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Nonradiating sources with connections to the adjoint problem
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A general description of localized nonradiati®dR) sources whose generated fields are confiimetzero
only) within the source’s support is developed that is applicable to any linear partial differential equation
(PDE) including the usual PDEs of wave thedis.g., the Helmholtz equation and the vector wave equgtion
as well as other PDEs arising in other disciplines. This description, which holds for both formally self-adjoint
and non-self-adjoint linear partial differential operat@®09, is derived in the context of both the governing
PDE and the corresponding adjoint PDE of the associated adjoint problem. It is shown that a necessary and
sufficient condition for a source to be NR is that it obeys an orthogonality relation with respect to any solution
in the source’s support of the corresponding homogeneous adjoint PDE. For real linear PDOs, this description
takes on a more relaxed form where, in addition to the previous necessary and sufficient condition, the obeying
of a complementary orthogonality relation with respect to any solution in the source’s support of the homo-
geneous form of the same governing PDE is also both necessary and sufficient for the source to be NR.
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|. INTRODUCTION tion with Bohmian mechanics. Our motivation is twofold

Nonradiating(NR) sources whose generated fields remainSinCe, in addition to generalizing the scope of applicability of
confined (are nonzero onlywithin the source’s region of the theory in[8,9] to a broader class of PDQm particular,
localization have been of interest for a long time in connecall linear PDOg, we also derive additional proofs of previ-
tion with physical and inverse theori¢see[1,2] for recent  Ously known results. In particular, the arguments employed
overviews and other application&ee[3] for a recent appli- in the present general description are stronger than those in
cation to propagation control in lattice string®articular [8,9] since (unlike in [8,9]) they do not rely on operator
descriptions applicable to specific partial differential opera-self-adjointness. Hence, they depict a more robust picture
tors (PDOS, including the Helmholtz operat¢#,6], the vec-  that complements the one developed8r8], facilitating also
tor wave equation operats], and, in the time domain, the new proofs of other, closely related results, applicable to
D’'Alembertian operatof7], have appeared throughout the particular PDOs, due to Kim and Wol#] and Friendlander
years. A more general description that is applicable to any15].
real, formally self-adjoint linear PDO was presenteddrd].

In this broad context, a NR source is a “source” to a partial Il. OUR MAIN RESULTS

differential equation(PDE) in a general(e.g., spatial or We consider a general scalar, vector, or tensor source-field
spatial-temporal coordinate space of interest whose gener-system(p, ¢) governed by a linear PDE

ated “field” remains confined within the source’s support. (LX) = p(%) (1)

This generalization enables treatment within common - P
grounds of both the usual NR sources to the different wavevhere the vectox=(x;,X,, ...,X,) € Q CR" denotes the rel-
equations as well as to “NR sources” in other areas such asyant space or space-time coordinates in a given observation
magnetostatics, where field-confining sour¢efiose fields  domainQ) with boundarydQ, L is a linear PDO, ang/(x) is
vanish identically everywhere outside the soyreee of  the scalar, vector, or tensor field produced by a scalar, vector,
enormous importance in connection with Aharonov-Bohmor tensor source(x) of supportDC Q. For example, for
experiment§10,11. The present work generalizes the pre-time-harmonic electromagnetic fields, the relevant source
sentation in[8,9] to any linear PDO, including nonreal and (x) and fieldy(x) can be the space-dependent pabJ(r)
formally non-self-adjoint PDOs. Examples of non-self- a3nq E(r) of the electric sourcécurrent density and field
adjoint PDOs of interest include the PDO of the Schrodinget,qctors, respectively, where is the angular oscillation fre-
equation(see, e.g.{12], p. 439, the PDO of the diffusion  4yency andu is the medium’s permeability, while the rel-

equation(see, e.g.[12], p. 437, the PDO of the small-  oyant PDOL is the vector wave equation operat® X V
amplitude (linearized version of the Korteweg—de Vries X —k?) wherek is the wave number of the fielfor more
equation(see, e.9.[13], p. 4, and the PDO of the equation examples, sefg])

of motion of a mechanical oscillator with dampicsge, e.g. 1 e i

X o S ' The generated field is given b
[12], p. 85). Physical realizations of NR sources in the last 9 9 Y
three areas translafgorrespondingly into excitations that _ R ,
control zero external diffusion, or that generate no soliton ) = Ddx pXIG(xX), 2
propagation, or that drive finite-duration mechanical oscilla-
tions. In the framework of the Schrodinger equation, the relwhereG(x,x’) is the scalar or tensor Green function associ-
evance of sources in general is discussefll#j in connec- ated with the PDQ. that obeys suitable boundary conditions
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imposed by the problem description 6f [the Green func- reality) yields, in connection with Theorem 1 or Corollary 1,
tion G(x,x’) is generally a tensor if the sourpéx) and field respectively, the particular results, applicable to this operator,
(X) are vectors or tensds derived in [4], where it was shown that any NR source
Our first goal in this work is to derive the following result, pnr(r) of support D to the Helmholtz equation(V?
applicable to any NR sourggr(x) of supportD to a general  +k?)¢(r)=p(r) must be orthogondessentially as in Eq4),
linear PDE(1), for which (by definition) the NR field with x=r] to all solutionsv(r) of the homogeneous Helm-
holtz equation(V?+k?uv(r)=0 in D. This condition was
Inr(X) :f dX pyr(X)G(X,x')=0 if xe D. (3) sShown to be also sufficient for a sourggs(r) of supportD
D to be NR. Even though the analysis[#] assumes continu-
ous NR sources, the general results can be shown to hold in
a more general, distributional sense. In fact, in our statement
of Theorem 1 and of Corollary 1 we have made no assump-

Theorem 1.A necessary and sufficient condition for a
sourcepyr(X) of supportD to a general linear PDEL) to be

NR is that it obeys the “orthogonality” relation tion about the well-behavedness of the sources and fields
since the stated results can be shown to hold in the sense of
f dxpnr(X)v" (X) =0, (4) distributions. Finally, for the vector wave equation operator
D

we arrive, by a similar substitution, in particular the substi-

where * denotes the complex conjugate, with respect to anfution L=L=(VX VXx-k in Egs.(5) and (6), at the par-
function v(x) that obeys everywhere in the source’s supportticular version of our results related to Eqg)~(6) corre-
D (the boundaryD of D included the homogeneous PDE sponding to this operator derived in the appendiXajf

Lo)x)=0 ifxeD, (5 IV. FORMULATION

whereL is the adjoint of the PDQ. [as defined, e.g., in In this section, we prove Theorem 1 for any linear PDO
Chap. 9 of[12], in Chap. 7 of{16], and in connection with e also establish the accompanying Corollary 1 for real lin-
the generalized Green theorem in E@&3), (3.4), and(3.5  ear PDO4..
of [17]]. Our starting point is the following result, concerning the
Another interesting result, also to be established in thisvecessary part of Theorem 1.
work, is the following corollary of Theorem 1, which holds ~ Lemma 1 If pyr(x) is a NR source of suppoid to a
for all real linear PDOsL, for which (L) (X)=(L#')(X).  general linear PDQL, then, necessarily, the orthogonality
Examples of such real PDOs include the vector wave equaelation(4) must hold for any functiom(x) obeying the ho-
tion operator (VX V x —k?), the Helmholtz operatoXV>  mogeneous form of the adjoint PDE, in particular E8),
+k?), and the PDO of the diffusion equation. The PDO of thEeverywhere in the source’s supp@rt
Schrédinger equation is not real. The real PDO version of Lemma [where (L) (x)
Corollary 1. A necessary and sufficient condition for a =L y"(x)] was established if8,9]. To keep our presentation
sourcepygr(x) of supportD to a PDE(1) with real linear  self-contained, we establish next the proof of Lemma 1 in the
PDOL to be NR is that it obeys the orthogonality relati@n most general cas@ot necessarily real PDQ@s
with respect to any function(x) that obeys everywhere in It is not hard to deduce from E@L) that the most general
the source’s suppoid (the boundaryD of D included the ~ NR sourcepyr(x) of supportD whose localized field is
homogeneous form of the same governing PDE, in particuy,o(x) in D [and is, according to Eq3), zero elsewheie
lar, must be of the formpyr(X)=(Liynr)(X) (see also[5]). By
(Lv)(x) =0 if X e D. (6) using this representation of a _Iocalized NR source_and the
generalized Green theorem in its general form applicable to
These two results—Theorem 1, which holds &firlinear  any linear PDO(regardless of its scalar, dyadic, or other
PDOs, and Corollary 1, which holds for atkal linear  particular natureas encountered in treatments of functional
PDOs—constitute a general description of a localized NRanalysis(see, e.g., Chap. 7 dfL8]), operator theorysee,
source to a linear PDE that is based on orthogonality oe.g., Egs.(3.3), (3.4), and (3.5 and related discussion in
noninteractivity[8,9] of a NR source to free fields, corre- [17]], and wave theorysee, e.g.[16], pp. 870-888 we
sponding to the adjoint problegas in Theorem JLor to the  obtain
original problem(as in Corollary }.

depNR(X)U*(X):f (LlﬁNR)(X)U*(X):f IO (Lo) (%),
D D D

The statements in Theorem(ttalid for all linear PDO% @
and Corollary 1(valid for all real linear PDOsencompass Whereuv(x) is an arbitrary function ok and where thémiss-
analogous results on NR sources for particular PDOs enng) boundary terms in Eq7) vanish due to the vanishing of
countered in the literature. In particulaifor the real, self-the NR field yyg(X) for x ¢ D. If (Lv)(x)=0 in the source’s
adjoint Helmholtz operator, the substitutib V2+k? in Eq.  supportD, then the integral in Eq.7) vanishes, which estab-
(5) (due to self-adjointne$or L=V2+k? in Eq. (6) (due to  lishes Lemma 1 corresponding to the necessary part of Theo-

III. CONNECTION TO PREVIOUS RESULTS
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rem 1. Let us establish next the sufficient part of the same — )

theorem. f dxX' pNr(X)G(X,X') =0 if x & D. (13)
If G(x,x) is a Green’s function of the adjoint PDO P

(obeying arbitrary adjoint boundary conditions on the bound-The adjoint Green functiof(x,x’) in Eq. (11) is arbitrary.

ary d€) of the observation domaif?), then, clearly, The result in Eq(11) indicates that, from the point of view
of the adjoint problem, the sourggr(x), when perceived as
LG)(x',x)=0 (8 @ source to the adjoint PDQ, is a NR sourcealso to the

adjoint Green functiorG(x,X’), i.e., its generated adjoint

field as given bnydX’pNR(X')’é(X,X') vanishes everywhere
outside the source’s suppdpt. Furthermore, since this ad-

joint Green functiorE(x,x’) in Eq. (11) is arbitrary, we have
then arrived at the fundamental finding that if a source
pnr(X) to a real PDQOL is NR to a Green’s functio®(x,x")
, = of the PDOL [as required in Eq(3)], then, necessarily, this
fD dX'pnr(X)G (X', ) =0 if x ¢ D. 9 source must also l:?e NRas inggc()ated in Eq(11)] to Xcmy
Green’s functio%(x,x’) of the adjoint PDQL. Furthermore,
Itis not hard to show with appropriate reference to &. it is not hard to show by going, next, backwards in the same
(see, e.g.[16], pp. 882-88Bthat for any Green’s function 4rqument, in particular from nonradiation to a Green’s func-
G(x,x') of the adjoint PDOL there is associated a Green's tjon of the adjoint PDOL to nonradiation to any Green's
funct@g?(x,x’) of the PDOL such that the reciprocity con- function of the original PDQ. [wheret andL play, respec-
dition G_(x’,x)=G(x,x’) holds. Then Eq(9) with the sub- tively, the (reversedl roles of the “governing” and the “ad-
stitution G *(x’,X)=G(x,x’) is seen to reduce to the nonra- joint” PDOs herg, that, in general, if a sourcgyg is NR
diation requirement Eq(3), which establishes sufficiency. with respect to a given Green’s function of eitheor L, then
Furthermore, since the adjoint Green function in E§sand it must automatically be NR with respect to both any Green’s
(9) is arbitrary, then this nonradiatio_n requirement can b&unction of L and any Green’s function of. This result
shown to hold not only for the particular Green function ggsentially establishes that for real PDOs, nonradiation to a

implicit in Eq. (3), but also for any other Green'’s function. o - . L =
We conclude that nonradiation under a certain boundary Corgr?dovlgcg\pl)gfssanonrad|at|on to the associated adjoint PDO

dition implies nonradiation under any boundary condition or, The necessary part of Corollary 1 can be verified as fol-
alternatively, that nonradiation to a given Green’s funcUonIOWS. First, we have found in Eql1) that if a sourcepys(x)

implies nonradiation to any Green’s function of the govern-, , : . .
ing PDE. The latter result provides a general explanation of & NR t0 @ Green's function of the real linear PROthen it

result derived if15] (see alsd1] for other connectionsfor ,TUSt also be NR to any Green's functan of the adjoint PDO
the particular context of the scalar wave equation. In particuL (then, it is NR also to the adjoint PDD). Second, we can
lar, it was shown there that if a source is NR to the usuaPmploy the following, adjoint version of Lemma 1:d{r(x)
retarded Green function, then it must also be NR to the coris a NR source of suppoid to the adjoint PDOL, then,
responding advanced Green functigvhere the differentiat- necessarily, the orthogonality relati¢4] must hold for any
ing boundary conditions arboundary conditions in time  function v(x) obeying Eq.(6) everywhere in the source’s
From our more general standpoint applicable to any lineasupportD. Finally, the above two statements imply that if a
PDE, this result can be interpreted as arising from Theorem $ourcepyr(x) of supportD is NR to a real linear PDQ.,
and, in particular, from the fact that nonradiation to a giventhen it must necessarily obey the orthogonality relain
Green'’s function of any governing linear PDQ(under spe-  wijth respect to any functiom(x) that obeys the homoge-
cific boundary conditionsimplies, in turn, nonradiation t0 egus form of the governing PDE, E@), which completes
any other Green’s function df (under other suitable bound- e proof.
ary cor_1d|t|0n$. _ _ -~ The sulfficient part of Corollary 1 follows at once by not-
Having established Theorem 1, we are now in a positionng that for real PDO4.,
to address Corollary 1, which applies to the important class X
of real linear PDOs. For a real PDIO(having a correspond- (LG)(x,x")=0 (12)

ing real adjoint PDQL), if X' e D andx & D. By puttingv(x')=G"(x,x’), which obeys
according to Eq(12) condition(6), in the orthogonality re-
lation (4), we arrive at the nonradiation condition E@),
which establishes the proof.

if X’ e D andx & D. It follows that forx’ e D andx & D, we
can puto(x')=G(x’,x) [which obeys, as read in E¢B), the
required Eq(5)] in the orthogonality conditioni4) so that

(LG)(x,x')=0 (10)

. . . V. CONCLUSIONS
if X’ € D andx ¢ D. Then by lines analogous to those used in

connection with our derivation of Eq9), we find that ac- The results presented in this work provide a general
cording to Eq.(10) and Lemma 1, necessarily, framework for a number of results on NR sources published
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earlier for particular PDEs, the most interesting of which areenergy interaction between sources and fields in source-field
summarized iff1,4,9. Our analysis also generalized both in systems of interest, e.g., the electromagnetic fi@], one
scope and in methodology a previous presentatiof8j],  finds that this integral must vanish for NR sources in light of
which did not preserve sufficient generality by assumingthe orthogonality relationé4)—(6). Then, NR sources do not
from the start reality and self-adjointness of the relevaninteract, energetically, with free fields, neither in transmis-
PDOs. Both our proofs and our final results are of a moresion nor in receptiorfor more details, se]). Finally, we
general form applicable to rather general linear PDOs tha}ish to note that even though we have focused on linear
may help clarify other questions in this intriguing field. Im- PDEs, the possibility remains open of generalizing some of
portantly, our characterization may open new applications of, - yegyits to the nonlinear regime by using nonlinear gen-
NR sources by en_abllng treatment, W|th|n_co'm.mon PrN-eralizations of Green’s theorem involving the so-called dual
ciples, of field-confining sources in other disciplingsg., PDOs that are nonlinear generalizations of the usual adjoint

0 742D of Inear theorsee. ¢..20). The conesponding
sport p - ay >IN g ' . honlinear dual operators are expected to play in the more
propagating soliton excitations, field-confining sources in

X . " general nonlinear theory a role analogous to that of the ad-
?hueatr;tslijrgl flvx?f:l?/ethdeigtr::i{ll?rl,ezgr\r/]vzre‘z?eoézi[l all\:eRaguar?:gglﬁg\}g be '%int operators of the present linear theory. Work in this di-
: : P : ection may be of interest to cosmologists and other theorists

of interest since the early days of electromagnetic theoryr

The present characterization of NR sources, i.e., Sources n connection with NR gravitational objects, described by the

| . . . . .
the null space of the propagata@@reen functiorsfor gen- Nonlinear Einstein equations, and accounting, perhaps, along

. . ; the unbounded lines of speculation, for “invisible” NR en-
eral linear PDEs, is expected to be also of interest to workergrgy in the universe.

on inverse problems where such NR sources and their corre-
sponding null spaces play a central r@gee, e.g.[2,6,7,9).
Physically, the general orthogonality relations established in
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