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It is shown how the Debye rotational diffusion model of dielectric relaxation of polar molecules(which may
be described in microscopic fashion as the diffusion limit of a discrete time random walk on the surface of the
unit sphere) may be extended to yield the empirical Havriliak-Negami(HN) equation of anomalous dielectric
relaxation from a microscopic model based on a kinetic equation just as in the Debye model. This kinetic
equation is obtained by means of a generalization of the noninertial Fokker-Planck equation of conventional
Brownian motion(generally known as the Smoluchowski equation) to fractional kinetics governed by the HN
relaxation mechanism. For the simple case of noninteracting dipoles it may be solved by Fourier transform
techniques to yield the Green function and the complex dielectric susceptibility corresponding to the HN
anomalous relaxation mechanism.
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I. INTRODUCTION

One of the most striking features of the dielectric relax-
ation of disordered materials such as glass-forming liquids
and amorphous polymers is the failure of the Debye[1,2]
theory of dielectric relaxation to adequately describe the
low-frequency spectrum, where the relaxation behavior may
deviate considerably from the exponential(Debye) pattern
and is characterized by a broad distribution of relaxation
times. Such behavior has been given the titleanomalous di-
electric relaxationand was first systematically described in
the pioneering paper[3] of Cole and Cole in 1941 on dielec-
tric relaxation in polar liquids. These and subsequent inves-
tigators have proposed[4,5] (see also[6]) various empirical
formulas describing the departure from the Debye behavior.
In specific terms, the normal Debye relaxation process is
characterized by a complex susceptibilityxsvd=x8svd
− ix9svd of the form

xsvd =
x0

1 + ivt
, s1d

wherex0 is the static susceptibility andt is a characteristic
relaxation time known in the present context as the Debye
relaxation time. Equation(1) adequately describes the low-
frequency behavior of the observed complex susceptibility of
many simple polar liquids.

Equation (1) may be derived using a variety of micro-
scopic models of the relaxation process. For example Debye
[1,2] derived Eq.(1) by considering the rotational Brownian
motion (excluding the inertial effects) of an assembly of

electrically noninteracting dipoles. We shall term this model
the first Debye model. This model applies when one has(1)
a dilute solution of dipolar molecules in a nonpolar liquid;
(2) axially symmetric molecules; and(3) isotropy of the liq-
uid, even on an atomic scale in the time average over a time
interval small compared with the Debye relaxation timet.

Debye proceeded by extending Einstein’s treatment of the
translational Brownian motion to rotational Brownian mo-
tion of noninteracting permanent dipoles in the presence of
an external time-varying field and solving the appropriate
Fokker-Planck equation. Here that equation is the Smolu-
chowski equation, which is an approximate Fokker-Planck
equation[7] in the space of angular coordinates for the dis-
tribution function of the orientations of the dipoles on the
surface of the unit sphere when the influence of the inertia of
the molecules on the relaxation process is ignored. The De-
bye method then yields the mean dipole moment in the di-
rection of the applied field and the complex susceptibility
xsvd, Eq. (1). The Smoluchowski equation applies[8] to
strong dissipative coupling to the bath so that the first Debye
model always contains the assumption that the dipolar mol-
ecule is bound so strongly to the surrounding molecules that
large jumps of the dipole direction are extremely unlikely.
This behavior according to Fröhlich[8] may be true in a
number of cases but others may exist in which the opposite
(large jumps) is much more likely. A dipolar molecule will
then[8] make many jumps over the potential barrier separat-
ing it from another dipole direction during the time required
for an appreciable change in direction by viscous flow.
Clearly, such behavior holds for solids where flow may be
considered as entirely absent; however, it may also be ex-
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pected where the viscosity is so high that flow is practically
negligible. In liquids it might also happen that the motion
which prevails is different for different kinds of dissolved
molecules. Moreover, both large and small jump transitions
may exist simultaneously.

The above observations lead us to the second microscopic
model considered by Debye[2] (and much extended by
Fröhlich [8]), which is a Poisson-like process, where relax-
ation occurs due to the crossing by large jumps of rare mem-
bers of an assembly of dipoles over an internal potential
barrier in a solid due to the shuttling action of thermal agi-
tation. This microscopic model also produces a relaxation
spectrum of the form of Eq.(1); however, the overbarrier
relaxation time has Arrhenius-like behavior as it depends ex-
ponentially on the height of the potential barrier. The Debye-
Fröhlich model also constitutes a rotational Brownian motion
model based on the Fokker-Planck or Langevin equations, as
is apparent by considering a continuous distribution of ori-
entations[7] and a double-(multiwell) potential rather than
the discrete orientation approximation treated by Debye and
Fröhlich. It should be noted that if a continuous distribution
of orientations is used then the prefactor of the exponential
in the overbarrier relaxation time depends strongly on the
dissipative coupling to the heat bath and the shape of the
potential, as emphasized by Kramers[9] in his famous study
of the escape of particles over potential barriers due to the
shuttling action of thermal agitation. Moreover, the use of the
Fokker-Planck equation allows one to account for the contri-
bution of the fast decays in the wells of the potential to the
relaxation process.

The Debye-Fröhlich model is also very useful as a picture
of the solid-state-like process of reversal(i.e., longitudinal or
Néel relaxation) of the magnetization in fine single domain
ferromagnetic nanoparticles possessing an internal potential
barrier due to their inherent magnetocrystalline anisotropy
[7]. In this context, taking into account the intrinsic differ-
ences between dielectric and magnetic relaxation, the model
is known as the Néel-Brown model[10–13] of magnetic re-
laxation. If, on the other hand, the model is applied to the
longitudinal dielectric relaxation of nematic liquid crystals, it
is known as the Maier-Saupe model[7].

Thus the Debye equation(1) may be satisfactorily ex-
plained in terms of the thermal fluctuations of an assembly of
dipoles embedded in a heat bath giving rise to rotational
Brownian motion described by the Fokker-Planck or Lange-
vin equations. The advantage of a formulation in terms of the
Brownian motion is that the kinetic equations of that theory
may be used to extend the Debye calculation to more com-
plicated situations[7] involving the inertial effects of the
molecules and interactions between the molecules. More-
over, the microscopic mechanisms underlying the Debye be-
havior may be clearly understood in terms of the diffusion
limit of a discrete time random walk on the surface of the
unit sphere.

Returning to anomalous dielectric relaxation, it appears
that a significant amount of experimental data on disordered
systems supports the following empirical expressions for di-
electric loss spectra, namely, the Cole-Cole equation[6]

xsvd =
x0

1 + sivtds , 0 , s ø 1, s2d

the Cole-Davidson equation

xsvd =
x0

s1 + ivtdn , 0 , n ø 1, s3d

and the Havriliak-Negami equation

xsvd =
x0

f1 + sivtdsgn , 0 , s ø 1, 0, n ø 1, s4d

which is a combination of the Cole-Cole and Cole-Davidson
equations. Each of the above equations by use of the super-
position principle exhibits a broad distribution of relaxation
times [6,8]. In the notation of Fröhlich[8], we have

xsvd =E
0

` fsTddT

1 + ivT
. s5d

The equation is the mathematical expression[6] of the idea
that the dielectric behaves as a collection of individual com-
ponents, each being described by a Debye equation with re-
laxation timeT; fsTd is the relaxation time distribution func-
tion. In both Cole-Cole and Cole-Davidson relaxation
mechanisms, unlike the Debye equation, where the distribu-
tion function is ad function, the relaxation time distribution
(first evaluated for the Cole-Cole relaxation by Cole and
Cole [3]) exhibits long time tails[e.g., Eqs.(3.104) and
(3.105) of Ref. [6]] typical of Lévy probability distributions.
This observation has been formalized for Cole-Cole relax-
ation by Glöckle and Nonnenmacher in Ref.[14].

Returning to Eqs.(2) and(4), the Cole-Cole parameters
is a broadeningparameter as the curve ofx9svd versusv
broadens ass is reduced. On the other hand, the Cole-
Davidson parametern in Eqs. (3) and (4) is a skewingpa-
rameter, as in the Cole-Cole plot ofx9svd versusx8svd the
circular arc characteristic of the Debye equation is shifted
toward the low-frequency end of the spectrum[6]. An expla-
nation of this behavior is then-fold degeneracy induced in
the Debye equation(1) by the Cole-Davidson parametern,
causing the simple pole −1/t of the Debye equation to be-
come a branch point of ordern, i.e., a n-fold degenerate
eigenvalue.

As far as the physical mechanism underlying the Cole-
Cole equation is concerned, we first remark that Eq.(2)
arises from the diffusion limit of acontinuoustime random
walk [15]. In this context one should recall that the Einstein
theory of the Brownian motion relies on the diffusion limit of
a discretetime random walk. Here the random walker makes
a jump of a fixed mean square length in a fixed time, so that
the only random variable is the direction of the walker, lead-
ing automatically by means of the central limit theorem(in
the limit of a large sequence of jumps) to the Wiener process
describing the Brownian motion[7]. The continuous time
random walk(CTRW), on the other hand, was introduced by
Montroll and Weiss[16] as a way of rendering time continu-
ous in a random walk without necessarily appealing to the
diffusion limit. In the most general case of the CTRW, the
random walker may jump an arbitrary length in arbitrary
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time. However, the jump length and jump time random vari-
ables are not statistically independent[17–20]. In other
words, a given jump length is penalized by a time cost, and
vice versa. A simple case of the CTRW arises when one
assumes that the jump length and jump time random vari-
ables are decoupled and that the jump length variances are
always finite(so that the central limit theorem applies in the
limit of a large sequence of jump lengths[7]); however, the
jump times may be arbitrarily long so that they obey a Lévy
distribution with its characteristic long tail[17–21]. Thus the
jump length distribution ultimately becomes Gaussian with
finite jump length variance, while the mean waiting time
between jumps diverges on account of the underlying Lévy
waiting time distribution. Such walks, which possess a dis-
crete hierarchy of time scales[22], not all of which have the
same probability of occurrence, are known[18] as fractal
time random walks. In the limit of a large sequence of jump
times, they give rise[15,17] to a fractional Fokker-Planck
equation in configuration space. If this equation is now
adapted to rotational Brownian motion as used by Debye
[1,2] for the normal Fokker-Planck equation in his first
model, then the Cole-Cole equation(2) automatically fol-
lows [7,21]. Inertial effects have also been included in the
model [23].

The second model of Debye or the Debye-Fröhlich model
may also be generalized to fractional diffusion[7,24] (in-
cluding inertial effects[25]). Moreover, it has been shown
[24] that the Cole-Cole equation arises naturally from the
solution of a fractional Fokker-Planck equation in the con-
figuration space of orientations derived from the diffusion
limit of a CTRW. The broadening of the dielectric loss curve
characteristic of the Cole-Cole spectrum may then be easily
explained on a microscopic level by means of the relation
[7,24]

lp,s = lpt1−s s6d

between the eigenvalueslp,s and lp of the fractional and
normal configuration space Fokker-Planck equations, respec-
tively. Here the relaxation behavior appears[7] as a super-
position of Cole-Cole equations if the inertial effects are ig-
nored. The fractal time random walk picture, whereby a
particle is trapped in a given configuration for an arbitrarily
long period before executing a jump[7,15], immediately
suggests that the Cole-Cole parameters (here the fractal
dimension of the set of waiting times between jumps) arises
from the anisotropy of the material on a microscopic scale.
Thus assumption 3 underpinning the Debye theory breaks
down for Cole-Cole relaxation. The microscopic anisotropy
gives rise to a distribution of microscopic potential barrier
heights[22] which in turn, because the individual jump prob-
abilities are a hierarchy of Poisson processes[18], give rise
to a hierarchy of relaxation times not all of which have the
same probability of occurrence. Such models are usually
known as random activation energy models(see Ref.[19], p.
280). They appear to be consistent with the concept of a
distribution of microscopic Debye-like mechanisms embod-
ied in Eq. (5) and the Lévy-like behavior[Ref. [6], Eqs.
(3.104) and (3.105)] of the various relaxation time distribu-
tions and with the breakdown in anomalous relaxation of

Einstein’s ansatz[7,15,20] that in Brownian motion the ran-
dom walker executes a discrete jump of finite mean square
length in an average timet.

Here we demonstrate how both the Cole-Davidson and
Havriliak-Negami (HN) anomalous behaviors may be em-
bodied, just like the Cole-Cole behavior, in a fractional gen-
eralization of the Fokker-Planck equation in configuration
space for the first Debye model of nonelectrically interacting
dipoles. In what follows, we shall use a cumulant expansion
originally given by Nigmatullin and Ryabov[26] who pro-
posed a phenomenological fractional ordinary differential
equation describing the Cole-Davidson behavior. In addition,
we shall demonstrate how the aftereffect function[7] follow-
ing the removal of a small constant field may be given for
the HN model in terms of a FoxH function [27] extrapolat-
ing between the stretched exponential(Kohlrausch-Williams-
Watts) law [cf. Eq. (34) below] at short times and the inverse
long time tail power law[cf. Eq. (35) below] at long times
[17]. The Debye relaxation time in this case[19] plays the
role of a time scale demarking the transition from a stretched
exponential law to a power law. In Cole-Cole relaxation, the
Fox H function reduces to the well-known Mittag-Leffler
function [17].

II. FRACTIONAL FOKKER-PLANCK EQUATIONS

In order to generalize the normal Fokker-Planck equation
excluding inertial effects to fractional diffusion, we first re-
call the general form of that equation in operator representa-
tion [28],

]Wsx,td
]t

+ LFPWsx,td = 0, t . 0, Wsx,0d = W0sxd,

s7d

whereWsx ,td is the probability density(distribution) func-
tion of a variablex and LFP is the Fokker-Planck operator.
Equation(7) can equivalently be rewritten as an equation for
an impulse response so that the initial condition appears as
the amplitude of a forcing functiondstd, viz. [29],

]W̄sx,td
]t

+ LFPW̄sx,td = dstdW0sxd, s8d

where W̄sx ,td=ustdWsx ,td, ustd is the Heaviside unit step
function, anddstd is the Dirac delta function.

For anomalous diffusion corresponding to the Cole-Cole
equation(2), the fractional Fokker-Planck equation was de-
rived for translational motion by Metzler and Klafter[17,30]
and extended to rotational motion by Coffeyet al. [7,15,21].
Equation(8) can now be rewritten as

]

]t
W̄sx,td + t1−s

0Dt
1−sLFPW̄sx,td = dstdW0sxd, s9d

where the fractional derivative is given by the Riemann-
Liouville definition

MICROSCOPIC MODELS FOR DIELECTRIC… PHYSICAL REVIEW E 70, 041103(2004)

041103-3



0Dt
−sffstdg =

1

GssdE0

t fstddt

st − td1−s , s10d

andGszd is the gamma function[31] [a derivation of Eq.(9)
by taking the diffusion limit of a CTRW has been given in
Refs. [15,17]]. Here, just as in the translational diffusion
equation treated in Ref.[17], we consider subdiffusion
0,s,1 phenomena only(s=1 corresponds to normal dif-
fusion). Thus, the fractional derivative is a type of memory
function with a slowly decaying power law kernel in time.
Equation(9) leads to anomalous(Cole-Cole-like) behavior
of the complex susceptibility[7]. Such behavior arises from
random torques with an anomalous waiting time distribution,
that is, from a fractal time random walk witht as the inter-
trapping time. The meaning of the parameters is the order
of the fractional derivative in the fractional differential equa-
tion describing the continuum limit of a random walk with a
chaotic set of waiting times, i.e., a fractal time random walk.
However, a more physically useful definition ofs is as the
fractal dimension of the set of waiting times, which is the
scaling of the waiting time segments in a random walk with
magnification. Thus,s measures the statistical self-similarity
(or how the whole looks similar to its parts[18]) of the
waiting time segments. In order to construct such an entity in
practice, a whole discrete hierarchy of time scales such as
will arise from energetic disorder[19,22] is needed. For ex-
ample, a fractal time Poisson process[18] with a waiting
time distribution assumes the typical form of a Lévy stable
distribution in the limit of larget. This is explicitly discussed
in Ref. [18] where a formula fors is given and is also dis-
cussed in Ref.[19]. The fractal time process is essentially
generated by energetic disorder treated as far as the ensuing
temporal behavior is concerned, by considering jumps over
the wells of a chaotic potential barrier landscape. This mi-
croscopic picture appears to completely support the com-
monly used experimental representation of the Cole-Cole be-
havior as a distribution of Debye-like relaxation mechanisms
with a continuous relaxation time distribution function.
Equation(9) may be written in an equivalent form as[17,19]

ts
0Dt

sW̄sx,td + tLFPW̄sx,td =
st/td−s

Gs1 − sd
W0sxd. s11d

Equations(9) and(11) and are fractional analogs of the con-
ventional Fokker-Planck equation(8) giving rise to the Cole-
Cole anomalous behavior[7,17].

Another approach to fractionalizing the Fokker-Planck
equation so as to incorporate Cole-Davidson behavior can
now be written by extending a hypothesis of Nigmatullin and
Ryabov[26]. They noted that the ordinary first-order differ-
ential equation describing an exponential decay

d

dt
fstd + V0 fstd = 0

with initial condition ufstdut=0= fs0d may be written as an
equation for an impulse response, viz.,

e−V0t d

dt
eV0tustdfstd = fs0ddstd, s12d

which in turn may be written as[recalling that the derivative
of the step function is the Dirac delta function]tus−td=
−dstd [29]]

e−V0t d

dt
heV0tfustdfstd + us− tdfs0dgj = us− tdV0 fs0d.

s13d

In order to obtain in heuristic fashion a fractional analog of
Eq. (13), one may simply replace the ordinary derivative by
a fractional derivative[26], so that Eq.(13) becomes

e−V0t
0Dt

nheV0tfustdfstd + us− tdfs0dgj = us− tdV0 fs0d.

s14d

In the particular application to dielectric relaxation,fstd is
the aftereffect function following the removal of a constant
field [7]. The solution of Eq.(14) rendered in the frequency
domain yields the Cole-Davidson equation(3) [26].

The approach of Nigmatullin and Ryabov[26] is, how-
ever, entirely phenomenological as no underlying kinetic
equation is involved. Nevertheless, their method may also be
applied to the Fokker-Planck equation(8) so that a kinetic
equation, and thus a microscopic model, is involved. Indeed,
we can rewrite the normal Fokker-Planck equation(8) as an
equation for an impulse response in the form of the right
hand side of Eq.(12), viz.,

e−LFPt ]

]t
feLFPtW̄sx,tdg = dstdW0sxd. s15d

Equation(15) assumes the form of Eq.(13), viz.,

e−LFPt ]

]t
eLFPtfW̄sx,td + us− tdW0sxdg = us− tdLFPW0sxd.

s16d

For the purpose of using a kinetic equation incorporating the
Cole-Davidson mechanism according to the heuristic proce-
dure of Nigmatullin and Ryabov[26], we may replace the
partial time derivative in Eq.(16) by a fractional time deriva-
tive 0Dt

n. Thus Eq.(16) becomes[cf. Eq. (14)]

t n−1e−LFPt
0Dt

neLFPtfW̄sx,td + us− tdW0sxdg = us− tdLFPW0sxd.

s17d

Next we recall the cumulant operator expansion for the op-
eratore−BAeB, namely[26],

e−BAeB = A +
†A,B‡

1!
+

f†A,B‡,Bg
2!

+ ¯ .

This expansion allows one to represent Eq.(17) as the series
of operators
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t n−1S0Dt
n +

f0Dt
n,LFPtg
1!

+
†f0Dt

n,LFPtg,LFPt‡

2!
+ ¯ D

3fW̄+ us− tdW0g = us− tdLFPW0. s18d

This series can be simplified by using the relationship be-
tween fractional derivatives[31]

0Dt
nftfstdg − t 0Dt

nffstdg = n 0Dt
n−1ffstdg.

Thus Eq.(18) reduces to

t n−1S0Dt
n +

nLFP 0Dt
n−1

1!
+

nsn − 1dLFP
2

0Dt
n−2

2!
+ ¯ D

3fW̄+ us− tdW0g = us− tdLFPW0,

which in turn assumes the shifted fractional differential op-
erator form, viz.,

st0Dt
1 + tLFPdnfW̄sx,td + us− tdW0sxdg = tus− tdLFPW0sxd.

s19d

Here we have recalled the binomial expansion

sa + bdn = o
n=0

`
s− 1dns− ndn

n!
an−nbn, s20d

where sadn=Gsn+ad /Gsad is a Pochhammer symbol[32].
Equation(19) represents the generalization(by heuristic rea-
soning) of the normal Fokker-Planck equation to anomalous
diffusion governed by a Cole-Davidson relaxation mecha-
nism.

In like manner, combining the ideas embodied in the frac-
tional diffusion Eq.(11) describing Cole-Cole relaxation and
Eq. (17) describing Cole-Davidson relaxation, we may intro-
duce the fractional kinetic equation

fts
0Dt

s + tLFPgnfW̄sx,td + us− tdW0sxdg = tus− tdLFPW0sxd.

s21d

For two particular casesn=1, 0,s,1 ands=1, 0,n,1,
Eq. (21) reduces to Eqs.(11) and(19), respectively. Equation
(21) represents a fractional generalization of the normal
Fokker-Planck equation incorporating the HN relaxation
mechanism. Thus in any model described by a Fokker-
Planck equation the effect of the HN mechanism on the nor-
mal diffusion response may be included by solving Eq.(21).
It allows one to generalize both the original Debye model
and the Debye-Fröhlich model to include this relaxation
mechanism. In the particular case of the first Debye model,
namely, an assembly of noninteracting dipoles, Eq.(21) will
yield the simple HN Eq.(4) as demonstrated in Sec. IV.

III. GREEN FUNCTIONS FOR ROTATIONAL
MOTION IN PLANE

In order to demonstrate how the anomalous relaxation be-
havior described by the hitherto empirical Eqs.(2)–(4) may
be obtained from our fractional generalizations of the
Fokker-Planck equation in configuration space(in effect,

fractional Smoluchowski equations), Eq. (21), we first con-
sider the fractional rotational motion of a fixed axis rotator
[1], which for the normal diffusion is the first Debye model.
Here a typical member of the assembly is a rigid dipole of
momentm rotating about a fixed axis through its center. The
orientation of the dipole is specified by the angular coordi-
natef (the azimuth) constituting a system of one rotational
degree of freedom. Electrical interactions between the di-
poles are ignored. The normal Fokker-Planck equation for
the time evolution of the probability density functionWsf ,td
on the unit circle in configuration space is then

]

]t
Wsf,td + LFPWsf,td = 0, Wsf,0d = W0sfd, s22d

where the Fokker-Planck operator is defined as

LFPW= − t−1F 1

kT

]

]f
SW

]

]f
VD +

] 2

]f2WG . s23d

Here t is the intertrapping time scale, which is identified
with the Debye or free diffusion relaxation timet=z / skTd,
wherez is the viscous drag coefficient of a dipole(at ambient
temperatures,t is of the order 10−11 s for molecular liquids
and solutions), andV is the potential arising from an external
applied electric field. In the absence of external fields the
Fokker-Planck operator becomes

LFP = − t−1 ] 2

]f2 . s24d

Equation(21) thus becomes

fts
0Dt

s + tLFPgnfW̄sf,td + us− tdW0sfdg = tus− tdLFPW0sfd.

s25d

Here we wish to obtain the aftereffect solution for an
assembly of fixed axis rotators. Recalling that for rotation the
probability density function must be periodic inf, we ex-

pandW̄sf ,td in the Fourier series

W̄sf,td = ustd o
p=−`

`

fpstdeipf. s26d

Moreover, W must be real so that the Fourier coefficient
fpstd, which is the characteristic function ofW must satisfy
f−pstd= fp

* std, where the asterisk denotes the complex conju-
gate. Substitution of Eq.(26) into Eq. (19) now yields

o
n=0

`
s− 1dns− ndn

n!
p2ntsn−n

0Dt
sn−nfustdfpstd + fps0dus− tdg

= p2us− tdfps0d. s27d

Here we have noted Eq.(20) and

LFPeipf = − t−1 ] 2

]f2eipf = t−1p2eipf,

LFP
n W̄sf,td = ustdt−n o

p=−`

`

fpstdp2neipf, s28d

MICROSCOPIC MODELS FOR DIELECTRIC… PHYSICAL REVIEW E 70, 041103(2004)

041103-5



W0sfd = o
p=−`

`

fps0deipf. s29d

By using the integration theorem[31] of two-sided Fourier
transformations generalized to fractional calculus[31], viz.,

Fh0Dt
austdfstdj = sivda f̃svd, s30d

where

f̃svd =E
−`

`

e−ivtustdfstddt =E
0

`

e−ivt fstddt,

with inverse

fstd =
1

2p
E

−`

`

eivt f̃svddt,

we have from Eq.(27)

F f̃ psvd −
fps0d
iv

Go
n=0

`
s− 1dns− ndn

n!
p2nsivtdsn−n = −

p2

iv
fps0d.

s31d

Using Eq.(20), Eq. (31) can be further rearranged as

ffps0d − iv f̃ psvdgfp2 + sivtdsgn = p2fps0d. s32d

Here we have also recalled thatDt
n−nus−td=−Dt

n−n−1dstd. We
remark that posing the problem of the step-off solution in
terms of an impulse response in the time domain with the
initial conditions regarded as the amplitude of the impulse
has enabled us to obtain the solution in a very simple way
using the generalized Fourier integration theorem Eq.(30),
which unlike the corresponding generalized Laplace trans-
form integration theorem[31] does not involve the initial
conditions. The same result may, however, be obtained with
the help of the Laplace transform if we rearrange Eq.(21) as
an equation for the time dependent part of the distribution
function only, so that initial conditions are not involved.

Inverting Eq.(32), we have for the inverse Fourier trans-
form overv (see the Appendix)

fpstd
fps0d

= 1 −
p2s1−nd

Gsnd
H1,2

1,1Sp2st/tdsU s1,1d
sn,1d,s0,sd

D , s33d

where H1,2
1,1 is the Fox H function [27]. The function

fpstd / fps0d has initially st!td the stretched exponential form

fpstd
fps0d

, e−p2st/tdsn/Gs1+nsd. s34d

In contrast, at long timesst@td, it has the inverse power law
behavior

fpstd
fps0d

, 1 − p2s1−nd +
Gsn + 1dst/td−s

p2nGsndGs1 − sd
. s35d

The behavior offpstd / fps0d for p=1 is shown in Figs. 1 and
2 for various values ofs andn; the asymptotes Eqs.(34) and
(35) are also shown in these figures for comparison. For pure
Cole-Davidson relaxation, wheres=1 (see Fig. 2), the fol-
lowing asymptote must be used instead of Eq.(35):

f1std
f1s0d

,
e−t/tst/tdn−1

Gsnd
, s36d

as this is the correct asymptote for the incomplete Gamma
function (see below). Thus the decay off1std / f1s0d is essen-
tially exponential in the limit of long times in Cole-Davidson
relaxation. Thus it is apparent from Eqs.(35) and (36) that
the origin of the long time tail is the parameters, which is
ultimately due to the trapping effects inherent in the fractal
time random walk, i.e., the microscopic disorder. As far as
the short time behavior Eq.(34) is concerned, the role ofn is
to enhance the stretched exponential behavior for givens.

If the initial distribution function is ad function, viz.,
W0sfd=dsf−f0d, the solution(Green function) is given by

FIG. 1. f1std / f1s0d as a function oft /t for s=0.5 and different
values ofn [Eq. (A4), solid line] with the short[Eq. (34), dotted
lines] and long[Eq. (35), dashed lines] time asymptotes.

FIG. 2. f1std / f1s0d as a function oft /t for n= =0.5 and different
values ofs [Eq. (A4), solid line] with the short[Eq. (34), dotted
lines] and long[Eqs.(35) (for s=0.2 and 0.5) and(36) (for s=1),
dashed lines] time asymptotes.
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Wsf,tuf0,0d =
1

2p
o

p=−`

` F1 −
p2s1−nd

Gsnd
H1,2

1,1

3Sp2st/tdsU s1,1d
sn,1d,s0,sd

UDGeipsf−f0d, t ù 0.

s37d

Here we have noted that[29]

dsfd =
1

2p
o

p=−`

`

eipf.

For two particular casesn=1, 0,s,1 (Cole-Cole relax-
ation mechanism) ands=1, 0,n,1 (Cole-Davidson relax-
ation mechanism), Eq. (37) can be considerably simplified.
Here Eq.(37) becomes, respectively(see the Appendix),

Wsf,tuf0,0d =
1

2p
o

p=−`

`

Esf− p2st/tdsgeipsf−f0d, t ù 0,

s38d

and

Wsf,tuf0,0d =
1

2p
o

p=−`

` F1 −
p2s1−nd

Gsnd
gsn,p2t/tdGeipsf−f0d,

t ù 0, s39d

where Esszd and gsa,zd are the Mittag-Leffler and incom-
plete Gamma functions, respectively, defined as[17–19,32]

Esszd = o
n=0

`
zn

Gs1 + nsd
, s40d

gsa,zd =E
0

z

ta−1e−tdt =
1

a
o
n=0

`
s− zdn+a

sa + ndn!
. s41d

For s=1, Eq. (38) yields the Green function for normal
rotational diffusion of a planar rotator, viz.,

Wsf,tuf0,0d =
1

2p
o

p=−`

`

eipsf−f0d−p2t/t, t ù 0,

which, we emphasize, is periodic inf. For comparison, we
note the Green functionWsx,t ux0,0d for translational diffu-
sion of a free particle along thex axis, where the diffusion
equation is[7]

]W

]t
= D

] 2W

]x2 , − ` , x , `.

In terms of characteristic functions, one has[7]

Wsx,tux0,0d =
1

2p
E

−`

`

eijsx−x0d−j2Dt/2dj =
1

Î4pDt
e−sx − x0d2/s4Dtd,

t ù 0

(here the continuousj replaces the discretep of the rota-
tional case).

IV. COMPLEX SUSCEPTIBILITY

In order to calculate dielectric response functions, we sup-
pose that a uniform fieldE (having been applied to the as-
sembly of dipoles at a timet=−` so that equilibrium condi-
tions prevail by the timet=0) is switched off att=0. In
addition, we suppose that the field is weak(i.e., mE!kT,
which is the linear response condition[7,21]). Thus the ini-
tial distribution functionWsf ,0d is given by the Boltzmann
distribution, viz.,

Wsf,0d = CemE cosf/skTd <
1

2p
F1 +

mE

kT
cosfG ,

where C and 2p are the normalizing constants. Just as in
Sec. III, one readily obtains the corresponding aftereffect so-
lution

Wsf,td =
1

2p
H1 +

mE

kT
f1stdcosfJ , s42d

where the aftereffect functionf1std is given by Eq.(33) for
p=1 with f1s0d=1, namely,

f1std = 1 −
1

Gsnd
H1,2

1,1Sst/tdsU s1,1d
sn,1d,s0,sd

D . s43d

Equation(42) allows us to readily evaluate the polarization
Pstd, viz.,

Pstd = N0mE
0

2p

cosfWsf,tddf =
m2N0E

2kT
f1std s44d

(N0 is the number of dipoles per unit volume), and the com-
plex dielectric susceptibility, which is defined by linear re-
sponse theory as[6,7]

xsvd
x0

= 1 − iv f̃1sivd. s45d

Thus we have the Havriliak-Negami equation

xsvd
x0

=
1

„1 + sitvds
…

n , s46d

wherex0=m2N0/ s2kTd. We remark that Eq.(46) can be ob-
tained by extractingf1std from the Green function, Eq.(37),
and noting the linear response theory relation[7]

f1std
f1s0d

=
kcosfs0dcosfstdl0

kcos2 fs0dl0
, s47d

relating the aftereffect function to the equilibrium dipole mo-
ment autocorrelation function. Herek¯l0 means the equilib-
rium statistical average over the equilibrium distribution
function Weqsfd. The autocorrelation function from Eq.(47)
is defined as
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kcosfs0dcosfstdl0

=E E cosf0 cosfWeqsfdWsf,tuf0,0ddfdf0.

s48d

As Weqsfd=1/s2pd for rotation in a plane, one can readily
verify that Eqs.(45), (47), and(48) yield Eq. (46).

So far we have considered the planar rotator model. How-
ever, the above equations can be generalized as in Ref.[21]
for rotation in space. Here, the space coordinate is the polar
angleq (the colatitude) and the Fokker-Planck operator for
normal rotational diffusion assumes the form[7]

LFPWsq,td =
1

2t sinq

]

]q

3FsinqSWsq,td
]

]q
Vsq,td +

]

]q
Wsq,tdDG ,

s49d

where the timet=z / s2kTd is the Debye relaxation time for
rotation in space, so that Eq.(21) now becomes

fts
0Dt

s + tLFPgnfW̄sq,td + us− tdW0sqdg = tus− tdLFPW0sqd.

s50d

By expandingW̄sq ,td in the Fourier series

W̄sq,td = ustdo
p=0

`

fpstdPpscosqd

[Pnszd are the Legendre polynomials[32] which now consti-
tute the appropriate basis set], Eq. (50) may be solved just as
in Sec. III, to yield the corresponding results for rotation in
space, viz., the aftereffect function Eq.(43) and the complex
susceptibility Eq. (46), where x0=m2N0/ s3kTd and t
=z / s2kTd. Apparently, as in normal diffusion, the results dif-
fer from the corresponding two-dimensional analogs by only
a factor of 2/3 inx0 and the appropriate definition of the
Debye relaxation time.

V. RESULTS AND DISCUSSION

Thus we have demonstrated how the empirical Havriliak-
Negami equation(4) can be obtained from a microscopic
model, namely, the fractional Fokker-Planck equation(21)
applied to noninteracting rotators. This model can explain
the anomalous relaxation of complex dipolar systems, where
the anomalous exponentss and n differ from unity (corre-
sponding to the classical Debye theory of dielectric relax-
ation), i.e., the relaxation process is characterized by a broad
distribution of relaxation times. Hence, the empirical
Havriliak-Negami equation of anomalous dielectric relax-
ation which has been extensively used to analyze the experi-
mental dielectric loss of disordered glassy systems(see, e.g.,
Refs.[33,34]) may be formulated in terms of a microscopic
model just as the original Debye equation. This is essentially
accomplished in the first instance by using the Debye model

and then replacing the Brownian motion collision operator
(or the underlyingstosszahlansatz) by a fractional derivative
collision operator, which then allows one to write down a
fractional probability density diffusion or kinetic equation in
the space of orientations. The solution of this fractional ki-
netic equation for the first Debye model, namely, nonelectri-
cally interacting dipoles, then leads to the HN equation in the
same way as the solution of the underlying normal rotational
diffusion equation yields the Debye equation(1). A complete
understanding of the HN mechanism requires an understand-
ing of the microscopic origin of the parameterss andn. As
far as s is concerned, this fractional exponent arises natu-
rally from the diffusion limit of a fractal time walk[15] and
may be construed as arising from a chaotic set[22] of mi-
croscopic potential barrier heights, i.e.,s has its origin in
random activation energy models[19]. Further evidence for
the random activation energy model concept as the generator
of the Cole-Cole mechanism is provided by the recent ex-
perimental results of Fannin and Giannitis[35]. They suc-
cessfully applied the Cole-Cole equation to the analysis of
complex magnetic susceptibility data on ferrofluids with a
distribution of particle sizes giving rise naturally to a distri-
bution of Arrhenius-like(Néel) microscopic relaxation times.
Here the volume of the particles appears explicitly in the
argument of the experimental relaxation time. The particle
size distribution then automatically leads to a hierarchy of
Néel relaxation times. The Cole-Cole parameters is thus a
measure of the particle size distribution. Thus our under-
standing of the parameters may be said to be reasonably
complete. The same cannot, however, be said concerning our
understanding of the Cole-Davidson parametern (although
some reasons for its origin have been advanced by Nigmatu-
lin and Ryabov[26] in their phenomenological treatment of
the Cole-Davidson relaxation process). Here, unlike the
Cole-Cole relaxation mechanism based on a fractal time ran-
dom walk, it is not clear how the kinetic equation for the
Cole-Davidson relaxation mechanism and its extension for
the HN relaxation may be derived from anything other than
replacing the partial time derivative in the Fokker-Planck
equation by a fractional partial time derivative of ordern.
This represents a gap in our understanding of the Cole-
Davidson process. Despite these reservations, the model ki-
netic equations(17) and(21) are important as they allow one
to incorporate the Cole-Davidson and HN mechanisms into
the existing rigorous theory of Debye and Cole-Cole relax-
ation.

The kinetic equation or fractional Fokker-Planck Eq.(21)
which we have proposed may be applied to a system with
HN behavior in the presence of an external potential. The
advantage of being in possession of a kinetic equation incor-
porating the HN mechanism then becomes apparent as it now
possible to study the effect of the anomalous behavior on
fundamental parameters associated with the Brownian mo-
tion in a potential such as the Kramers escape rate. More-
over, it is possible to generalize the Debye-Fröhlich model of
relaxation over a potential barrier to incorporate the HN
mechanism and so to estimate the effect of anomalous relax-
ation on the stochastic resonance effect[36]. Such a gener-
alization has already been accomplished for the Cole-Cole
mechanism[n=1 in Eq. (21)] in Refs. [7,24]. There it has
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been shown just as in the corresponding normal diffusion
problem that the overall relaxation behavior is a superposi-
tion of Cole-Cole mechanisms with the aftereffect function
given by a superposition of Mittag-Leffler functions. These
replace the decaying exponentials of the corresponding nor-
mal diffusion. Furthermore, the eigenvalueslp,s of the ki-
netic equation corresponding to the Cole-Cole relaxation
process are related to those of the normal Fokker-Planck
equation by Eq.(6) allowing one to determine the character-
istic frequencies of the anomalous relaxation process in
terms of the Kramers escape rate(approximatelyl1 for high
barriers). An important result described in Ref.[24] is that
the multimodal decay process may be accurately approxi-
mated in both the normal and Cole-Cole cases by a two-
relaxation-mode formula, one mode arising from the over-
barrier relaxation, the other from the fast near-degenerate
decay modes in the wells of the potential, which may be
treated as a single effective decay. Similar considerations
will apply to the general fractional Eq.(21) incorporating the
HN mechanism. Since Eq.(21) is linear and since the decay
modes are characterized by the Fox functions rather than the
Mittag-Leffler functions of the Cole-Cole relaxation, then the
relaxation behavior in the HN mechanism will be governed
by a superposition of Fox functions. This will lead in the
frequency domain to a superposition of HN functions. We
remark that in the Cole-Davidson and HN mechanisms
which both involve branch points in the fractional diffusion
operator the analysis of the aftereffect solution has been
greatly facilitated by writing the appropriate kinetic equation
as an equation for an impulse response using the properties
of the unit step andd functions. The advantage of such a
formulation of the problem is that it avoids the difficulties
associated with the inherent dependence of fractional deriva-
tives on initial conditions. These difficulties are completely
eliminated by considering the impulse response, which al-
lows us to solve the problem using two-sided Fourier trans-
forms so that the initial conditions are involved only as a
forcing function.

Finally, we remark that in the context of stochastic reso-
nance[7,36] Eqs.(2)–(4) for the complex susceptibility and
their extensions to diffusion in a potential may be regarded
as transfer functions[37] (Fourier transforms of the true im-
pulse response of the system) whence the spectral density
may be easily calculated using the Wiener-Khinchin theorem
[37] so that the effect of anomalous diffusion on the stochas-
tic resonance may be ascertained.
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APPENDIX: CALCULATION OF INVERSE
FOURIER TRANSFORMS

For simplicity, we calculatefpstd for p=1. Commencing
with Eq. (32) for p=1, we have

f̃1sivd
f1s0d

=
1

iv
−

1

ivf1 + sivtdsgn =
1

f1s0dE0

`

e−ivt f1stddt.

sA1d

The inverse Laplace transformation yields

f1std
f1s0d

=
1

2pi
E

g−i`

g+i` du

u
eutF1 −

1

f1 + sutdsgnG . sA2d

The part inside the brackets in Eq.(A2) can be rearranged as
follows:

1

f1 + sutdsgn =
1

sutdsn f1 + sutd−sg−n.

Using Eq.(20), we have[[30], Eqs.(6.1.22) and (15.1.1)]

f1 + sutd−sg−n = 1 −nsutd−s +
nsn + 1d

2!
sutd−2s

−
nsn + 1dsn + 2d

3!
sutd−3s + ¯

= o
n=0

`
sndn

n!
f− sutd−sgn = 1F0„n; ;− sutd−s

…,

sA3d

where 1F0sa; ;zd is the hypergeometric function[31]. This
equation is then substituted back into Eq.(A2) to get

f1std
f1s0d

=
1

2pi
E

g−i`

g+i` du

u
eutF1 − sutd−sno

n=0

`
sndn

n!
f− sutd−sgnG

= 1 −t−sno
n=0

`
sndns− t−sdn

n!

1

2pi
E

g−i`

g+i` du

u
eutu−sn−sn

= 1 − st/tdsno
n=0

`
sndn

n!

f− st/tdsgn

Gs1 + sn + snd
. sA4d

Finally,

f1std
f1s0d

= 1 − st/tdsnf̃„n;s,1 +sn;− st/tds
… sA5d

where f̃ is a generalization of a Wright function[38] con-
taining an extra Pochhammer symbol. Equation(A5) can
also be expressed in terms of the FoxH function H1,2

1,1, viz.
[39],

f1std
f1s0d

= 1 −
1

Gsnd
H1,2

1,1Sst/tdsU s1,1d
sn,1d,s0,sd

D . sA6d

For pÞ1, the corresponding equation is

fpstd
fps0d

= 1 −
p2st/tdsn

Gsnd o
n=0

`
s− 1dnGsn + ndfp2st/tdsgn

Gs1 + sn + sndn!

= 1 −
p2s1−nd

Gsnd
H1,2

1,1Sp2st/tdsU s1,1d
sn,1d,s0,sd

D . sA7d
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For n=1 ands=1, the functionfpstd from Eq. (A7) re-
duces, respectively, to

fpstd
fps0d

= o
n=0

`
f− p2st/tdsgn

Gs1 + nsd

= H1,2
1,1Sp2st/tdsU s0,1d

s0,1d,s0,sd
D = Es„− p2st/tds

…

sA8d

and

fpstd
fps0d

= 1 −
p2s1−nd

Gsnd
H1,2

1,1Sp2t/tU s1,1d
sn,1d,s0,1d

D
= 1 −

p2s1−nd

Gsnd
gsn,p2t/td. sA9d

The Mittag-Leffler function Esszd and the incomplete
Gamma functiongsa,zd are defined by Eqs.(40) and (41);
for p=1, the corresponding equations have been obtained in
Ref. [39].

Solutions of Eq. (11), which governs the Cole-Cole
mechanism, have already been given in Refs.[20,21]. Here
we give separately details of the aftereffect solution for an
assembly of fixed axis rotators. Thus we expand the prob-

ability density functionW̄sf ,td in the Fourier series, Eq.(26)
By substituting Eq.(26) into Eq. (11), applying the Fourier
transformation and using Eqs.(30), we have

fsivds + p2/tsg f̃ psvd = sivds−1fps0d

or

f̃ psvd =
tsivtds−1

sivtds + p2 fps0d. sA10d

Noting that the Laplace transform of the Mittag-Leffler func-
tion is

E
0

`

e−ivtEsf− p2st/sd2gdt =
t

ivt + p2sivtd1−s ,

one has Eq.(A8) [7,17]. The Green function is given by Eq.
(38).

In like manner for the Cole-Davidson mechanism, substi-
tution of Eq.(26) into Eq. (19) yields

o
n=0

`
s− 1dnGsn − nd
Gsn + 1dGs− nd

p2ntn−n
0Dt

n−nfustdfpstd + fps0dus− tdg

= us− tdp2fps0d. sA11d

Recalling thatDt
n−nus−td=−Dt

n−n−1dstd and using Eq.(30),
we have

F f̃ psvd −
fps0d
iv

Go
n=0

`
s− 1dnGsn − nd
Gsn + 1dGs− nd

p2nsivtdn−n = −
p2

iv
fps0d

or

ffps0d − iv f̃ psvdgsp2 + ivtdn = p2fps0d. sA12d

Using the known relation

E
0

`

gsn,ctde−ivtdt =
Gsnd

ivs1 + iv/cdn ,

one can readily obtain Eq.(A9).
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