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It is shown how the Debye rotational diffusion model of dielectric relaxation of polar molegutésh may

be described in microscopic fashion as the diffusion limit of a discrete time random walk on the surface of the
unit spherg may be extended to yield the empirical Havriliak-NegghiN) equation of anomalous dielectric
relaxation from a microscopic model based on a kinetic equation just as in the Debye model. This kinetic
equation is obtained by means of a generalization of the noninertial Fokker-Planck equation of conventional
Brownian motion(generally known as the Smoluchowski equafitmfractional kinetics governed by the HN
relaxation mechanism. For the simple case of noninteracting dipoles it may be solved by Fourier transform
techniques to yield the Green function and the complex dielectric susceptibility corresponding to the HN
anomalous relaxation mechanism.
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[. INTRODUCTION electrically noninteracting dipoles. We shall term this model
the first Debye model. This model applies when one (ias
a dilute solution of dipolar molecules in a nonpolar liquid;

i | $2) axially symmetric molecules; an@) isotropy of the lig-
and amorphous polymers is the failure of the Dep¥&]  ig even on an atomic scale in the time average over a time

theory of dielectric relaxation to adequat_ely descri.be tha@nterval small compared with the Debye relaxation time
low-frequency spectrum, where the relaxation behavior may pebye proceeded by extending Einstein’s treatment of the

One of the most striking features of the dielectric relax-

deviate considerably from the exponenti@lebyg pattern  translational Brownian motion to rotational Brownian mo-

and is characterized by a broad distribution of relaxationtion of noninteracting permanent dipoles in the presence of
times. Such behavior has been given the @ti®malous di- an external time-varying field and solving the appropriate

electric relaxationand was first systematically described in Fokker-Planck equation. Here that equation is the Smolu-
the pioneering papdB] of Cole and Cole in 1941 on dielec- chowski equation, which is an approximate Fokker-Planck
tric relaxation in polar liquids. These and subsequent invesequation[7] in the space of angular coordinates for the dis-

tigators have proposdd,5] (see alsd6]) various empirical  tribution function of the orientations of the dipoles on the

formulas describing the departure from the Debye behaviosurface of the unit sphere when the influence of the inertia of
In specific terms, the normal Debye relaxation process ighe molecules on the relaxation process is ignored. The De-
characterized by a complex susceptibility(w)=x'(w) bye method then yields the mean dipole moment in the di-

—ix"(w) of the form rection of the applied field and the complex susceptibility
x(w), Eq. (1). The Smoluchowski equation appli¢8] to

Xo strong dissipative coupling to the bath so that the first Debye

x(w) = 1timr D model always contains the assumption that the dipolar mol-

ecule is bound so strongly to the surrounding molecules that

where xq is the static susceptibility andis a characteristic large jumps of the dipole direction are extremely unlikely.

relaxation time known in the present context as the Debydhis behavior according to Frohlicf8] may be true in a
relaxation time. Equatioiil) adequately describes the low- number of cases but others may exist in which the opposite

frequency behavior of the observed complex susceptibility oflarge jump$ is much more likely. A dipolar molecule will
many simple polar liquids. then[8] make many jumps over the potential barrier separat-

Equation(1) may be derived using a variety of micro- ing it from another dipole direction during the time required

scopic models of the relaxation process. For example Debyfr an appreciable change in direction by viscous flow.

[1,2] derived Eqg.(1) by considering the rotational Brownian Clearly, such behavior holds for solids where flow may be

motion (excluding the inertial effecisof an assembly of considered as entirely absent; however, it may also be ex-
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pected where the viscosity is so high that flow is practically Xo
negligible. In liquids it might also happen that the motion x(w) = m 0<os<1, (2)
which prevails is different for different kinds of dissolved
molecules. Moreover, both large and small jump transitionghe Cole-Davidson equation
may exist simultaneously. Xo
The above observations lead us to the second microscopic X(w) = m
model considered by Debyf?] (and much extended by e
Frohlich [8]), which is a Poisson-like process, where relax-and the Havriliak-Negami equation
ation occurs due to the crossing by large jumps of rare mem-
bers of an assembly of dipoles over an internal potential X((u):%,
barrier in a solid due to the shuttling action of thermal agi- [1+(iwn)’]
tation. This microscopic model also produces a relaxationwhich is a combination of the Cole-Cole and Cole-Davidson
spectrum of the form of Eq(1); however, the overbarrier equations. Each of the above equations by use of the super-
relaxation time has Arrhenius-like behavior as it depends exposition principle exhibits a broad distribution of relaxation
ponentially on the height of the potential barrier. The Debyetimes[6,8]. In the notation of Frohlich8], we have

o<vs1, (3)

O<os<1, 0O0<vs<1l, (4

Frohlich model also constitutes a rotational Brownian motion  HT)dT
model based on the Fokker-Planck or Langevin equations, as x(w) = f —. (5)
is apparent by considering a continuous distribution of ori- o 1+ioT

entati_ons[?] an_d a d_ouble(mult_iwell_) potential rather than The equation is the mathematical expresgiBhof the idea
the discrete orientation approximation treated by Debye angh; the dielectric behaves as a collection of individual com-
Frohlich. It should be noted that if a continuous d|str|but|0|j ponents, each being described by a Debye equation with re-
of orientations is used then the prefactor of the exponentighxation timeT; f(T) is the relaxation time distribution func-
in the overbarrier relaxation time depends strongly on thgjon. In both Cole-Cole and Cole-Davidson relaxation
dissipative coupling to the heat bath and the shape of thghechanisms, unlike the Debye equation, where the distribu-
potential, as emphasized by Kramgg$ in his famous study tion function is as function, the relaxation time distribution
of the escape of particles over potential barriers due to thefirst evaluated for the Cole-Cole relaxation by Cole and
shuttling action of thermal agitation. Moreover, the use of theCole [3]) exhibits long time tails[e.g., Egs.(3.104 and
Fokker-Planck equation allows one to account for the contri{3.105 of Ref.[6]] typical of Lévy probability distributions.
bution of the fast decays in the wells of the potential to theThis observation has been formalized for Cole-Cole relax-
relaxation process. ation by Glockle and Nonnenmacher in REF4].

The Debye-Frohlich model is also very useful as a picture Returning to Eqs(2) and(4), the Cole-Cole parameter
of the solid-state-like process of revergat., longitudinal or  is a broadeningparameter as the curve af(w) versusw
Néel relaxatioi of the magnetization in fine single domain broadens asr is reduced. On the other hand, the Cole-
ferromagnetic nanoparticles possessing an internal potentilavidson parameter in Egs.(3) and(4) is a skewingpa-
barrier due to their inherent magnetocrystalline anisotropyameter, as in the Cole-Cole plot gf(w) versusy’(w) the
[7]. In this context, taking into account the intrinsic differ- circular arc characteristic of the Debye equation is shifted
ences between dielectric and magnetic relaxation, the modeabward the low-frequency end of the spectr{Bih An expla-
is known as the Néel-Brown modgl0-13 of magnetic re- nation of this behavior is the-fold degeneracy induced in
laxation. If, on the other hand, the model is applied to thethe Debye equatioiil) by the Cole-Davidson parameter
longitudinal dielectric relaxation of nematic liquid crystals, it causing the simple pole —%/of the Debye equation to be-
is known as the Maier-Saupe modél. come a branch point of order, i.e., a v-fold degenerate

Thus the Debye equatiol) may be satisfactorily ex- eigenvalue.
plained in terms of the thermal fluctuations of an assembly of As far as the physical mechanism underlying the Cole-
dipoles embedded in a heat bath giving rise to rotationaCole equation is concerned, we first remark that E2).
Brownian motion described by the Fokker-Planck or Lange-arises from the diffusion limit of @ontinuoustime random
vin equations. The advantage of a formulation in terms of thavalk [15]. In this context one should recall that the Einstein
Brownian motion is that the kinetic equations of that theorytheory of the Brownian motion relies on the diffusion limit of
may be used to extend the Debye calculation to more coma discretetime random walk. Here the random walker makes
plicated situationd7] involving the inertial effects of the a jump of a fixed mean square length in a fixed time, so that
molecules and interactions between the molecules. Morehe only random variable is the direction of the walker, lead-
over, the microscopic mechanisms underlying the Debye beng automatically by means of the central limit theorém
havior may be clearly understood in terms of the diffusionthe limit of a large sequence of jumy® the Wiener process
limit of a discrete time random walk on the surface of thedescribing the Brownian motiofi7]. The continuous time
unit sphere. random walk(CTRW), on the other hand, was introduced by

Returning to anomalous dielectric relaxation, it appearsMontroll and Weisg16] as a way of rendering time continu-
that a significant amount of experimental data on disorderedus in a random walk without necessarily appealing to the
systems supports the following empirical expressions for didiffusion limit. In the most general case of the CTRW, the
electric loss spectra, namely, the Cole-Cole equdttdn random walker may jump an arbitrary length in arbitrary
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time. However, the jump length and jump time random vari-Einstein’s ansat#7,15,2Q that in Brownian motion the ran-
ables are not statistically independejit7—2Q. In other dom walker executes a discrete jump of finite mean square
words, a given jump length is penalized by a time cost, andength in an average time
vice versa. A simple case of the CTRW arises when one Here we demonstrate how both the Cole-Davidson and
assumes that the jump length and jump time random variHavriliak-Negami(HN) anomalous behaviors may be em-
ables are decoupled and that the jump length variances almdied, just like the Cole-Cole behavior, in a fractional gen-
always finite(so that the central limit theorem applies in the eralization of the Fokker-Planck equation in configuration
limit of a large sequence of jump lengthig]); however, the space for the first Debye model of nonelectrically interacting
jump times may be arbitrarily long so that they obey a Lévydipoles. In what follows, we shall use a cumulant expansion
distribution with its characteristic long tgil7—27. Thus the  originally given by Nigmatullin and Ryabof26] who pro-
jump length distribution ultimately becomes Gaussian withposed a phenomenological fractional ordinary differential
finite jump length variance, while the mean waiting time equation describing the Cole-Davidson behavior. In addition,
between jumps diverges on account of the underlying Lévywe shall demonstrate how the aftereffect functighfollow-
waiting time distribution. Such walks, which possess a dising the removal of a small constant field may be given for
crete hierarchy of time scal¢22], not all of which have the the HN model in terms of a Fold function [27] extrapolat-
same probability of occurrence, are knot8] as fractal  ing between the stretched exponengti&bhlrausch-Williams-
time random walksIn the limit of a large sequence of jump Wattg law [cf. Eq.(34) below] at short times and the inverse
times, they give risg15,17 to a fractional Fokker-Planck long time tail power law[cf. Eq. (35) below] at long times
equation in configuration space. If this equation is now[17]. The Debye relaxation time in this cafEd] plays the
adapted to rotational Brownian motion as used by Debyeole of a time scale demarking the transition from a stretched
[1,2] for the normal Fokker-Planck equation in his first exponential law to a power law. In Cole-Cole relaxation, the
model, then the Cole-Cole equati@®) automatically fol- Fox H function reduces to the well-known Mittag-Leffler
lows [7,2]]. Inertial effects have also been included in thefunction[17].
model[23].

The second model of Debye or the Debye-Frohlich model
may also be generalized to fractional diffusipn24] (in-
cluding inertial effect§25]). Moreover, it has been shown

241 that the Cole-Col X : v f h In order to generalize the normal Fokker-Planck equation
[24] that the Cole-Cole equation arises naturally from t eexcluding inertial effects to fractional diffusion, we first re-
solution of a fractional Fokker-Planck equation in the con-

i : . . ; ...~ call the general form of that equation in operator representa-
figuration space of orientations derived from the dlffusmntion [28]g d P P

limit of a CTRW. The broadening of the dielectric loss curve
characteristic of the Cole-Cole spectrum may then be easily

) . ; X IW(X,t)
explained on a microscopic level by means of the relation

(7,24

Il. FRACTIONAL FOKKER-PLANCK EQUATIONS

+LepW(X,t) =0, t>0, W(X,0) =Wyx),

Npor = N7 (®) "
between the eigenvalues,,, and \, of the fractional and vyhereW(x,t)_ is the probabillity density(distributior) func-
normal configuration space Fokker-Planck equations, respeéion of a variablex and Lgp is the Fokker-Planck operator.
tively. Here the relaxation behavior appe#r$ as a super- Equation(7) can equivalently be rewritten as an equation for
position of Cole-Cole equations if the inertial effects are ig-an impulse response so that the initial condition appears as
nored. The fractal time random walk picture, whereby athe amplitude of a forcing functio#(t), viz. [29],

particle is trapped in a given configuration for an arbitrarily .

long period before executing a jumy,15, immediately AW(X,t) —

suggests that the Cole-Cole paramatechere the fractal a7 LepWI(X, 1) = S(H)Wo(X), (8)
dimension of the set of waiting times between jupasses
from the anisotropy of the material on a microscopic scale. — . - :
Thus assumption 3 underpinning the Debye theory break¥here Wx,t)=6HW(x,1), &(t) is the Heaviside unit step
down for Cole-Cole relaxation. The microscopic anisotropy!Unction, andé(t) is the Dirac delta function.

gives rise to a distribution of microscopic potential barrier FOr anomalous diffusion corresponding to the Cole-Cole

heights[22] which in turn, because the individual jump prob- €duation(2), the fractional Fokker-Planck equation was de-
abilities are a hierarchy of Poisson procesgs, give rise rived for translational motion by Metzler and Klaftgr7,3Q

to a hierarchy of relaxation times not all of which have the@nd extended to rotational motion by Coffeyal.[7,15,21.
same probability of occurrence. Such models are usuallfFauation(8) can now be rewritten as

known as random activation energy modglee Ref[19], p. 5

280). They appear to be consistent with the concept of a LAYy Yy _

distribution of microscopic Debye-like mechanisms embod- atW(X’t) 777 DTLepWOGD = AOW(),  (9)

ied in Eq.(5) and the Lévy-like behaviofRef. [6], Egs.

(3.104 and(3.105] of the various relaxation time distribu- where the fractional derivative is given by the Riemann-
tions and with the breakdown in anomalous relaxation ofLiouville definition
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-0 _ 1 ' f(Ddr —notﬂ Yot —
oD THO]= 15 e (10) e A (v =f(0)a, (12)

. . S which in turn may be written agecalling that the derivative
andI'(2) is the gamma functiofB1] [a derivation of EQ(9) of the step func);ion is the aD[S7rac de?ta functiond(-t) =

by taking the diffusion limit of a CTRW has been given in —5(t) [29]]

Refs. [15,17]. Here, just as in the translational diffusion

equation treated in Ref[17], we consider subdiffusion d

0< o<1 phenomena onlyo=1 corresponds to normal dif- e Yot —LeM g(t)f(t) + O(— )F(0) ]} = O(— 1) F(0).

fusion). Thus, the fractional derivative is a type of memory dt

function with a slowly decaying power law kernel in time. (13
Equation(9) leads to anomalougCole-Cole-likg behavior

of the complex susceptibilitj7]. Such behavior arises from In order to obtain in heuristic fashion a fractional analog of
random torques with an anomalous waiting time distribution Eq. (13), one may simply replace the ordinary derivative by
that is, from a fractal time random walk withas the inter-  a fractional derivativg26], so that Eq(13) becomes

trapping time. The meaning of the parameteis the order

of the fractional derivative in the fractional differential equa- € 0" (D{{e™ A1) f(t) + 6(— H)f(0) ]} = 6(- )Qp F(0).

tion describing the continuum limit of a random walk with a (14)
chaotic set of waiting times, i.e., a fractal time random walk.

However, a more physically useful definition ofis as the In the particular application to dielectric relaxatiofit) is
fractal dimension of the set of waiting times, which is thethe aftereffect function following the removal of a constant
scaling of the waiting time segments in a random walk withfield [7]. The solution of Eq(14) rendered in the frequency
magnification. Thusg measures the statistical self-similarity domain yields the Cole-Davidson equati(8) [26].

(or how the whole looks similar to its par{d8]) of the The approach of Nigmatullin and Ryab26] is, how-
waiting time segments. In order to construct such an entity irever, entirely phenomenological as no underlying kinetic
practice, a whole discrete hierarchy of time scales such agquation is involved. Nevertheless, their method may also be
will arise from energetic disorddi9,27 is needed. For ex- applied to the Fokker-Planck equati¢d) so that a kinetic
ample, a fractal time Poisson procegds3] with a waiting  equation, and thus a microscopic model, is involved. Indeed,
time distribution assumes the typical form of a Lévy stablewe can rewrite the normal Fokker-Planck equatiBnas an

distribution in the limit of larger. This is explicitly discussed equation for an impulse response in the form of the right
in Ref. [18] where a formula foiw is given and is also dis- hand side of Eq(12), viz.,

cussed in Ref[19]. The fractal time process is essentially

generated by energetic disorder treated as far as the ensuing Y

temporal behavior is concerned, by considering jumps over e E[e FPW(X,1)] = () Wo(X) . (15
the wells of a chaotic potential barrier landscape. This mi-

croscopic picture appears to completely support the comgquation(15) assumes the form of Eg13), viz.,

monly used experimental representation of the Cole-Cole be-

havior as a distribution of Debye-like relaxation mechanisms O =

with a continuous relaxation time distribution function. ~ € P~ €*P [WI(X,1) + 0= )Wo(X)] = 6= )LppWo(X) .

Equation(9) may be written in an equivalent form k7,19 16)

(t'7) Wy(x).  (11) For the purpose of using a kinetic equation incorporating the
I'(1-o0) Cole-Davidson mechanism according to the heuristic proce-
dure of Nigmatullin and Ryaboy26], we may replace the

Equationg9) and(11) and are fractional analogs of the con- partial time derivative in Eq.16) by a fractional time deriva-
ventional Fokker-Planck equati@8) giving rise to the Cole- tive (D{. Thus Eq.(16) becomedcf. Eq. (14)]

Cole anomalous behavi¢7,17).

Another approach to fractionalizing the Fokker-Planck ;»-1gLeet ODtveLFpt[V_\,(X,t)Jr 0= H)Wo(X)] = 6(= t)LepW(X).

equation so as to incorporate Cole-Davidson behavior can

now be written by extending a hypothesis of Nigmatullin and 17)
Ryabov[26]. They noted that the ordinary first-order differ-
ential equation describing an exponential decay

o thUV_V(X,t) + TLFPV_V(X,U =

Next we recall the cumulant operator expansion for the op-
eratore BAe®, namely[26],

S0+ 01 =0 cond=as ABI [IABLE]
1! 2!

with initial condition f(t)|-o=f(0) may be written as an This expansion allows one to represent Ed) as the series
equation for an impulse response, viz., of operators
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[thVvLFPt] [[thVvLFPt]vLFPt] fractional Smoluchowski equationsEq. (21), we first con-
+ 4+ .. : . . . . .
1 Y sider the fractional rotational motion of a fixed axis rotator
' ' [1], which for the normal diffusion is the first Debye model.
X[W+ (- YWo] = 6(— t)LepWo. (18)  Here a typical member of the assembly is a rigid dipole of
) ) o ) ) ) momentu rotating about a fixed axis through its center. The
This series can be simplified by using the relationship begrientation of the dipole is specified by the angular coordi-

v=1 v
T <0Dt +

tween fractional derivativeg31] nate ¢ (the azimuth constituting a system of one rotational
Y _ y _ -1 degree of freedom. Electrical interactions between the di-
oDt O] =t DL FO] = v D LH (D] poles are ignored. The normal Fokker-Planck equation for
Thus Eq.(18) reduces to the time evolution of the probability density functivv( ¢, t)
—1 9 o on the unit circle in configuration space is then
,,_1< . VLep oDy (v = 1)Lgp oDy )
77 oD + + +
1! 2!

DWW +LAMB =0, W0 =Wo(d), (22

X[W+ 6~ )Wo] = 6~ )L epW, o
where the Fokker-Planck operator is defined as
which in turn assumes the shifted fractional differential op-

erator form, viz., LepW= - T—l{ii<w J ) o° W] (23)

_V + —
. _ d ap?
D; + 7Lgp) TW(X,t) + 6(— 1)WY, = 70(— t)LepWo(X) . . . . . o -
(70D re) TWOGD + (= HOWo()] = 70(= DLepWo(x) Here 7 is the intertrapping time scale, which is identified

(19 with the Debye or free diffusion relaxation time=¢/(kT),

Here we have recalled the binomial expansion where( is the viscous drag coefficient of a dipgket ambient
temperaturesr is of the order 10" s for molecular liquids
) o (=D=v), e and solutiony andV is the potential arising from an external
(@a+b)’=2 o @ (200 applied electric field. In the absence of external fields the
n=0 ' Fokker-Planck operator becomes
where (a),=I'(n+a)/I'(a) is a Pochhammer symbdB2]. g2
Equation(19) represents the generalizatidvy heuristic rea- Lep=—71—. (29
soning of the normal Fokker-Planck equation to anomalous I
diffusion governed by a Cole-Davidson relaxation mechatquation(21) thus becomes
nism.

In like manner, combining the ideas embodied in the frac-[ 7D + 7Lgp]" TW(,t) + 0(— t)Wy( )] = 70(— ) LepWo( ).
tional diffusion Eq.(11) describing Cole-Cole relaxation and (25)
Eq. (17) describing Cole-Davidson relaxation, we may intro-
duce the fractional kinetic equation Here we wish to obtain the aftereffect solution for an

— assembly of fixed axis rotators. Recalling that for rotation the
[77 oDf + mLep] TWI(X,t) + 6(= ) Wo(X)] = 76(= t)LpWo(X) . probability density function must be periodic i, we ex-

(21) pandW(¢,t) in the Fourier series

For two particular cases=1, 0<o<1 ando=1, 0<v<1, _ * _
Eq.(21) reduces to Eqg11) and(19), respectively. Equation W(¢,t) = 6(t) >, fp(t)e'p¢. (26)
(21) represents a fractional generalization of the normal p=—c

Fokker-Planck equation incorporating the HN relaxationyoreover, W must be real so that the Fourier coefficient
mechanism. Thus in any model described by a I:Okkeer(t), which is the characteristic function ®/ must satisfy

Plalnglérequation the effect ofbthe I-:Ndm(;e%hani?m on the NOTr_()=f (1), where the asterisk denotes the complex conju-
mal diffusion response may be included by solving &1,. O : :
It allows one to generalize both the original Debye modelgate' Substitution of E¢26) into Eq. (19) now yields

and the Debye-Frohlich model to include this relaxation = (- 1)7(- ), S .
mechanism. In the particular case of the first Debye model, — PTDTTAM fp(t) + F(0) (= 1)]

namely, an assembly of noninteracting dipoles, 4) will n=0 -

yield the simple HN Eq(4) as demonstrated in Sec. IV. = p%0(- 1) ,(0). (27)
Here we have noted E@20) and

IIl. GREEN FUNCTIONS FOR ROTATIONAL g2
MOTION IN PLANE LFPeip¢: _ T_lﬁeipqs: T—lpZeipqﬁ,
In order to demonstrate how the anomalous relaxation be-

havior described by the hitherto empirical E¢®)—(4) may - o

be obtained from our fractional generalizations of the " W(h,t) = 0(t) 7" > fo(t)p™eP?, (28)

Fokker-Planck equation in configuration spage effect, p=—c
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FIG. 1. f4(t)/f1(0) as a function ot/ 7 for =0.5 and different
values ofv [Eg. (A4), solid ling] with the short[Eq. (34), dotted
lines] and long[Eq. (35), dashed linglstime asymptotes.

Wy() = > fh(0)eP?.

p=—*

(29)

By using the integration theorefi®1] of two-sided Fourier
transformations generalized to fractional calculgdg], viz.,

F{Drom ()} = (iw)F(w), (30)

where

T(w) = f eotg(t)f(t)dt = f et (t)dt,
—0 0
with inverse

f(t) = 1 g (w)dt,

T 2m _oc

we have from Eq(27)

~ £,00) | < (= D= 2)y . 2
[fp(o»— ‘.’()]E( Ly - ).

lo |n=0

(3D

Using Eq.(20), Eqg. (31) can be further rearranged as
[f5(0) ~iwfp(@)][p?+ (0D)]'=p?(0). (32
Here we have also recalled tHaf™"6(—t)=-D;""&(t). We
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dashed linestime asymptotes.

Inverting Eq.(32), we have for the inverse Fourier trans-
form over w (see the Appendix
fo®) _
fp(0)

where Hyj is the Fox H function [27]. The function
fo(t)/f5(0) has initially (t< 7) the stretched exponential form

2(1-v)

(1,9
(»,1),(0,0)

P
I'(v)

1

Hi:%(p%t/r)” ) (33

iP(L) - e—p2<t/T)W/r(1+w)
1(0)

In contrast, at long time&> 7), it has the inverse power law
behavior

. (39

10

fp(0)

The behavior off ,(t)/f,(0) for p=1 is shown in Figs. 1 and

2 for various values ofr andv; the asymptotes Eqg34) and

(35) are also shown in these figures for comparison. For pure
Cole-Davidson relaxation, where=1 (see Fig. 2, the fol-
lowing asymptote must be used instead of Bh):

v+ 2)t/In)™°

1- 2(1-v) )
pPPT(»I(1-0)

(35

fi) eVt
f1(0) NGO

(36)

remark that posing the problem of the step-off solution inas this is the correct asymptote for the incomplete Gamma
terms of an impulse response in the time domain with thdunction (see below Thus the decay of,(t)/f1(0) is essen-
initial conditions regarded as the amplitude of the impulsetially exponential in the limit of long times in Cole-Davidson
has enabled us to obtain the solution in a very simple wayelaxation. Thus it is apparent from Eq85) and (36) that

using the generalized Fourier integration theorem @&6),

the origin of the long time tail is the parameter which is

which unlike the corresponding generalized Laplace transtultimately due to the trapping effects inherent in the fractal

form integration theoreni31] does not involve the initial

time random walk, i.e., the microscopic disorder. As far as

conditions. The same result may, however, be obtained witthe short time behavior E¢34) is concerned, the role ofis

the help of the Laplace transform if we rearrange &4) as

function only, so that initial conditions are not involved.

to enhance the stretched exponential behavior for given
an equation for the time dependent part of the distribution
Wy( ) =8(p— ¢p), the solution(Green functiolis given by

If the initial distribution function is ad function, viz.,

041103-6



MICROSCOPIC MODELS FOR DIELECTRIC..

W( ¢, t|¢ 0)_ 2 { p2(1_1))H1'l
o T p=—oe () 2
2 o (1,7) )} ip(d—dp) =
x(p(t/r) (1.1).(0.0) eP , t=0.

(37)
Here we have noted th§29]

Sp) = 2 eP?,
p——oc
For two particular cases=1, 0< o<1 (Cole-Cole relax-
ation mechanismando=1, 0<v<1 (Cole-Davidson relax-
ation mechanism Eq. (37) can be considerably simplified.
Here Eq.(37) becomes, respectivelgee the Appendix

W(¢b,t|¢bo,0) = Zi S E,[- pA(t/n)]eP %0,

t=0,
7Tp:—oc
(39)
and
2(1-v) .
W(d) t|¢010) a0 E 'y(y, pzt/T) elp(¢—¢o)’
p——oc F(V)

t=0, (39)

whereE(z) and y(a,z) are the Mittag-Leffler and incom-
plete Gamma functions, respectively, defined 85-19,32

E,(2) = nzo I'a+no)’ (40)
(a,2) = J Zta-le-tdt— E (2™ (41)
e 0 ano(@+nn!’

For o=1, Eq.(398) yields the Green function for normal
rotational diffusion of a planar rotator, viz.,
1w
W(,1 g0, 0) = = 3 ePéd 7 =0,
271'p:_oc
which, we emphasize, is periodic i For comparison, we
note the Green functioWV(x,t|xy,0) for translational diffu-
sion of a free particle along the axis, where the diffusion
equation ig[7]
PR

IW
—=D—5, -®<x<w.
o ax

In terms of characteristic functions, one Ha$

WX, %0, 0) = Zi J giélxxg)-£°Du2 = 1 e—(x—xo)z/(4Dt),
m -0

V4Dt

t=0

(here the continuoug replaces the discretp of the rota-
tional case
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IV. COMPLEX SUSCEPTIBILITY

In order to calculate dielectric response functions, we sup-
pose that a uniform fiel& (having been applied to the as-
sembly of dipoles at a time=— so that equilibrium condi-
tions prevail by the time=0) is switched off att=0. In
addition, we suppose that the field is we@le., uE<<KT,
which is the linear response conditipn,21]). Thus the ini-
tial distribution functionW(¢,0) is given by the Boltzmann
distribution, viz.,

1 ME
W(¢,0 Ce“E°°5‘/”k”~—[1+—cos }
(¢.0)= 2 kT ¢

where C and 2r are the normalizing constants. Just as in
Sec. I, one readily obtains the corresponding aftereffect so-
lution

1+ —f (t)cos¢} (42)

1
WD = 277{ kT

where the aftereffect functiofy(t) is given by Eq.(33) for
p=1 with f;(0)=1, namely,

fi()=1- (43

1 o ( ’ ) )
'2((‘”) (11),0,0))

F()

Equation(42) allows us to readily evaluate the polarization
P(t), viz.,

2
P(t) = Nou f coSgW(, idp == 1(t) (44)
0

2kT

(Ng is the number of dipoles per unit volumend the com-
plex dielectric susceptibility, which is defined by linear re-

sponse theory af5,7]

XD _ g i Foiw). (45)
Xo
Thus we have the Havriliak-Negami equation
1
X(w) - - (46)
Xo (1+(imw))

where yo=u?No/ (2kT). We remark that Eq(46) can be ob-
tained by extractind,(t) from the Green function, Eq37),
and noting the linear response theory relati@gh

fa(t) _ (cos¢(0)cosé(t))o
f1(0)  (cog ¢(0)

(47)

relating the aftereffect function to the equilibrium dipole mo-
ment autocorrelation function. Hete -), means the equilib-
rium statistical average over the equilibrium distribution
function We4(#). The autocorrelation function from E¢7)

is defined as
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(cos¢(0)cosg(t))g and then replacing the Brownian motion collision operator
(or the underlyingstosszahlansatby a fractional derivative

- collision operator, which then allows one to write down a

f f cos¢o COS¢W9Q(¢)W(¢’t|¢°’O)d¢d¢0' fractional probability density diffusion or kinetic equation in

(49) the space of orientations. The solution of this fractional ki-
netic equation for the first Debye model, namely, nonelectri-
As We(¢)=1/(2m) for rotation in a plane, one can readily cally interacting dipoles, then leads to the HN equation in the
verify that Egs.(45), (47), and(48) yield Eq. (46). same way as the solution of the underlying normal rotational
So far we have considered the planar rotator model. Howdiffusion equation yields the Debye equatidn. A complete
ever, the above equations can be generalized as in[®gf. Understanding of the HN mechanism requires an understand-
for rotation in space. Here, the space coordinate is the poldpd Of the microscopic origin of the parametersand v. As

angle 9 (the colatitudg¢ and the Fokker-Planck operator for ar aso IS congern_ed, t_h|§ fractional exponent arises natu-
normal rotational diffusion assumes the fofi rally from the diffusion limit of a fractal time walk15] and
may be construed as arising from a chaotic [ of mi-

1 d croscopic potential barrier heights, i.er, has its origin in
orsing g9 random activatipn energy moddl$9]. Further evidence for
the random activation energy model concept as the generator
. d d of the Cole-Cole mechanism is provided by the recent ex-
x{mnﬁ(W(ﬁ,t)%V(ﬁ,t) +E9W(ﬁ’t))] perimental results of Fannin and Giannif5]. They suc-
cessfully applied the Cole-Cole equation to the analysis of
(49) complex magnetic susceptibility data on ferrofluids with a
where the timer=¢/(2kT) is the Debye relaxation time for distribution of particle sizes giving rise naturally to a distri-
rotation in space, so that E(21) now becomes bution of Arrhenius-likelNéel) microscopic relaxation times.
Here the volume of the particles appears explicitly in the
[#7,D¢ + rLepl TW(3,1) + 0= )Wo(9)] = 70(- )LepWop(9).  argument of the experimental relaxation time. The particle
size distribution then automatically leads to a hierarchy of

LFPW(TS,t) =

(50 Néel relaxation times. The Cole-Cole paramateis thus a
By expandingV_V(f},t) in the Fourier series measure of the particle size distribution. Thus our under-
standing of the parameter may be said to be reasonably
_ ~ complete. The same cannot, however, be said concerning our
W(D,t) = 6(t) 2 f(t)Py(cosd) understanding of the Cole-Davidson parametgalthough
p=0 some reasons for its origin have been advanced by Nigmatu-
[P,(2) are the Legendre polynomial82] which now consti- lin and RyaboV{26] in their phenomenological treatment of

tute the appropriate basis keEq. (50) may be solved just as the CoIe—Davidsqn relaxatioln procgsdere, unIike' the
in Sec. IlI, to yield the corresponding results for rotation in Cole-Cole relaxation mechanism based on a fractal time ran-

space, viz., the aftereffect function E¢3) and the complex dom walk, it is not clear how the kinetic equation for the
susceptibility Eq. (46), where yo=u?No/(3kT) and = Cole-Davidson relaxation mechanism and its extension for

= ¢/(2kT). Apparently, as in normal diffusion, the results dif- the HN relaxation may be derived from anything other than

fer from the corresponding two-dimensional analogs by Onl)[eplacmg the partial time derivative in the Fokker-Planck

a factor of 2/3 iny, and the appropriate definition of the equation by a fractional partial time derivative of order
Debye relaxation time This represents a gap in our understanding of the Cole-

Davidson process. Despite these reservations, the model ki-
netic equationgl7) and(21) are important as they allow one
to incorporate the Cole-Davidson and HN mechanisms into
the existing rigorous theory of Debye and Cole-Cole relax-
Thus we have demonstrated how the empirical Havriliak-ation.
Negami equation4) can be obtained from a microscopic  The kinetic equation or fractional Fokker-Planck E2j1)
model, namely, the fractional Fokker-Planck equat{@t)  which we have proposed may be applied to a system with
applied to noninteracting rotators. This model can explairHN behavior in the presence of an external potential. The
the anomalous relaxation of complex dipolar systems, wheradvantage of being in possession of a kinetic equation incor-
the anomalous exponentsand v differ from unity (corre-  porating the HN mechanism then becomes apparent as it now
sponding to the classical Debye theory of dielectric relax-possible to study the effect of the anomalous behavior on
ation), i.e., the relaxation process is characterized by a broatindamental parameters associated with the Brownian mo-
distribution of relaxation times. Hence, the empiricaltion in a potential such as the Kramers escape rate. More-
Havriliak-Negami equation of anomalous dielectric relax-over, it is possible to generalize the Debye-Frohlich model of
ation which has been extensively used to analyze the expenielaxation over a potential barrier to incorporate the HN
mental dielectric loss of disordered glassy systése®, e.g., mechanism and so to estimate the effect of anomalous relax-
Refs.[33,34) may be formulated in terms of a microscopic ation on the stochastic resonance effgdf]. Such a gener-
model just as the original Debye equation. This is essentiallalization has already been accomplished for the Cole-Cole
accomplished in the first instance by using the Debye modahechanism{v=1 in Eq. (21)] in Refs.[7,24. There it has

V. RESULTS AND DISCUSSION
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been shown just as in the corresponding normal diffusion % %
. J "1 L fiw) 1 1 1 »
problem that the overall relaxation behavior is a superposi- ————=——- — = e (t)dt.
tion of Cole-Cole mechanisms with the aftereffect function f10) e ie[l+(wn?]" f,(0)),
given by a superposition of Mittag-Leffler functions. These (A1)

replace the decaying exponentials of the corresponding nor-

mal diffusion. Furthermore, the eigenvalueg, of the ki-  The inverse Laplace transformation yields
netic equation corresponding to the Cole-Cole relaxation _
process are related to those of the normal Fokker-Planck fa) 1 (" du 1
equation by Eq(6) allowing one to determine the character- f,000 2mi) .. u ell- [1+(un’]”]
istic frequencies of the anomalous relaxation process in ”
terms of the Kramers escape raggproximatelyr, for high  The part inside the brackets in E@2) can be rearranged as
barrierg. An important result described in RgR4] is that  fgllows:

the multimodal decay process may be accurately approxi-

mated in both the normal and Cole-Cole cases by a two- 1 _
relaxation-mode formula, one mode arising from the over- [1+un’]” (un”
barrier relaxation, the other from the fast near-degenerate

decay modes in the wells of the potential, which may beUsing Eq.(20), we have[[30], Egs.(6.1.22 and(15.1.1)]
treated as a single effective decay. Similar considerations (4 D)

will apply to the general fractional E¢21) incorporating the e o, Yt “2¢

HN mechanism. Since E@21) is linear and since the decay [1+(un)™T"=1-wun™+ 21 (u7)

modes are characterized by the Fox functions rather than the

(A2)

[1+un)™]™.

Mittag-Leffler functions of the Cole-Cole relaxation, then the _ v+ v+ 2)(u7_)-3o+
relaxation behavior in the HN mechanism will be governed 3!

by a superposition of Fox functions. This will lead in the - )

frequency domain to a superposition of HN functions. We N Whp —on = o -
remark that in the Cole-Davidson and HN mechanisms _ngo o (U7 1Folvii= (un™),

which both involve branch points in the fractional diffusion
operator the analysis of the aftereffect solution has been (A3)

greatly facilitated by writing the appropriate kinetic equation,yhere Fo(@;:2) is the hypergeometric functiof81]. This

as an eql_Jation for an impqlse response using the propertiee%luation is then substituted back into E42) to get
of the unit step and’ functions. The advantage of such a

formulation of the problem is that it avoids the difficulties ¢ (t) 1 (" du * (v)
associated with the inherent dependence of fractional deriva- Lo = —e" 1=(un"7> —L[- (un~]"
tives on initial conditions. These difficulties are completely f1(0) 2 u n=o N!
eliminated by considering the impulse response, which al- o (W=7 1 (7 du
lows us to solve the problem using two-sided Fourier trans- =1-7oy f —gutymon-ov
forms so that the initial conditions are involved only as a n=0 n! 2mi ) e U
forcing function. o N

Finally, we remark that in the context of stochastic reso- =1t/ [N [=¥)7] _ (A4)
nance[7,36] Egs.(2)—4) for the complex susceptibility and o N I(1+ov+on)
their extensions to diffusion in a potential may be regarded
as transfer functiong37] (Fourier transforms of the true im- Finally,
pulse response of the systgmvhence the spectral density
may be easily calculated using the Wiener-Khinchin theorem f1® =1 -(UD"H(v; 0,1 +0v;,— (1/7)°) (A5)
[37] so that the effect of anomalous diffusion on the stochas- f1(0)
tic resonance may be ascertained.

i

Where?é is a generalization of a Wright functioj88] con-
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APPENDIX: CALCULATION OF INVERSE fold) _ . _ P o (= DT (v + [P T
FOURIER TRANSFORMS f,(0) vy = T@+ov+on)n
For simplicity, we calculatef(t) for p=1. Commencing p2(-v) (1,1)
with Eq. (32) for p=1, we have =1 ——H}é(pz(tlr)” ) (A7)
L) =~ (»1),(0,0)
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For v=1 ando=1, the functionf,(t) from Eq. (A7) re-
duces, respectively, to

fo) _ 5 [P T"

fo(0) 1= '(1+no)
—ygll L2 o (0'1) >_ _n2 e
_Hl,Z(p(t/T) (0.2).(0,0) =Eq (- p(t/7)°)
(A8)
and
folt) _ _Pz(l_V) 1,1( 2 1 )
W0 - e AP 0100
2(1-v)
=1- o) (v, p?tl7). (A9)

The Mittag-Leffler function E,(z) and the incomplete
Gamma functiony(a,z) are defined by Eqq40) and (41);

PHYSICAL REVIEW E 70, 041103(2004)

_ Hiwn?™?

= Gwn (A10)

To(w) f(0).
Noting that the Laplace transform of the Mittag-Leffler func-

tion is

f e 'E [- pA(t/o)?]dt = - 4

0 iwT+ p2(in)l_"'

one has Eq(A8) [7,17]. The Green function is given by Eqg.
(38).

In like manner for the Cole-Davidson mechanism, substi-
tution of Eq.(26) into Eq.(19) yields

* D T(n -
2 %po[ BOTH(H) + f(0) 6~ 1)]

= 6(- t)p*f,(0). (A11)

Recalling thatD!™"6(-t)=-D;"""&(t) and using Eq(30),
we have

for p=1, the corresponding equations have been obtained in

Ref. [39].

Solutions of Eq.(11), which governs the Cole-Cole

mechanism, have already been given in RE28,21]. Here

~ 0 ]e CDTO-v) o . p?
folw) == }gr(nﬂ)r(— )P on™7= =1 01(0)

we give separately details of the aftereffect solution for anor

assembly of fixed axis rotators. Thus we expand the prob-

ability density functionM(¢,t) in the Fourier series, Eg26)
By substituting Eq(26) into Eq. (11), applying the Fourier
transformation and using Eg&0), we have

[(iw)” + p? 7] (@) = (1) HF,(0)

or

[f,(0) —iwf (@) (PP +iwn = p?,(0).  (A12)

Using the known relation

- —lot 4+ — F(V)
fo M et iwle)””

one can readily obtain EGA9).
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