36,37]).

A simple-minded but popular approach to estimating the
free energy is cell theory, first introduced by Kirkwood[38]
and widely used since(see, e.g.,[17]): particles are treated as
independent but confined to an effective cell formed by their
neighbors. However, it is clear that for a polydisperse system
this is unlikely to be a useful approximation. For example,
the cells of the model would have to be made large enough to
accommodate the particles with the largest diameter, even if
the fraction of such particles is very small.

We follow instead the more quantitative, “geometric” ap-
proach proposed by Bartlett[15,32]. He assumed that the
excess free energy of the solid depends on the same moments
r0,… ,r3 as that of the fluid. This can be motivated from
scaled particle theory[39,40], which suggests that the excess
chemical potentialmexssd of spheres of diameters is given
by a cubic polynomial ins

mexssd = m0
ex + m1

exs + m2
exs2 + m3

exs3. s5d

The coefficientsm0
ex and m3

ex can be determined from the
Widom insertion principle[41]. The latter can be stated as
saying that expf−mexssdg is the ratio of the(excess parts of
the) partition functions forN+1 andN particles, where the
added particle has diameters. [Equivalently the excess
chemical potential may be interpreted as the work of insert-
ing ansN+1dth hard sphere of diameters into a system ofN
spheres.] In a system with purely hard interactions, this im-
plies thatmexssd is positive and an increasing function ofs.
For larges, the presence of the added particle effectively
just reduces the volume available to theN others, giving

mexssd< Ps3 [=P̃sp /6ds̃3 in dimensional units]; hencem3
ex

=P. For small s, one notes that the ratio of the(excess)
partition functions is also the average Boltzmann factor of
the added particle, the average being over the Boltzmann
distribution of theN-particle system. In the hard-sphere case,
expf−mexssdg is thus the probability of being able to insert a
particle without overlap. In the limit of vanishing particle
diameter this probability is 1−f, giving mexss→0d=m0

ex=
−lns1−fd.

One now notes that Eq.(5) implies that the excess free
energy can depend only on the momentsr0,… ,r3. Indeed,
from the definition of the excess chemical potentials and

with the dependence of the excess free energy onrssd ex-
pressed through a(possibly infinite) set of momentsri,

mexssd =
dfex

drssd
= o

i

mi
exsi, mi

ex =
] fex

] ri
.

A comparison with the form(5) of the excess chemical po-
tentials reveals thatfex can only depend onr0,… ,r3, as
claimed. The same is then true also for themi

ex=]fex/]ri (i
=0, …, 3), which are recognized as excess moment chemical
potentials. The excess free energy of apolydispersehard-
sphere mixture can thus be deduced from that of any other
mixture which is equivalent in the sense of having thesame
r0,… ,r3. These moments determine the number density
along with the basic geometric properties of mean particle
diameter, surface area, and volume. The simplest mixture
with a finite number of species that can match any given
r0,… ,r3 is a bidisperse one. Indeed, this has four degrees of
freedom, namely, the number densities and particle diameters
of the two species. We can therefore identify the excess free
energy of a polydisperse hard-sphere solid with that of the
equivalent bidisperse system. For the latter, we follow Bar-
tlett in using the fits to the simulation data of Kranendonket
al. [37]. Because these data are obtained for a fcc substitu-
tionally disordered crystal, the implicit assumption is that the
polydisperse crystal will have the same structure. This as-
sumption is also made in all theoretical work on continuous
size polydispersity to date. For the modest polydispersitiesd
explored in this study we would expect other, e.g., substitu-
tionally ordered, structures not to be relevant; at largerd, this
may well no longer apply.

There is a difficulty in Bartlett’s approach with the deter-
mination of the excess moment chemical potentials
m0

ex,… ,m3
ex. He fixedm0

ex andm3
ex to the exact results derived

from the Widom insertion principle,m0
ex=−lns1−r3d and

m3
ex=P. The remaining two excess moment chemical poten-

tials m1
ex andm2

ex can then be found from the bidisperse simu-
lation data, by requiringmexssd at the diameters of the small
and large spheres to agree with the simulated excess chemi-
cal potentials of the two species. However, because of the
approximate character of the excess free energy, themexssd
derived by this route do not obey the thermodynamic consis-
tency requirementdmexssd /drss8d=dmexss8d /drssd, which
corresponds to]mi

ex/]r j =]m j
ex/]ri for the excess moment

chemical potentials. To avoid this in our study, we assign the
latter by explicitly evaluating the derivatives of the excess
free energymi

ex=]fex/]ri. Thermodynamic consistency is
then automatic. The price we pay is that ourmexssd no longer
has the theoretically expected asymptotic behavior fors
→0 ands→`. This means that we have to restrict use of
our solid free energy to relatively narrow diameter distribu-
tions, as discussed in more detail below.

III. NUMERICAL METHOD

A. Moment free energy

Our computational approach for determining the phase
behavior of polydisperse hard spheres is based on the mo-
ment free energy method. We give a brief outline here; de-
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tails can be found in[20,27,42,43]. Recall first the phase
equilibrium conditions for coexistence ofp phases, in a sys-
tem described by a truncatable free energy. By definition, the
excess free energy then depends on a finite set ofM (gener-
alized) momentsri =eds rssdwissd defined by weight func-
tions wissd; above we hadwissd=si. In coexisting phases,
the chemical potentialsmssd and pressureP must be equal.
The former are, by differentiation of Eq.(3),

mssd =
df

drssd
= ln rssd + o

i

mi
exwissd s6d

with mi
ex=]fex/]ri as before. The pressure is given by the

thermodynamic relation

P = − f +E ds mssdrssd = r0 − fex + o
i

mi
exri . s7d

To the conditions of equality of chemical potentials and pres-
sure we need to add the requirement of conservation of par-
ticle number for each speciess, which reads

o
a

vsadrsadssd = rs0dssd s8d

wherea=1,… ,p labels the phases andvsad is the fraction of
the system volume occupied by phasea. One then finds from
equality of themssd, Eq. (6), together with particle conser-
vation (8), that the density distributions in coexisting phases
can be written as

rsadssd = rs0dssd

expSo
i

li
sadwissdD

o
g

vsgdexpSo
i

li
sgdwissdD . s9d

Here theli
sad must obey

li
sad = − mi

sad,ex+ ci s10d

and theci are undetermined constants that do not affect the
density distributions(9). One can fix them, e.g., by requiring
all the li

sad in one of the phases to be zero. A little reflection
then shows that Eq.(10) together withoavsad=1 and the
equality of the pressures(7) in all phases give a closed sys-
tem of nonlinear equations for thepsM +1d variablesli

sad and
vsad. A solution can thus, in principle, be found by a standard
algorithm such as Newton-Raphson. Generating an initial
point from which such an algorithm will converge, however,
is still a nontrivial problem, especially when more than two
phases coexist and/or many momentsri are involved. Fur-
thermore, the nonlinear phase equilibrium equations permit
no simple geometrical interpretation or qualitative insight
akin to the construction of phase diagrams from the free
energy surface of a finite mixture.

The moment free energy addresses these two disadvan-
tages. To construct it, one starts by modifying the free energy
decomposition(3) to

f =E ds rssdSln
rssd
Rssd

− 1D + fexshrijd. s11d

In the first (ideal) term, a normalizing factorRssd has been
included inside the logarithm. This has no effect on the exact
thermodynamics because it contributes only terms linear in
rssd, but will play a central role below. One can now argue
that the most important moments to treat correctly in the
calculation of phase equilibria are those that actually appear
in the excess free energyfexshrijd. Accordingly, one imposes
particle conservation(8) only for the ri, but allows it to be
violated in other details of the density distributionrssd
which do not affect theri. These “transverse” degrees of
freedom are instead chosen to minimize the free energy(11),
and more precisely its ideal part since the excess contribution
is a constant for fixed values of theri. This minimization
gives

rssd = RssdexpSo
i

liwissdD s12d

where the Lagrange multipliersli are chosen to give the
desired values of the moments

ri =E ds wissdRssdexpSo
j

l jwjssdD . s13d

The corresponding minimum value off as given in Eq.(11)
then defines themoment free energy

fmomshrijd = So
i

liri − r0D + fexshrijd. s14d

Since the Lagrange multipliers are(at least implicitly) func-
tions of the momentsri, the MFE depends only on theri.
These can now be viewed as densities of “quasispecies” of
particles, allowing for example the calculation of moment
chemical potentials[27]

mi =
] fmom

] ri
= li +

] fex

] ri
= li + mi

ex s15d

and the corresponding pressureP=oimiri − fmom which turns
out to be identical to the exact expression(7). A finite-
dimensional phase diagram can thus be constructed from
fmom according to the usual tangency plane rules, ignoring
the underlying polydisperse nature of the system. Obviously,
though, the results now depend onRssd. To understand its
influence, one notes that the MFE is simply the free energy
of phases in which the density distributionsrssd are of the
form (12). To ensure that the parent phase is contained in this
family, one normally chooses its density distribution as the
prior, Rssd=rs0dssd; the MFE procedure will then be exactly
valid whenever the density distributions actually arising in
the various coexisting phases are members of the corre-
sponding family

rssd = rs0dssdexpSo
i

liwissdD . s16d

It is easy to show from Eq.(9) that this condition holds
whenever all but one of a set of coexisting phases are of
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infinitesimal volume compared to the majority phase. Ac-
cordingly, the MFE yieldsexactlythe onset of phase of co-
existence, conventionally represented via cloud and shadow
curves(see below). Similarly, one can show that spinodals
and critical points are found exactly[27].

For coexistences involving finite amounts of different
phases the MFE only gives approximate results, since differ-
ent density distributions from the family(16), corresponding
to two (or more) phases arising from the same parent
rs0dssd, do not in general add to recover the parent distribu-
tion itself. Moreover, from Gibbs’ phase rule, a MFE depend-
ing on M moments will not predict more thanM +1 coexist-
ing phases, while we know that a polydisperse system can in
principle separate into an arbitrary number of phases. Both
of these shortcomings can be overcome by including extra
moments within the MFE. By choosing the weight functions
of the extra moments adaptively, the properties of the coex-
isting phases can then be predicted with in principle arbitrary
accuracy[27,44]. Importantly for us, the results can in fact
be used as initial points from which a solution of the exact
phase equilibrium problem can be converged successfully
[45,46]. This is the technique that we use here. Once a phase
split for a given parent distributionrs0dssd has been found,
care needs to be taken to check that it is globally stable, i.e.,
that no phase split of lower free energy exists[27]. Adopting
this procedure, we are able to calculate coexistence of up to
five phases, which so far has been possible only for much
simpler free energies depending on a single density moment
(see, e.g.,[27]).

B. Implementation

We focus below on parent distributions with unit mean
particle diameters̄; any other choice could be absorbed into
the unit lengths0. For small polydispersityd, the standard
momentsri =eds rssdsi then become very close to each
other, and in fact strictly identical in the limitd→0. This
causes numerical difficulties, and we therefore work instead
with the centred momentsri

c=eds rssdfss−1d /d0gi which
remain distinct even for smalld. The factord0 is included to
ensure that the moments are all of comparable magnitude.
We therefore choose it in the middle of the range of polydis-
persitiesd that we study, with typicallyd0=0.05. The cen-
tered moments are obviously linearly related to the conven-
tional ones, e.g.,r1

c=sr1−r0d /d0. The BMCSL and solid free
energies can therefore readily be reexpressed in terms of the
centered moments. Because the transformation between the
two sets of moments is linear, the corresponding sets of ex-
cess moment chemical potentialsmi

ex=]fex/]ri are also lin-
early related and easily converted into each other.

We combine the fluid and solid branches of our excess
free energy by simply taking the minimum for a given set of
moments. Some care is needed here: because the solid free
energy is derived from fits to simulation data for bidisperse
systems(see above), we expect it to be reliable only in the
region spanned by the simulations[37]. The smallest diam-
eter ratio investigated in the simulations isa=0.85. The
maximum polydispersity that can be reached in a bidisperse
system for this diameter ratio isd=sa+1/a−2d1/2/2<0.08.

We therefore restrict use of the solid free energy to phases
with polydispersity below this value. Reassuringly, we will
see below that all solid phases occurring in equilibrium
phase splits are well below this threshold.

A further constraint on the use of the solid free energy
arises from the fact that, as explained above, our excess
chemical potentialsmexssd do not have the correct limiting
behavior predicted from the Widom insertion principle for
s→0 ands→`. Physically, this is again plausible because
we are extrapolating to sphere diameters far from the mean
of the distribution, and therefore far from the regime where
the simulation data will be reliable. We will therefore always
work with diameter distributions with hard cutoffs either side
of the mean so that the behavior ofmexssd for very small or
large s never comes into play. Finally, we also chose to
restrict the volume fractions for the solid branch of the free
energy to 0.494øfø0.74, which are, respectively, the
smallest and largestf for which monodisperse hard spheres
at equilibrium exhibit a crystalline solid phase. This is in
order to ensure that the solid free energy is physically well
defined. For continuous single-peaked size distributions,
simulations[10] suggest that the maximum volume fraction
in polydisperse hard-sphere crystals is in fact below 0.74,
being a decreasing function ofd. (For specific discrete size
distributions, on the other hand, higher volume fractions can
be achieved; e.g., one can get arbitrarily close tof=1 by
iteratively adding smaller spheres to fill the holes between
the existing ones.)

IV. PHASE BEHAVIOR

We now describe our results for the overall phase behav-
ior of polydisperse hard spheres. Our numerical work re-
quires a choice to be made for the parental diameter distri-
bution. We focus mostly on a triangular distribution, where
ns0dssd=rs0dssd /r0

s0d is given by

ns0dssd =
1

w2Hs − s1 − wd for 1 − w ø s ø 1,

s1 + wd − s for 1 ø s ø 1 + w,
J

whose width parameterw is related to the polydispersity by
w=Î6 d. For the moderate values ofd of interest here one
expects other distribution shapes to give qualitatively similar
results, based on the intuition that for narrow size distribu-
tions d is the key parameter controlling the phase behavior
[14]. To verify this, we also consider an asymmetric size
distribution chosen to be of the Schulz form,ns0dssd
~sze−sz+1ds, and cut off outside the rangesP f0.8,1,2g. For
a narrow distribution, i.e., largez, where the cutoffs are un-
important, the polydispersity is then related to the parameter
z by d2=1/sz+1d and the mean diameter is unity as before.

A. Onset of phase coexistence

The most basic question we can ask about phase behavior
regards the onset of phase separation coming from single-
phase regions. Increasing the volume fractionf of the parent
at given polydispersityd, a single-phase fluidsFd will first
separate into coexisting fluid and solidsSd phases at the so-
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called cloud point. The locus of all cloud points in thesf ,dd
plane defines the fluid cloud curve. The incipient phase cor-
responding to the cloud point is called the “shadow” solid;
its properties define the solid shadow curve. These curves are
shown in Fig. 3 for a triangular parent distribution. An im-
portant feature is that the fluid cloud curve continues
throughout the whole range of polydispersities that we can
investigate numerically: even atd=0.14, a hard-sphere fluid
will eventually split off a solid on compression. This is in
marked contrast to the phase diagram of[18] as sketched in
Fig. 1. The key difference is that our analysis accounts fully
for fractionation: Fig. 3 shows that the coexisting shadow
solid always has a relatively modest polydispersity, withd
never rising above 0.06 even when the cloud fluid hasd
=0.14. This fractionation effect prevents the convergence of

the solid and fluid phase boundaries which a theory with
fixed d [18] predicts, along with the resulting reentrant melt-
ing (Fig. 1). These findings are in qualitative accord with
Monte Carlo simulations for the simpler case of fixed chemi-
cal potentials[8,9,11], discussed in detail in Sec. VI below.
The results imply, in particular, that the terminal polydisper-
sity dt cannot be defined as the point beyond which a fluid at
equilibrium will no longer phase separate;dt makes sense
only as the maximum polydispersity at which a single solid
phase can exist(see below).

The fractionation effects described above can be seen
more explicitly by comparing the(normalized) diameter dis-
tributions of the fluid cloud and solid shadow phases, as
displayed in Fig. 4 for(parental) polydispersityd=0.05 and
d=0.10. At the cloud point the size distribution in the fluid
coincides with the parent distribution as it must. The distri-
bution in the coexisting shadow solid, on the other hand,
deviates increasingly from that of the parent as the parentald
increases. In particular, the solid contains predominantly the
larger particles and has a rather more narrow spread of sizes,
consistent with the small solid polydispersities found above.
We will see shortly that these properties are rather generic
and persist inside the coexistence region.

We now assess the effect of the shape of the particle size
distribution on these results. Figure 3 shows that the fluid
cloud and solid shadow curves are qualitatively and even
quantitatively very similar for the triangular and Schulz dis-
tributions. (Numerically, we can only reachd=0.10 for the
latter, but have no reason to expect that this is a physical
feature and indicate the expected continuation of the curves
by dotted lines.) Figure 4(right) demonstrates that the quali-
tative features of the fractionation behavior are also the same
between the two distributions, consistent with our intuition
that variations in the shape of the parental size distribution
have, for givend, only a minor effect.

We next consider the onset of phase separation coming
from the single-phase solid, which defines the solid cloud

FIG. 3. Cloud curves(thick) and shadow curves(thin), for poly-
disperse hard spheres with a triangular(a) and Schulz(b) diameter
distribution. The curves show polydispersityd versus volume frac-
tion f for the cloud and shadow phases; dashed lines link sample
cloud-shadow pairs. The solidsSd cloud curve has two branches,
with onset ofF-S and S-S coexistence at low and high volume
fractions, respectively. Where they meet, a triple point occurs;
squares mark the cloud phase and the two coexisting shadows there.
In the Schulz plot, the dotted lines indicate the expected continua-
tions of the fluid cloud and corresponding shadow curve beyond the
region where our numerical methods work reliably.

FIG. 4. Normalised size distributionsnssd=rssd /r0 for the co-
existing fluid and shadow phases at the fluid cloud point, for parent
distributions with polydispersitiesd=0.05 (top) and d=0.10 (bot-
tom) and triangular(left) and Schulz(right) shape. Solid lines show
the cloud fluid, which is identical to the parent, and dashed lines the
shadow solid.
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curve and corresponding shadow curve. Initially we focus
again on the triangular size distribution. Figure 3(a) shows
that a decrease in density at low polydispersities leads to
conventional fluid-solid phase separation. At higherd, how-
ever, the solid cloud curve acquires a second branch at higher
densities. This is broadly analogous to the reentrant phase
boundary found in[18], but with the crucial difference that
the system phase separates into two solids rather than a solid
and a fluid. The two branches meet at a triple point. Here the
solid cloud phase coexists withtwo shadow phases, one fluid
and one solid, as marked by the squares in Fig. 3(a). The
triple point is located atd<0.07; since it is at the maximum
of both branches of the solid cloud curve, this value also
gives the terminal polydispersity beyond which solids with
triangular diameter distribution are unstable against phase
separation.

Figure 5(left) displays the diameter distributions for the
cloud and shadow solids, atd=0.05 on the high-density
branch of the solid cloud curve. In comparison with Fig. 4,
what is striking is that the fractionation effects at the onset of
solid-solid coexistence are much stronger than for fluid-solid
phase separation at the samed. This is consistent with physi-
cal intuition. The fluid-solid phase separation exists even in
the monodisperse limit. The presence of polydispersity acts
as a small perturbation to this transition, certainly at lowd,
so that fractionation effects can be viewed as incidental.
Solid-solid phase separation, on the other hand, is driven by
polydispersity and could not take place without fractionation.

We compare again at this stage with the results for the
Schulz parent distribution. Figure 3(b) shows that the cloud
and shadow curves look qualitatively similar to the triangular
case. Quantitatively, the low-density branch of the solid
cloud curve now has a maximum, giving the terminal poly-
dispersity asdt<0.06. The triple point is at slightly smaller
d, and the whole high-density branch of the solid cloud
curve—which describes the onset of solid-solid phase
separation—is shifted to smallerd compared to the triangular
parent case. Figure 5(right) shows the diameter distributions
for the cloud and shadow solids, at the onset of phase sepa-
ration atd=0.05. Compared to the triangular parent, the frac-
tionation effects are now even stronger. In fact, the size dis-
tribution of the shadow solid continues to increase towards
larger sphere diameterss and is terminated only by the hard

cutoff at s=1.2 which we impose in the Schulz case; note
that in thecloud solid (solid line) this cutoff is hardly dis-
cernible. In the triangular case, there is no sharp cutoff effect
on the shadow solid: the form of the parent forces all size
distributions to drop to zero continuously at the upper end.

The above observations for the Schulz parent suggest an
analogy with recent results for isotropic-nematic phase sepa-
ration in hard rodlike particles[46,47]. For sufficiently wide
rod length distributions, one observes there that the shadow
nematic phase can become dominated by the longest rods in
the system, i.e., those with lengths near the cutoff, even
though these make up only a small fraction of the parent
distribution. Such cutoff effects are important only near the
cloud point: as soon as the new phase occupies a nonzero
fraction of the overall system volume, particle conservation
prevents it from containing an atypically large number of
long rods. To test whether we have a similar situation for the
onset of solid-solid separation from a Schulz parent, we have
varied the cutoff on the sphere diameters. Figure 6 plots the
fractional system volumevs2d occupied by the new solid
against the parent colloid volume fraction. We observe that
vs2d is indeed cutoff independent well inside the coexistence
region, where it is non-negligible. The position of the cloud
point itself, on the other hand, wherevs2d extrapolates to
zero, is strongly cutoff dependent. We conclude, therefore,
that at the onset of solid-solid coexistence from a Schulz
parent withd=0.05 the shadow solid is cutoff dominated, in
analogy with the shadow nematics in the Onsager model of
long hard rods[46,47].

One may wonder whether the cutoff effects described
above are an artifact of the approximate nature of our excess
chemical potentials for the polydisperse solid. We cannot
give a definitive answer to this question here, but suggest
why such effects could be expected. From Eq.(6), equilib-
rium of chemical potentials between the cloud(parent) solid
rs0dssd and the shadow solidrs2dssd implies

FIG. 5. Normalized size distributionsnssd of solid cloud and
shadow phases, on the high-density branch of the solid cloud curve
at d=0.05. Left, triangular parent; right, Schulz parent. The solid
lines show the cloud phase, the dashed lines the shadow. Note the
strong size fractionation effects.

FIG. 6. Fractional system volume occupied by the newly form-
ing solid, vs2d, versus the parent volume fraction,f, for cutoffs
imposing three different ranges of particle sizess as indicated in
the legend. Once enough of the new solid phase exists(abovevs2d

<0.08) the behavior is essentially cutoff independent. The cloud
point, on the other hand, wherevs2d extrapolates to zero, depends
strongly on the cutoff; this is more clearly visible in the linear-log
plot in the inset.
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rs2dssd = rs0dssdexpf− Dmexssdg s17d

with mexssd=oi=0
3 Dmi

exsi andDmi
ex the differences in the ex-

cess moment chemical potentials between the shadow and
cloud phases. The Widom insertion principle tells us thatm3

ex,
being equal to the pressure, is equal in the two phases. Thus
Dmexssd should generically be a quadratic polynomial ins.
If the s2 term has a negative coefficient, then from Eq.(17)
it will overwhelm the exponential tail of the Schulz parent
rs0dssd. The shadow density distributionrs2dssd then in-
creases strongly at larges so that its properties will be domi-
nated by the presence of any cutoff. In fact, this argument
suggests that the same could happen even with a(sufficiently
polydisperse) Gaussian parent. Only a stronger decay, say
rs0dssd,exps−sad with a.2, could definitely prevent cutoff
effects on the shadow solid. This question deserves further
study, but would require more accurate excess chemical po-
tentials for polydisperse solids—and over a larger range of
sphere diameters—than we currently have at our disposal.
Preliminary simulation results[55] nevertheless suggest that
cutoff effects do occur in some polydisperse mixtures of
spherical particles.

So far we have investigated the global stability of single
phases, i.e., the stability against macroscopic phase separa-
tion. One can also ask aboutlocal stability of the phases, i.e.,
the spinodal points. Since our free energy is assembled by
taking the minimum of separate fluid and solid branches, it
does not provide accurate curvature information in the region
where these two branches connect. Therefore we cannot in-
vestigate local instability to fluid-solid separation. The sta-
bility of single-phase fluids against fluid-fluid demixing has
been studied by Warren[48] and Cuesta[49]. They found,
using the BMCSL free energy, that spinodal instabilities do
indeed occur, but only for very broad diameter distributions
such as log normals withd above<2.5, or bimodal distribu-
tions with a wide size disparity between the larger and
smaller spheres. At the modest values ofd that concern us
here, such instabilities do not occur. It thus remains to study
spinodal instabilities of the polydisperse crystal against
solid-solid demixing. The fact that the solid cloud curve has
a branch showing solid-solid phase separation already sug-
gests that such instabilities should be present. Indeed, Bar-
tlett found a solid-solid spinodal[21], though with a thermo-
dynamically inconsistent assignment of the excess chemical
potentials(see Sec. II). Within the MFE the criterion for the
spinodal takes its usual form[27]: it is the point where the
determinant of the curvature matrix of the moment free en-
ergy, ]2fmom/ s]ri ]r jd=]mi /]r j, first vanishes. The zero ei-
genvector of the matrix at this point gives the instability
direction. Using this criterion, we find the results in Fig. 7(a).
The single-phase solid is always stable at modest densities or
polydispersities—the spinodal determinant is positive here—
but can become unstable at largerf andd. With growingd,
this instability affects a wider and wider range off. The
figure also shows that the spinodal for a triangular size dis-
tribution is very close to the cloud curve for the onset of
solid-solid phase separation: past the cloud point, a single-
phase solid very quickly becomes locally unstable. For a
Schulz distribution, on the other hand, cloud curve and spin-

odal are well separated as can be seen in the inset. This
reinforces our above discussion of cutoff effects: the latter
favor an earlier onset of phase separation(cf. Fig. 6). The
spinodal condition, on the other hand, is known on general

FIG. 7. Spinodal instability of the polydisperse hard-sphere
crystal against solid-solid demixing, in the volume fraction–
polydispersity planesf ,dd. (a) Spinodal (solid) and cloud curve
(dash-dotted) for triangular (main graph) and Schulz(inset) size
distributions.(b) The line segments on the spinodal line indicate
(for the triangular case) the direction of the unstable fluctuations.
(c) Comparison of instability direction(arrow), path to the “locally
optimal” phase (solid line and empty circles), and cloud and
shadow solids at the same parent polydispersity(full circles con-
nected by dotted line).
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grounds(see, e.g.,[27]) to depend only on the moment den-
sities of the parent, up tos6 for our excess free energy in-
volving moments up tos3. Since these parent moments are
almost cutoff independent, so is the spinodal curve.[This
insensitivity of the location of the spinodal is confirmed by
the fact that the spinodal curves for the triangular and Schulz
cases would be essentially indistinguishable on the scale of
Fig. 7(a).]

We now turn to the nature of the spinodal instability, fo-
cusing on the case of a triangular size distribution. This can
be quantified by projecting the instability direction at the
spinodal into thesf ,dd plane. The results are indicated by
the line segments on the spinodal line in Fig. 7(b). Bartlett
found instability directions which affected only the polydis-
persityd while leavingf essentially unchanged[21], which
would correspond to vertical lines in the plot. By contrast,
our analysis shows that the instability actually affects bothf
and d, with relative changes that are of the same order of
magnitude. This is consistent with the properties of coexist-
ing solids discussed in Sec. IV B below, which exhibit a
strong correlation betweenf andd.

More puzzling is that, in Fig. 7(b), the instability direc-
tions at lowd indicate a tendency toward the formation of a
more polydisperse solid. This appears counterintuitive at
first: solid-solid phase separation is driven by fractionation
and so one expects a preference for smaller rather than larger
d. Also, the proximity of the spinodal to the cloud curve
suggests that the spinodal instability direction should be
similar to the direction connecting the cloud solid and the
coexisting shadow. From Fig. 3, the instability should there-
fore point toward largerf and, again, smallerd.

To understand this apparent paradox we consider in more
detail the “shape” of the MFEfmom at the spinodal, as a
function of the momentsr0,… ,r3. It is useful to subtract the
tangent plane tofmom at the parent phase; the resulting tan-
gent plane distance(TPD) differs from fmom only via con-
stant and linear terms in theri. A stable parent is then a local
minimum of the TPD, at “height” TPD=0, and any phases
coexisting with the parent[e.g., the shadow phase(s) for a
parent at its cloud point] would have the same property.
Now, as the spinodal is approached, the curvature of the TPD
around the parent vanishes in one direction and a “path”
toward lower, negative, values of the TPD appears; the spin-
odal instability indicates the initial direction of this path. To
establish where this path leads it makes sense to follow it to
the nearest “locally optimal” phase, i.e., the nearest local
minimum of the TPD. If this path is curved in thesr0,… ,r3d
space, its initial direction will not necessarily capture the
properties of the end point, i.e., the locally optimal phase.
This is the origin of the counterintuitive instability directions
that we observe. A specific example is shown in Fig. 7(c): the
path to the locally optimal phase first moves to higherd,
consistent with the spinodal instability direction, but the lo-
cally optimally phase ends up having asmaller polydisper-
sity d than the parent phase. It also has a larger volume
fraction f, and the change from the unstable parent to the
locally optimal phase is in a direction comparable to that
between cloud and shadow, in line with the intuition dis-
cussed above.

B. Phase diagram

Having clarified theonsetof phase separation in polydis-
perse hard spheres, we next consider the behavior inside the
coexistence region. We have already established that, apart
from possible cutoff effects, the Schulz and triangular parent
size distributions give qualitatively similar results, and there-
fore restrict our attention to the latter in the following. Over-
all features such as the topology of the phase diagram
should, at the low polydispersitiesd of interest here, be simi-
lar for other size distributions.

Figure 8 shows the full phase diagram for the triangular
parent distribution. In each region the nature of the phase(s)
coexisting at equilibrium is indicated. The cloud curves of
Fig. 3(a) reappear as the boundaries between single-phase
regions and areas of phase coexistence. Starting from the
onset of solid-solid separation and increasing density ord,
fractionation into multiple solids occurs. The overall shape
of the phase boundaries in this region is in good qualitative
agreement with the approximate calculations of[16] (see
Fig. 2), though as discussed below the details of the fraction-
ation behavior are rather different. We find up to four coex-
isting solids. At largerd than we can tackle numerically,
phase splits into five or more solids would be expected since
each individual solid can only tolerate a finite amount of
polydispersity. However, from Fig. 8 such phase splits would
occur at increasing densities and eventually be limited by the
expected maximum volume fractionfc<74% (see the re-
marks at the end of Sec. III B). Also, at higherd more com-
plicated single-phase crystal structures, with different lattice
sites occupied preferentially by(say) smaller and larger
spheres, could appear and compete with the substitutionally
disordered solids we consider.

A feature of the phase diagram in Fig. 8 not predicted in
previous work is the coexistence of a fluid with multiple
solids. However, that a three-phaseF-S-S region must occur
was already indicated by the triple point which we found
earlier on the solid cloud curves. As in the case of solid-solid
phase splits, coexistences involving more than two solids—
and a fluid—then appear with increasingd.

We consider the fractionation behavior in the multiphase
regions more systematically in the next section. Before doing
so, a few qualitative statements are in order. In Fig. 9 we

FIG. 8. Full phase diagram for polydisperse hard spheres with a
triangular size distribution. In each region the nature of the phase(s)
coexisting at equilibrium is indicated(F, fluid; S, solid). Dashed
line: best guess for the phase boundary in the region where our
numerical data become unreliable. From[26].
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show a sample plot of the normalized diameter distributions
nssd=rssd /r0 of four coexisting solids. This shows that
fractionated solids do not, as one might naively assume[16],
split the diameter range of the parent evenly among them-
selves. The polydispersities of the coexisting phases are in
fact rather different; in Fig. 9 they range fromd=0.036 to
0.054 for a parent withd=0.08. There is in fact a strong
correlation between the polydispersity of a fractionated solid
and its volume fraction: solids with lower volume fractionf
tend to have higher polydispersityd. This conclusion is in-
tuitively appealing since higher compression should disfavor
a polydisperse crystalline packing.

We have studied the relation between polydispersity and
volume fraction more quantitatively, by plottingd vs f for
all the “daughter” solids that arise by phase separation from
a number of different parents across the phase diagram. We
find a set of points(Fig. 10) that cluster very closely around
the high-density branch of the solid cloud curve, emphasiz-

ing the tight correlation betweend andf. Note that some of
the points fallabove the solid cloud curve. This is not a
contradiction because the latter marks the onset of instability
against phase separation only for solids with a triangular size
distribution, whereas the daughter phases plotted here can
have rather different size distributions(compare Fig. 9).

As part of our qualitative overview of fractionation be-
havior, we show next in Fig. 11 the size distributions for a
situation where a fluid coexists with three solids. The general
trend which we observed from the cloud and shadow curves,
namely, for the solid(s) to contain the larger particles, is
found confirmed here. However, the details of the fraction-
ation are again nontrivial: while the coexisting fluid is en-
riched in the smaller particles as expected, it also contains
“left over” large spheres that did not fit comfortably into the
solid phases. It thus in fact ends up having alarger polydis-
persity (0.104) than the parent(0.08) in this example.

Finally, an indirect manifestation of fractionation is pro-
vided by the variation of the osmotic pressure along a dilu-
tion line. In a monodisperse system, the pressure remains
constant throughout any phase coexistence region because
the properties of the coexisting phases do not change; only
the fractions of system volume vary which these phases oc-
cupy. In a polydisperse system, on the other hand, the com-
position of the coexisting phases varies as the coexistence
region is traversed. We illustrate this in Fig. 12 for a trian-
gular parent size distribution withd=0.08. It is striking that
the variation of the pressure with volume fraction is almost
smooth, even though a number of phase boundaries are
crossed.

V. FRACTIONATION BEHAVIOR

We proceed in this section to a systematic study of the
fractionation behavior of polydisperse hard spheres, having
discussed its qualitative features above. To this end we ex-
tend the classical visual representations in terms of cloud and
shadow curves and overall phase diagrams to include more
detailed information about the properties of the coexisting
daughter phases. To obtain insights into the effects of vary-
ing both the parent’s volume fraction and its polydispersity,
three-dimensional(3D) plots will be particularly useful here.

FIG. 9. Normalized size distribution of four coexisting solid
phases obtained from a parent distribution withsf ,dd
=s0.63,0.08d. From left to right, the solids have volume fractions
and polydispersities(0.601, 0.054), (0.629, 0.046), (0.646, 0.040),
(0.663, 0.036). From [26].

FIG. 10. The properties of the daughter solids(circles) arising
by phase separation from some chosen parents(squares) across the
phase diagram. Plotted are polydispersityd versus volume fraction
f. The arrows show the daughter phases for three parents explicitly;
as indicated by the dotted lines, not all daughter phases are within
the range of the plot. Note the clustering of all daughter phases near
the solid cloud curve.

FIG. 11. Normalized diameter distributions forF-S-S-S phase
coexistence obtained from a parent distribution withsf ,dd
=s0.603,0.08d. From [26].
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In a second part we ask whether there is an optimal way of
making the separation between fractionated phases visible,
and suggest principal component analysis(PCA) as a method
for achieving this. We focus throughout on the range of par-
ent polydispersities 0.04,d,0.08, which covers all the
various coexistence regions in the phase diagram of Fig. 8.
Where it is necessary to distinguish the volume fraction and
polydispersity of the parent from those of the daughter
phases, we will add the superscript(0), writing fs0d andds0d.

We start with a 2D plot showing the volume fraction of
the coexisting phases versus the volume fraction of the par-
ent phase, Fig. 13(a), for two parent polydispersitiesd. For a
narrow parent size distribution(d=0.04, inset), we see that
the behavior in theF-S coexistence region is similar to what
would be expected for a monodisperse system, with the vol-
ume fractions of the daughter phases remaining essentially
constant. Only at largefs0d does the polydisperse nature of
the system become fully apparent, through the occurrence of
S-S phase separation. For a parent withd=0.08, on the other
hand, the properties of the daughter phases vary strongly
with fs0d. In theS+S+SandS+S+S+S regions in particular,
the volume fractions of the daughter solids increase system-
atically with fs0d: fractionation from a denser parent here
produces denser daughter phases, rather than varying propor-
tions of daughters with fixed densities.

To demonstrate more explicitly the change in behaviour
as the parent polydispersityd increases, we show in Fig.
13(b) a 3D plot of the daughter volume fractionsf versus
fs0d andd. The orientation of the axes has been chosen such
that horizontal cuts through the plot represent fixedd, with
the top and bottom planes corresponding to the data shown
in the 2D plots of Fig. 13(a). A benefit of the 3D represen-
tation is that each daughter phase now corresponds simply to
a separate surface. Each surface ends at the phase boundary
where the relevant phase disappears from the phase split. The
disappearance or appearance of any phase then causes kinks
in the other surfaces. As expected, only the fluid surface
extends to the lowestfs0d. As fs0d is increased, the “conven-
tional” solid which also exists in the monodisperse limit
makes its first appearance. A further three fractionated solids
then eventually appear one after the other. These are polydis-

persity induced, i.e., have no analog in the monodisperse
system, and the surfaces representing them do not extend to
d→0.

Having clarified the variation of the volume fractions of
the daughter phases across the phase diagram, we show their
mean diameters in Fig. 14, plotted against parent volume
fraction at fixed (parent) polydispersityd=0.08. One ob-
serves clearly the general trend for the solid phases to con-
tain larger particles than the fluid. An exception to this oc-
curs in theF+S+S+S coexistence region, where the fluid
has a slightly larger mean diameter than one of the solids.
The explanation for this can be found in our earlier discus-
sion of Fig. 11: in addition to the smallest spheres, the fluid
can also contain some of the larger spheres that are not ac-
commodated in any of the solids, and this pushes up its mean
diameter. The second qualitative trend demonstrated by Fig.
14 is that the coexisting solids tend to split the range of
particle diameters in the parent distribution among them-

FIG. 12. The osmotic pressure plotted as a function of the parent
volume fraction along a dilution line, for a triangular parent with
polydispersityd=0.08. Phase boundaries are marked by full circles;
line segments are annotated with the nature of the phases(fluid/
solid) in the different coexistence regions.

FIG. 13. (a) Volume fractionf of the various coexisting daugh-
ter phases versus the volume fractionfs0d of the parent phase, for
d=0.08 (main graph) andd=0.04 (inset). (b) 3D plot showing the
dependence of thef on fs0d and the parent’s polydispersityd. Dif-
ferent phases are represented by different grey levels. Note that the
d axis is plotted upside down for better visibility. The top and
bottom slices correspond to the 2D plots in(a).
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selves, with almost equidistant mean diameters. As the par-
ent volume fraction increases, the strength of this fraction-
ation effect is seen to grow, and the mean diameters become
increasingly separated from each other.

Finally, we examine the relationship between the polydis-
persitiesd of the different daughter phases and the volume
fraction fs0d and polydispersityds0d of the parent. Figure
15(a) shows 2D plots of the daughter polydispersities versus
fs0d, at ds0d=0.04 and 0.06. As expected, for the more poly-
disperse parent there are significant variations of the daugh-
ter polydispersities across the coexistence regions. Where
multiple solids coexist, their polydispersities decrease with
increasing parent volume fraction. This is consistent with the
general trend that denser solids tend to be less polydisperse.
In the 3D plot of Fig. 15(b), this same trend also causes the
surfaces corresponding to the various solids to have rather
similar shapes in the region of solid-solid coexistence. For
the fluid, on the other hand, the graph demonstrates that it
always has a larger polydispersity than the parent, arising
from the presence of large particles “left over” from the solid
phases(see Fig. 11).

Principal component analysis

The above plots of aspects of fractionation behavior lead
naturally to the question of whether there is a “maximally
fractionating” property, i.e., one which most strongly reveals
the differences between the various coexisting phases across
the phase diagram. We focus on properties that are general-
ized moments of the density distribution, of the formr
=eds fssdrssd with some weight functionfssd. While not
all properties can be expressed in this way—the polydisper-
sity d, for example, involves squares and ratios of such
moments—this is still a fairly large class of measurable
properties; e.g., settingfssd=1 would give us the number
density, fssd=s3 the volume fraction,fssd=s the mean di-
ameter times the number density, etc.

Suppose now that we have a number of measurements of
rssd, specifically the daughter density distributions that arise
within some region of the phase diagram. We can think of
the rssd as points in a high-dimensional(in fact infinite-
dimensional) space, and of our desired momentr as a pro-
jection along the direction defined byfssd [27]. A good

choice for a maximally fractionating property would then be
to maximize thevarianceof our moment among the various
measuredrssd. This can be done by principal component
analysis, a method designed to select directions of large vari-
ance [50]. Mathematically, the requirement of maximum
variance can be written as

maxfssd E ds ds8fssdAss,s8dfss8d s18d

subject to eds f2ssd=1; here Ass ,s8d is the (infinite-
dimensional) covariance matrix of our measurements. We

FIG. 14. Mean diameter of coexisting phases plotted against
parent volume fractionfs0d, for parent polydispersityd=0.08. The
dashed lines delineate the various phase coexistence regions.

FIG. 15. (a) Plot of the polydispersities of coexisting phases
along two dilution lines(thin horizontal lines), i.e., as a function of
the parent volume fraction for fixed parent polydispersityds0d

=0.04 and 0.06. The dashed lines indicate the phase boundaries in
the sfs0d ,ds0dd plane; phases appear or disappear at the points where
the horizontal line corresponding to the fixed parent polydispersity
intersects these phase boundaries(full circles). (b) Corresponding
3D plot, showing the daughter polydispersitiesd against the parent
volume fractionfs0d and parent polydispersityds0d.
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define this asAss ,s8d=kfrssd−rs0dssdgfrss8d−rs0dss8dgl.
The average here is over all our measurements ofrssd, and
we subtract off for eachrssd the corresponding parent dis-
tribution rs0dssd. This effectively removes the average of the
various measuredrssd because, from particle conservation
(8), the parent is a weighted average over the various daugh-
ter phases. An alternative definition ofA would be to remove
the actual measurement average,Ass ,s8d=Šfrssd
−krssdlgfrss8d−krss8dlg‹. In our numerical experiments de-
scribed below, this leads to almost indistinguishable results.

The maximization problem(18) is in principle over an
infinite-dimensional function space. To arrive at a more prac-
tical task, we restrict the search to a subspace by requiring
the weight function to be of the formfssd=oi=0

3 ais
i. This

corresponds to searching for a maximally fractionating prop-
erty among those expressible as linear combinations of the
momentsr0,… ,r3, i.e., r =oi=0

3 airi. With this simplification,
the problem(18) reduces to

maxaaTCa subject toaTDa = 1. s19d

Here a denotes the vector with elementsa0,… ,a3 and the
434 matrix C is defined as

Cij =E ds ds8siAss,s8dss8d j = ksri − ri
s0ddsr j − r j

s0ddl

which is just the covariance matrix of the moments, with the
parent moments again subtracted off. The matrixD, on the
other hand, is given byDij =eds si+j. The s integration
range has to be bounded to make this well defined. In our
case of a triangular parent distribution the obvious choice,
adopted here, is to make this range equal to the range of
particle sizes occurring in the parent.

Imposing the constraint in Eq.(19) via a Lagrange multi-
plier shows that solution vectorsa must obeyCa=lDa, or
equivalentlyD−1/2CD−1/2sD1/2ad=lD1/2a. The solutions can
thus be obtained by an eigenvalue decomposition of the ma-
trix D−1/2CD−1/2, with l the eigenvalue andD1/2a the corre-
sponding eigenvector.(Numerically, it is more convenient to
solve the equivalent problem of finding the eigenvalues and
right eigenvectors of the matrixD−1C.) The eigenvectors are
termed principal components, and thel’s give the variance
captured by each principal component. The most important
principal component, and the one of interest to us, is then the
one with the largestl.

We have implemented this PCA search for maximally
fractionating properties by considering as our measuredrssd
the daughter phases as they occur along a dilution line. We
do this separately for triangular parent distributions of poly-
dispersity 0.04, 0.06, and 0.08, respectively, because differ-
ent ranges of particle sizes are relevant in the three cases.
The resulting weight functionsfssd are plotted in Fig. 16.
One sees that in all cases,fssd is to a good approximation a
combination of the odd weight functionss ands3, with the
coefficients such thatfssd crosses zero near the edge of thes
range. Loosely speaking, the functionfssd can be interpreted
as an approximation to sgnss−1d within the space spanned
by s0,… ,s3, i.e., by a third-order polynomial ins. It thus
effectively measures the difference in number density be-

tween particles above and below the mean parental diameter.
This is an intuitively appealing measure of fractionation be-
havior.

Finally, Fig. 17 shows the properties of the daughter
phases as measured by the maximally fractionating observ-
able selected by PCA. The overall features of the plot on the
right, for parent polydispersityd=0.08, are not dissimilar to
the mean diameter representation in Fig. 14, so that the ben-
efit of PCA in this problem is relatively modest. Some inter-
esting features are accentuated by PCA, however; e.g., the
crossover between the fluid and solid lines is more pro-
nounced in Fig. 17, demonstrating clearly how the fluid size
distribution acquires a significant fraction of the larger par-
ticles. We expect that the benefits of the PCA method of
selecting maximally fractionating properties should become
more pronounced in systems with several polydisperse at-
tributess, e.g., particle size and charge. Suitable properties
for revealing fractionation behavior could then depend on
combinations of these attributes, which can be systematically
found using PCA.

VI. COMPARISON WITH MONTE CARLO SIMULATIONS

We have validated our theoretical predictions in two
ways. First, we have compared to perturbative theories
[51,52] for near-monodisperse parents, which predict that the
difference in mean particle diameters of two coexisting
phases,Ds̄=s̄s1d−s̄s2d, universally scales asd2 for small d,
while the difference in the polydispersities isDd~d3. Both
predictions are obeyed by our results. Second, we have com-

FIG. 16. Principal component weight functionfssd, obtained
from data along dilution lines for three different values of parent
polydispersity 0.04, 0.06, and 0.08. The range ofs values where
fssdÞ0 is in each case that over which the parent density distribu-
tion is nonzero, i.e., the range of particle sizes actually occurring in
the system.

FIG. 17. Maximally fractionating moment(as selected by PCA)
for coexisting daughter phases, plotted against parent volume frac-
tion fs0d at parent polydispersityd=0.04, 0.06, and 0.08(from left
to right).
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pared to Monte Carlo simulations. As discussed in the pre-
ceding sections, our theoretical results for fluid-solid coex-
istence in polydisperse hard spheres are in qualitative
agreement with numerical simulations[8,9,11], in particular
concerning the coexistence of rather polydisperse fluids with
solids that have a much narrower size distributions. There is,
however, an important difference: our calculations apply to
the experimentally realistic case where an overall parent den-
sity distribution is fixed. The simulations, on the other hand,
are performed at imposed chemical potential differences,
with the actual size distributions in the coexisting phases
varying strongly across the phase diagram. In order to obtain
a quantitative comparison between theory and simulations,
we have calculated explicitly the theoretical predictions for
this—somewhat unrealistic—scenario.

The simulations of[8,9,11] were carried out in an isobaric
semi-grand-canonical ensemble, which corresponds to fixed
particle numberN, pressureP, and chemical potential differ-
encemssd−mssbd. Here sb is the diameter of a reference
particle. The advantage of the semi-grand-canonical en-
semble is that it allows many different realizations of the
particle size distribution to be sampled, thus minimizing
finite-size effects. The fixed particle numberN, on the other
hand, avoids simulation moves where particles need to be
inserted into dense fluids or solids.

Bolhuis and Kofke[8,9] considered specifically a qua-
dratic form for the chemical potential differences,

mssd − mssbd = −
ss − sbd2

2n
. s20d

The activity expfmssdg thus has a Gaussian shape of variance
n. For smalln, one expects the activity distribution to set the
size distributions in the coexisting phases, which should
therefore have polydispersityd=n1/2; n→0 recovers the
monodisperse case. The reference diametersb=1 is held
fixed asn is increased from zero. The pressureP is then
adapted by Gibbs-Duhem integration[53] to follow the line
of fluid-solid phase coexistence in thesn ,Pd plane.

In order to reproduce the situation considered in the simu-
lations using our theoretical approach, we will study a sys-
tem with priorRssd=expf−ss−1d2/ s2ndg. The moment free
energy then gives the free energy of phases with density
distributions of the form[cf. Eq. (12)]

rssd = expS−
ss − 1d2

2n
+ o

i=0

3

lis
iD .

From Eq.(6), the corresponding chemical potentials have the
form

mssd = ln rssd + o
i=0

3

mi
exsi = −

ss − 1d2

2n
+ o

i=0

3

sli + mi
exdsi .

s21d

Now the li +mi
ex are just the moment chemical potentials

mi =]fmom/]ri. So if we apply the moment free energy but
treat the moment densitiesr1,r2,r3 as nonconserved, the
associatedmi are forced to vanish automatically at equilib-
rium. The sum overi in Eq. (21) then reduces to a constant,

m0=l0+m0
ex, and we have precisely the chemical potential

differences(20) used in the simulations. In summary, apply-
ing the MFE method with a Gaussian prior andr0 the only
conserved moment, we increaser0 from zero until coexist-
ence with a solid phase is first found. This is then the desired
fluid-solid coexistence for quadratic chemical potential dif-
ferences, and we can determine in particular the pressureP
at coexistence. Repeating this process for a range of values
of n gives the coexistence curve in thesn ,Pd plane.

Our actual implementation of this approach has one minor
difference. In the simulations it is observed that the mean
diameters in the coexisting phases decrease significantly asn
is increased, eventually becoming much smaller thansb. For
our numerical work, however, it is desirable to keep the size
distributions within a fixed range, e.g. in order to ensure that
our chemical potentials for the solid phase remain reliable.
To achieve this, we treat not justr0 but alsor1 as conserved.
Keepingr1/r0=1 asr0 is varied then ensures that the fluid
phase always has unit mean diameter, and the particle sizes
in the coexisting solid are expected to be comparable. This
ensures that we can use a fixeds range for all calculations,
for which we choosesP f0.7,1.3g.

With r0 and r1 both conserved, the chemical potentials
(21) become

mssd = −
ss − 1d2

2n
+ m0 + m1s s22d

=−
ss − 1 −nm1d2

2n
+

1

2
nm1

2 + m1 + m0 s23d

which is again of the form(20) but now with a varying
reference diametersb=1+nm1. The corresponding scaled
quantities that are to be compared ton andP from the simu-
lations are thenn /sb

2 and Psb
3 [56]. Note finally that our

numerical implementation again uses centered moments,
with weight functionsfss−1d /d0gi rather thansi, but this
causes no conceptual differences. In particular, keeping the
standard momentsr0 andr1 conserved is equivalent to con-
servation of the centered moments withi =0 and i =1, be-
cause of the linear relations between the two sets of mo-
ments.

Figure 18(a) shows our results for the coexistence curve
in the sn /sb

2, Psb
3d plane. Asn increases(starting from the

bottom left corner), both Psb
2 and n /sb

2 initially increase.
However, eventuallyn /sb

2 reaches a maximum valuenmax
=n /sb

2=0.0056. At this point, the slopedsPsb
3d /dsn /sb

2d be-
comes infinite. On further increasingn, the coexistence curve
then bends back, withn /sb

2 decreasing toward zero while the
pressure diverges. Bolhuis and Kofke[8] argued that this
divergence arises because the pressure is measured on the
scale of the meansb of the activity distribution, while the
typical particle diameters in the coexisting phases become
much smaller thansb, by a factor scaling asn /sb

2. The res-
caled pressurePsb

3sn /sb
2d3=Pn3/sb

3 should therefore ap-
proach a constant value in the limitn /sb

2→0. The simula-
tions were consistent with this expectation, and our
theoretical results in Fig. 18(b) are in full agreement. By
extrapolation, we estimate the limiting or “terminal” value of
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the rescaled pressure, i.e., the point where the rescaled coex-
istence curve intersects the vertical axis, asPt=7.9310−5.

The scaling mentioned above implies that, asn becomes
large, the mean particle diameter in the coexisting phases
will be of order sbsn /sb

2d=n /sb, rather thansb. In our
scheme, where the mean diameter in the fluid is fixed at
unity, sb should thus become linear inn. As shown in Fig. 19
(left), this is indeed what we find. A plot of the numerical
derivative of this dependence, in the inset of Fig. 19(left),
also reveals that at smalln values—below those wheren /sb

2

reaches its maximum—the behavior is no longer exactly lin-
ear. This is to be expected considering thatsb=1+nm1 de-
pends on bothn andm1.

The plots in the middle and on the right of Fig. 19 show
particle size distributions in the coexisting fluid and solid
phases at two different values ofn. For smalln=0.022, the
distributions are essentially identical and have widthd
<n1/2=0.02 as expected; they are also close to the activity
distribution, which has its peak atsb=1.02 for thisn. For
larger n=0.082, on the other hand, there is significant frac-
tionation between the fluid and the solid. One can now also
clearly see how the mean particle diameters—which are ex-
actly unity in the fluid, by construction, and around 1.02 in
the solid—become smaller than the mean of the activity dis-
tribution, which issb=1.19 for this value ofn.

To summarize the properties of the coexisting fluid and
solid phases, we plot them in a volume fraction–
polydispersity phase diagram, shown in Fig. 20. As discussed
in detail in[8], a feature which is at first surprising is that the

curves terminate, with the properties of the coexisting phases
approaching finite limits forn→`. One has to bear in mind,
however, that the occurrence of such terminal points is di-
rectly linked to the shape of the imposed chemical potential
distribution and so not physically very meaningful. Indeed,
other shapes can and do give fluids and solids with largerf
and/ord [11].

We obtain the location of the terminal points by plotting
our numerical predictions against 1/n and extrapolating to
1/n=0. The resulting values are compared in Table II with
those obtained in the simulations of[8]. We find excellent
quantitative agreement fornmax, defined as the maximum
value of n /sb

2, and Pt, the terminal value of the rescaled
pressurePn3/sb

3. Similar comments apply to the volume
fractions and polydispersities at the terminal points of the
fluid and solid coexistence curves in Fig. 20. Only the termi-
nal volume fraction of the solid is overestimated somewhat,
but even here the deviation is less than 3%.

FIG. 18. (a) Solid-fluid coexistence pressurePsb
3 as a function

of the imposed widthn /sb
2 of the activity distribution. Both are

scaled appropriately withsb to account for the fact thatsb varies in
our calculation but is held constant in the simulations.(b) The pres-
sure is rescaled toPsb

3sn /sb
2d3=Pn3/sb

3 to show the limiting behav-
ior for n /sb

2→0.

FIG. 19. Left: Plot ofsb as a function onn. The inset shows the
derivative dsb/dn. As expected,sb grows linearly asn becomes
large. The star indicates the value ofn at which n /sb

2 reaches its
maximum and the slope of the pressure plots in Fig. 18 becomes
infinite. Middle and right: Normalized size distributionsnssd of the
coexisting fluid(dashed line) and solid(solid line) phases. The dot-
ted curve gives the shape of the activity distribution expfmssdg.
Middle: For n=0.022, fluid and solid have essentially identical size
distributions of polydispersityd<n1/2=0.02; the corresponding
value of sb is 1.02. Right: Forn=0.082, the size distributions are
significantly different from each other and from the activity distri-
bution, which is now centered aroundsb=1.19.

FIG. 20. Phase diagram for fluid-solid coexistence with imposed
quadratic chemical potential differences. Plotted is the polydisper-
sity d versus the volume fractionf of the coexisting fluid and solid
phases;n increases from bottom left to top right along the curves.
The circles indicate the terminal points reached by extrapolating to
n→`. The dotted lines sketch the approach to the known monodis-
perse limitn→0.
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In conclusion, our theoretical predictions for fluid-solid
coexistence at imposed chemical potential differences are not
just in qualitative but in fact in quantitative agreement with
the outcomes of Monte Carlo simulations. This provides
strong validation for our approach. It demonstrates in par-
ticular that our chosen model free energies for the hard-
sphere fluid and solid are accurate, at least in the range of
relatively small polydispersities studied here.

VII. CONCLUSION AND OUTLOOK

We have studied the equilibrium behavior of size-
polydisperse hard spheres, starting from accurate free energy
expressions for the hard-sphere solid and fluid. Cloud and
shadow curves, which locate the onset of phase coexistence,
were found exactly by using the moment free energy method.
We were also able to calculate the full phase diagram, how-
ever, by using the MFE results as starting points for a solu-
tion of the full phase equilibrium equations.

In contrast to earlier simplified theoretical treatments, we
found no point of equal concentration between fluid and
solid. Rather, the fluid cloud curve continues to larger poly-
dispersities while the coexisting solid shadow always has a
polydispersity d below a “terminal” value of arounddt
<0.06. In this sense the concept of terminal polydispersity
only applies to the solid phase, while any experimentally
observed terminal polydispersity from the fluid side must be
attributed to nonequilibrium effects such as an intervening
kinetic glass transition[22], large nucleation barriers[23] or
the unusual growth kinetics of polydisperse crystals[24].

Concomitant with the absence of the point of equal con-
centration, we also found no reentrant melting. Instead, a
sufficiently compressed polydisperse solid fractionates into
two or more solid phases; our results in this region of the
phase diagram are consistent with previous approximate cal-
culations. In addition, we found that coexistence of several
solids with a fluid phase is also possible. That such phase
splits must exist is clear from the fact that the solid cloud
curve has two branches, describing onset of fluid-solid and
solid-solid phase separation at low and high densities, re-
spectively; a fluid-solid-solid coexistence region begins
where these meet.

We then analyzed the fractionation behavior in detail. As
a general rule, the fluid phases contain the smaller particles

in the system, while the larger ones are found predominantly
in the solid phases. The solid phases have smaller polydis-
persitiesd than the parent phase; this is as expected since
narrower particle size distributions are more easily accom-
modated on a regular lattice. Consistent with this physical
intuition, we also found that there is a strong correlation
between the polydispersityd and the volume fractionf of
coexisting solids, with the denser phases(larger f) having
smallerd. For the fluid phases, on the other hand, we found
larger polydispersities than in the parent. This is because the
fluid contains, together with a relatively narrow distribution
of smaller particles, also residual larger particles that were
not incorporated into any of the solid phases.

Three-dimensional fractionation plots transparently
showed the continuity of the properties of the various phases
across the phase diagram, with each corresponding to a dis-
tinct surface. The individual phases change significantly as
coexistence regions are traversed; this is in contrast to mono-
disperse systems, where only the amounts of coexisting
phases vary. Correspondingly, the pressure in the polydis-
perse case was seen to vary almost smoothly on traversing
several coexistence regions, whereas it would be constant
within each for a monodisperse system. We finally proposed
a method for constructing maximally fractionating observ-
ables, i.e., measurable properties which reveal most clearly
the differences between the various coexisting phases. This
was based on principal components analysis in the space of
the relevant density distributions. The benefits of this method
were modest in our case, but it could be of significant inter-
est for analyzing systematically the phase behavior of sys-
tems with more than one polydisperse attribute, e.g., particle
size and charge.

In the final section we compared our predictions to per-
turbative theories for near-monodisperse systems, finding
full agreement. We also performed a detailed comparison
with Monte Carlo simulation carried out at imposed chemi-
cal potential distribution, where particle size distributions
vary across the phase diagram. The excellent agreement ob-
tained provided strong validation of our approach and in par-
ticular of our choice of model free energies for polydisperse
hard-sphere fluids and solids.

There are a number of possibilities for extending and
complementing the present work. Our study was limited to
systems with relatively narrow size distributions, with poly-
dispersitiesd up to <0.14. At higherd, fluid-fluid demixing
would eventually be expected to occur[48,49]. So far only
the spinodals for this have been calculated, however, and it
would be interesting to understand the topology of the full
phase diagram in this large-d region. One might, for ex-
ample, expect to find coexistence of multiple fluids, but the
conditions required for this are at present unclear.

Quantitative studies of the phase behavior of hard spheres
at larged would require accurate model free energies for
wide particle size distributions. For the fluid, the BMCSL
approximation may continue to be sufficient, although a re-
cent comparison with simulations has revealed some short-
comings[33]. Much more pressing is the need for an accu-
rate free energy for strongly polydisperse hard-sphere solids.
This would allow one to investigate, for example, whether
the dominance of the largest particles at the onset of solid-

TABLE II. Comparison between some characteristic quantities
of fluid-solid coexistence at imposed chemical potential distribu-
tion, as determined in simulations[8] and in the present theoretical
study. Herenmax is the maximum value ofn /sb

2, Pt the terminal
value of the rescaled pressurePn3/sb

3 in the limit n /sb
2→0, ft,f/s

the terminal volume fraction for the fluid/solid phases, anddt,f/s the
corresponding terminal polydispersity.

Quantity Bolhuis and Kofke[8] Present work

nmax 0.0056 0.0056

Pt 7.9310−5 7.9310−5

sft,f ,dt,fd (0.545, 0.12) (0.548, 0.113)

sft,s,dt,sd (0.575, 0.057) (0.592, 0.057)
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solid coexistence which we found for Schulz size distribu-
tions is a genuine physical effect. A quantitative verification
of the prediction that polydisperse hard spheres with suffi-
ciently fat-tailed size distributions split off multiple fraction-
ated solids even at low density[54] would also be of interest.
A significant challenge in the construction of approximate
free energies for hard sphere solids is that the simplifying
assumption of a substitutionally disordered structure—which
was implicit in our study—may break down at large polydis-
persities. Competing substitutionally ordered structures
would then also have to be considered.

Finally, it will be exciting to generalize our approach to
more complex colloidal systems, by for example including
attractive interactions or extending the scope to polydisperse
colloid-polymer mixtures. Work on these scenarios is cur-
rently under way.
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