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Fractionation effects in phase equilibria of polydisperse hard-sphere colloids
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The equilibrium phase behavior of hard spheres with size polydispersity is studied theoretically. We solve
numerically the exact phase equilibrium equations that result from accurate free energy expressions for the
fluid and solid phases, while accounting fully for size fractionation between coexisting phases. Fluids up to the
largest polydispersities that we can stydyound 14% can phase separate by splitting off a solid with a much
narrower size distribution. This shows that experimentally observed terminal polydispersities above which
phase separation no longer occurs must be due to nonequilibrium effects. We find no evidence of reentrant
melting; instead, sufficiently compressed solids phase separate into two or more solid phases. Under appropri-
ate conditions, coexistence of multiple solids with a fluid phase is also predicted. The solids have smaller
polydispersities than the parent phase as expected, while the reverse is true for the fluid phase, which contains
predominantly smaller particles but also residual amounts of the larger ones. The properties of the coexisting
phases are studied in detail; mean diameter, polydispersity, and volume fraction of the phases all reveal marked
fractionation. We also propose a method for constructing quantities that optimally distinguish between the
coexisting phases, using principal component analysis in the space of density distributions. We conclude by
comparing our predictions to Monte Carlo simulations at imposed chemical potential distribution, and find
excellent agreement.
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[. INTRODUCTION whereas the spheres in the classical model are identically
sized, colloidal particles have an inevitable spread of diam-
i . eters. The magnitude of this spread is conveniently charac-
Hard spheres are particles that do not interact except Vigerized by the paramete; which is often also referred to as
an infinite repulsion on contact. In a hard-sphere systemyolydispersity and measures the standard deviation of the

there is no contribution to the internal energyfrom inter-  giameter distribution normalized by its mean:
particle forces sincé) is zero for all the allowed configura-

tions (we ignore the inconsequential kinetic energy contribu- 5= (o? =)
tion). Minimizing the free energyF=U-TS is thus B ra '
equivalent to maximizing the entrop$ the structure and . ] .
phase behavior of hard spheres is determined solely by efiere the averages and o are defined via
tropy. Temperatur@d only features as a trivial factor setting _ _
the energy scale. pi = po' = f do p(o)d, (2

The hard-sphere model was originally introduced as a
mathematically simple model of atomic liquidsee, e.9., with p(o) the density distributiorof the system. The latter is
[1]), but has since also been recognized as a useful basifsfined so that the number density of particles with diameter
model for complex fluid¢$2] such as sphericaiolloids Col-  petweeno and o+do is given byp(o)do. The total density
loidal particles coated with a thin polymeric layer so that;g thenp=fda p(c), andn(o)=p(a)/p is the normalized di-
strong steric repulsions dominate the attractive dispersioq ater distribution. The; are the moments of the density

forces between the colloidal cores behave in many ways istribution, with po=p. The presence of polydispersity in

hard spheres. Indeed, crystallization can be observed at defy, system brings in a new parameter that allows us to dis-

sities similar to those predicted by computer simulation forijn . ish between size distributions of different widths; the
hard splleres, with a single-phase fluid below \f.)lume fraCshape of the diameter distribution is of course also relevant.
tions ¢~0.494, fluid-solid coexistence at up #~=0.545,  compared to the monodisperse case, polydispersity causes

and a single-phase solid at higher volume fractigBsll.  seyeral qualitatively different phenomena which have re-
Measurements of the osmotic pressure and compressibilityai,ad much interest in recent years.

similarly show very good agreement with predicted hard-
sphere propertief5]. B. Phenomena arising from polydispersity

There is, however, one important and unavoidable differ- -ty effect of polydispersity on the phase behavior of hard
ence between colloids and the classical hard-sphere mOdgbheres has been investigated by experim¢ds, com-
puter simulationg7-11], density functional theorigd 2,13,
and simplified analytical theorigd0,14-20Q. We will now
*Electronic address: moreno.fasolo@kcl.ac.uk outline the main findings and introduce the relevant termi-
TElectronic address: peter.sollich@kcl.ac.uk nology.

A. The hard-sphere model

(1)
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FIG. 1. Sketch of the fluidF) and solid(S) phase boundaries FIG. 2. Sketch of fluidF) and multiple solid(S) phase coex-
for polydisperse hard spheres, followifig8]. The boundaries are istences in polydisperse hard spheres, followibg. Approximate
plotted as polydispersitys versus volume fractionp. The fluid ~ Phase boundaries are plotted as polydispersityersus volume
boundary approaches the solid one until they meet trminal fraction ¢. For sufficiently larges and ¢, coexistence of several
polydispersitys. For & just below 8, this scenario suggestsen-  solids is predicted; see text for discussion.
trant melting compressing the crystal to sufficiently high volume
fraction should transform it back into a fluid. basic analysis by Bartlett and Warrgh8] ignores fraction-
ation, i.e., the fact that coexisting phases need not have iden-

polydispersity shouldlestabilize the crystal phasbecause :'ﬁal diameter d'sﬁ:'bu“‘?ns as,,'%’?g ‘."‘bs the)(/o)combéne lto give
it is difficult to accommodate a range of diameters in a lattice "€ correct overall or “parent” distributiop™(o). Bartlett
structure. Experiments have indeed shown that crystallizaand Warren did however also investigate fractionation effects

tion is suppressed above tarminal polydispersityof 5  approximately, by using a MFE wittwo density variables
~0.12[3,6]. Since then much theoretical work has focusedincluded,p, andp,=po. They concluded that the phase dia-
on estimatings,. Dickinsonet al. [7], for example, extrapo- 9ram topology remained qualitatively unchanged; quantita-
lated the decrease of the volume change on melting witfively, the point of equal concentration was shifted to higher
polydispersity to zero, obtaining an estimatespf 0.12. Pu-  density and lower polydispersity. It has to be borne in mind,
sey[14] used a simple Lindemann-type criterion to estimatehowever, that while the approach [if8] allowed coexisting
that the |arger Spheres in a po|ydisperse system would dié:).hases-to have different mean diam-et.ers, it ImpIICItIy Stl”
rupt the crystal structure abov@~0.06-0.12. McRae and constrained them to have _the samé¢This is because, within
Haymet[13] used density functional theoFT) and found the MFE method applied to the Schulz pridR(o)
that there was no crystallisation aboge=0.05. Barrat and > o€ P of [18], the density distributions p(o)
Hansen[12] also employed DFT, estimating the free energy=R(o)e""™17u g%e*1=# bl in all phases are also Schulz,
difference between fluid and solid. Taken together, this bodyvith commonz and therefore commod=(1+2)"2] On the

of theoretical work suggests that the terminal polydispersityother hand, numerical simulations that allow for fraction-
arises from a progressive narrowing of the fluid-solid coex-ation show that a solid with a narrow size distribution can
istence region with increasing, with phase boundaries coexist with an essentially arbitrarily polydisperse fluid
meeting ats; [13,15 in a point that has been identified as [8,9,1]. This suggests that the prediction of reentrant melt-
one of equal concentratigi 8] (rather than a critical poipt ~ ing should be reexamined theoretically, allowing for such

Bartlett and Warrerj18] also foundreentrant meltingon  fractionation effects. Conceptually, it also implies that the
the high-density side of this point: fa¥ just below 8, they  concept of a terminal polydispersity is likely to be useful
predicted that compressing a crystal could transform it backnly for the solid but not for the fluid, and we will see this
into a fluid. Figure 1 shows a sketch of this scenario. confirmed below.

Physically, the existence of reentrant melting would sug- Fractionation has also been predicted to leasbia-solid
gest that, while in the monodisperse case the solid has theoexistencd16,17,21, where a broad diameter distribution
lower free energy at all volume fractions abaye=55%, the is split into a number of narrower solid fractions. This occurs
fluid can become preferred again at largef the polydis-  because the loss of entropy of mixing is outweighed by the
persity is sufficiently large. This result is compatible with the better packing, and therefore higher entropy, of crystals with
intuition that polydispersityreducesthe maximum packing narrow size distribution; accordingly, as the overall polydis-
fraction in a crystalsince a range of diameters need to bepersity of the system grows, the number of coexisting solids
accommodated on uniformly spaced lattice itaghile it  is predicted to increase. Figure 2 sketches this effect, follow-
increaseshe maximum packing fraction in the fluid, where ing the treatment of16]. There is no coexistence region
smaller spheres should be able to fill “holes” between largebetween fluid and solid, due to a simplification in the analy-
particles more easily. sis of [16]: rather than solving the phase equilibrium condi-

This intuition can be made more quantitative by compar4ions, only the free energies were equated between the fluid
ing the fluid and solid free energi¢21] with the aid of the and the(one or severalsolid phases. The resulting lines in
moment free energyMFE) method described below. The the phase diagram generally lie inside the actual phase sepa-

First, it is intuitively clear[14] that significant diameter
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ration region, but give a rough guide to the phase transitions TABLE |. Relations between dimensional and dimensionless
that can occur. The parent diameter distribution considereduantities. All dimensional quantities except for the ugitsr,, and
had a “top hat” form(uniform between given minimum and vo themselves are denoted by tildes.

maximum diameteps and for multiple solids fractionation

was assumed to be “hard,” with the parent distribution split Dimensionless Dimensional
into nonoverlapping top hat distributions with identical poly- B 5/
dispersities. 7 B aioo

Previous work as described above leaves open a number f - Boof
of questions. The rather drastic, and differing, approxima- P = BuoP
tions for size fractionation used in previous studies of reen- (o) = 0@
trant melting and solid-solid coexistenf#-18,21, as de- o _ (ol 07,
scribed above, leave the relative importance of these two o _ Ee o
phenomena unclear. Theoretical calculations that account o) - Bjj(ez)

M = oM

fully for fractionation remain restricted to highly simplified
van der Waals free energi€s9]. Numerical simulations can
in principle also capture arbitrary fractionation behavior, but

have been carried out at constant chemical potential distribu- _ _ ex(f -

tion [8,9,17. As explained in more detail in Sec. VI, the f—fdap(o)[ln plo) =11+ 15p}). ©®
system’s overall particle size distribution can then chang
dramatically across the phase diagram. This is in contrast t

the experimental situation and so limits the applicability of ! ) D _
Broglie wavelength of particles with diameter We discard

the results. . ; . ) .
Our main aim in this study is, therefore, to calculate thelhiS because it only contributes folinear terms inp(o);

equilibrium phase behavior of polydisperse hard spheres ofhese are irrelevant for the calculation o_f phgsg equilibria.
the basis of accurate free energy expressions, taking full ad-ne excessiree energyf®* in Eq. (3) can, in principle, de-
count of fractionation and going beyond previous work onPend on all details op(o) and therefore on all of its mo-
fluid-solid and solid-solid coexistence. The experimentallyments p;, but we will be concerned withiruncatable free
observed behavior of hard-sphere colloids will of course als@nergies27]. For these, the dependence is only through a
depend omonequilibrium effectse.g., the presence of a ki- finite number of moments, for us specificafly, ..., ps.
netic glass transitiof22], anomalously large nucleation bar- ~_Strictly speaking, Eq3) gives the free energyensity we
riers [23], or the growth kinetics of polydisperse crystals will continue to ref_er to this as f[he fre_:e energy for short.
[24]. Nevertheless, the equilibrium phase behavior needs t8!S0, all quantities in Eq(3) are dimensionless: we assume
be understood as a baseline from which nonequilibrium efthat sphere diameters are measured in units of some refer-
fects can be properly attributed. Also, more of the equilib-€nce valuer,, that all densities are made dimensionless by
rium behavior may be observable under microgravity condiimultiplying by the volumevo=o/6 of a reference sphere,
tions, where the glass transition is shifted to higher densitiednd that all energies are measured in unit§ sfL/g. Bolt-
or even absen25]. zmann's constarkg is set to 1 throughout. Free energy and
We begin in Sec. Il by defining the free energies we use t@ressure are then in units &f v, for example. Table I sum-
describe the fluid and solid phases of polydisperse harfarizes the reIano_n; between |mportant_d|men3|0nlt_ass and
spheres. Section Il reviews the moment free energy methogdlimensional quantities. Conveniently, with our choice of
and its numerical implementation for solving the phase equilinits ps= ¢ is simply the volume fraction of spheres.
librium conditions. In Sec. IV we then describe the basic For thefluid phase of polydisperse hard spheres, the most
features of the phase behavior that we find; a short accouccurate free energy approximation available is the generali-
of these results has appeared26]. Section V describes in Zation by Salacuse and Stg#8] of the equation of state due
detail the fractionation effects that we predict, and introduced® Boublik, Mansoori, Carnahan, Starling, and Leland
a method for constructing optimal visualizations of polydis-(BMCSL) [29,3Q; for the monodisperse case this reproduces
perse phase behavior. Section VI, finally, compares our rethe Carnahan-Starling equation of stgdd]. In our dimen-
sults briefly to perturbative theories for the near-Sionless quantities, the BMCSL expression for the excess

monodisperse limit, and in more detail to Monte Carlofree energy takes the form

the ideal part, the argument of the logarithm should in
principle contain a factor oh3(¢), where \(o) is the de

simulations at constant chemical potential differences. The o2 3p1ps P2
agreement is very good, thus validating our approach. We f&X= (—g = po |IN(1—p3) + + Z 5. (4
P3 1-ps ps(l-p3)

conclude in Sec. VII with a summary and outlook toward
future work. As anticipated above, this is truncatable, involving only the
momentsp;=fdo p(o)d® (=0, ..., 3) of the density distribu-
tion. Bartlett [32] provided an elegant argument why—at
Il. FREE ENERGIES least within a virial expansion—such a moment structure of
the excess free energy for the hard-sphere fluid should in fact
Our starting point is the decomposition of the free energybe exact. Recent studi¢83] have shown some deviations
of a polydisperse system into an ideal and an excess part, between simulation results and the BMCSL approximation
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for fluids with polydispersities 06=0.25 and above. In our with the dependence of the excess free energy(@n ex-
study we explore polydispersities only upde=0.14, and in  pressed through @ossibly infinite set of momentg;,
this range we expect the BMCSL approximation to be rea-
sonable. u10) =
For phase coexistence calculations we will also need to oplo
have a compact expression for the excess free energy of the . . )
polydisperse hard-sphemystal This is not at all a trivial A comparison with the fornt5) of the excess chemical po-
question. In principle, the structure of a polydisperse crystaj€ntials reveals that® can only depend omy, ...,ps, as
could be rather complex, with different sites inside the crysclaimed. The same is then true also for ya€=of*/dp; (i
talline unit cell occupied preferentially by particles with dif- =0 ---, 3), which are recognized as excess moment chemical
ferent ranges of diameters. The system would then effed?0tentials. The excess free energy opalydispersehard-
tively be an ordered solid solutiaisee, e.g.[34,35). Most sphere mixture can t'hus bel deduced from tha’g of any other
theoretical work makes the simplifying assumption that ongMixture which is equivalent in the sense of having saene
has a substitutionally disordered solid, where crystal sites ar@o: -+ s- These moments determine the number density
assumed to be occupied equally likely by particles of anya!ong with the basic geometric properties of mean pamole
diameter(see, e.g.[36,37). dl_amete.r,.surface area, and _vqume. The simplest mixture
A simple-minded but popular approach to estimating thewith a flnlte nyr_nber of species that can match any given
free energy is cell theory, first introduced by Kirkwof@B]  Po:--:P3iS @ bidisperse one. Indeeq_, this has fo_ur degrees of
and widely used sincesee, e.g17]): particles are treated as freedom, namel_y, the number densme_s anq particle diameters
independent but confined to an effective cell formed by theif°f the two species. We can therefore identify the excess free
neighbors. However, it is clear that for a polydisperse syster§n€rgy of a polydisperse hard-sphere solid with that of the
this is unlikely to be a useful approximation. For example,duivalent bidisperse system. For the latter, we follow Bar-
the cells of the model would have to be made large enough tflett in using the fits to the simulation data of Kranendatk

accommodate the particles with the largest diameter, even - [37]. Because these data are obtained for a fcc substitu-
the fraction of such particles is very small. tionally disordered crystal, the implicit assumption is that the

We follow instead the more quantitative, “geometric” ap- polydigpefse crystal wiI_I have the same structure. T.his as-
proach proposed by Bartlefl5,32. He assumed that the Sumption is also made in all theoretical work on continuous
excess free energy of the solid depends on the same momer§ig€ Polydispersity to date. For the modest polydispersities
Po,-..,ps as that of the fluid. This can be motivated from e_xplored in this study we would expect other, e.g., substltu-
scaled particle theor§89,40, which suggests that the excess tionally ordered, structures not to be relevant; at la@ehis

chemical potentials®{(c) of spheres of diametar is given ~ May well no longer apply. _
by a cubic polynomial ino There is a difficulty in Bartlett’s approach with the deter-

mination of the excess moment chemical potentials
1oty u3% He fixed ug* and w3 to the exact results derived
from the Widom insertion principleug*=-In(1-p3) and
u3*=P. The remaining two excess moment chemical poten-
The coefficientsug and u3* can be determined from the tials 4 and u$* can then be found from the bidisperse simu-
Widom insertion principle[41]. The latter can be stated as |ation data, by requiring:®{(o) at the diameters of the small
saying that exp-u®(0)] is the ratio of the(excess parts of and large spheres to agree with the simulated excess chemi-
the) partition functions forN+1 andN particles, where the cal potentials of the two species. However, because of the
added particle has diameter. [Equivalently the excess approximate character of the excess free energyuftier)
chemical potential may be interpreted as the work of insertgerived by this route do not obey the thermodynamic consis-
ing an(N+1)th hard sph_ere of diametef_into a system qN_ tency requirementu(a)/ sp(a')=u(a")! 8p(c), which
sp_heres].ln a system yv_lth purely h_ard interactions, this im- corresponds t(ﬂﬂiex/(ypj:(mfx/api for the excess moment
plies thatu®(o) is positive and an increasing function @f  chemical potentials. To avoid this in our study, we assign the
For large o, the presence of the added particle effectivelyjatter by explicitly evaluating the derivatives of the excess
just reduces thj—} volume available to theothers, giving free energy ut*=df®/ gp;. Thermodynamic consistency is
u®(o)=Pa> [=P(m/6)5° in dimensional units henceu$*  then automatic. The price we pay is that aif¥(o) no longer
=P. For small o, one notes that the ratio of th@xcesy has the theoretically expected asymptotic behavior dor
partition functions is also the average Boltzmann factor of—0 ando— . This means that we have to restrict use of
the added particle, the average being over the Boltzmanaur solid free energy to relatively narrow diameter distribu-
distribution of theN-particle system. In the hard-sphere case tions, as discussed in more detail below.

exd —u®(o)] is thus the probability of being able to insert a

ex a feX

=2 uo, p=
1

ap

p(0) = ug + o + uSo? + uge®. (5)

particle without overlap. In the limit of vanishing particle lIl. NUMERICAL METHOD
diameter this probability is 1¢, giving u®(o— 0)=ug‘=
-In(1-¢). A. Moment free energy

One now notes that Eq5) implies that the excess free Our computational approach for determining the phase
energy can depend only on the momepgs...,ps. Indeed, behavior of polydisperse hard spheres is based on the mo-
from the definition of the excess chemical potentials andment free energy method. We give a brief outline here; de-
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tails can be found irf20,27,42,43 Recall first the phase p(o)
equilibrium conditions for coexistence pfphases, in a sys- f=j do P(U)<|n@ - 1) +1%({pi}). (11)
tem described by a truncatable free energy. By definition, the
excess free energy then depends on a finite sét ¢fener-  In the first(ideal) term, a normalizing factoR(o) has been
alized momentsp;=[do p(o)w;(o) defined by weight func- included inside the logarithm. This has no effect on the exact
tions wi(o); above we hadvi(o)=0¢". In coexisting phases, thermodynamics because it contributes only terms linear in
the chemical potentialg(o) and pressur® must be equal. p(o), but will play a central role below. One can now argue
The former are, by differentiation of E¢3), that the most important moments to treat correctly in the
calculation of phase equilibria are those that actually appear
: : e in the excess free enerd§({p;}). Accordingly, one imposes
plo) = sp(a) In p(a) + E piWi(o) 6 particle conservation8) only for the p;, but allows it to be
' violated in other details of the density distributigio)
with u™=af®/gp; as before. The pressure is given by thewhich do not affect thep;. These “transverse” degrees of
thermodynamic relation freedom are instead chosen to minimize the free en@rgy
and more precisely its ideal part since the excess contribution

o is a constant for fixed values of thg. This minimization
P=-f+ f do w(0)p(a) = po— 1%+ 2 ufpi.  (7)  gives
1

p(o) = R(a)exp@ Aiwi(cr)) (12)

To the conditions of equality of chemical potentials and pres-

sure we need to add the requirement of conservation of par- o )
ticle number for each species which reads where the Lagrange multipliers; are chosen to give the
desired values of the moments

S 0@ @) = pO( ) 8
o) = p = f dawi(U)R(U)eXP(E )\iWJ(U))' (13
J

wherea=1,...,p labels the phases an” is the fraction of
the system volume occupied by phaseOne then finds from
equality of theu(o), Eq. (6), together with particle conser-
vation (8), that the density distributions in coexisting phases froom({pi}) = (2 \ipi — p0> +1({p}). (14)
can be written as i

The corresponding minimum value bfas given in Eq(11)
then defines thenoment free energy

expl S A wi(o) Since the Lagrange multipliers afat least implicitly func-
— o tions of the momentg;, the MFE depends only on the.

@(g) = p (o) . (99  These can now be viewed as densities of “quasispecies” of

P P » » - - .

v Vexp(z Aj Wi(U)) particles, allowing for example the calculation of moment
4 i chemical potential§27]

Here thex!® must obe af afex
i Yy = -mem o =\ +
d pi d pi

(15

N =g (10) _ _
and the corresponding pressite X, u;p; — fmom Which turns
and thec; are undetermined constants that do not affect th@ut to be identical to the exact expression. A finite-
density distributiong9). One can fix them, e.g., by requiring dimensional phase diagram can thus be constructed from
all the\*’ in one of the phases to be zero. A little reflection fmom according to the usual tangency plane rules, ignoring
then shows that Eq(10) together withS, »@=1 and the the underlying polydisperse nature of the system. Obviously,
equality of the pressured) in all phases give a closed sys- though, the results now depend &fo). To understand its
tem of nonlinear equations for tpgM + 1) variables\(” and ~ influence, one notes that the MFE is simply the free energy
v@. A solution can thus, in principle, be found by a standard®f Phases in which the density distributiopé) are of the
algorithm such as Newton-Raphson. Generating an initiafo™ (12). To ensure that the parent phase is contained in this
point from which such an algorithm will converge, however, famlly, one n((g)rmally chooses its den5|ty_ distribution as the
is still a nontrivial problem, especially when more than two Prior, R(a)=p™(0); the MFE procedure will then be exactly
phases coexist and/or many momeptsare involved. Fur- valid whenever the density distributions actually arising in
thermore, the nonlinear phase equilibrium equations permf€ various coexisting phases are members of the corre-
no simple geometrical interpretation or qualitative insightSPonding family
akin to the construction of phase diagrams from the free _ 0
energy surface of a finite mixture. plo)=p (O’)GX[(Ei: AiWi(G))' (1)
The moment free energy addresses these two disadvan-

tages. To construct it, one starts by modifying the free energyt is easy to show from Eq(9) that this condition holds
decomposition(3) to whenever all but one of a set of coexisting phases are of
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infinitesimal volume compared to the majority phase. Ac-We therefore restrict use of the solid free energy to phases
cordingly, the MFE yieldsexactlythe onset of phase of co- with polydispersity below this value. Reassuringly, we will
existence, conventionally represented via cloud and shadogee below that all solid phases occurring in equilibrium
curves(see below. Similarly, one can show that spinodals phase splits are well below this threshold.
and critical points are found exact[27]. A further constraint on the use of the solid free energy
For coexistences involving finite amounts of different arises from the fact that, as explained above, our excess
phases the MFE only gives approximate results, since differehemical potentialg«®*(o) do not have the correct limiting
ent density distributions from the fami(§L6), corresponding behavior predicted from the Widom insertion principle for
to two (or morg phases arising from the same parentoc— 0 ando— . Physically, this is again plausible because
p%(0), do not in general add to recover the parent distribuwe are extrapolating to sphere diameters far from the mean
tion itself. Moreover, from Gibbs’ phase rule, a MFE depend-of the distribution, and therefore far from the regime where
ing on M moments will not predict more thavl +1 coexist-  the simulation data will be reliable. We will therefore always
ing phases, while we know that a polydisperse system can iwork with diameter distributions with hard cutoffs either side
principle separate into an arbitrary number of phases. Botlof the mean so that the behavior @ o) for very small or
of these shortcomings can be overcome by including extréarge o never comes into play. Finally, we also chose to
moments within the MFE. By choosing the weight functionsrestrict the volume fractions for the solid branch of the free
of the extra moments adaptively, the properties of the coexenergy to 0.494 ¢<0.74, which are, respectively, the
isting phases can then be predicted with in principle arbitrarysmallest and largest for which monodisperse hard spheres
accuracy[27,44. Importantly for us, the results can in fact at equilibrium exhibit a crystalline solid phase. This is in
be used as initial points from which a solution of the exactorder to ensure that the solid free energy is physically well
phase equilibrium problem can be converged successfullgefined. For continuous single-peaked size distributions,
[45,44. This is the technique that we use here. Once a phassimulations[10] suggest that the maximum volume fraction
split for a given parent distributiop®(c) has been found, in polydisperse hard-sphere crystals is in fact below 0.74,
care needs to be taken to check that it is globally stable, i.eheing a decreasing function &f (For specific discrete size
that no phase split of lower free energy exigg]. Adopting  distributions, on the other hand, higher volume fractions can
this procedure, we are able to calculate coexistence of up toe achieved; e.g., one can get arbitrarily closeptol by
five phases, which so far has been possible only for muciteratively adding smaller spheres to fill the holes between
simpler free energies depending on a single density momenhe existing ones.

(see, e.qg.[27)).

IV. PHASE BEHAVIOR
B. Implementation .
o ) ) We now describe our results for the overall phase behav-
We focus below on parent distributions with unit meanjq. of polydisperse hard spheres. Our numerical work re-

particle diameterr; any other choice could be absorbed into qyires a choice to be made for the parental diameter distri-
the unit lengthoy. For ismall polydispersity, the standard  ption. We focus mostly on a triangular distribution, where
momentSpi_:fdo p(a)_o th_en b.ecor.ne very (?Iose to gach n<o>(0):p(0)(a)/pgo) is given by
other, and in fact strictly identical in the limi#— 0. This
causes numerical difficulties, and we therefore work instead O L)oo~ (1-w) forl-wso<1,
with Fhe _ce_ntred momentg’= [do p(o)[ (o~ 1)/_50]' which n(o) = W | (1+w) -0 forl<o=<1+w,
remain distinct even for smadl. The factord, is included to
ensure that the moments are all of comparable magnitud&hose width parametew is related to the polydispersity by
We therefore choose it in the middle of the range of polydisW=\6 é. For the moderate values @fof interest here one
persitiess that we study, with typicallys,=0.05. The cen- expects other distribution shapes to give qualitatively similar
tered moments are obviously linearly related to the conventesults, based on the intuition that for narrow size distribu-
tional ones, €.9#5=(p1—po)/ &. The BMCSL and solid free tions ¢ is the key parameter controlling the phase behavior
energies can therefore readily be reexpressed in terms of thé4l. To verify this, we also consider an asymmetric size
centered moments. Because the transformation between tgéstribution chosen to be of the Schulz form® (o)
two sets of moments is linear, the corresponding sets of ext 0% %7, and cut off outside the range<[0.8,1,4. For
cess moment chemical potentigl§*=af®*/dp; are also lin- & narrow distribution, i.e., large, where the cutoffs are un-
early related and easily converted into each other. important, the polydispersity is then related to the parameter
We combine the fluid and solid branches of our excesg by 6°=1/(z+1) and the mean diameter is unity as before.
free energy by simply taking the minimum for a given set of
moments. Some care is needed here: because the solid free
energy is derived from fits to simulation data for bidisperse
systems(see abovg we expect it to be reliable only in the The most basic question we can ask about phase behavior
region spanned by the simulatiof37]. The smallest diam- regards the onset of phase separation coming from single-
eter ratio investigated in the simulations is=0.85. The phase regions. Increasing the volume fracijpaf the parent
maximum polydispersity that can be reached in a bidispersat given polydispersitys, a single-phase fluidF) will first
system for this diameter ratio i8=(a+1/a-2)2/2~0.08.  separate into coexisting fluid and soli) phases at the so-

A. Onset of phase coexistence
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U e e e A B m e o FIG. 4. Normalised size distributiongo)=p(o)/p, for the co-
~ i - existing fluid and shadow phases at the fluid cloud point, for parent
0.12— B ®) _] distributions with polydispersitie$=0.05 (top) and §=0.10 (bot-
- - tom) and triangulagleft) and Schulzright) shape. Solid lines show
0.10— ) - the cloud fluid, which is identical to the parent, and dashed lines the
. F shadow solid.
So.osr the solid and fluid phase boundaries which a theory with
0,06 fixed 6 [18] predicts, along with the resulting reentrant melt-
L ing (Fig. 1). These findings are in qualitative accord with
ooaf F+s Monte Carlo simulations for the simpler case of fixed chemi-
) cal potentialg8,9,11], discussed in detail in Sec. VI below.
iy The results imply, in particular, that the terminal polydisper-
0.02 sity & cannot be defined as the point beyond which a fluid at
| PRI AR I T equilibrium will no longer phase separat§; makes sense

0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64 0.66 only as the maximum polydispersity at which a single solid
phase can exigisee belowy
The fractionation effects described above can be seen
FIG. 3. Cloud curvesthick) and shadow curveghin), for poly-  more explicitly by comparing thénormalized diameter dis-
disperse hard spheres with a triangul@rand Schulzb) diameter  triputions of the fluid cloud and solid shadow phases, as
distribution. The curves show polydispersigwersus volume frac- displayed in Fig. 4 foiparenta) polydispersity5=0.05 and
tion ¢ for the cloud and shadow phases; dashed lines link samplg=0.10. At the cloud point the size distribution in the fluid
cloud-shadow pairs. The solich) cloud curve has two branches, cgincides with the parent distribution as it must. The distri-
with onset of F-S and S-S coexistence at low and high volume p, iinn in the coexisting shadow solid, on the other hand,
fractions, respectively. Where they meet, a triple point 0CCUISyg,iateq increasingly from that of the parent as the parental
squares mark the cloud phase .‘"’md t.he two coexisting Shadows.thefﬁ'creases. In particular, the solid contains predominantly the
In the Schulz plot, the dotted lines indicate the expected contlnual-ar er particles and has a rather more narrow spread of sizes
tions of the fluid cloud and corresponding shadow curve beyond the gerp . . . ow sp ’
region where our numerical methods work reliably. consistent with the small solid polyd|sper5|t|es found above_.
We will see shortly that these properties are rather generic
called cloud point. The locus of all cloud points in thg,§)  and persist inside the coexistence region.
plane defines the fluid cloud curve. The incipient phase cor- We now assess the effect of the shape of the particle size
responding to the cloud point is called the “shadow” solid;distribution on these results. Figure 3 shows that the fluid
its properties define the solid shadow curve. These curves asdoud and solid shadow curves are qualitatively and even
shown in Fig. 3 for a triangular parent distribution. An im- quantitatively very similar for the triangular and Schulz dis-
portant feature is that the fluid cloud curve continuestributions.(Numerically, we can only reach=0.10 for the
throughout the whole range of polydispersities that we caratter, but have no reason to expect that this is a physical
investigate numerically: even @&=0.14, a hard-sphere fluid feature and indicate the expected continuation of the curves
will eventually split off a solid on compression. This is in by dotted lines. Figure 4(right) demonstrates that the quali-
marked contrast to the phase diagranj18] as sketched in tative features of the fractionation behavior are also the same
Fig. 1. The key difference is that our analysis accounts fullybetween the two distributions, consistent with our intuition
for fractionation: Fig. 3 shows that the coexisting shadowthat variations in the shape of the parental size distribution
solid always has a relatively modest polydispersity, with have, for givens, only a minor effect.
never rising above 0.06 even when the cloud fluid ldas We next consider the onset of phase separation coming
=0.14. This fractionation effect prevents the convergence ofrom the single-phase solid, which defines the solid cloud
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shadow phases, on the high-density branch of the solid cloud curve

a_1t 6=0.05. Left, triangular parent; right, S_chulz parent. The solid FIG. 6. Fractional system volume occupied by the newly form-
lines show the cloud phase, the dashed lines the shadow. Note tfﬂf;g solid, v, versus the parent volume fractios, for cutoffs
strong size fractionation effects. imposing three different ranges of particle sizess indicated in

. - i gaktsvey
curve and corresponding shadow curve. Initially we focusthe legend. Once enough of the new solid phase etadtsvev

. . . Co . ~0.08 the behavior is essentially cutoff independent. The cloud
again on the trlangular s]ze distribution. .Flgur@).Sshows oint,&on the other hand, Wheréz)yextrapolatespto zero, depends
that a Qecreasg n d.en3|ty at low pollydlspers.|t|e5 leads t§trongly on the cutoff; this is more clearly visible in the linear-log
conventional fluid-solid phase separation. At highghow- plot in the inset
ever, the solid cloud curve acquires a second branch at higher '
densities. This is broadly analogous to the reentrant phase

boundary found irf18], but with the crucial difference that

th ; h tes into t lids rather th ﬁatoff at 0=1.2 which we impose in the Schulz case; note
€ system phase separates into two sollds rather than a Soja i, thecloud solid (solid line) this cutoff is hardly dis-

anc_i a fluid. The wo bra_mche_s meet at a triple point, Here_ th%ernible. In the triangular case, there is no sharp cutoff effect
solid cloud phase coexists wittvo shadow phases, one fluid 3 )
on the shadow solid: the form of the parent forces all size

and lid, k in Fi@. o .
one solid, as marked by the squares in Fig). The distributions to drop to zero continuously at the upper end.

triple point is located a6~ 0.07; since it is at the maximum .
of both branches of the solid cloud curve, this value also '€ @bove observations for the Schulz parent suggest an

gives the terminal polydispersity beyond which solids with analogy with recent results for isotropic-nematic phase sepa-

triangular diameter distribution are unstable against phasétion in hard rodlike particlep46,47. For sufficiently wide
separation. rod length distributions, one observes there that the shadow
Figure 5(left) displays the diameter distributions for the Nematic phase can become dominated by the longest rods in
cloud and shadow solids, ai=0.05 on the high-density the system, i.e., those with lengths near the cutoff, even
branch of the solid cloud curve. In comparison with Fig. 4,though these make up only a small fraction of the parent
what is striking is that the fractionation effects at the onset ofdistribution. Such cutoff effects are important only near the
solid-solid coexistence are much stronger than for fluid-soliccloud point: as soon as the new phase occupies a nonzero
phase separation at the samd his is consistent with physi- fraction of the overall system volume, particle conservation
cal intuition. The fluid-solid phase separation exists even irprevents it from containing an atypically large number of
the monodisperse limit. The presence of polydispersity actéong rods. To test whether we have a similar situation for the
as a small perturbation to this transition, certainly at [Bw onset of solid-solid separation from a Schulz parent, we have
so that fractionation effects can be viewed as incidentalvaried the cutoff on the sphere diameters. Figure 6 plots the
Solid-solid phase separation, on the other hand, is driven bfractional system volume® occupied by the new solid
polydispersity and could not take place without fractionation.against the parent colloid volume fraction. We observe that
We compare again at this stage with the results for the® is indeed cutoff independent well inside the coexistence
Schulz parent distribution. Figurgl8 shows that the cloud region, where it is non-negligible. The position of the cloud
and shadow curves look qualitatively similar to the triangularpoint itself, on the other hand, whet¢? extrapolates to
case. Quantitatively, the low-density branch of the solidzero, is strongly cutoff dependent. We conclude, therefore,
cloud curve now has a maximum, giving the terminal poly-that at the onset of solid-solid coexistence from a Schulz
dispersity ass;~0.06. The triple point is at slightly smaller parent with6=0.05 the shadow solid is cutoff dominated, in
8, and the whole high-density branch of the solid cloudanalogy with the shadow nematics in the Onsager model of
curve—which describes the onset of solid-solid phasdong hard rodg46,47.
separation—is shifted to smallércompared to the triangular One may wonder whether the cutoff effects described
parent case. Figure Bight) shows the diameter distributions above are an artifact of the approximate nature of our excess
for the cloud and shadow solids, at the onset of phase sepahemical potentials for the polydisperse solid. We cannot
ration at5=0.05. Compared to the triangular parent, the frac-give a definitive answer to this question here, but suggest
tionation effects are now even stronger. In fact, the size diswhy such effects could be expected. From &), equilib-
tribution of the shadow solid continues to increase towardsium of chemical potentials between the clogdrenj solid
larger sphere diametetsand is terminated only by the hard p®(o) and the shadow solig® (o) implies
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p?(o) = p O (o)exd- Au(0)]

with u®(0) == Aute’ and A the differences in the ex-
cess moment chemical potentials between the shadow and
cloud phases. The Widom insertion principle tells us gt
being equal to the pressure, is equal in the two phases. Thus
Au®{(o) should generically be a quadratic polynomialen

(17)

If the o2 term has a negative coefficient, then from ELtj7) 0055 Unstable

it will overwhelm the exponential tail of the Schulz parent 0.05  Stable

p9(o). The shadow density distributiop® (o) then in- 0.045

creases strongly at largeso that its properties will be domi-

nated by the presence of any cutoff. In fact, this argument 0.04

suggests that the same could happen even witlifficiently 0.0355¢ 058 00 0 05
polydispersg Gaussian parent. Only a stronger decay, say ¢

p9(o) ~ exp(-o?) with a> 2, could definitely prevent cutoff

effects on the shadow solid. This question deserves further 0.08 ' ' '
study, but would require more accurate excess chemical po- 0,075} -
tentials for polydisperse solids—and over a larger range of 007l ]
sphere diameters—than we currently have at our disposal.

Preliminary simulation resultgs5] nevertheless suggest that 0.065- Unstable
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cutoff effects do occur in some polydisperse mixtures of 0.06|-
spherical particles.
So far we have investigated the global stability of single 00551
phases, i.e., the stability against macroscopic phase separa- 0.05[- Stable
tion. One can also ask abdotal stability of the phases, i.e., 0.0451-
the spinodal points. Since our free energy is assembled by
taking the minimum of separate fluid and solid branches, it 0.04r
does not provide accurate curvature information in the region 0.0355¢ 053 0% 05 5T
where these two branches connect. Therefore we cannot in- ¢

vestigate local instability to fluid-solid separation. The sta-

bility of single-phase fluids against fluid-fluid demixing has T ' '

been studied by Warref#8] and Cuestd49]. They found, 0.051 .
using the BMCSL free energy, that spinodal instabilities do oosk Unstable i
indeed occur, but only for very broad diameter distributions -

such as log normals with above~2.5, or bimodal distribu- 00495 phase > i
tions with a wide size disparity between the larger and 50048 .
smaller spheres. At the modest valueséaothat concern us 0047 ]
here, such instabilities do not occur. It thus remains to study

spinodal instabilities of the polydisperse crystal against 0.046- Stable 7
solid-solid demixing. The fact that the solid cloud curve has 0.045- i
a branch showing solid-solid phase separation already sug- e A
gests that such instabilities should be present. Indeed, Bar- 0044r ]

tlett found a solid-solid spinod§21], though with a thermo-
dynamically inconsistent assignment of the excess chemical
potentials(see Sec. )l Within the MFE the criterion for the
spinodal takes its usual forfi27]: it is the point where the

1
0.61

1
0.615

I
0.62

FIG. 7. Spinodal instability of the polydisperse hard-sphere
crystal against solid-solid demixing, in the volume fraction—

determinant of the curvature matrix of the moment free enypolydispersity plang ¢, ). (a) Spinodal(solid) and cloud curve
ergy, &fmom! (dpi dpj)=duil dp;, first vanishes. The zero ei- (dash-dottey for triangular (main graph and Schulz(insey size
genvector of the matrix at this point gives the instability distributions.(b) The line segments on the spinodal line indicate
direction. Using this criterion, we find the results in Figa)r ~ (for the triangular casgethe direction of the unstable fluctuations.
The single-phase solid is always stable at modest densities &) Comparison of instability directiotarrow), path to the “locally
polydispersities—the spinodal determinant is positive here—optimal” phase(solid line and empty circlgs and cloud and
but can become unstable at largeand 8. With growing 5, shadow solids at _the same parent polydisper@ity circles con-
this instability affects a wider and wider range @f The  nected by dotted line

figure also shows that the spinodal for a triangular size dis-

tribution is very close to the cloud curve for the onset ofodal are well separated as can be seen in the inset. This
solid-solid phase separation: past the cloud point, a singlereinforces our above discussion of cutoff effects: the latter
phase solid very quickly becomes locally unstable. For davor an earlier onset of phase separationh Fig. 6). The
Schulz distribution, on the other hand, cloud curve and spinspinodal condition, on the other hand, is known on general
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grounds(see, e.g.[27]) to depend only on the moment den- 0.14
sities of the parent, up te® for our excess free energy in- 0.12
volving moments up tar®. Since these parent moments are 0.10
almost cutoff independent, so is the spinodal cuivéhis 008
insensitivity of the location of the spinodal is confirmed by 5
the fact that the spinodal curves for the triangular and Schulz 0.08
cases would be essentially indistinguishable on the scale of 0.04
Fig. 7(a).]

We now turn to the nature of the spinodal instability, fo-
cusing on the case of a triangular size distribution. This can
be quantified by projecting the instability direction at the
spinodal into the(¢, 6) plane. The results are indicated by  FIG. 8. Full phase diagram for polydisperse hard spheres with a
the line segments on the spinodal line in Figh)7 Bartlett  triangular size distribution. In each region the nature of the gkpse
found instability directions which affected only the polydis- coexisting at equilibrium is indicatedr, fluid; S, solid). Dashed
persity 8 while leaving ¢ essentially unchangeg@1], which  line: best guess for the phase boundary in the region where our
would correspond to vertical lines in the plot. By contrast,numerical data become unreliable. Fr¢z6].
our analysis shows that the instability actually affects hpth )
and &, with relative changes that are of the same order of B. Phase diagram
magnitude. This is consistent with the properties of coexist- Having clarified theonsetof phase separation in polydis-
ing solids discussed in Sec. IV B below, which exhibit aperse hard spheres, we next consider the behavior inside the
strong correlation betweed and é. coexistence region. We have already established that, apart

More puzzling is that, in Fig. (0), the instability direc- from possible cutoff effects, the Schulz and triangular parent
tions at low¢ indicate a tendency toward the formation of a size distributions give qualitatively similar results, and there-
more polydisperse solid. This appears counterintuitive atfore restrict our attention to the latter in the following. Over-
first: solid-solid phase separation is driven by fractionationall features such as the topology of the phase diagram
and so one expects a preference for smaller rather than largsiould, at the low polydispersitiesof interest here, be simi-

8. Also, the proximity of the spinodal to the cloud curve |ar for other size distributions.

suggests that the spinodal instability direction should be Figure 8 shows the full phase diagram for the triangular
similar to the direction connecting the cloud solid and theparent distribution. In each region the nature of the pfsase
coexisting shadow. From Fig. 3, the instability should therecoexisting at equilibrium is indicated. The cloud curves of
fore point toward largee and, again, smalles. Fig. 3@) reappear as the boundaries between single-phase

To understand this apparent paradox we consider in morgegions and areas of phase coexistence. Starting from the
detail the “shape” of the MFH,y at the spinodal, as a onset of solid-solid separation and increasing density,or
function of the momentg,, ..., ps. It is useful to subtract the fractionation into multiple solids occurs. The overall shape
tangent plane td,,y, at the parent phase; the resulting tan-of the phase boundaries in this region is in good qualitative
gent plane distanc€TPD) differs from f,,, only via con-  agreement with the approximate calculations[b6] (see
stant and linear terms in the. A stable parent is then a local Fig. 2), though as discussed below the details of the fraction-
minimum of the TPD, at “height” TPD=0, and any phasesation behavior are rather different. We find up to four coex-
coexisting with the parente.g., the shadow phasg for a  isting solids. At largers than we can tackle numerically,
parent at its cloud poihtwould have the same property. phase splits into five or more solids would be expected since
Now, as the spinodal is approached, the curvature of the TPRach individual solid can only tolerate a finite amount of
around the parent vanishes in one direction and a “pathpolydispersity. However, from Fig. 8 such phase splits would
toward lower, negative, values of the TPD appears; the spineccur at increasing densities and eventually be limited by the
odal instability indicates the initial direction of this path. To expected maximum volume fractio#.~ 74% (see the re-
establish where this path leads it makes sense to follow it tenarks at the end of Sec. I)BAlso, at highers more com-
the nearest “locally optimal” phase, i.e., the nearest locaplicated single-phase crystal structures, with different lattice
minimum of the TPD. If this path is curved in thigy,...,p3)  sites occupied preferentially bysay smaller and larger
space, its initial direction will not necessarily capture thespheres, could appear and compete with the substitutionally
properties of the end point, i.e., the locally optimal phasedisordered solids we consider.

This is the origin of the counterintuitive instability directions A feature of the phase diagram in Fig. 8 not predicted in
that we observe. A specific example is shown in F{g):the  previous work is the coexistence of a fluid with multiple
path to the locally optimal phase first moves to higl#er solids. However, that a three-phases-S region must occur
consistent with the spinodal instability direction, but the lo-was already indicated by the triple point which we found
cally optimally phase ends up havingsenaller polydisper-  earlier on the solid cloud curves. As in the case of solid-solid
sity § than the parent phase. It also has a larger volum@hase splits, coexistences involving more than two solids—
fraction ¢, and the change from the unstable parent to theand a fluid—then appear with increasing

locally optimal phase is in a direction comparable to that We consider the fractionation behavior in the multiphase
between cloud and shadow, in line with the intuition dis-regions more systematically in the next section. Before doing
cussed above. so, a few qualitative statements are in order. In Fig. 9 we

L L L L L L 1 L L
050 052 054 056 0.58 ¢0.60 062 0.64 066
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FIG. 9. Normalized size distribution of four coexisting solid
phases obtained from a parent distribution withp,d)
=(0.63,0.08. From left to right, the solids have volume fractions  FIG. 11. Normalized diameter distributions f6rS-S-S phase
and polydispersitie$0.601, 0.054 (0.629, 0.04§ (0.646, 0.049, coexistence obtained from a parent distribution witkh, )
(0.663, 0.036 From[26]. =(0.603,0.08. From[26].

show a sample plot of the normalized diameter distributions . .
n(o)=p(0)/po of four coexisting solids. This shows that ing the tight correlation betweefiand ¢. Note that some of

fractionated solids do not, as one might naively ass{i6e the points fallabovethe solid cloud curve. This is not a
split the diameter range ,of the aregnt evenl yamon themgontradiction because the latter marks the onset of instability
P g P y 9 .against phase separation only for solids with a triangular size

selves. The polydispersities of the coexisting phases are N Stributi
. o istribution, whereas the daughter phases plotted here can
fact rather different; in Fig. 9 they range froA=0.036 to have rather different size distr?butio fp mpare? Fig. 9

0.054 f_or a parent W'tmzo'OS' Th?‘re IS 1N fac_t a strong, As part of our qualitative overview of fractionation be-
correlation between the polydispersity of a fractionated SOl'dnavior, we show next in Fig. 11 the size distributions for a

and its volume _fractlon. SO_I'dS W'.th '°W.ef volume_ fra(_:tl¢n situation where a fluid coexists with three solids. The general
tend to have higher polydispersity This conclusion is in- trend which we observed from the cloud and shadow curves
tuitively_appealing sinc_e higher_compression should diSfavohamely, for the solith) to contain the larger particles, is '
a pv?llgdr:zi\)/grzﬁuggzt?gg]?eﬁ):t(i:cl)(;n%étween polydispersity an fo_und confirm_ed here_. _Howev_er, the deta?ls_of the_ frgction-
volume fraction more quantitatively, by plottingvs ¢ for %_non are again nontr|V|aI:_ while the coexisting fluid is en-

’ riched in the smaller particles as expected, it also contains

all the daught_er solids that arise by phase separation fromIeft over” large spheres that did not fit comfortably into the
a number of different parents across the phase diagram. We

. . . solid phases. It thus in fact ends up havinu@er polydis-
find a set of pointgFig. 10) that cluster very closely around persity (0.104 than the parent0.08) in this example.

the high-density branch of the solid cloud curve, emphasiz* Finally, an indirect manifestation of fractionation is pro-

2 solids 3 solids 4 solids vided by the variation of the osmotic pressure along a dilu-
tion line. In a monodisperse system, the pressure remains
constant throughout any phase coexistence region because
the properties of the coexisting phases do not change; only
the fractions of system volume vary which these phases oc-
cupy. In a polydisperse system, on the other hand, the com-
position of the coexisting phases varies as the coexistence
region is traversed. We illustrate this in Fig. 12 for a trian-
gular parent size distribution with=0.08. It is striking that
the variation of the pressure with volume fraction is almost
smooth, even though a number of phase boundaries are
crossed.
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V. FRACTIONATION BEHAVIOR
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o We proceed in this section to a systematic study of the

fractionation behavior of polydisperse hard spheres, having

FIG. 10. The properties of the daughter solidscles arising  discussed its qualitative features above. To this end we ex-
by phase separation from some chosen paraasaresacross the  t€nd the classical visual representations in terms of cloud and

phase diagram. Plotted are polydispersityersus volume fraction Shadow curves and overall phase diagrams to include more
¢. The arrows show the daughter phases for three parents explicitifletailed information about the properties of the coexisting
as indicated by the dotted lines, not all daughter phases are withilaughter phases. To obtain insights into the effects of vary-
the range of the plot. Note the clustering of all daughter phases nedng both the parent’'s volume fraction and its polydispersity,
the solid cloud curve. three-dimensiona3D) plots will be particularly useful here.
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FIG. 12. The osmotic pressure plotted as a function of the parent ¢(0)

volume fraction along a dilution line, for a triangular parent with

polydispersityd=0.08. Phase boundaries are marked by full circles; .04

line segments are annotated with the nature of the phdised/

solid) in the different coexistence regions.

0.05

In a second part we ask whether there is an optimal way ol
making the separation between fractionated phases visible
and suggest principal component analy§i€A) as a method
for achieving this. We focus throughout on the range of par-
ent polydispersities 0.04 6<0.08, which covers all the 447
various coexistence regions in the phase diagram of Fig. 8
Where it is necessary to distinguish the volume fraction and
polydispersity of the parent from those of the daughter o008
phases, we will add the superscripy, writing ¢© and 6©. D8

We start with a 2D plot showing the volume fraction of [
the coexisting phases versus the volume fraction of the par
ent phase, Fig. 18), for two parent polydispersitie& For a
narrow parent size distributio=0.04, inset, we see that
the behavior in thé--S coexistence region is similar to what "o | (®)
would be expected for a monodisperse system, with the vol- 0.6 o8

ume fractions of the daughter phases re_maining essentially g5 13. (a) Volume fractiond of the various coexisting daugh-

constant. Only at large)® does the polydisperse nature of (o, phases versus the volume fracti¢f of the parent phase, for

the system become fully apparent, through the occurrence Qf=0.0g (main graph and 5=0.04 (insed. (b) 3D plot showing the

S-Sphase separation. For a parent with0.08, on the other  gependence of the on ¢© and the parent’s polydispersi#y Dif-

hand, the properties of the daughter phases vary strongkgrent phases are represented by different grey levels. Note that the

with ¢©. In theS+S+SandS+S+S+Sregions in particular, 5 axis is plotted upside down for better visibility. The top and

the volume fractions of the daughter solids increase systenbottom slices correspond to the 2D plots(a).

atically with ¢@: fractionation from a denser parent here

produces denser daughter phases, rather than varying propgersity induced, i.e., have no analog in the monodisperse

tions of daughters with fixed densities. system, and the surfaces representing them do not extend to
To demonstrate more explicitly the change in behaviour§— 0.

as the parent polydispersity increases, we show in Fig. Having clarified the variation of the volume fractions of

13(b) a 3D plot of the daughter volume fractiomsversus the daughter phases across the phase diagram, we show their

¢9 and 6. The orientation of the axes has been chosen sucmean diameters in Fig. 14, plotted against parent volume

that horizontal cuts through the plot represent fixgdvith  fraction at fixed (parenj polydispersity 5=0.08. One ob-

the top and bottom planes corresponding to the data showserves clearly the general trend for the solid phases to con-

in the 2D plots of Fig. 13). A benefit of the 3D represen- tain larger particles than the fluid. An exception to this oc-

tation is that each daughter phase now corresponds simply turs in theF+S+S+S coexistence region, where the fluid

a separate surface. Each surface ends at the phase boundaag a slightly larger mean diameter than one of the solids.

where the relevant phase disappears from the phase split. TAé@e explanation for this can be found in our earlier discus-

disappearance or appearance of any phase then causes kisken of Fig. 11: in addition to the smallest spheres, the fluid

in the other surfaces. As expected, only the fluid surfacean also contain some of the larger spheres that are not ac-

extends to the lowesp?. As ¢© is increased, the “conven- commodated in any of the solids, and this pushes up its mean

tional” solid which also exists in the monodisperse limit diameter. The second qualitative trend demonstrated by Fig.

makes its first appearance. A further three fractionated solid$4 is that the coexisting solids tend to split the range of

then eventually appear one after the other. These are polydigparticle diameters in the parent distribution among them-

0.06

0.7
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FIG. 14. Mean diameter of coexisting phases plotted against 0.03 i
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selves, with almost equidistant mean diameters. As the par
ent volume fraction increases, the strength of this fraction-
ation effect is seen to grow, and the mean diameters becom
increasingly separated from each other.

Finally, we examine the relationship between the polydis- ».08
persitiesé of the different daughter phases and the volume
fraction ¢© and polydispersityd® of the parent. Figure &
15(@) shows 2D plots of the daughter polydispersities versus
#9, at §9=0.04 and 0.06. As expected, for the more poly-
disperse parent there are significant variations of the daugh
ter polydispersities across the coexistence regions. Wher
multiple solids coexist, their polydispersities decrease with o.04
increasing parent volume fraction. This is consistent with the
general trend that denser solids tend to be less polydispersi
In the 3D plot of Fig. 18b), this same trend also causes the
surfaces corresponding to the various solids to have rathe
similar shapes in the region of solid-solid coexistence. For
the fluid, on the other hand, the graph demonstrates that i
always has a larger polydispersity than the parent, arising
from the presence of large particles “left over” from the solid
phasegsee Fig. 11

0.06

0.48 0.02

FIG. 15. (a) Plot of the polydispersities of coexisting phases
along two dilution linegthin horizontal lineg i.e., as a function of
the parent volume fraction for fixed parent polydispersit{’

The above plots of aspects of fractionation behavior lead0.04 and 0.06. The dashed lines indicate the phase boundaries in
naturally to the question of whether there is a “maximallythe (¢©, §?) plane; phases appear or disappear at the points where
fractionating” property, i.e., one which most strongly revealsthe horizontal line corresponding to the fixed parent polydispersity
the differences between the various coexisting phases acrossersects these phase boundaiiesl circles). (b) Corresponding
the phase diagram. We focus on properties that are generab plot, showing the daughter polydispersiti@against the parent
ized moments of the density distribution, of the fonm volume fraction¢'® and parent polydispersit§©.
=[do f(o)p(o) with some weight functiorf(o). While not
all properties can be expressed in this way—the polydisperehoice for a maximally fractionating property would then be
sity 6, for example, involves squares and ratios of suchto maximize thevarianceof our moment among the various
moments—this is still a fairly large class of measurablemeasuredp(o). This can be done by principal component
properties; e.g., settinf(o)=1 would give us the number analysis, a method designed to select directions of large vari-
density, f(c)=o* the volume fractionf(o) =0 the mean di- ance [50]. Mathematically, the requirement of maximum
ameter times the number density, etc. variance can be written as

Suppose now that we have a number of measurements of
p(o), specifically the daughter density distributions that arise
within some region of the phase diagram. We can think of
the p(o) as points in a high-dimensiondin fact infinite-
dimensional space, and of our desired momenas a pro- subject to fdo f%(0)=1; here A(o,o’) is the (infinite-
jection along the direction defined bi{o) [27]. A good  dimensional covariance matrix of our measurements. We

Principal component analysis

ma)(f(o.)fd(TdO"f(O')A(O’,O’I)f(O',) (18)
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define this asA(a,0")=([p(0) ~p%(a)][p(c") —p©(a")]). SRR R R A
The average here is over all our measuremenis(@f, and rsmem 1! '
we subtract off for eaclp(o) the corresponding parent dis-
tribution p©(o). This effectively removes the average of the f °
various measureg(o) because, from particle conservation 4’?
(8), the parent is a weighted average over the various daugh Tl Y
ter phases. An alternative definition Afwould be to remove 08 05 LT TIT 1z of 09 LTIl 12 08
the actual measurement averageA(o,o')={p(o)

—{p(a)[p(c")={p(c”))]). In our numerical experiments de- FIG. 16. Principal component weight functidito), obtained

scribed below, this leads to almost indistinguishable results™om data along dilution lines for three different values of parent

The maximization problent18) is in principle over an polydispersity 0.04, 0.06, and 0.08. The rangeco¥alues where

infinite-dimensional function space. To arrive at a more prac+(?) 7 0 is in éach case that over which the parent density distribu-
on is nonzero, i.e., the range of particle sizes actually occurring in

tical task, we restrict the search to a subspace by requirin e svstem
the weight function to be of the form(a)==%,a;0". This 4 '

corresponds to searching for a maximally fractionating prop-

erty among those expressible as linear combinations of thvéen particles above and below the mean parental diameter.
momentspg, ... , p3, i-e-,r:E?zoaipi- With this simplification, This is an intuitively appealing measure of fractionation be-

0.5 -1 0.5

the problem(18) reduces to avi_or. . .
N _ N Finally, Fig. 17 shows the properties of the daughter
max,a' Ca subject toa' Da=1. (19)  phases as measured by the maximally fractionating observ-

able selected by PCA. The overall features of the plot on the
right, for parent polydispersity=0.08, are not dissimilar to

the mean diameter representation in Fig. 14, so that the ben-
_ L RN 0 0 efit of PCA in this problem is relatively modest. Some inter-

Gij —Jd‘f do’ ’A0,a")(0") = {(pi = p{")(py R esting features are accentuated by PCA, however; e.g., the
crossover between the fluid and solid lines is more pro-

which is just the covariance matrix of the moments, with thengunced in Fig. 17, demonstrating clearly how the fluid size
parent moments again subtracted off. The maflrxon the  gistribution acquires a significant fraction of the larger par-
other hand, is given byD;=fdo ¢"l. The o integration  ticles. We expect that the benefits of the PCA method of
range has to be bounded to make this well defined. In ougelecting maximally fractionating properties should become
case of a trlangular parent d_|str|but|on the obvious choicemgre pronounced in systems with several polydisperse at-
adopted here, is to make this range equal to the range @fiputesg, e.g., particle size and charge. Suitable properties
particle sizes occurring in the parent. for revealing fractionation behavior could then depend on

_Imposing the constraint in Eq19) via a Lagrange multi- - compinations of these attributes, which can be systematically
plier shows that solution vectors must obeyCa=ADa, or  found using PCA.

equivalentlyD 2CD Y4(DY24)=AD¥2a. The solutions can

thus be obtained by an eigenvalue decomposition of the ma-

trix D™Y2CD™12 with \ the eigenvalue anB'2« the corre-  VI. COMPARISON WITH MONTE CARLO SIMULATIONS
sponding eigenvectofNumerically, it is more convenient to . . - .
solve the equivalent problem of finding the eigenvalues and we hgve validated our theoretical pred|ct|9ns in two

right eigenvectors of the matriR'C.) The eigenvectors are ways. First, we have_ compared 1o per.turbatlvg theories
termed principal components, and this give the variance [5.1’53 for n_ear-monodlsp_erse parents, which predict th_at_the
captured by each principal component. The most importan?Jlfference in mean particle diameters of two coexisiing

=L 2 i
principal component, and the one of interest to us, is then thBN2S€SAo=o"~o"%, universally scales ag” for nga" 5
one with the largesk while the difference in the polydispersities As5« 5°. Both

We have implemented this PCA search for maximallyprediCtions are obeyed by our results. Second, we have com-
fractionating properties by considering as our measpftel

Here « denotes the vector with elemendsg, ..., a3 and the
4 X 4 matrix C is defined as

dispersity 0.04, 0.06, and 0.08, respectively, because differ 02
ent ranges of particle size are relevant in the three cases. ',
The resulting weight function$(o) are plotted in Fig. 16. -4
One sees that in all cas€$¢) is to a good approximation a *;:
combination of the odd weight functions and o, with the '
coefficients such thdt o) crosses zero near the edge of the
range. Loosely speaking, the functiéf@) can be interpreted FIG. 17. Maximally fractionating momertas selected by POA

as an approximation to sgm—1) within the space spanned for coexisting daughter phases, plotted against parent volume frac-
by ¢°,...,03, i.e., by a third-order polynomial iw. It thus  tion ¢© at parent polydispersity=0.04, 0.06, and 0.06rom left
effectively measures the difference in number density beto right).

1
0 |

I

the daughter phases as they occur along a dilution line. We ®f = "~ 1% T AN
do this separately for triangular parent distributions of poly- o4l 5% 104 Frses f\‘.;'f
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pared to Monte Carlo simulations. As discussed in the prepy,=\o+ug’, and we have precisely the chemical potential
ceding sections, our theoretical results for fluid-solid coex-differences(20) used in the simulations. In summary, apply-
istence in polydisperse hard spheres are in qualitativing the MFE method with a Gaussian prior apglthe only
agreement with numerical simulatiof3,9,11), in particular ~ conserved moment, we increaggfrom zero until coexist-
concerning the coexistence of rather polydisperse fluids witlence with a solid phase is first found. This is then the desired
solids that have a much narrower size distributions. There idJuid-solid coexistence for quadratic chemical potential dif-
however, an important difference: our calculations apply toferences, and we can determine in particular the pred3ure
the experimentally realistic case where an overall parent derat coexistence. Repeating this process for a range of values
sity distribution is fixed. The simulations, on the other hand,of v gives the coexistence curve in the, P) plane.
are performed at imposed chemical potential differences, Our actual implementation of this approach has one minor
with the actual size distributions in the coexisting phaseslifference. In the simulations it is observed that the mean
varying strongly across the phase diagram. In order to obtaidiameters in the coexisting phases decrease significantly as
a quantitative comparison between theory and simulationss increased, eventually becoming much smaller tarFor
we have calculated explicitly the theoretical predictions forour numerical work, however, it is desirable to keep the size
this—somewhat unrealistic—scenario. distributions within a fixed range, e.g. in order to ensure that
The simulations 0f8,9,11 were carried out in an isobaric our chemical potentials for the solid phase remain reliable.
semi-grand-canonical ensemble, which corresponds to fixeTlo achieve this, we treat not jusg but alsop; as conserved.
particle numbeN, pressureP, and chemical potential differ- Keepingp;/po=1 asp, is varied then ensures that the fluid
ence u(o)-u(op). Here oy, is the diameter of a reference phase always has unit mean diameter, and the particle sizes
particle. The advantage of the semi-grand-canonical enin the coexisting solid are expected to be comparable. This
semble is that it allows many different realizations of theensures that we can use a fixedange for all calculations,
particle size distribution to be sampled, thus minimizingfor which we chooser[0.7,1.3.
finite-size effects. The fixed particle numkéy on the other With py and p, both conserved, the chemical potentials
hand, avoids simulation moves where particles need to bg1) become
inserted into dense fluids or solids.

. . e -1)2
B_oIhurs and Kofke[8,9] consrdered _specrfrcally a qua- wlo)=- (0-1) + po+ o (22)
dratic form for the chemical potential differences, 2v
(o= O'b)2
(0) = plop) == —F——. (20) (0-1-wvuy)?
# e 2v == Tl+2VM1+M1+MO (23

The activity expu(o)] thus has a Gaussian shape of variance
v. For smallv, one expects the activity distribution to set the
size distributions in the coexisting phases, which shoul
therefore have polydispersitg=1*2; »—0 recovers the
monodisperse case. The reference diametgrl is held
fixed asv is increased from zero. The pressiPeis then
adapted by Gibbs-Duhem integratifs3] to follow the line
of fluid-solid phase coexistence in tke, P) plane.

In order to reproduce the situation considered in the simus=
lations using our theoretical approach, we will study a sys-
tem with priorR(o)=exd—(o—1)2/(2v)]. The moment free
energy then gives the free energy of phases with densit
distributions of the fornicf. Eq. (12)]

which is again of the form20) but now with a varying
creference diameter,=1+vu;. The corresponding scaled
guantities that are to be comparedvtandP from the simu-
lations are thenu/o-2 and Pab [56]. Note finally that our
numerical implementation again uses centered moments,
with weight functions[(c—1)/&]' rather thand', but this
causes no conceptual differences. In particular, keeping the
standard momentg, and p; conserved is equivalent to con-
servation of the centered moments withO andi=1, be-
cause of the linear relations between the two sets of mo-
ents.
Figure 18a) shows our results for the coexistence curve
in the (v/af, Pay) plane. Asv increasegstarting from the
(c-12 & bottom left corney, both Po? and v/o? initially increase.
plo)=exp| - ——5——+ 2 \o However, eventuallyv/ o3 reaches a maximum value, .y
=v/62=0.0056. At this point, the slopé(Po?)/d(v/o?) be-
From Eq.(6), the corresponding chemical potentials have ther:omes infinite. On further increasingthe coexistence curve

form then bends back, with/ o decreasing toward zero while the
3 pressure diverges. Bolhuis and Kofk8] argued that this
(o) =1n p(o) + D uo = (U 1) +E (N + divergence arises because the pressure is measured on the
i0 scale of the meamw, of the activity distribution, while the

21) typical particle diameters in the coexisting phases become
much smaller thamr,, by a factor scalrng as/02 The res-
Now the \;+u™ are just the moment chemical potentials caled pressurePo(v/o3)3=Pv®/ o should therefore ap-
Mi= (?fmom/é’p, So if we apply the moment free energy but proach a constant value in the Iran02—>0 The simula-
treat the moment densities;, p,,p3 as nonconserved, the tions were consistent with this expectatlon and our
associatequ; are forced to vanish automatically at equilib- theoretical results in Fig. 1B) are in full agreement. By
rium. The sum over in Eq. (21) then reduces to a constant, extrapolation, we estimate the limiting or “terminal” value of
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vis,” derivative do,/dv. As expectedo, grows linearly asy becomes
large. The star indicates the value ofat which v/ o reaches its
0.00011 T . . L maximum and the slope of the pressure plots in Fig. 18 becomes
9e-05- ® 7] infinite. Middle and right: Normalized size distributionés) of the
8e-05R ] coexisting fluid(dashed lingand solid(solid line) phases. The dot-
7051 SN ] ted curve gives the shape of the activity distribution [gx)].
g 6e-051- ] Middle: For v=0.02, fluid and solid have essentially identical size
% 05 ] distributions of polydispersitys= »12=0.02; the corresponding
4e05 ] value of oy, is 1.02. Right: Forr=0.08, the size distributions are
3e-05 ] significantly different from each other and from the activity distri-
?""g:.' ] bution, which is now centered aroumg=1.19.
05 ]
% To00T 0002 0003 0004 0005 0006 curves terminate, with the properties of the coexisting phases
VIS, approaching finite limits fow— cc. One has to bear in mind,

however, that the occurrence of such terminal points is di-
rectly linked to the shape of the imposed chemical potential
distribution and so not physically very meaningful. Indeed,

our calculation but is held constant in the simulatiqig.The pres- other shapes can and do give fluids and solids with lagger

sure is rescaled tBap(v/ 03)3=P13/ o to show the limiting behav- and/or§ [11]. ) _ . .
ior for v/ o?—0. We obtain the location of the terminal points by plotting

our numerical predictions against 4 And extrapolating to

the rescaled pressure, i.e., the point where the rescaled coekf»=0. The resulting values are compared in Table Il with
istence curve intersects the vertical axisPas7.9x 107, those obtained in the simulations 8]. We find excellent

The scaling mentioned above implies that,;esecomes  quantitative agreement for,,, defined as the maximum
large, the mean particle diameter in the coexisting phasegalue of v/g, and P, the terminal value of the rescaled
will be of order oy(v/of)=v/ oy, rather thanoy,. In our  pressureP13/o3. Similar comments apply to the volume
scheme, where the mean diameter in the fluid is fixed afractions and polydispersities at the terminal points of the
unity, oy, should thus become linear in As shown in Fig. 19  fluid and solid coexistence curves in Fig. 20. Only the termi-
(left), this is indeed what we find. A plot of the numerical nal volume fraction of the solid is overestimated somewhat,
derivative of this dependence, in the inset of Fig.(ldt), but even here the deviation is less than 3%.
also reveals that at smallvalues—below those whene o7

FIG. 18. (a) Solid-fluid coexistence pressuF&rﬁ as a function
of the imposed widthy/ Ozb of the activity distribution. Both are
scaled appropriately withy, to account for the fact that, varies in

reaches its maximum—the behavior is no longer exactly lin- o T B UL L AL
ear. This is to be expected considering thgt1+vu, de- 0&:: i
pends on bothy and w;. 0.09F 3

The plots in the middle and on the right of Fig. 19 show 008F y
particle size distributions in the coexisting fluid and solid 0071 ]
phases at two different values of For smallv=0.02, the Sooer F+s 2
distributions are essentially identical and have widih .04l ]
~12=0.02 as expected; they are also close to the activity 0.03f § ]
distribution, which has its peak at,=1.02 for thisv. For 0.02- : 3
larger v=0.0&, on the other hand, there is significant frac- oot ]
tionation between the fluid and the solid. One can now also 84505 051052 053 0-53 055 0.56 0.57 0.58 0.59

clearly see how the mean particle diameters—which are ex-
actly unity in the fluid, by construction, and around 1.02 in G 20. Phase diagram for fluid-solid coexistence with imposed
the solid—become smaller than the mean of the activity disguadratic chemical potential differences. Plotted is the polydisper-
tribution, which iso,=1.19 for this value ofv. sity & versus the volume fractiog of the coexisting fluid and solid
To summarize the properties of the coexisting fluid andphasesy increases from bottom left to top right along the curves.
solid phases, we plot them in a volume fraction—The circles indicate the terminal points reached by extrapolating to
polydispersity phase diagram, shown in Fig. 20. As discussed— «. The dotted lines sketch the approach to the known monodis-
in detail in[8], a feature which is at first surprising is that the perse limitv— 0.
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TABLE Il. Comparison between some characteristic quantitiesin the system, while the larger ones are found predominantly
of fluid-solid coexistence at imposed chemical potential distribu-in the solid phases. The solid phases have smaller polydis-
tion, as determined in simulatiori§] and in the present theoretical persitiess than the parent phase; this is as expected since
study. Herevy, is the maximum value of/a?, P, the terminal  narrower particle size distributions are more easily accom-
value of the rescaled presst.l?ez3/cr§ in the limit v/a%—>0. TN modated on a regular lattice. Consistent with this physical
the terminal volume fraction for the fluid/solid phases, @k the intuition, we also found that there is a strong correlation

corresponding terminal polydispersity. between the polydispersity and the volume fractiorp of
coexisting solids, with the denser phagksger ¢) having
Quantity Bolhuis and Kofkg8] Present work smalleré. For the fluid phases, on the other hand, we found
larger polydispersities than in the parent. This is because the
Vimax 0.0056 0.0056 fluid contains, together with a relatively narrow distribution
Py 7.9x10° 7.9x10°° of smaller particles, also residual larger particles that were
(5, 85) (0.545, 0.12 (0.548, 0.113 not incorporated into any of the solid phases.
(¢, 81 (0.575, 0.057 (0.592, 0.057 Three-dimensional fractionation plots transparently

showed the continuity of the properties of the various phases
across the phase diagram, with each corresponding to a dis-
In conclusion, our theoretical predictions for fluid-solid inct surface. The individual phases change significantly as
coexistence at imposed chemical potential differences are ng{)emstence regions are traversed, this is in contrast to mono-
just in qualitative but in fact in quantitative agreement with disperse systems, where_ only the amounts of coexisting
the outcomes of Monte Carlo simulations. This providesphases vary. Correspondingly, the pressure in the polyd!s-
strong validation for our approach. It demonstrates in parperse case was seen to_ vary almost Smoomly on traversing
ticular that our chosen model free energies for the hard§?vgral coexistence regions, whereas it WOl.JId be constant
sphere fluid and solid are accurate, at least in the range cW'th'n each for a mono@sperse .system. Wg fmqlly proposed
relatively small polydispersities studied here. a meth_od for constructing maxlmally_fractlonatmg observ-
ables, i.e., measurable properties which reveal most clearly
the differences between the various coexisting phases. This
was based on principal components analysis in the space of
We have studied the equilibrium behavior of size-the relevant density distributions. The benefits of this method
polydisperse hard spheres, starting from accurate free energyere modest in our case, but it could be of significant inter-
expressions for the hard-sphere solid and fluid. Cloud aneést for analyzing systematically the phase behavior of sys-
shadow curves, which locate the onset of phase coexistenciems with more than one polydisperse attribute, e.g., particle
were found exactly by using the moment free energy methodsize and charge.
We were also able to calculate the full phase diagram, how- In the final section we compared our predictions to per-
ever, by using the MFE results as starting points for a soluturbative theories for near-monodisperse systems, finding
tion of the full phase equilibrium equations. full agreement. We also performed a detailed comparison
In contrast to earlier simplified theoretical treatments, wewith Monte Carlo simulation carried out at imposed chemi-
found no point of equal concentration between fluid andcal potential distribution, where particle size distributions
solid. Rather, the fluid cloud curve continues to larger poly-vary across the phase diagram. The excellent agreement ob-
dispersities while the coexisting solid shadow always has #ained provided strong validation of our approach and in par-
polydispersity § below a “terminal” value of arounds,  ticular of our choice of model free energies for polydisperse
~0.06. In this sense the concept of terminal polydispersityhard-sphere fluids and solids.
only applies to the solid phase, while any experimentally There are a number of possibilities for extending and
observed terminal polydispersity from the fluid side must becomplementing the present work. Our study was limited to
attributed to nonequilibrium effects such as an interveningsystems with relatively narrow size distributions, with poly-
kinetic glass transitiofi22], large nucleation barrief23] or  dispersitiess up to =0.14. At higherd, fluid-fluid demixing
the unusual growth kinetics of polydisperse crys{2i]. would eventually be expected to ocdé8,49. So far only
Concomitant with the absence of the point of equal conthe spinodals for this have been calculated, however, and it
centration, we also found no reentrant melting. Instead, avould be interesting to understand the topology of the full
sufficiently compressed polydisperse solid fractionates intghase diagram in this larg&+egion. One might, for ex-
two or more solid phases; our results in this region of theample, expect to find coexistence of multiple fluids, but the
phase diagram are consistent with previous approximate catonditions required for this are at present unclear.
culations. In addition, we found that coexistence of several Quantitative studies of the phase behavior of hard spheres
solids with a fluid phase is also possible. That such phasat large § would require accurate model free energies for
splits must exist is clear from the fact that the solid cloudwide particle size distributions. For the fluid, the BMCSL
curve has two branches, describing onset of fluid-solid an@pproximation may continue to be sufficient, although a re-
solid-solid phase separation at low and high densities, resent comparison with simulations has revealed some short-
spectively; a fluid-solid-solid coexistence region beginscomings[33]. Much more pressing is the need for an accu-
where these meet. rate free energy for strongly polydisperse hard-sphere solids.
We then analyzed the fractionation behavior in detail. AsThis would allow one to investigate, for example, whether
a general rule, the fluid phases contain the smaller particlethe dominance of the largest particles at the onset of solid-

VII. CONCLUSION AND OUTLOOK
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solid coexistence which we found for Schulz size distribu- Finally, it will be exciting to generalize our approach to
tions is a genuine physical effect. A quantitative verificationmore complex colloidal systems, by for example including
of the prediction that polydisperse hard spheres with suffiattractive interactions or extending the scope to polydisperse
ciently fat-tailed size distributions split off multiple fraction- colloid-polymer mixtures. Work on these scenarios is cur-
ated solids even at low density4] would also be of interest. rently under way.

A significant challenge in the construction of approximate
free energies for hard sphere solids is that the simplifying
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