PHYSICAL REVIEW E 70, 041407(2004

Deformation free energy and elastic description of a self-assembled system
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A continuum model is proposed to describe orientational states of a self-assembled system formed by rodlike
molecules, in contact with an isotropic solid substrate. The total free energy is determined by taking into
account the interactions between the molecules forming the film and between the molecules and the substrate.
A phase diagram is presented, demonstrating that a critical surface molecular density exists, depending on the
the ratio between the surface and the bulk free energy, separating homeotropic from tilted phases. The behavior
of the elastic constants is investigated as a function of the surface molecular density. The elastic description
leads to the presence of a linear term in the free energy, which accounts for the existence of possible sponta-
neous elastic distortions induced in the system.
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I. INTRODUCTION Il. TOTAL ENERGY

Certain organic molecules orient themselves at the inter- \we consider a simple model in which the membrane is
face between a gaseous and a liquid ph@sebetween tWo ¢, meq by identical rodlike molecules, of length having

Iqu|d|phas?I}; forrry?hg a .montomplteCl;Iar f'lnﬁl’).zt]' Sy(;]h the direction of their long axes characterizedrby The ori-

?e(igoo?)g)iraslergsaﬁ d anz'tri'tmae%(')g;rg/ﬁeﬁ(s Ifolr ?ngfe Cvg‘r;]e_ntation of the molecules in the membrane is due to the
e bidoical merbrane 4. These Systems atracted a 15C1cn betveen e molecules orming e membrane
lot of attention because molecular orientation at the inters

faces is of importance in phenomena such as wetting, agndl@! solid substrate. The reference frame is such xfdy

sion, lubrication, coating, catalysis, eti5,6]. They have axes are parallel to the substrate andzhgis is normal to it.

been studied for over a half century by means of a greaggz) rsntq";r;[i'gr? fr:g‘lanfe;%rran ;I?ﬁgcmipn%?gﬁz 'Sbtoa:;/l?rlrl:i":]te ttr?aet
variety of experimental techniqug¢4—8] or, more recently, gy » Y 9

by investigation of dielectric properties both experimentally:ir;? ir:?rl]%%lg?g d'ngeriggzgf d:i;inkgs?wb;zlﬁi;Ttgfrgr?glfcci?n?men_
and theoreticallyj9-14. From the theoretical side, the ap- y P
proaches were mostly concentrated on molecular dynamics Ro\® [Ro)\
[15,1 and Monte Carlo simulationgl7-19. Also simpli- f(r)=- eb[<—> - (—) }
fied molecular models, based on cylindrical rods grafted on a
two-dimensional lattice, have been con3|dere.d since the p'oWhereRo is the lower cutoff of the order of the minimum
neer work of Safraret al. [20], where a nonuniform tilt has . .

; i ._distance between two neighbor molecules, such 3at0,
been discussed. In general, modeling of these systems is_a

hard task because knowledge of intermolecular potentials %nd €,>0. The intermolecular interaction between two rigid

limited. Analytical results desirable but difficult to obtain in rodlike molecules forming the membrane is then, by gener-

view of the very complex chemical structures of these moI-aIIZIng Eq. (1) to a continuous distribution of interacting

ecules. Computer simulations seem to be a convenient tool l%omts,
investigate the phase behavior, but have to be limited to a L orL
very small number of molecules. Uy(m,m’,R) :j f f(rydede’, (2)

In this paper we consider a continuous model in which the 070
molecules are treated as rigid rods without internal degrees
of freedom[3]. We extend to these systems the method emwherem andm’ are the molecular orientations of the two
ployed in Ref.[21] to evaluate the elastic constants of ainteracting molecules anR is the position ofm’ with re-
liquid crystalline media, starting from the intermolecular in- Spect tom (see Fig. 1 Furthermorer is defined in Fig. 2
teraction. Analytical results are established, showing that thand represents the distance betweérandd¢’. From Figs.
monolayer film can be characterized from the elastic point oft and 2 it follows that =r(8,¢; 6", ¢";R,¢;¢,{’) is given
view by an elastic energy density containing the usual quaby
dratic part and a linear term in the deformation tensor. This
term can be responsible for the ground state periodically de- r= V/Rz + 2+ 02+ 2RR - 200' L, (3)
formed. We also establish the existence of a critical surface
molecular density separating homeotropic from tilted phasegvhere R=¢€’ sin ¢’ cod ¢’ —¢)—¢ sinfdcod¢-¢), and L
depending on the relative importance of the surface energyCcosé cosé’ +sinfsin 6’ cog ¢’ —¢).
with respect to the bulk free energy. In the uniform state, wheré=6" and ¢=¢’, r reduces to

1)

r r
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2
fj{df( (?r,a_r,> df_&r }d€d€’. @
o o) dr oy oy

In Egs. (7) and (8) the subscript 0 means that all the
quantities have to be evaluated 6= ; and = y5. In the
elastic approximationgy; can be expanded as

W, A
“oxy 2 ok’

o = 9

for a, B=1,2,with x; =X, X,=y. The elastic energy density is
given by

0'2 o 27
F= _f J Un(t1, Y23 41, 42, R, @)RARdp,  (10)
2 Ry 0

FIG. 1. Orientations of two rodlike molecules, of length

whose long axes armn and m’. The Cartesian axes andy are h is th ¢ lecular densitv. B bstituting E
parallel to the flat solid substraté.is the angle by which a mol- whereo Is the surface molecular density. By substituting Eq.

ecule of the membrane may bend under the action of thég) into Eq. (5) and the result into E¢10) we obtain
interactions. F=Fq+F,+F,, (11)

j - whereF, is the uniform part of the interaction energy dn
ro= VRE+ (£~ 0)?+ 2R(t' ~O)singcodp~¢).  (4) is the e?astic contributign linear in the first and sge}éonéi de-
To obtain the elastic energy density of the membrane, wéivatives ofy; and,, whereas; is the elastic contribution
assume, as usual, than’=m(R)=m(0)+m(R), where quadratic in the first-order derivatives ¢f and .

|an R)|<1 TO save Space |n th|s Sec“on we |dentw As fO”OWS from the diSCUSSiOh reported abO\"_Q) iS

=6 and y,=¢ [21]. In this manner the previous conditions 9iven by

ready =+ S, with |Sys| <1,i=1,2. o2 2m
In this framework the intermolecular interaction, given by Fo(t, i) = —f f Un(11, 4o R @)Rdrde  (12)
Eqg. (2), can be expanded in power seriesdyf; and sy, as 2 Jr,
follows: and can be evaluated numerically. Notice thgtas given by
Uni(t, 23 R, 53R ) = U1, 03 R ) + A\ £q.(12), does not depend, obviously, gf(=¢). As will be
discussed in the following, since the molecules interact also
+}Bij S, (5) with the substrate, the uniform part of the energy has to

contain, beside& (¢4, i), also another contribution.

. . For what concern&, it is of the kind
where the summation convention has been adopted. In Eq. 1

5) we have N
® Fr=al 2y al L a3
L (L X, 2 “Fox xﬁ
um(‘/’lﬂ/’Z;Ry(P):fO fo f(rO)d€d€ ) (6) Where
) 0_2 % 2
a'a:—f f X, AiRARdp (19
Jf()( )dede' 7) 2 JryJo
and
and _ 2 [ (2
a;[,:—J J X, XgARARdp, (15
m' 2 Ry /0
m L with =4, . Finally, the usual quadratic part is given by
J
- : F,== bgﬁ i o (16)
dl 2P ox, axg’
where
d/
- 0_2 o ~2m
______ R STTTTTTTTTTT T bgﬁ:_f f XaX,BBindeP- (17)
2 Jr,Jo

FIG. 2. Definition of the interparticle distanceand of the in-
tegration elementd¢ andd(’ relative to two identical molecules of From the elastic point of view the membrane is characterized
lengthL, whose long axes an@ andm'’. by the parametera, andb]) ;. Sincea,, are connected to the
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FIG. 3. Molecular orientation near the solid substrdtes. in the 0.2+
molecular scale of length.
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linear terms in the deformation tensor, they can be respon 0

sible for spontaneous elastic deformati¢pg]. Furthermore,

the a'aB give rise to elastic terms similar to the splay-bend FIG. 4. Behavior of the direct interaction of the moleculeévs
elastic constanKy,. Finally, bl; are the equivalent of the for L/Rp=10 and¢/Ro=1.0.

usual Frank elastic constants of nematic liquid crysias.

A. Direct interaction of a molecule with the substrate

w  ~2T
Fu(6) = ff f Un(6,#;R,@)RdRdp + aug(6), (23
2 Ro J 0

The interaction of a moleculgoint) with a surfacehalf-

spacg is assumed to be where, as stated above, tlfedependence disappears after
integration overp. Let us assume thdt,(6) has a minimum
9D =-¢ {(&)3_ <&))9} (18) for 6= 6,, defining a uniform state.
I\ z z ' The behavior of,(6) vs # was numerically investigated

: . for different values of the ratie=eJ/ €, (giving the relative
wherez is the distance of .the mplecule from the surfacg. importance of the surface to bulk contribution to the uniform
_In the case under consideration where the molecule is roff, 1+ of the total free energyFor each value of the surface
like, in a first approximation, the direc_t mteraiction ofa mol-_ olecular densityr, it was verified that, in factF,(6) pre-
eculg with the subs.trgte, supposed isotropic, can be eaSIEvjents a minimum for & #< /2 as expected. In Fig. 5 the
obtained by generalizing E¢18). We have value 6, for which F(6) is minimum is shown as a function

L of the dimensionless surface molecular densityoR3. As

us(6) :f g(2)d¢, (19)  follows from Fig. 5, there exists a critical value of the sur-

0 face densityo, o, such that foro> o, the homogeneous
wherez=¢+¢ cos@ and we assume thdtis ¢ independent stable orientation is the one in which the rodlike molecules
(Fig. 3). The integration indicated in Eq19) can be easily are normal to the substrate. This result can be easily under-

performed, giving stood. In fact, foro> o, the repulsive part of the Lennard-
u() R {R8—4Z6 , 4g+Lcoso)° - Ry
e 8cosf| B ((+Lcos®)® |’ 1.0

(20)

In Fig. 4 the behavior of the direct interaction of the mol-
ecule versusf is shown. Homeotropic orientation corre-
sponds to#=0. The surface part of the free energy is then S
minimized for #— 7r/2, whenL/Ry> 1—i.e., for planar ori-
entation. 0.4

0.8 4

B. Uniform part of the energy 0.2

The uniform part of the energy is given by

0.0

Fu(0) =Fy(0) + F4(6), (21) 5 00 05 10 15 20 25
whereFy(6) is given by Eq.(12) and /s
F(0) = aud6). (22) . FIG. 5. Phase Qiagram exhibiting the yal&te‘or which F(6) is
minimum vs the inverse of the dimensionless surface molecular

Consequently, densityo=0R3 (see the tejt
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Jones interaction dominates, and tilted orientations are for- By = R Sir? 6sinf(¢p — @)L + sir? 6M
bidden. On the contrary, for smaf the interaction with the Rsi Y
substrate, which favors the planar orientation, can induce a ~Rsinfcodé-¢)H,
tilted orientation. Folr= o, we havef,x (o~ 0)?, typical

of second-order phase transitions. This suggests that the film By = — R? sin 0 cosd sin(¢ — ¢)cod ¢ — )L
with 6.=0 and withé, # 0 can be considered as two different ~Rcosfsin(¢— ¢)H, (30)
phases of the film. This result is in agreement with the com- ) )
puter simulation analysis performed in Reff3,17). whereH is defined by Eq(25):
12 2
IIl. EVALUATION OF THE ELASTIC CONSTANTS L=L(6,¢:R o) = f f ¢ {(d f) __(::) ]dede'
By substituting Eq.(4) into Eq. (7) and taking into ac- 0 0
count thaty; = 6 and ¢,= ¢, we obtain (31
A,=Rcosfcod¢—- ¢)H, and
L(teedf ,
As=-Rsindsin(¢ - p)H, (24) M=M(6,¢;R,¢) = —\ar dede’. (32
0Jo 0
where

Using now Eqs(30) the elastic parameters we are looking
H=H(0,6:R ) = J f ( )dfd@’ (25) for are given by
b)fg = CO§ 9(P40 CO§ ¢ + P31 sin 2¢ + P22 S|n2 ¢) + Q20
By substituting Eqs(24) into Egs.(14) and(15) one obtains — SiN 0(S3,COS P + Sy SiN ),

al= cosf(cosl o+ singlyy),
byy = Cog B(P,, cOS' ¢+ Py3Sin 2+ Py, sir? ¢) + Qg

a)=cos6(cosdly; +sindlyy), - sin6(S;,Cos ¢ + Sy3Sin ),

a)(f sin 0(COS¢I 1 - sin ¢|20)1 bg;? = CO§ 0( P31 COS2 d) + P22 sin 2¢ + P13 Sln2¢) + Qll

ay = sin 6(cos ¢l g, ~ sin ), (26) ~Sin0(SC084 + Sppsin ), (33
and b2 = Sirf A(P4oSir? ¢ — Py Sin 2¢ + Py, COSh)

af, = cosé(cos pJzo+ sin ¢J,y), + Qyo SiN? - sin A(S3COSP + Sy SiN ),

aj, = cos0(CospJyp+ sin pJog), by = Sinf (P, Sir? ¢ = P13 Sin 26 + Py, COS )

4 —cosmeosdt s S0 + Qp, Sir? 8- sin 6(S;,CoS P + Sy3Sin ),
vy 21 12/
o= Sin 08y - S g by = Sir? 6(Pa; Sin? ¢ — Py, Sin 29+ P13c0S )
: 21 30/ +Qqy Si? §—Sin6(S,, s+ Sppsing),  (34)

af, = sin 0(cos oz~ Sin ¢Jy,), and

0b _ _ o B L
a)‘fy: Sin 0(coS ¢y — SiN ¢Jyy), (27) by = —sin 8 cosO[(P4g— P,,)coSeh Sin ¢ — Pz, cOS 2p]
where = COSH(S30Sin ¢ — S,1 COS ),

- O_ZJW fz’f R®H co<" ¢ sin ¢dRdp (28) byoj’ =~ sinGcosbl(Pz; Pojcosd siné = Pyscos 2]
- COSH(S,,Sin ¢ — SH3COS ),

and
o2 [ (27 bf;,” =-sinf#cosf[(P3;— P13)c0S¢ Sin ¢ — Py, cOS 28]
Jin= ELO fo R*H cod" ¢ sin ¢dRdp. (29 - c0sH(S,; Sin p— Sy, C0SP), (395
) h
Let us consider now the elastic parametb‘gﬁg defined by where
Eq. (17). By using Eq.(8) we obtain

o0 27
Pmn:fj f RL cod" ¢ sin” ¢dRdyp,
By = R%cog 6cos(¢p— o)L+ M -Rsindcog¢ - @)H, 2 JryJo
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02 2
= —J f R*M cos" ¢ sin” pdRdyp,
2 Ro J 0 100
02 © 2 P 75
Son= ?f f R'H cos" g si pdRdp.  (36) 5 @)
Ro 70 §§ 50
Q-
Relations(26), (27), and (33)«35) give the elastic param- ¢ €
eters characterizing the monomolecular film for all molecular § ~ 254
orientation(6, ¢). w
0
Small fluctuations near to a uniform state ]
For small fluctuations near to a uniform state, we can .25 . : . : . :

assume thatp=0. In this case, given by Eq.(4), can be
written asry(0,0;R, ¢; €, €' )—i.e.,

ro=VRZ+(£' - €)%+ 2R({' —¢)sinfcose. (37
From Eq.(37) it follows that
ro(60,0;R,@;€,€") =19(6,0;R, 27— ¢;€,£"). (38)

In this case also the functiohf(#,0;R, ), L(0,0;R, ¢), and
M(6,0;R, ¢), introduced before, are such that

H(6,0;R,¢) =H(6,0;R, 27— ¢),
L(6,0;R @) =L(6,0;R, 27— ¢),

M(6,0;R,¢) =M(6,0;R, 27— ¢). (39)

Consequently, from Eq$28), (29), and(36), it follows that
if nis odd, !l Inmw Pmm Qmr @and S, are zero. From this
observation it follows that near to a homogeneous stéte
=6y, »=0) the elastic parameters are given by

ay = cosfgl20( bo)
aj=0, ay=0,
a.;? =sin 00'02( 00), (40)
8= 0SbpJs,
ay, = c086pdi2(6o),
al=0, =0
¢ _gi
agy = sin fpJoa,

a)(f)y = Sin 00\]12( 00) y (41)

and
b = coZ GyP o f) + Qoo fo) — SIN BuSsg( bo) ,
b(m = cos yPy( 6p) + QoA ) = Sin 8pS12( o),

00 — O0d — Z00 —
by =bi/bye =bli=0,

1.50

FIG. 6. Behavior of the elastic coefficients 8§ for ¢=0.1.(a)
107, (b) 10-%b{, (¢) 107627, (c) 1005, and(e) 10-bfy. The
scale Is arbitrary just to show all the coefficients in the same plot.
However, all the elastic coefficients are positive in the range 0
<@y<m/2. The curves were depicted fdr/Ry=9.0 and {/Ry

=1.0.
b’ = Sin? 6P 2( ) + Qaol 6o)SIN® 6 = Sin 6oSse( bo)
b;,ﬁf = S|n2 00P04( 00) + Qoz( 00)5"12 00 - SII’] 90312( 00),

bfg =sin 90 COSHO P22( 60) + COS 00812( 00) . (42)

In Fig. 6 the behavior of the elastic coefficierﬁ%B is
shown as a function of,. For the illustrative set of param-
eters we are using-/R, and {/Ry=1.0) the coefficients, for
Go=m/2, are bij~2x10F, bii~3x10°, bj’~2x10,
b¢f~2>< 10, and by~ 6x 10 In Fig. 7 the same elastic
coefficients are shown as a function@for 6~ /2 for the
same set of parameters as in Fig. 6. The important feature of

160
140
120 +

2 1004

2]
o
I

Elastic Coefficients
(arb. units)
8
1 L

40

204

a

FIG. 7. Behavior of the elastic coefficients ws for 6,
=1.56 rad. Solid line refers to 1fhY, dotted line to 10°by,
dashed line to 10b;\”, dash-dotted line to I0b’, and short-
dotted line to 10°x b”)‘f The scale is arbitrary and the set of pa-
rameters is the same as in Fig. 6.
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80

K1/.sb

[0}

FIG. 8. Behavior of the elastic constagi vs ¢. (a) L/Ry=10,
(b) L/Ry=20, and(c) L/Ry=100.

these figures is the fact that the coefficients are always pos
tive. This fact is an indication of the stability of the orienta-
tional states of the membrane, si
play a role analogous to the Frank elastic constants in liqui
crystals[23]. Furthermore, according to our numerical calcu-

, as discussed before, ~£,9.00104

800
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lations, byy//b%%~ 10° andbgy’/b{’~ 10°. These results show
that the deformations involvingd/dx and d¢/dx are more

expensive, from the point of view of elastic energy, than the

ones involving the deformation®/dy and d¢/ dy.

In particular, if 6,=0, rq, as given by Eq(37), is reduced
to ro=+/R%+ (€' —€)2. In this situation] ;,1(0), Ini(0), Prmr(0),
Qmr(0), and S,,(0) vanish if m is odd. Consequently, for

] (@
700 < K2x
600 -
500
-]
o ]
5,400 -
> ]
]
¢ 300
200
100 sz
0-
-100 T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0
o
0.0020 < (b) K
2x
0.0015 <
£
<
[
0.0005 -
sz
0.0000
T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0
[0

small fluctuations close to the homeotropic alignment, only £ 9. Behavior of the elastic constafh, andK, vs g for the

the elastic coefficients

ay=1,0(0) =K,
b = P4o(0) + Qu0(0) = Koy,

byy = P22(0) + Qoal0) = Kgy (43)

are different from zero. In this case, at the second order i#-;.

80=0 the elastic energy density is given by

F=F +K(9—0+} K <(9—0>2+K <5—0>2 (44)
-ro l&X 2 2x IX 2y 07y .

Notice that the existence of the linear term in the free energy

case in which@ L/Ry=20 and(b) L/Ry=100.

of the Lennard-Jones potential favors homogeneous align-
ment, indicating that spatial deformations are very expensive
from the point of view of the energy. In Fig. 8 we show the
elastic constant&; vs ¢ for small deformation close to the
omeotropic orientation, for a typical value bfR,, and in

ig. 9, Ky andKy, are shown for two illustrative values of
the parameters. All these constants are positive increasing
functions in the entire range of values @f

IV. CONCLUSIONS

density could be connected with a deformed ground state of

the membrang22]. It is the equivalent of the Lifchitz invari-
ants. If the substrate is isotropic, as assumed abeve
=6(x) only, because thg dependence increases the free e
ergy density. In this case the favored orientation is the d
torted one, with a gradient given by

a6 Ky

X Koy

In Fig. 7 the dependence of the elastic parameifrsvs

We proposed a continuum model of orientational ordering

' in dense self-assembled systems forming a monomolecular
Milm. The molecules forming the film have been treated as
IS'rigid rods without internal degrees of freedom. By assuming
a Lennard-Jones-like potential for the intermolecular interac-
tion and for the molecule-substrate interaction, we have
evaluated the elastic constants of the film. According to our

analysis, the elastic energy density of a membrane formed by

rodlike molecules contains, besides the usual terms quadratic

the surface density is shown. As expected, they are mondn the deformation tensor, also linear terms in this quantity.
tonic functions ofo. In fact, aso increases the attractive part These linear terms, known in magnetic theory as Lifchitz
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