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We study the thermodynamics and the properties of the stationary peedslles and minimaof the
potential energy for a* mean-field model. We compare the critical energyi.e., the potential energy(T)
evaluated at the phase transition temperaiiyjewith the energyv, at which the saddle energy distribution
show a discontinuity in its derivative. We find that, in this modegk>v, at variance to what has been found
in different mean-field and short ranged systems, where the thermodynamic phase transitions take place at
ve=vy [Casetti, Pettini and Cohen, Phys. Re&R7, 237 (2000]. By direct calculation of the energy(T) of
the “inherent saddles,” i.e., the saddles visited by the equilibrated system at températweefind that
vs(Te) ~ v, Thus, we argue that the thermodynamic phase transition is related to a change in the properties of
the inherent saddles rather than to a change of the topology of the potential energy surfatg &inally, we
discuss the approximation involved in our analysis and the generality of our method.
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[. INTRODUCTION extrapolates to zero wheh reaches the dynamic transition
temperature Ty, cr (or mode-coupling temperaturg22]).

The investigation of the topological properties of the po-While the definition of “basin of attraction of a saddle” and
tential energy surfacé’ES of liquids and disordered system the operative way to associate a saddle point with the instan-
[1] has been strongly revitalized in recent yef@s8|. These taneous configuration of the system—i.e., the way to associ-
studies have been particularly focused on the connection be&te a saddle [with energyvs=V(qs)/N] with each instan-
tween the slow dynamics of supercooled liquids and thdaneous configuratiorg (with energy v)—have been the
properties of the stationary points of the potential energysubject of debatg23-25, the previous result has been
function V(q), g (i=1,... N) being the set ofN generic shown to be robust and the method has been applied to other
configurational variables. model systemg25-28. In the following we will call a

In the first approaches on studying the slow dynamics ofmap” the function that associates the thermal average of
supercooled liquids and glasses the objects of the investigas=V(ds)/N with its parentv=V(g)/N, i.e., for eachT, if
tions were the properties—energy locatitm,), curvature v(T) is the average potential energy angdT) the average
(wy), etc.—of the minima of the PES that are “visited” by potential energy of the saddle visited at temperafiyréhen
the system during its evolution at a given thermodynamidhe map is the functiooM such thatvy(T)=M(v(T)). Until
state. Assigning to each minimum its basin of attraction, onéow, two different operative definitions of the saddle to be
obtains a partition of the configurational phase space: to eadgtssociated with an instantaneous configuratiem different
instantaneous configuratiap whose instantaneous potential mapg have been usedl) In the numerical simulations of
energy isv=V(q)/N, one associates an “inherent” configu- simple models, such as Lennard-Jones systems, a partition-
ration ¢, Whose potential energy is,=V(q,)/N. This al-  ing of the configuration space in basins of attraction of
lows one to define a configurational entropy of the minimasaddles is obtained via an appropriate funciigiy) [usually
and a free energy for the supercooled and for the out-ofW(Q)=|V4V(a)|?] that has a local minimum on each station-
equilibrium glassy regime[9]. These properties of the ary point of V(g), and the saddles are then obtained via a
minima of the PES were then connected to several featureminimization of W(q) starting from an equilibrium configu-
of supercooled liquids and glasses. Among them, we mentioration obtained from a molecular dynamics simulation at
the fragility of the glass formef6,10,11, the diffusion pro- temperaturel [17,18. (2) In the analytic computations ap-
cesses in supercooled liquid$,12—-14, and the effective plied to disordered mean-field spin models one looks at the
fluctuation-dissipation temperatur¢l6] in the out-of- saddles that are closest, with respect to the distance in the
equilibrium glassy phasgl5]. configuration space, to a reference configuration extracted

More recently this minima-based approach has been exXrom the Gibbs distribution at temperatufie[19]. In one
tended to consider also the other stationary points of thepecific case, the only one where this test has been per-
PES, namely, the saddle points. Using the saddle-based afermed, the two definitions have been proven to give identi-
proach, it has been shown in Lennard-Jones-like liquidgal results[8]. However, there are—to our knowledge—at
[17,18 and inp-spin mean-field systenj49] that the “order least two other possible definitions of “basin of attraction of
of the inherent saddleql.e., the number of negative eigen- a saddle” that have never been tested in numerical simulation
values of the Hessian matrix evaluated at the saddle poin{R0,21, and the problem of the proper definition of the
visited during the equilibrium dynamics at temperatine saddles’ basin is still open.
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The role of the stationary points of the PIE&ddles and den phase transition, which takes place at a temperalyre
minima) has been also pointed out in a different contextwhen the system is visiting the PES level given by
Recent studies aiming to clarifying the microscopic origin of=v(T,), is signaled by a discontinuity in the first derivative
thermodynamighase transitions suggest that the presencef the Euler characteristicy(v) at v=v. [31]. In the
and order of such transitions are related to changes in thietrigonometric model there is a phase transition, which is
topology of the manifold of the PES sampled by the systensecond order fok=2 and first order fork>2. For all k
when crossing the critical point. More specifically the topol-values, the phase transition is seen in the topology via a
ogy change is signaled by a discontinuity (one of the  discontinuity in the first derivative ok(v) at v., and the
derivatives of the Euler characteristic. This function, deter-curvature ofy(v) arounduv, gives also information on the
mined by counting the number and the order of the stationar@rder of the transitiofi32]. A detailed review of the previous
points of the PES, is a genuine topological property of the'@sults can be found if83].

constant potential energy submanifold, and, in particular, it 1O Summarize the previous paragraph, it seems that the
does not depend on the statistical measure defined(@e.it €lation between topology and thermodynamics is a general
on temperature properties, being demonstrated for short range systems and

Before proceeding it is worth observing that the Eulertested via explicit computation gf(v) for mean field system.

characteristigy(v) (that is used in the topological studies of TQere is, however, a simple counterexample: the mean-field
the phase transitiopsand the complexity of minima and ¢" model[34-34. !n Ref.[36] it was observed t_hat, for large
saddles(which is the basic quantity in the investigation of value of the coupling parameters in the following nhomen-
the role played by the stationary points of the PES in deterglature’ the phase transitiogsecond order, fe”omf”.‘gf?e“c'
mining the slow dynamics in disordered systgmave simi- like) ta_\kes place at a temperatuTg where the equilibrium

lar definitions. With\V,(v) the number of stationary pointg p_otent|al energy \(aluevc IS _Iarger than the energy of the

of orderv (minima for v=0 and saddles for=1) that have higher energy stationary pointe., wherey(v)=1 due to the

potential energw(gs) <Nv, we can define the energy distri- Morse theoren37] anql, therefore, no di:scontinuity qf(v)
bution of the stationary points can be present. At this stage of the discussion it is worth

pointing out a feature that is common to all the mean-field
Q)= N,(v), (1) caseg XY andk-trigonometric for anyk) where the topology-

v thermodynamics relation holds. Indeed, in these cases the
energy of the “inherent” saddle visited by the systenTat
[i.e., vy(T.)] coincides with the instantaneous potential en-
X(©) =3 (- 1)N,(v). ) ergy v(T;). In other words, for these systems, is a fixed

Y point for the mapM : M (v.) =v.. Thus, the observed discon-
tinuity of the derivative ofy(v) at v, cannot discriminate
“between the two possibilitiegi) is the discontinuity in the
topological propertiest the instantaneoupotential energy

and the Euler characteristic

It is clear that these two definitions are similar, but not coin
cident. Specifically, asV,(v) is usually exponentially large

in the size of the systerl, ((v) can be evaluated at the that marks the phase transition, (@ is the discontinuity in

saddle point inv, thus defining an order(v) that dominates o tonological propertiest the inherent saddlepotential

in Eq. (1), while this procedure may not apply jdv) where  gnergy that marks the phase transition. Tfemodel does
large cancellations can arise from the tefl)”. The com- ot share this peculiarity with the other investigated mean-
plexity (or configurational entropyo(v) is defined as the field models, and can be therefore used to solve the ambigu-
logarithm of the number of stationary points whose energyity. While the Franzosi-Pettini theorem for non-mean-field

lies in[v,v+dv]: systems seems to favor the possibility, the ¢* model in-
1 d0() 1 dicates thati) is not applicable in mean-field systems. It is
o(v) = N|og(d—5v> ~ N|og Q@) (3)  the aim of this work to test whether the possibility) holds.
1

In this paper we first study the thermodynamics of the

where the last approximation is promptly obtained recalling(Symmetrig ¢ model for different value of the coupling
that(v) ~ exp No(v) is exponentially large itN. This scal- Parameted (the only independent parameter of the model
ing is not always found for the Euler characteristic which, atn order to individuate the temperatuf&:) and potential
variance witho(v), can scale wittN in many different ways energy(vc) location of the second order fe_rromagnet|c phase
[29]. We will further discuss this point in the following. transition. We then calculate the complexity of the stationary
Following the numerical results obtained[29] on theg*  Points of V(q), namely, o(v), and we show that—at all
model with nearest neighbor interactions in two and thre/alues—the discontinuity of the derivative ofv) is found
dimensions, a theorem that relates the topological propertie3f a value(v,) which is always below.. Finally, we calcu-
of the PES to the thermodynamic phase transitions has bedate the energy, of the inherent saddlegnd thus the map
recently demonstrated by Franzosi and Pettini for systemgs=M(v)] in two different ways{minimization ofW(q) and
with generic short range interactiofi30]. Though the theo- lowest Euclidean distangeand we find that—within the
rem strictly applies to non-mean-field systems, the meansmall discrepancy existing between the maps determined in
field models examined so far seem to indicate the existencéae two ways—the values o¥1(v.) is very close taw. The
of a topology-thermodynamics relation for mean-field sys-latter result indicates that on looking at the discontinuities of
tems as well. In thémean-field XY model the(second or-  (the derivative of the stationary points complexity one actu-
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ally find a signature of the phase transition, but this signature f(T) = - Tlim Nt log Zy(T) = maxf(m,im). (8)
is seen at the potential energy level of the “inherent” saddles, N—e m,
not at the instantaneous potential energy value. In othe{-

. . he saddle point equations can be written as
words, similar to what happens for the slow dynamics of P d

disordered systems, it seems that are inherent saddle proper- Jm=-iTm,
ties that determine the phase transitions in mean-field sys-
tems.
The paper is organized as follows: in Sec. Il we present m:f dop P() b ={)n> 9

the model and its thermodynamical behavior; in Sec. Il we

study the properties of the stationary points of the potentialvhere we defined the single-particle Hamiltonian and the
energy and calculate their complexity; in Sec. IV and V werelated Gibbs distribution

study the properties of the inherent saddles. Finally, we draw

the conclusions. H(¢) =h(¢) = Img,
= ~BH($)
Il. THE MODEL z fd(ﬁ € '
The ¢* mean-field model describéé soft spinse; with a BH($)
mean-field ferromagnetic interaction. Its thermodynamics, as P(p) = € ) (10)
well as its Langevin and Newton dynamics, have been stud- z

ied in the literature; see, e.g., REBS]. The model is defined

by the (configurational Hamiltonian Having solved the self-consistency equation for the magne-

tization m(T), m=(¢), the free energy is given by E¢B)

J INN?
H= h(p) — — )2 = h(d) — —— \]rnz
Ei (4) 2N<2i ) E () ==~ (1= ~Tlog Z. (11)
# As expected, the model undergoes a second order phase tran-
h(¢)=—"——+—, (4)  sition from a paramagnetic m=0) high-temperature phase

2 4 to a ferromagnetidm# 0) low-temperature phase. To find
where ¢, are real continuous variables and the magnetizatiothe critical temperature one has to expand the self-
mis defined asn=N"13; ¢. Its thermodynamics can be ex- consistency equation for the magnetization in powersof
actly solved, as usual in mean-field models, in the thermo-

dynamic limit. Defining Jdd’ ¢ e Ph(B+pIme
D= dh et AL © " ~ph(¢)+BImg
the partition function is given by f dge
Zy(T) = f dgs €0 = f D¢, exp[/%(i @ﬂ f deb 2 & (@)
' = BIm—————— +o(m)
=Nf dm é”N"?’ZJ D¢i5<Nm—2 ¢i> jd¢ g PN
| = Am+o(m?). (12)

The transition temperaturg.(J) is defined by the condition
A=1, which gives

X f D¢, exp(—irﬁii‘, qbi) fd(ﬁ $2 & PP
A T=J———m. (13
=N@2m)™? f dm dine ANfmm (6) f dep e B(®

- N(Zw)_lf dm dingBNntr2+Nmin

having defined The equilibrium potential energy is then given by
Jn? i
PO LI —BIR(H)+HmT ] dgf(T)] JIn?
f(m,m) > iTmm Tlogqube . U(T)z[i{—ﬂ]:7+ do P(¢) H(¢).  (14)
™ We will be interested in the average potential energy at the

In the thermodynamic limit the free energy is obtained bytransition temperature, which—recalling thai(T,)=0—is
evaluating the integral in Eq6) at the saddle point: given by
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_ H(o) 2
[ asnipeso 0= 2D S o) - & 19
ve=0(Te) = : (15) £
j dep e P whereé=(-,0, +). We can now determine the by impos-
ing the constraints
The behavior of the critical energy as a function of the cou- 1=
pling J is reported in Fig. 7 below. - : Ne,
IIl. TOPOLOGICAL PROPERTIES OF THE ENERGY a=Jm= JE Ng d’g(a),
SURFACE ¢
In this section we will study the properties of the station- a?
ary points(saddley of the potential energy surface of the v :Eg ne N(gg(a)) - 23 (19

system, defined by the Hamiltonigd). We will now focus
only on thetopological properties of the saddles, while in The latter is a linear system that can be easily solved for any
Sec. IV we will study the properties of the saddles sampledsalue ofv, «; one must then impose the additional constraint
by the system equilibrated at temperatiiteSimilar results, n:e[0,1] that restricts the allowed values af and v.
although obtained with a different procedure, have been disat given energy, we will have an intervala
cussed in Refq.34,3§. € [amin(v), amadv)] of allowed values of the magnetization.
Recalling that a permutation of thg does not change either
the magnetization or the energy of the stationary point, the
number of stationary points of magnetizatierand energy
The stationary pointsp® are defined by the condition is simply given by

VH(¢®% =0, and their ordew is defined as the number of

, : : : dN N!
negative eigenvalues of the Hessian matrix;(4f) —(ayp) = —————
= (’H13¢; 3 ¢y)| 4= To determine the location of the station- dv Ny ! No! N
ary points we have to solve the system

A. Stationary points

~ expNo(a,v),

dN

N
oH o(a,v) = limN™t |ogOI (a,0)=-2 n;logn.. (20)
v 3

- 3 — ; .
9 ¢+ ¢ -Im=0 [j. (16) N—
We want to classify the stationary points ldfaccording to
their magnetizatiom and their energy =H(¢®)/N. Thus, in
Eq. (16) we will consider the magnetizatian as a constant;
this is_exact in theN—oe limit. Defining a=Jm and «y
=2/3y3, the solutions of the equatiatt— ¢=« are given by

To compute the order of the stationary point, we need the
expression of the Hessian matrix. It is given by

J
Hj; :(3¢i2_1)5ii N (21)

In the thermodynamic limit it becomes diagonal,

2 )
o) = N cos— H;j = (347 - 1)5;. (22)
One cannota priori neglect the contribution of the off-
2 a) + diagonal terms to the eigenvalues of H, but one can prove
dola) == - COST, [36] that their contribution changes the sign of at most one
V3 eigenvalue out ofN. Neglecting the off-diagonal contribu-
tions, one can easily realize that the number of negative ei-
2 e)-m genvalues of H is given by the number of; = ¢y(a); then
== — S——— J | 0 !
¢-(a) NE o 3 v=Nny(a,v). To summarize, we obtained the following re-
sults for|a| < ap.
W)= tan‘l(a‘l\r’m), (17) (i) The stationary points are classified according to their

magnetizationm=«/J and their potential energy: from
and are such thaty(0)=0, ¢.(0)=+1. Fora=+ay,we have Egs. (19) one can determine the fractiong(a,v) of
¢+ =y, While for |a|>ay two solutions become complex ¢ =dga).

and only one solution can be accepted. (i) The number of stationary points of magnetizatien
We will now restrict ourselves to the caké < ap, and at  and energyv is given by expNo(a,v), where o(a,v)

the end we will discuss the case|=a,. The stationary =-3, nga,v)log n/a,v).

points ofH are obtained by plugging a fraction=N, /N of (i) The stationary points of magnetizatianand energy

the ¢ in ¢=¢.(a), a fractionny=No/N in ¢¢(a), and a v have order=Nny(a,v).

fraction n_=N_/N in ¢_(«). Then, the energy of the sta- We will now consider the case=«, (the casea=-a

tionary point is given by Eq(4): gives the same results from symmetry argumeftise equa-
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tion ¢3-p=ay admits only two solutions, namelyp,
=2/y3 and ¢p=—1/y3. Thus, in this case, we impose only
the first two constraints:

1= n:=ny+n,,
&

2n,
[~ ?

Ny
ap= I Nepe=— I+
~ e B3

from which we gein,=2(1-1/3J) andn,=%(1+2/3)). Note
that from the conditiomy,n, [0, 1] these stationary points
exist only forJ=1/3. Their energy is given by

{1.3)

vo(J)=-= —

6 9J 23

PHYSICAL REVIEW E 70, 041101(2004

calculate the integral via the saddle point approximation: one
has then to find the stationary points of the function

(27)

with respect to the variables and u. Moreover,« andu
must be considered as complex variables as the fundtion
has a nonvanishing imaginary part. However, in the model
under discussion, at least at lawy the saddle point either
does not exist or is not on a path going frem;, t0 @pax 0N
which Ref is smaller than its value at the saddle point. Thus,
we expect logy(v) to be nonextensive at low; in this case
the saddle point approximation is not useful to evalydte

and one must take into account the strong cancellations be-
tween addends in E@2). This point needs further investiga-
tion and we will not discuss it here. However, we stress that
o(v) is probably very different fromy(v) at least at low

f(a,u) = o, u) +imng(a,u)

These stationary points are characterized by an extensid'€r9y-

number(ngN) of zero eigenvalues of the Hessian matrix as-

sociated withg; = ¢y. The remaining eigenvalues are positive
as they are associated with= ¢,.

Finally, we consider the case> «y. In this case, there is
only one real and positive solutios, of the equation¢®
-¢=a; then ¢;=¢, for all i and from the self-consistency
equationa=JN'Z; ¢,=J¢, we get

- pp=3¢. (24)

so that ¢, = JJ+1. Finally, we have to check that
=J\J+1> &, and this happens only far>1/3. Thus, these
two points(the latter and the similar one with negative mag-
netization exist only forJ>1/3 and represent the absolute
(magnetig minima of the system. Their energy is given by
om=—(1+J)%/4.

B. Configurational entropy

The configurational entropy(v) of the stationary points
is defined in Eq(1). It can be written as

Amav)

da eNo-(a,v)

o(v) = N_llogf

Amin(v)

= m%e[amin(v),amax(v)]a-(alv)' (25)

We will neglect the contribution coming from the absolute
minima (their number being nonextensivand from the
points with a=aq as they exist only for a particular value of
v at which—as we will see-e(v) displays a singular behav-
ior. Then, for any given energy we can finda(v) such that
dolda=0 ando(v)=o(a(v)). Correspondingly, we can de-
fine the average saddle ordew)=ny(a,v).

C. Euler characteristic

The Euler characteristic is defined in &) and can be
written as

v ap(u)
X(U) = f duf da eN[tr(a,u)+i77nO(a,u)], (26)
- am(u)

recalling that v=Nng(a,u) is the order of the stationary
points of magnetizatiomar and energyu. One can attempt to

D. Summary of the results

We will now summarize the topological behavior of the
model at different values af. All the results have been ob-
tained by solving numerically the equatien/da=0 to cal-
culatea(v) and substituting it in the explicit expressions for
all the other interesting quantities.

A first qualitative change in the topology is found At
=1/3, while a second is af,=2. We will now analyze in
some detail the three regions of couplings: weédk:J,),
intermediate(J; <J<J,), and strongJ>J,).

1. Weak coupling

In Fig. 1 we report the investigated quantities for
=1/6<J;. In the top panel we report, as a function of the
energyv, the minimum and maximum allowed values @f
(dashed lineg together with the valuex(v) determined by
the maximization ofo(a,v) (full line). Above v=-1/4,
amin=0, while belowv=-1/4, the paramagnetier=0) sta-
tionary points disappear ang,;,>0. In thisJ<<1/3 region
we havean,,,< ag for anyv. In the central panel we report
the saddle order as a function of the energy. Above
v=-1/4 there are no minimany,>0) while below
v=-1/4 minima and saddles coexist. The absolute minima
are atvy, ~-0.34, wheren,,,,— 0. Thus, there exist saddles
of order »>0 arbitrarily close(in energy to the absolute
minima. In the bottom panel we report the configurational
entropy as a function of. From the top panel we see that
there exists a value,>-1/4 (marked by the arroyabove
which a(v)=0 while for v<v, we havea(v)>0. At the
same energy the configurational entropy displays a singular-
ity, but only in its second derivative; indeed, we hgxexall-
ing that, by definition ofa(v), (do/ da)(alv),v)=0]

o

do_do 27 @),

dv_E

(alv),v) + Z—Z(E(v),v)j—;;

Po

d?c Po _ _ da
(Mﬁv(a(v),v)a,

W2 ﬁz—v(a(v),v) +

(28)

so that the first derivative of is smooth whilg its second
derivative is singular due to the singularity da/dv at v,,.
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FIG. 1. Topological properties of the energy surface for FIG. 2. Topological properties of the energy surface Jorl.
=1/6. Toppanel: maximum and minimum allowed values for the The plots are the same as in Fig. 1. In this region a second singu-
magnetization of the saddles as a function of their enédgghed larity vy appears where=a,. Below v, @ decreases again until
lines) and the valuex(v) (full line) that corresponds to the maxi- reaches its lowest possible value. In this region, the absolute
mum configurational entropy. Central panel: the maximygg, and minima are far below the minimum energy of the saddles and are
minimum n,,;, allowed values for the order of the saddles as anot reported in the figurésee text
function of their energydashed linesand the value(v) (full line)

that corresponds to the maximum configurational entropy. Bottomne minima are located at,=—1, well separated from the
panel: total configurational entropy of the saddles as a function of lowest order saddles. Then. in t,his case, a gap between the
;c:(t)hese values af there is only one singularity , below which absolute minima and the lowest order saddles opensand

' goes to zero at a value>uvy,.

The curves(0,v) is reported as a dashed line. Note that even
if for vyy<v<-1/4 there exist stationary points with frac-
tional orderv/N=0, we haven(v)>0.

3. Strong coupling

At J,=2 a third singularityv,<vo<v, appears, below
which @=0 and again the paramagnetic saddles dominate. In
Fig. 3 we report the results fd=3>J,. We note that in this

In Fig. 2 the same quantities of Fig. 1 are reported forregion we always havey,,=0, while « is zero forv>uv,,
J,<J=<J,=2 (namely,J=1). Again, we have a singularity at increases toward, for vo<v <v,, and then decreases again
ve>-1/4 wherea become different from 0. Moreover, in and reaches zero atv,, as previously discussed. The con-
this region, the points witlx=«, appear: as we can see from figurational entropy then follows the=0 curve apart from
the upper panel, botla,, and @ move towarda, for v the interval[v,,v,] in which it shows the additional singu-
—vo. At v=vg, We find a=ay; then forv<v, a starts to larity at v,. In the inset of the lower panel we show the
decrease. The configurational entrofigwer pane) shows behavior ofa(v) in the interval[v,,v,]. Again the absolute
two singular points, the first at, and the second at,. Inthe  minima are at very low energfyy,=-4) and are well sepa-
central panel the order of the saddles is reported. In this caseated from the lowest order saddles.

2. Intermediate coupling
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0.4 . thermodynamical phase transition. If this is the case, one
could expect the thermodynamical critical energyto be
0.3k close tov,,.
== Ymax In Fig. 7 below we repori , (full line) as a function of the
. |— O couplingJ together with the thermodynamical critical energy
302 ) v, (dot-dashed line One immediately notices that is far
\\ abovev,, at variance to what is found in the previously in-
0.1+ vestigated mean-field model81,32 ; moreover, at highl
’ one hasv.>0 while there are no stationary points of the
Hamiltonian at positive energy, as already recognized in Ref.
0 l [36]. From this argument one concludes that, to relate the
L phase transition to changes in the topology of the PES one
0.8r g has to generalize in a suitable way the relatigr- v, found
__________ in [31,32. This will be the aim of the next section.
06r: :  ieeT
= IV. INHERENT SADDLES
04F - nmin
' EETIR | S Recent works established that, in order to describe the
0.2} —nn equilibrium dynamics at a given temperatureit is suffi-
cient to know the properties of some of the stationary points,
0 , which have often been called “inherent saddIgs7-19,217.
To locate these particular stationary points, two main strate-
1r gies have been adopted in the p&$j:partitioning the phase
space in “basins of attraction” of stationary points via an
087 1.1 appropriate function that has a local minimum on each sta-
o6 1,05 tionary point;(2) defining in a proper way a “distance” in
’ phase space and, given an equilibrium configuration, looking
04F 1 at the stationary point that has minimum distance from this
ol » 0.95 c_onfiguration. _It has been shown [8] tha_t,_ at Ieast in a
: -:nlzz <5 02 N XTRNTR 17‘ simple mean-field quel, these two _def!nmons give exact_ly
ol - STy . the same result. In this section, we will discuss the properties
-0.25 0.2 -0-15V 0.1 -0.05 0 of the inherent saddles using definiti¢®), which is more

suitable for analiytical calculations, and later compare the

FIG. 3. Topological properties of the energy surface Jor3.  'esults with the one obtained using definitidy.
The plots are the same as in Fig. 1. As in the previous figures there 10 calculate the average energy and magnetization of the
are two singularities of(v) atv, andv,. Moreover, in this region closest saddles to _equ|I|br|um configurations, we will make
a third singularityv, appears below which aga=0. As in Fig. 2, ~ US€ of the method introduced j&9]. We compute the quan-
the absolute minima are not reported in the figure. In the inset of th&lty
lower panel the region of the three singularities is magnified: one

sees thair(v) is different fromo(a=0,v) only in the intervaly Tood) == J de> | (J i S(H(D) - N
- 2(T;vsd) N &; Zm 0g  S(H() — Nvg)

E. Discussion

X 8(GH(y)) |det H(y)| 8(d® - d*(, w)))

As we discussed in the Introduction, it has been conjec- ) ) ) ) )
tured and verified in many different mode83] that topo-  Where Hj=dH is the Hessian matrix and(¢, ) is a dis-
logical singularities could be related to thermodynamic sintance function between the two configuratiafsandy;. The
gularities (phase transitionsor dynamic singularitiegglass ~ argument of the logarithm is the number of stationary points
transitiong. We showed that the model has a very complexOf energyvs and distancel from the reference configuration
topological behavior. In particular, foi<J; there is only ¢ (see Refs[8,19 for a detailed discussignThen the loga-
one singularity ab =v, below which the saddles are charac- fithm of this number(divided by N) is averaged over the
terized by a “spontaneous magnetization;” Jor J < J, an- eqw!lbrlum dlstrlbu_tlon at temperaturé of the refere_:_nce
other singularity appears atv,<uv,; the latter is due to the configuration. To find the closest saddles to equilibrium
presence, at=v,, of points with magnetization=a,, char- cqnﬂguranons—at given temperatuire—we. must find the
acterized by a large number of zero eigenvalues of the Heghinimumd such thatX(T;vs,d) =0 (otherwise the number
sian matrix. Fod> J,, a third singular poinb,, below which ~ Of saddles at distance is zerg. The conditionX(T;vs,d)
the paramagnetic saddles again dominate, appears. HoweverO will define a domairD, in the (vs,d) plane. We have
for our discussion only, will be relevant, as it represents then to find the minimuna(T) of d in D,. Usually, this will
the energy below which the saddles with#=0 become correspont to a single value of, which will be calledvg(T)
dominant, and hence could be expected to be related to trend represents the energy of the closest saddles. Note also
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that the point(v(T),d(T)) will be on the border of the do- 0.2 . . - .
main D, that is defined by the condition(T;vs,d) = 0; thus
3(T;v4(T),d(T)=0[19,8. 0.16
In our model the distance function can be defined as 0.12
1 3
d*(¢, ) = NEI (b= ). (29 0.08

The direct calculation oE(T;vs,d) is reported in the Appen- 0.04
dix. There we show that the energy, distance, and magneti

zation of the closest saddles as a function of the temperatur 0
are given by the solution of the following equations:

-0.15
a= Jf dep P(¢) d(b, ) = f(a,T), 02r
>-0.25
2 _ ~ 2 -03 :
di(T) = | dp P(¢) [p(,a) = &]%,
-0.35F7 1
a2 ~ 04 T Tt T L L L
0=+ J dg P(§) H($(h.a),  (30)
2] 0.25
where the functiorﬁ(gb,a) is equal to thep,(a) such that 0.2
(¢§(a)—d>)2 is minimum, andP has been defined in E(LO).
The first equation has to be interpreted as a self-consistenc™ 013 m
equation fora whose solution is the magnetizatio(T) of 0.1
the inherent saddles. Substitutirg(T) in the second and
third equations one gets the average distadid@@ between 0.05
equilibrium configurations and inherent saddles and the av- :
erage energy4(T) of the inherent saddles. Finally, substitut- 0 0.05 0.1 0.15 0.2 0.25
ing a4(T) and vg(T) in the expression for the number of T

sadQIes a_nd for their order derived in Sec. Ill we get the FIG. 4. Properties of the inherent saddlesJerl/6 at diferent
configurational entropy(T) and the ordeng(T) of the in- temperaturesT. Top panel: magnetizatior(T) of the closest
herent saddles: saddles and magnetizatidm(T) of the equilibrium configurations.
- Central panel: thermodynamical energ§T) and energyv(T) of
o(T) =2(ay(M),04(T)), the closest saddles. The arrows graphically show the mappiraf
the istantaneous energy into the inherent saddles energy. Bottom
Ng(T) = No(as(T),vs(T)). (31) panel: saddle ordery(T). In the inset, logns is reported as a func-
Note that o(T) should not be confused with tion of T to enhance the low temperature Arrhenius behavior,

o(T;vg(T),d(T))=0. In fact, the latter is the number of log ne=-A/T.

saddles of energys subject to the additional constraint of saddles that have a magnetization very similar to the equilib-
having distancel from the equilibrium configurations, while - rium one. At low temperature, the system stays very close to
the first is simply the number of saddles of enetgyand  the absolute minimawhose magnetization is reported as a

magnetizationys. dotted ling even if it reaches them only d=0. In the cen-
_ _ tral panel, we report the energy(T) of the inherent saddles
A. Properties of the inherent saddles (dotted ling and the equilibrium energy(T) (full line). At

We will now discuss the properties of the inherent saddled =Tc, bothuv(T) andv(T) show a singular behavior. We can
in the weak and strong coupling regimes. We numericallyobserve that, in the present model, the saddle energy iat
solve the first of Eqs(30) to getay(T), and from the other smaller than the equilibrium energy, i.e.pyTy)

two we get all the quantities of interest. =M (v <v.. This finding is at variance with th&Y and
. k-trigonometric models where one findsl(v.)=v. [8]. We
1. Weak coupling observe that the value of(T,), for J=1/6, turns out to be

The behavior of the investigated quantities as a functiows(T)=-0.212, very close to,=-0.226. At low temperature
of the temperature fol=1/6 isreported in Fig. 4. Inthe top v«(T) is very close to the energy of the absolute minima.
panel, the magnetizatiom(T)=Jm(T) of the closest saddles Finally, in the lower panel, we report the saddle inaglr).
is reported together with the thermodynamic magnetizatioriFrrom the inset we see that, for-0, ng(T) has an Arrhenius
Jm(T). We notice thatmy(T) ~m(T): thus, the system visits behavior,ng(T)~exp(-A/T) [8].
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1,5 T T T T T I i T " T
~~~~~~~~ 02f / ]
\\\ /
\\\ __ J m | /
1r . e | ] M)
5 \\ -0 3_ T
\\
\ t S —J=0
3 'y ' ]
: 04r S B .
' \\/ B g N
: : : : : i - L N ‘ ]
_ -0.4 -0.2 0 0.2
L --V e _ \%
0 v, y 1
/’ ‘ FIG. 6. The functionM(v) that associates with the thermody-
,/ namic energyv the corresponding inherent saddle enetrgyfor
> 05k e | different values ofJ. The system follows theJ=0 curve in the
e /’/ paramagnetic phase while beldwthe inherent saddles have lower
g energy with respect to that visited & 0. At T=0 the system is in
JPtas the minima andys=M (v)=v (dotted ling. For J>1/3 the system
1 -7 ] jumps discontinuously into the minima at a certain enetdy
) : , : , , =v(T") (full dot in the figurg.
0.3 — I 1 B. Mapping the instantaneous energy into the inherent saddles
energy
02k ) i As we discussed in the previous section, the equilibrated
= system at temperaturBis close to saddles that have energy
vy(T) <wv(T), whereuv(T) is the thermodynamical energy. We
0.1+ - can construct the functiom that maps the instantaneous
energyv into the inherent saddles energy=M(v) using
the temperature as a parameter. The funcfidns reported
00 0'25 0'5 0'75 1 1 '25 L5 in Fig. 6 as a function ob for selected] values. To check

whether the energy of the inherent saddleg ais close to
the singularityv,, we need to computey(T.) =M (v.). We
FIG. 5. Properties of the inherent saddles Jerl at different  can obtain an explicit expression foy(T.) recalling that, for
temperatured. The plots are the same as in Fig. 4. In the strongT=T(J), we havem(T)=0, andH(¢)=h(¢). It is easy to
coupling regizne the system jumps dis_continu_ously in the minima atee from Eq(30) that m=0 implies a(T)=0. Thus, in the
temperaturel” (marked by black dots in the figure paramagnetic phase the inherent saddles are always para-
magnetic and their energy is given by the simple expression

i i 1/2
2. Intermediate coupling J do ——
1 -1/2
In the intermediate and strong coupling reginiés 1/3) v(T=T)=- A= (32
the topology of the PES is very complicated, as we showed f dep e P&
in the previous sectiolisee Figs. 2 and)3In particular, in -

this region the minima are separated frqm thg Iower.('anerggf.he energy of the saddles sampledTais simply given by
saddles by a gap and twor threg topological singularities the latter expression calculated T=T.. The energy of the

appear. In Fig. 5 we report as an example the behavior of thherent saddles at the critical temperature as a functidh of
magnetization, energy, and order of the inherent saddles asi@reported in Fig. 7 .

function of the temperature faf=1. We see that as in the
weak coupling regime the system samples nonmagnetized
saddles abovd, while below T, one hasay(T)# 0. How- As we showed in Sec. lll, for the model investigated here,
ever, at a given temperatufé the system jumps discontinu- the energy at which the configurational entropy of the
ously into the minima: belowl” the saddle order is exactly saddles shows a singularity,) is different from the energy

0, the energms(T):vM:—(1+J)2/4 and the magnetiza- at which the thermodynamical transition takes plagg (see

tion is ag=Jy1+J. On increasingl, T" moves towardT.. Fig. 7). Recent studies of the dynamics of glassy systems
Note that there is no qualitative difference between the interf17—19 demonstrated that the equilibrium properties at tem-
mediate(J<2) and strondJ>2) coupling as the low energy peratureT (and energy) are related to the topological prop-
saddles that are slightly below the gap are never visited bgrties of the PES at energy=M(v), i.e., the energy of the
the system. inherent saddles. If this is the case, one should expect the

C. Discussion
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12} ) ' ' ' ' 0 configuration and inherent saddles. In the next section, we
- zc will discuss a different definition of the basin of attraction.
sl | N‘}(V ) | Finally, we observe that the physical interpretation of the
. c discontinuous jump into the absolute minima that occurs for
¥ J>1/3 is possibly related to the dynamical behavior of the
0.4r i 1 system; the clarification of this point requires then the inves-
tigation of the dynamics of the system beldw. Unfortu-
ot ] nately, in Ref[35] the Langevin dynamics of the system was
/_, _____________________ studied only abové, the comparison of our results with the
dynamical behavior of the system requires the extension of
0.4t : : . .
T : i ; % 55 = B the calculations in Ref.35] to the ferromagnetic phase.
. B , V. DEPENCE ON THE DEFINITION OF BASIN
FIG. 7. The thermodynamical transition point=v(T.) (dot- OF ATTRACTION OF A SADDLE
dashed ling the energy of the singularity of(v), v, (full line), and
the energy of the inherent saddlesTatT,=M (v,) (dashed ling as As discussed in the introduction of this paper and in Ref.
functions of the coupling. [8], the notion of “inherent saddles” canpaiori depend on

the way one defines the relation between an equilibrium con-

phase transition to happen when the energy of the inherefiguration and the corresponding stationary point. We can try
saddlegand not the thermodynamical enejgy close to the to examine what happens if we consider the definitrfor
singularityv,, of o(v). Indeed, as we can see from Fig. 7, theinherent saddles, defining a new mag M"(v), at least in
relation M(v.) ~v, holds, even if not exactly. This result, the parama_gnetic phase where the calculation is strai.ghtfor—
the main finding of the present work, generalizes the relatiofvard. In this phasen=0 and(¢)=h(¢). Thus the spins
ve~v, discussed in Refs[31-33,3Q for cases where behave as if they were noninteractiid=0). Thus, for
M(ve) ~v,, to the present case wherd (v,) # ve. T>Te,

To better understand the origin of the small difference ahl2
betweenM (v.) anduvy, in Fig. 8 we reporifor J=1/6) the ~ W(¢) = |VH|?=>, —‘ =D |62 - 2= pA(Pp? - 1)
saddle order as a function of the saddle energy(ifpthe X i i
saddles that dominate in the configurational entropy @nd (33)
the inherent saddles. As we clearly see from Fig. 8, the sys- o )
tem is not always close to the saddles of ordéhat domi- ~ The minimization ofW can be performed independently for
nate in the configurational entrogin the following, domi-  €ach degree of freedom; the initial configuratipirs mapped
nant saddleg indeed, belowT, the system start to sample in & configurations® such that
saddles that are subdominant in the configurational entropy. (
However, one could expect the system to be always visiting 1 if =
the dominant saddles at energyT), as the number of the \
dominant saddles is exponentially bigger than the number of s .
all the other saddles. This discrepancy can be a consequence ¢ =40 if¢e|- N
of an incorrect definition of the “basin of attraction” of a
saddle, i.e., of an incorrect mapping between equilibrium ~1 if & $_iﬁ
\ v3

Recalling that Kk0)=0 andh(x1)=-1/4, we gef(for T>T,)

wile

’
/

1|

1
:?} ' (34

\

w

0.4 T T T T T T

W) 1 143
03 |~ ns(vs) . f de e Bh(¢)
1 “113
== -2 (35)

n | i )
0.2+ — f d¢ e_ﬁh(¢)

Jptes which differs slightly from the expression obtained in the
011 el | previous sectioEg. (32)]—where the definition2) of in-

- 1 herent saddles were used—as the interval of integration is

Pl . . . . ‘ different. Thus, the energy of the saddles sampled at tem-

335 -0.3 -0.25 -0.2 -0.15 peratureT depends slightly, in this model, on the definition

v of closest saddles to an equilibrium configurations, i.e., on

FIG. 8. Comparison between the order of the closest saddlefle way one defines the basins of attraction of the saddles. In

(full line) and the order of the dominant on@ashed line, see text  Fig. 9 we report, in an expanded scale with respect to Fig. 7,
for J=1/6. nyT) is reported as a function afy(T) (see Fig. 4 MW (v,) together withM(T,) and with the singularityin an

parametrically inT while n(v) is the same as in Fig. 1. expanded scale with respect to Fig.of the configurational
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model. Thus, from the present example one should conclude
-0.16; that the analysis of the thermodynamics in terms of the sta-
tionary points of the potential energy must be considered a
-0.18¢ useful butapproximatetool, that has to be carefully used,
v evaluating case by case the domain of applicability of the
0.2¢ method and the approximations that are necessarily involved.
-0.22¢
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-0.24+ .
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FIG. 9. The energy, (full line), the energyM (v,) of the clos-  COmments on our paper. We thank F. Sciortino and R. Fran-
est saddles at temperatufe (lower dashed ling and the energy ~ZO0si for many useful comments and suggestions, and L. Ca-
MW(v,) of the saddles obtained by the minimizationwfstarting ~ S€tti and M. Pettini for pointing out Ref36].
from an initial equilibrium configuration at temperatufg (upper
dashed lingas functions ofl.

APPENDIX: CLOSEST SADDLES TO EQUILIBRIUM

entropyv,. We see that the difference betwear(v.) and CONFIGURATIONS

M%Mv) is of the same order as the difference between | this section we will derive the result presented in Sec.
M(ve) and v, We conclude therefore that the relation |v, we have to compute the quantity
M(ve) ~ vy holds within the approximations involved in the

. 1 ~BH(¢)
calculation of M(v,). o(Toad) =+ J doh e IogJ Ao SCH(Y) - No
N Z(T)
Vi CONCLUSIONS X (aH (1) |det Hp)| o(c - d(¢,4)
We characterized the properties of the stationary points of (A1)

the potential energy surface of the model and we com-
pared them with the thermodynamical properties. We foundvhere d(#, #)=N"'Z; (¢;— )% To do that, we need to
that the singularity that is observed in the configurationalProve a general relation. Suppose we want to calculate at the
entropy—not in the Euler characteristic—is located at an ensaddle point a quantit® of the form

ergy vy that is very close to the energy of the stationary

-pBH
points sampled by the system around thermodynamic Q:lqusi ﬂ log A(¢)
phase transitionM (v.); we got then the relation\ (v,) N Z(T)
~v, In the previously investigated mean-field models 1 g BH(9)
[8,31,37 it was found thatM (v,)=v. and thatv,=v.; our =lim —(f de, 2T A'(¢) - 1)
result can be thought of as a generalization of the latter re- n—0 NN M
lation to the cases where the mag is not equal to the 1 gP@
identity atT,. However, some uncertainities in the determi- :L'LTE) Nn |09j de; ZM A'() (A2)

nation of bothv, and M (v.) are present. Indeed) v, is not

a true topological singularity as it comes, in our analysiswhere we used the relations log lim,_o[(x"-1)/n] and
from the configurational entropy which is not a topological lim, o[ f(n)—1]=lim,_log f(n) if f(n)—, 1. In mean-
invariant property of the energy surface; one should look afield models, the energy is of the for(¢)=%; h(¢;)
the Euler characteristi@3], which is, however, very difficult +Ne(m(¢)), where Nm(¢)=2; m(¢;) [in our model,m(¢;)
to determine in the present model due to strong cancellations¢,]. Then we have

between different saddle orders; a@d the exact value of

M(vy) has_ been ;hown to be §Iightl_y dependent on th(_a way = jim ilogf g g ANe(m) D S(m— m(¢) A" )
one associates with each configuration the corresponding in- n—-0 Nn Z(T)
herent saddle; in particular, we showed that two different 1 —pNe(m)
definitions of the inherent saddle give slightly different re- = lim— |ogf dm d‘me
sults, and that the difference is of the order of the difference n—oNn Z(T)
betweenM (v,) andvy.
The possible existence of a singularityyitv) at the criti- X f D ¢; expMNm= m(@)IAn( )

cal energyv, in the ¢* mean-field model still remains an

open problem that needs further investigation. Moreover, it .

seems that both the operative definitions of inherent saddle = lim —log——
that have been used in the literature are unable to produce the

expected relation\ (v.) =v, exactly, even in such a simple where we define® ¢,=d¢exd -Bh(¢;)] and

dm dine BNlem-Ts(n;m,im)]
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. o1 o "
s(n;m,im) =m im+ NIngDqsi exp(—lmZ m(d>i)>A”(¢)- s(n;,u,vs,d):élongqSi exp(/aJMZiqbi)H f%

a=1 2m

Clearly s(0;m,im) is the entropic contribution to the free XeNvavsf D2 exP(J d;dg(l_yagg)
energy as a function af, m that we obtain in the calculation
of the partition functionZ(T), so that

XH<wa>)a(Nd2 - (- w-.a)z). (A8)

f(T)=- iIog Z(T) =min[e(m) — TS(0;m,im)]
AN m,h We will now (i) substitute the expressid(¥?) =X; h(¥?)
=e(u) - TO;u,p) = f(O;u, 1), (A3)  —JINm(W?)?2/2; (i) insert somes functions for m,=m(¥?)

and the corresponding integral representation with a multi-

where (u(T),(T)) is the (T-dependent thermodynamic Plier i (iii ) neglect all the product and sum signs related to

minimum of the free energynote that at the saddle point the indexa; (iv) use the integral representation for the
= /). Then we have function of d®> with a multiplier \,. Then we get an expres-

sion that has to be maximized with respect to all the param-
1 eters to get the saddle point valuesth; u,vs,d):
Q=lim _|ogf dm eANLF(mmim)=f(0i, )] (A4)
n—0 Nn
_ —Jmﬁ

s(n; u,vs,d) = ma 2 YalUs ™ 2 J dede ((1 - 'Yaee)T
We can now expandm=u+nuP+o(n?), im=p+na® allpar|  a a
+0(n?), and
- mm, | + 2 7\ad2 +109 S(u, My, YarNa) |

a

of
f(n;m,im) - £(0; u, 1) = (?—m(O;M,ﬁ)nu‘”

+ a.—t(o;u,mnﬂ(” + a—f<o;u,/1)n S, g, Yaka) = f d¢ DP? exp{— BH(¢)
Jim an

+0o(n?) = j_:](o;/.l,,,&)n +0o(n?) +2 f déde (1 - 7,66) h(¥?)
(A5)

_2 fd;d@ﬁ]a a_E)\a(¢_¢/a)2i|
because by definition ofu, &), we have(df/dm)(0;u, ft) 2 2
=0, (df/6iM)(0; , 1) =0. We get then the final result (A9)

of _as A where H(¢)=h(¢)-Ju¢ as in Eqg.(10). As usual, we will
Q= —,3%(0;#,#) = %(O;M,ﬂ)- (A6)  assume thati) there is symmetry between the repliqas,
=m, etc); (ii) all the fermionic components vanish at the

] R saddle point. Then we get
We have then to calculat@eglecting the ternuu that van-

ishes on taking the derivative with respectrto x{
o

J
s(n; u,vs,d) = ma vst %6) = Imymg + Moy

A 1 A n allpar
S(n;,u,vs,d) = N Iogf D¢I EX[<_ Ei IU/¢|)H d’ﬂ?

a=1 + Agmy + )\dz} +log S(u, M, y,\) [,
X S(H(¥#) = Nvg) S(aH (7))

X |detH(y2)| 8(d? - d(¢, ) (A7)

_ _ S(,u,ﬁw,y,)\)=Jd¢e‘5H(¢{fD\If exp(f dede
where from the thermodynamic calculatigsee Sec. )

(M) ==BIu(T) and w(T) is given by Eq.(9). We will now . n
neglect the modulus of the determinant of the Hessian matrix X[(1 = y00)h(¥) —MP] - \(¢p - zp)z)] )
replacing in the latter expressiddet H(¢?)| with detH(¢?),

in order to represent the determinant as an integral over fer-

mionic variables. We will see later how to restore the correcNow we have to take the derivative sfwith respect tan at
sign in this term. Using a superfield representaf@inve get  n=0. By direct computation
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as
o(u;vgd) = ma)%llpar%(();#avs’ d)

e e

— Jmpmg + Agmg + gmy + xdz}

+fd¢ Iong‘lf eXpU dede

X[(1 = y06)h(¥) = i¥] = \(¢p— ¢>2)}.

(A10)

Jmy

v+ =

e_BH(d’)
Z(T)

Some of the parameters can be easily eliminated computing

the derivatives ofo; defining a=Jm, one is left with the
following expression:

o(p;vsd) = max{ 7(
a,y,\

+ J d¢ 7)(¢) |Og2 e‘YH((/’g(a))_)\hﬁ - (ybg(a)]z
13

@
Y

>+)\d2

(A11)

whereP(¢) is defined in Eq(10), é=(-,0, +) and the¢(a)
are defined in Eq(17). Note that in the latter expression the
term £=0 in the logarithm should have a minus sign: this is

PHYSICAL REVIEW E 70, 041101(2004

g YH($a)N ¢ - @)
Eg o ()N - g

P, v\ = (A13)

We want now to minimized? with the conditiono=0. It is
easy to show from Eq(A12) that (dd?/d\)<0. Then we
expect that the minimum distance is obtained in xhe «©
limit (see Ref[8] for a detailed discussion of this pojntt is
easy to see that

where the functiory;(¢) is equal to 1 if¢(a) is the closest
to ¢ and O otherwise. Thus, if we defink ¢, @) as

B, @) =2 xd( ) pel@) (A15)
3

(i.e., ¢ is the closestp, to ¢), in the \ — <o limit Egs. (A12)
become

a=1 f do P(¢) P, @)

d?= J dop P(#) [ — (¢, )2

o2
vs= -+

=] f dp P(¢) H($(h,0).  (A16)

a consequence of the absence of the modulus of the determine first of these equations has to be interpreted as a self-
nant of the H_eSS|an matrix that we neglected abqve. Tak'”_@onsistency equation that gives the value of the magnetiza-
the modulus into account corresponds to neglecting the Mijon of the closest saddles to the equilibrium configurations,

nus sign of the terng=0. Performing the derivatives with , (T). The second and third equations give the average dis-
respect taa, y, and\ one obtains the following equations:  (5nced?(T) and the average potential energyT). Finally,

observing that

lim, _.log>, e H(#a)-\ - sl
¢

YH(($,a)) - N[ - d(p,0)?  (ALT)

substituting the latter expression in E411), and using Egs.
(A16) one obtains

a=J f dop P(¢) 2 P, v,\) dela)
3

d2 = f d¢ P(¢) 2 P§(¢1 Y )\) [¢ - ¢§(a)]2
¢

US_Z_J limo=0

A—©

+ f dop P(¢) 2 P, v,\) H(pda) (Al2) (A18)
3

where consistently with our initial assumption.
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