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Effective electrostatic interactions in suspensions of polyelectrolyte brush-coated colloids
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Effective electrostatic interactions between colloidal particles, coated with polyelectrolyte brushes and sus-
pended in an electrolyte solvent, are described via linear-response theory. The inner cores of the macroions are
modeled as hard spheres, the outer brushes as spherical shells of continuously distributed charge, the microions
(counterions and salt iohgs point charges, and the solvent as a dielectric continuum. The multicomponent
mixture of macroions and microions is formally mapped onto an equivalent one-component suspension by
integrating out from the partition function the microion degrees of freedom. Applying second-order perturba-
tion theory and a random-phase approximation, analytical expressions are derived for the effective pair inter-
action and a one-body volume energy, which is a natural by-product of the one-component reduction. The
combination of an inner core and an outer shell, respectively impenetrable and penetrable to microions, allows
the interactions between macroions to be tuned by varying the core diameter and brush thickness. In the
limiting cases of vanishing core diameter and vanishing shell thickness, the interactions reduce to those derived
previously for star polyelectrolytes and charged colloids, respectively.
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[. INTRODUCTION Carlo simulation and a variety of theoretical methods.
o ) While microscopic models that include chain and micro-

_ Polyelectrolyteg1,2] are ionizable polymers that dissolve i gegrees of freedom provide the most realistic description
in a polar solvent, such as water, through dissociation oh¢ pg pryshes, simulation of such explicit models for more
counterions. Solutions of polyelectrolytes are complex mix+han one or two brushes can be computationally demanding.
tures of macroions and microiofsounterions and salt ions  The purpose of the present paper is to develop an alternative,
in which direct electrostatic interactions between macroionggarse-grained theoretical approach, based on the concept of
are screened by surrounding microions. Polyelectrolytgtective interactions, which may prove useful for predicting
chains, grafted or adsorbed by one end to a surface at highermodynamic and other bulk properties of suspensions of
concentration, form a dense brush that can significantlog prysh-coated colloids. Modeling each brush as a spherical
modify interactions between surfaces in solution. When atspe of continuously distributed charge, we adapt linear-
tached to colloidal particles, e.g., latex particles in paints Okesponse theory, previously developed for charged colloids
casein micelles in milk3], polyelectrolyte brushes can sta- [26—29 and PEY29], to derive effective electrostatic inter-
bilize colloidal suspensions by inhibiting flocculatig#,5]. actions. The theory is based on mapping the multicomponent
Biological polyelectrolytegbiopolymerg, such as proteins yixture onto an equivalent one-component system of
in cell membranes, can modify intercellular and Cel|-SUFfaCG‘pseudomacroions" by integrating out from the partition
Interactions. _ _ function the degrees of freedom of the microions. Within the

Conformations and density profiles of polyelectrolyte \heory microions play three physically important roles: re-
(PB) brushes have been studied by a variety of experlmentahucing (renormalizing the bare charge on a macroion:
theoretical, and simulation methods, including dynamic lightscreening direct Coulomb interactions between macroions;
scattering 6], small-angle neutron scatterifig-9], transmis- 54 generating a one-body volume energy. The volume
sion electron .microscop[sg],. neutron re_erctometerO], SUr-  energy—a natural by-product of the one-component
face _adsorptlorill], atomic force mlCI’OSCOp)[lZ], self-  reduction—contributes to the total free energy and can sig-
consistent-field theory[13-19, scaling theory [18-21,  pjificantly influence thermodynamic behavior of deionized
Poisson-Boltzmann theory22], Monte Carlo simulation suspensions.
[22], and molecular-dynamics simulati¢@3,24. Compara- Outlining the remainder of the paper, Sec. Il defines the
tively few studies have focused on electrostatic interactiong,qqe| suspension of PE brush-coated colloids; Sec. Ill re-
between PE brush-coated surfaces. Interactions between nja\s the linear-response theory; Secs. IV and V present
tral surfaces—both planar and curvegpherica)—with  5na\ytical and numerical results for counterion density pro-

grafted PE brushes have been modeled using scaling theofyas effective pair interactions, and volume energies in bulk
[20], while interactions between charged surfaces coatedyspensions; and finally, Sec. VI summarizes and concludes.
with oppositely charged PEs have been investigated for pla-

nar [22] and sphericalcolloidal) surfaces[25] via Monte
Il. MODEL

The system of interest is modeled as a suspensidw,of
*Electronic address: hao.wang@ndsu.nodak.edu spherical, core-shell macroions of chargée-(valenceZ2),
"Electronic address: alan.denton@ndsu.nodak.edu core radiusa, and PE brush shell thicknesgouter radius
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The density profile of charged monomers depends on the
conformations of chains in the PE shells. Electrostatic repul-
sion between charged monomers tends to radially stretch and
stiffen PE chains. Indeed, neutron scattering experimits
on diblock (neutral-chargedcopolymer micelles, as well as
simulations[24], provide strong evidence that the arms of
spherical PE brushes can exhibit rodlike behavior. Here we
assume the ideal case of fully stretched chains of equal
length—a porcupine conformatiofi20]—and model the
charged monomer number density profile by

FIG. 1. (a) Polyelectrolyte (PE) brush-coated colloidal
sphere andb) model considered here, in which the PE monomer
charge distribution is assumed continuous and varying as$, 1/

a<r<a+l. 0, r>R

R=a+l), and N, point counterions of chargeein an elec-

trolyte solvent in volume/ at temperaturd@ (see Fig. 1 The Pmor(l) = a2 a<rs R 1)
core is assumed to be neutral, the macroion charge coming

entirely from the PE shell. Assuming a symmetric electrolyte 0, r<a,

and equal salt and counterion valences, the electrolyte con- . o .
tains N, point salt ions of chargee and N, of charge ze wherer is the radial distance from the macroion’s center. The

The microions thus numbeN,=N.+N; positive andN_ ~ mModel thus neglects configurational entropy of the PE chains,
=N, negative, for a total oll,=N_+2N,. Global charge neu- although it does include the entropy of the microions.
trality in a bulk suspension constrains macroion and counter-

ion numbers viaZN,=zN.. Number densities of macroions, IIl. THEORY
counterions, salt ions, and positive/negative microions are
denoted byn,,, n., N, andn,., respectively. Within the primi- For the model suspension defined above, our goal is to

tive model of ionic liquids[30], the solvent is treated as a predict distributions of microions inside and outside of the
dielectric continuum of dielectric constaatwhich acts only  PE brushes and effective interactions between macroions.
to reduce the strength of Coulomb interactions between ionszdapting the general response theory approach previously
In PE solutions, the counterions can be classified into fougpplied to charged colloidi26-29 and PE solution§29],
regions: (i) those within narrow tubes enclosing the PEye reduce the multicomponent mixture to an equivalent one-
chains, of radius comparable to the Bjerrum lendil,  component system governed by effective interactions, and
=€?/(ekgT); (il) those outside of the tubes but still closely approximate the effective one-component Hamiltonian via
associated with the chaingii) those not closely associated e rpation theory. To simplify notation, we initially ignore

with the (_:halns, bl.Jt still inside of t_he PE shells;_ aml) salt ions. The Hamiltonian then decomposes, quite generally,
those entirely outside of the macroions. Counterions in rer

gions(i), (ii), (iii) can be regarded as trapped by the macro—mt0 three terms,
ions, while those in regiofiv) are free to move throughout H=H, (R} +H({r}) +H,ARMID), 2)
the suspension. Within regiofi), the counterions may be

either condensed and immobilized on a chain or moreyhere{R} and{r} denote collective coordinates of macro-

loosely bound and free to move along a chain. These chainons and counterions, respectively. The first term in &,
localized(condensed or mobijecounterions tend to distrib-

ute uniformly along, and partially neutralize, the chains. In Nm
our model, counterions in regioiiy and(ii) act to renormal- Hn=Hpc+ > E Umnl|Ri = le), (€]
ize the bare macroion valence. The paramé&ténus should i#j=1

be physically interpreted as affectivemacroion valence,
generally much lower than the bare valerinamber of ion-
izable monomens From the Manning counterion condensa-
tion criterion[1], according to which the linear charge den-
sity of a PE chain saturates a&/\g, we can expect the bare

is the macroion Hamiltonian, which includes a hard-core
contributionH,,; (kinetic energy and hard-core interactipns
and an electrostatic contribution due to the bare Coulomb
pair interaction potential

charge in an aqueous solution to be renormalized down by at 722
least an order of magnitude. UmndF) = —— (4)
The local number density profiles of charged monomers er

in the PE brush r), and of counterionsp.(r), ar . .
the brus es/,)mqn( ), and o cou terionsp( ) are at center-center separationThe second term in E¢2),
modeled here as continuous, spherically symmetric distribu-

tions. Charge discreteness can be reasonably neglected if we 1 N
ignore structure on length scales shorter than the minimum He=Ko+ = > vedlri=riD), (5)
separation between charges. Spherical symmetry of charge i#j=1 '

distributions can be assumed if intra-macroion chain-chain

interactions, which favor isotropic distribution of chains, is the Hamiltonian of the counterions with kinetic eneigy
dominate over inter-macroion interactions, which favorinteracting via the Coulomb pair potential.(r)=2z%€*/er.
anisotropy. The third term in Eq(2),
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Nm Ne where Focp=F(+Ej is the free energy of a homogeneous
Hmne= 2 X omd|Ri 1)), (6) OCP excluded from the colloidal hard cores. Second, we
i=1 j=1 expressH,, in terms of Fourier components,
is the macroion-counterion interaction, which also may be 1o N N
expressed in the form (Hmo = \—/zovmc(k)pm(k)@c(— K
1. . . .
Hine= f dRp(R) f dr p(Nomd IR = 1]), 7 +\—/lkm[vmc(k)pm(k)<pc(- knl, (12

where v,,{k) is the Fourier transform of the macroion-

1 i 1 7 = Nm — . .
macroion and counterion number density operators, respeg_ountenon interaction and wherg(k) EJ:leXp( kR

~ - N _. . ) .
tively, andv,{|R—r|) is the macroion-counterion interaction 2" pc_(k)—EjaClexp( ik-ry) are l;our:jer components Of;?]e
potential(to be specified in Sec. IV macroion and counterion number density operators. Rhe

The mixture of macroions and counterions can be for-=0 t€rm is singled out because the number of counterions,

mally reduced to an equivalent one-component system bgaczpc(o)’ does not respond to the macroion charge, but

integrating out the counterion coordinates. Denoting tracekAther is fixed by the constraint of global charge neutrality.
over counterion and macroion coordinates Gy and (), Further progress requires approximations for the counter-

respectively, the canonical partition function can be ex-on free energy. Applying sepond—order perturbatibnear- .
pressed as responsgtheory, the counterions are assumed to respond lin-

early to the macroion external potential,

wherepn,(R) =21 S(R-R;) andpc(r)=2j¥; &(r -r)) are the

Z= <<eXF(_ BH»c)m = (exp(— ﬂHef‘f»ma (8)
Pc(f)=fdf'x(f —f')Jdf"Pm(f")vmc(f"f") (13

where B=1/kgT, H=H,tF; is the effective one-

component Hamiltonian, and or

Fe=—kgT In{exd— B(Hc+ Hpnd De 9 pc(K) = x(K)omdK)pm(K),  k# 0, (14)
is the free energy of a nonuniform gas of counterions in théVherex(k) is the linear-response function of the OCP.
presence of the macroions. Combining Eqs(11)~(14), the effective Hamiltonian can

Now regarding the macroions as an “external” potential®® expressed in the form of the Hamiltonian of a one-
for the counterions, we invoke perturbation theory COmponent pairwise-interacting system,

[26—28,30 and write L N
1 Heff:Hhc"'E_zi vei(|Ri = Rj|) + Eo, (15
F.=Fo+ f ANMHmors (10) 7=
0

where vei(r) =vmn(r) +ving(r) is an effective electrostatic
macroion-macroion pair interaction that augments the
bare macroion interaction,,{r) by a counterion-induced
interaction

whereF,=-kgT In{exp(—BH,)). is the reference free energy
of the unperturbed counterions, theintegral charges the
macroions (i.e., the PE brushg¢sfrom neutral to fully
charged Hr, represents the perturbing potential of the mac- Bing(K) = XKD K J2. (16)
roions acting on the counterions, akdy, is the mean

value of this potential in a suspension of macroions chargedhe final term in Eq(15) is the volume energy,

to a fraction\ of their full charge.

Two formal manipulations prove convenient. First, we
convert the free energy of the unperturbed counterions to that
of a classical one-component plasii@@CP) by adding and 1 7
suptractmg, on the _nght side pf E@L0), the energy of a + Nplim| = =0 0ing(K) + N md K) + =N oK) |,
uniform compensating negative backgrouridl], E,= k-0l 2 2z
-Ncnc(0)/2. Heren.=N./[V(1-7,J] is the average den- (17)
sity of counterions in the free volume—i.e., the total volume
reduced by the volume fraction,.= (47/3)n,a° of the mac-  Which emerges naturally from the one-component reduction.
roion hard cores—andl.((0) is thek— 0 limit of the Fourier  Although independent of the macroion coordinates, the vol-
transform ofv.(r). Equation(10) then becomes ume energy depends on the average macroion density and

thus has the potential to significantly influence thermody-

1 namics. Evidently, the effective interactions depend on the

F.= Focp+f d\(Hmo — Ep, (12) macroion structure through the specific form of the
0 macroion-counterion interactian,,; in Eqs.(16) and(17).

Ny .
Eo=Focp+ = liM ving(r)
2 r—0
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The OCP linear-response function, proportional to thesential for a complete description of phase behavior
corresponding static structure factstk), may be obtained [26—28,33-3f and (ii) a more accurate expression for the
from liquid-state theory30]. In practice, the OCP is weakly Debye screening constant that incorporates the macroion
correlated, with coupling parametEi=\g/a.<1, wherea,  excluded-volume correction.
=(3/4mn,)*"? is the counterion sphere radius. For example,
for hard-sphere macroions of radias=50 nm, valenceZ
=500, and volume fractiom,.=0.01, in water at room tem-  For our porcupine model of a spherical PE brush with
perature(\g=0.714 nm, we find '=0.02. As in previous 1/r2 monomer density profile, Gauss’s law gives the electric
work on charged colloid$27,28 and polyelectrolyte$29], field around a macroion as

IV. ANALYTICAL RESULTS

we adopt the random-phase approximati®iA), which is (
valid for weakly coupled plasmas. The RPA equates the OCP _Zel r>R
two-particle direct correlation function to its exact €r?’
asymptotic limit: ¢?(r)=-Buv.J(r). Using the Ornstein- E() =4 Zer-a (19)
Zernike relation,S(k)=1/[1-nc@(k)], the linear-response PR a<rs=R
function then takes the form
L 0, r<a.
- ___ B Integration overr yields the electrostatic potential energy
x(9== AneS (1+K2K2)’ &9 between a brush and a counterion,
R (
where k=v4mnz’\g is the Debye screening constafi- B Zﬁz r>R
verse screening lengthNote that the screening constant, e
which involves the density of counterions in the free volume, 778 a r
naturally incorporates the excluded volume of the macroion Umdl) =4 - —[1 -=- In(—)], a<r=R (20
cores. Withy(k) specified, the counterion density can be cal- el r R
culated from the macroion-counterion interaction and Eq. Z2z¢ a
(14) for a given macroion distributiotsee Sec. IY. Finally, T d -l R/ I’ r<a,
salt ions can be easily incorporated by introducing additional \

response functionf28]. The pair interaction and volume en- Wherea is an arbitrary constant, which arises becauisgr)
ergy are then modified only through a redefinition of theis not uniquely defined inside the hard core. Following van
Debye screening constank=4m(n.+2nyz°\g, wheren,  Roij and Hanseii35], we choosex below by requiring that -
=N¢/[V(1-7,9] is the average number density of salt ion the counterion density vanish inside the hard core. Fourier

pairs in the free volume. transforming Eq(20) yields
Generalization of response theory to incorporate leading- . AnZz7€
order nonlinear microion response entails three-body effec- UmdK) == e G(ka kR, a), (21

tive interactions, as well as corrections to the effective pair

potential and volume enerd®2]. Nonlinear effects are gen- where the function &a,kR; «) is defined as

erally significant, however, only in concentrated, deionized . , ,
suspensions of highly charged macroidd®] and are ig- G(Xq,%o; @) = SindXy) — SiNAXq) — a[X;€09X;) — sin(Xy)],
nored here. It has been shown that response theory, com- (22
bined with the RPA, is formally equivalent to Poisson-
Boltzmann theory32]. Both approaches rely on mean-field * _ _ : .
approximations that neglect microion fluctuations and predilute limit, the counterion number density profile around a
dict microion distributions of the same general form, asideSingle macroion, taking,(k)=1. From Eqs(14), (18), and
from a distinction in the screening constant, which responsé?1), the Fourier component of the density profile is

theory corrects for excluded volume of the macroion cores. 7 2
Advantages of response theory over Poisson-Boltzmann pe(k) = —m
theory are its predictions afi) the entire effective Hamil- z K
tonian, including the one-body volume energy, which is eswhich in real space takes the form

with sindx) = [5du sin(u)/u. We can now calculate, in the

G(ka,kR;a), (23

. S(ka, kR; a)e™ ", r>R
pe(r) = Eﬁ S(ka, kr;a)e ™ + Ed - kr,— kR)sinh(xr), a<r=R (24)
m [Ec(—- ka,— kR) + a(1 + ka)e “¥]sinh(«r), r < a.

041404-4



EFFECTIVE ELECTROSTATIC INTERACTIONS IN.. PHYSICAL REVIEW E 70, 041404(2004

For simplicity, we have introduced two functions, sphereq27,28, which interact via the DLVO effective pair
S(x1,%y; @) and E€x4,%,), which are defined, respectively, as potential

S(X1,Xo; @) = shi(X,) = shi(x;) — a[x;c0sHXx;) — sinr(xl)(]zs) burll) = %( 1iKiR)ze_rKr, om @3
and and for PE star$29], which interact via
— i _Ei 2 H 2 KT
Ec(xy,%,) = Ei(xp) — Ei(xy), (26) » (r):Z_eZ[sh:E;;R)} eT SR (34

where shix) = [§du sinh(u)/u denotes the hyperbolic sine
integral function and Ek) = [*, du €'/u is the exponential Note that the screening constant,in the pair potential de-

integral function. Now setting the counterion density to zeropends on the total density of microions—inside and outside
within the hard cordi.e., p.(r)=0,r<a, in Eq. (24)] fixes  of the brushes—since all microions respond to the macroion

the constant, charge. We do not consider here overlapping brushes, in
a which case steric interactions between chains also should be
a=- Ed- ka,—- kR). (27)  included[24].
l+xa Finally, the volume energy is obtained from Eq47),
Integrating Eq{(24) over the spherical shell volume of a (21: (29), and(30), as
PE brush yields the fraction of counterions inside a brush, 2222 (% [G(kakR: a)T2 keT
EO = Focp_ Nm 2 dk 212 > - (N+ - N_)_
1+kR _ o el Jg ke(ks + k%) 2
fin=1- e " S(ka,kR; ). (28)
Kl (35)

pendent dimensionless parameters,and«l, i.e., the ratios

of the macroion core radius and brush thickness, respec- Focp= Ni[In(n,A3) - 1]+ N_[In(n_.A3) - 1], (36)
tively, to the Debye screening length.

From Eqgs.(16) and (21), the induced electrostatic pair
interaction is given by

where n,=N,/[V(1-7,)] are the average densities of
positive/negative microions in the free volume ang are
the corresponding thermal de Broglie wavelengths. The

o o= 477%€? K2 kRl (2 physical interpretation of the volume energy is straightfor-
Vind(K) = e 1242+ KZ)[G( akRa)l% (29  \ard. The first term on th_e right side of E@5) represents
the entropy of free microions, the second term the electro-
whose Fourier transform is static energy of microion-macroion interactions, and the third
27202, 2 * sin(kr) term accounts_for the background gubstraction. If_the macro-
Ving(r) = = 5 f dk————[G(ka,kR; )2 ion valenceZ is allowed to vary with concentratiote.g.,
mel“r k*(k”+ k%) through counterion condensatjpthenE, should be supple-

(30) mented by the macroion self-energy. We emphasize that, be-
cause of its dependence on the average macroion concentra-
For nonoverlapping brushes, E@O) can be reduced to the tion, the volume energy has the potential to influence
analytical form thermodynamic phase behavior. As a check of the present
2 2 C N2k results, it can be shown that in the two limiting cases of
Ving(r) =— Z_e2 + Z_ez[w] e_’ r>2R. vanishing PE shell thicknegd — 0, with Z fixed) and, inde-
€r € pendently, vanishing hard-core diametar— 0), all analyti-
(31  cal results reduce to those given in Rg&7-29.

l

After adding to Eq(31) the bare Coulomb potential between
the spherical macroiondq. (4)], the residual effective pair

interaction is To illustrate applications of the theory developed above,
Zzez{S(Ka, KR a)]ze Kt we present numerical results for the case of monovalent
Ve(l)=—| —————— | —, r>2R. (32 counteriongz=1) in aqueous suspensions at room tempera-
€ Kl r ture (\g=0.714 nm). Figure 2 shows the predicted counter-
Thus, within the coarse-grained PE brush model and at thi@n profiles around three different types of macroion, all of
level of linear-response theory, nonoverlapping PE brushethe same outer radiuR=50 nm, valenceZ=500, and re-
are predicted to interact via an effective Yukawa pair potenduced number density,R*=0.01, for a salt-free suspension.
tial of the same screened-Coulomb form as the long-rang&he chosen valence is within the upper limit suggested by
limit of the Derjaguin-Landau-Verwey-OverbegldLVO)  charge renormalization theor38] for this size macroion:
potential[37] for charged colloids. This result is consistent Z<O(10)R/\g. For a star macroion, the counterion density
with previous linear-response results for charged hardliverges logarithmically towards the cent@9], while for

V. NUMERICAL RESULTS AND DISCUSSION
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40 - — 500 —
\ — Brusl ——— Drusl
\ ----Star \ (a) ----Star
a0l O [P Hard Sphere 4000 e Hard Sphere
oy
)
=
\k?)
QU
10}
0
0

FIG. 2. Counterion number density profiles of three types of Brush
spherical macroion of outer radil®&=50 nm, valenc&Z=500, and 200, (b) ----Star
reduced number density,R3=0.01 in water at room temperature “\ ----- Hard Sphere

(A\g=0.714 nm: PE brush-coated macroidsolid curve from Eq.
(24)], PE star[dashed curve from Eq20) of Ref. [29]], and
charged hard spheféot-dashed curve from E¢32) of Ref.[27]].
For the brush-coated macroion, the hard-core radius=i25 nm
and the PE shell thickness lis 25 nm.

brush-coated and bare hard-sphere macroions the counterion
densities remain finite. Figure 3 displays the corresponding
internal counterion fraction, i.e., fractional counterion pen-
etration, as a function okR. For a fixed ratio of hard-core
radius to outer radiusa/R, the internal counterion fraction FIG. 4. Effective electrostatic interactions between pairs of non-
increases monotonically witkR, reflecting increasing per- overlapping macroions of outer radii&= 50 nm, valence&Z=500,
meability of the macroions to counterions with decreasingand reduced number densityR®=0.01 in room-temperature water
screening lengtlte.g., increasing salt concentratjo®n the ~ (\g=0.714 nm at salt concentrationga) cs=0 mol/I(«R=0.95
other hand, wherR is fixed, the counterion penetration de- and(b) cs=100 umol/I(xR=1.9): PE brush-coated spherical mac-
creases upon thinning of the PE brughcreasinga/R). In roions [solid curves from Eq(32)], PE stargdashed curves from
the limit of vanishing brush thicknessl/R—0, a/lR—1),  EA.(34], and charged hard sphergdot-dashed curves from Eq.

Eq. (28) reduces to (33)].
, __Ka 2 tive pair interactions between brush-coated macroions de-
finll = 0) = Kka+ 1KI+O(I )- (37) pend sensitively on the thickness of the PE brush. To

] . illustrate, Fig. 4 shows the effective pair potential for the
Counterions are predicted to penetrate PE brush-coated magame three macroion types as in Figs. 2 and 3 and for two
roions less efficiently than stars. _ ~ salt concentrations;s=0 M andcg=100 uM, corresponding

Penetration _of macroions by counterions can strongly ing different Debye screening constamtsFor identical sys-
fluence screening of bare Coulomb interactions. Thus, effeqem parameters, the strength of the Yukawa pair interaction

for nonoverlapping brush macroions is intermediate between

1.0 that for hard-sphere and star macroions. Figure 5 compares
——Brush . R .
o ceeestar |- the dependence of the macroion-size-dependent amplitude of
g == Hard Sphere - ver(r), r>2R, on the Debye screening constant for the three
B macroion types. The amplitude increases wikhfor a fixed
L osp ratio of hard-core to outer radius, while for fixeeR the
§ amplitude increases from the star limit to the hard-sphere
£ limit as the PE brush thins to infinitesimal thickness R
3 —1).
© oo )
0 1 2 3 4 5 VI. CONCLUSIONS

xR Summarizing, polyelectrolyte-coated colloids provide a

FIG. 3. Fraction of counteriongrom Eq. (28)] trapped inside Vvaluable conceptual bridge between charged colloids and
PE brush as a function of the dimensionless parame®qtratio of ~ polyelectrolytes. In this paper, linear-response theory is ap-
outer radius to Debye screening lengthr several values od/R  plied to bulk suspensions of spherical colloidal particles
(ratio of core radius to outer radius coated with PE brushes. Assuming stiff, radially stretched PE
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10| —Brush / ishing core radiugPE star macroionto zero in the limit of
----Star [ Jam=095 vanishing shell thicknesdard-sphere macroign(ii) Within
gl Hard Sphere / the linear-response approximation, the effective pair interac-

tion between nonoverlapping macroions has a Yukawa
(screened-Coulombform. (iii) By varying core radius and
brush thickness, effective interactions between PE brush-
coated macroions can be tuned—in both amplitude and
range—between interactions for hard-sphere and star macro-
ions. For a fixed ratio of core radius to outer radius, the
0 1 2 3 amplitude of the pair interaction increases monotonically
R with increasing outer radius or decreasing screening length,
while for a fixed ratio of outer radius to screening length, the
FIG. 5. Amplitude of Yukawa effective electrostatic interactions amplitude increases monotonically from the star-limit to the
between pairs of nonoverlapping brushes, stars, and charged hahndrd-sphere limit. The range of the pair interaction, governed
spheres vs Debye screening constant, normalized to uniRat by the Debye screening length, depends on the hard-core

Interaction Amplitude

=0 [from Egs.(32)+34)]. volume fraction and so can be varied by adjusting the core
chains, we model each brush as a spherically symmetric sherf?d'us'

. o : The range of validity of the coarse-grained model and
of continuously distributed charge, the charge density V&Y linearized t?leory studie}:j here, and the gccuracy of the pre-

ing with radial distance as 1. By formally integrating out dicted Yukawa form of effective pair interaction, including

the microion de_,-grees_ of fre_edom, the Hamiltonian of .theamplitude and range, could be directly tested by future simu-
macroion-microion mixture is mapped onto the effective

oo . . lations of more explicit models of PE-grafted colloids. Our
Hamiltonian of an equivalent one-component system. Pred'cﬁurely electrostatic model can be augmented by chain elas-
tions of the theory include microion density profiles, effec-

. S : ) ticity and entropy—essential for describing overlapping PE
tive electrostatic interactions between pairs(ebnoverlap- Y Ry g Pping

ind) macroions. and a state-dependent one-bod Volumshells[24]. The mean-field linear-response theory can be re-
ping . ’ P Y ned to incorporate nonlinear microion respori82] and

presented here may provide a practical guide for choosin¥mcr0ion correlations, beyond th_e random-phase approxima-
svstem parameters to achieve desired interactions Hon. The theory also can be. easily adapted to other macroion
yThe r%ain conclusions of this studv are as foliov(/is) types, such as core-shell microgg?®9,39. Future work will

y . explore thermodynamic phase behavior, which we anticipate

Trapping of counterions inside a spherical PE brush is highl;{ be quite rich and tunable between that of charge-stabilized
sensitive to variations in the core radius, brush thickness, anré?

Debye screening length of the solution. For a fixed ratio o olloidal suspensions and polyelectrolyte solutions.

core to outer radigs, the _fraqion of .trapped counFerions in- ACKNOWLEDGMENTS

creases monotonically with increasing outer radius or de-

creasing screening length. For fixed ratio of outer radius to This work was supported by the National Science Foun-
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