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A general description of localized nonradiating(NR) sources whose generated fields are confined(nonzero
only) within the source’s support is developed that is applicable to any linear partial differential equation
(PDE) including the usual PDEs of wave theory(e.g., the Helmholtz equation and the vector wave equation)
as well as other PDEs arising in other disciplines. This description, which holds for both formally self-adjoint
and non-self-adjoint linear partial differential operators(PDOs), is derived in the context of both the governing
PDE and the corresponding adjoint PDE of the associated adjoint problem. It is shown that a necessary and
sufficient condition for a source to be NR is that it obeys an orthogonality relation with respect to any solution
in the source’s support of the corresponding homogeneous adjoint PDE. For real linear PDOs, this description
takes on a more relaxed form where, in addition to the previous necessary and sufficient condition, the obeying
of a complementary orthogonality relation with respect to any solution in the source’s support of the homo-
geneous form of the same governing PDE is also both necessary and sufficient for the source to be NR.
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I. INTRODUCTION

Nonradiating(NR) sources whose generated fields remain
confined (are nonzero only) within the source’s region of
localization have been of interest for a long time in connec-
tion with physical and inverse theories(see[1,2] for recent
overviews) and other applications(see[3] for a recent appli-
cation to propagation control in lattice strings). Particular
descriptions applicable to specific partial differential opera-
tors(PDOs), including the Helmholtz operator[4,6], the vec-
tor wave equation operator[5], and, in the time domain, the
D’Alembertian operator[7], have appeared throughout the
years. A more general description that is applicable to any
real, formally self-adjoint linear PDO was presented in[8,9].
In this broad context, a NR source is a “source” to a partial
differential equation(PDE) in a general(e.g., spatial or
spatial-temporal) coordinate space of interest whose gener-
ated “field” remains confined within the source’s support.
This generalization enables treatment within common
grounds of both the usual NR sources to the different wave
equations as well as to “NR sources” in other areas such as
magnetostatics, where field-confining sources(whose fields
vanish identically everywhere outside the source) are of
enormous importance in connection with Aharonov-Bohm
experiments[10,11]. The present work generalizes the pre-
sentation in[8,9] to any linear PDO, including nonreal and
formally non-self-adjoint PDOs. Examples of non-self-
adjoint PDOs of interest include the PDO of the Schrödinger
equation(see, e.g.,[12], p. 438), the PDO of the diffusion
equation (see, e.g.,[12], p. 437), the PDO of the small-
amplitude (linearized) version of the Korteweg–de Vries
equation(see, e.g.,[13], p. 4), and the PDO of the equation
of motion of a mechanical oscillator with damping(see, e.g.,
[12], p. 851). Physical realizations of NR sources in the last
three areas translate(correspondingly) into excitations that
control zero external diffusion, or that generate no soliton
propagation, or that drive finite-duration mechanical oscilla-
tions. In the framework of the Schrödinger equation, the rel-
evance of sources in general is discussed in[14] in connec-

tion with Bohmian mechanics. Our motivation is twofold
since, in addition to generalizing the scope of applicability of
the theory in[8,9] to a broader class of PDOs(in particular,
all linear PDOs), we also derive additional proofs of previ-
ously known results. In particular, the arguments employed
in the present general description are stronger than those in
[8,9] since (unlike in [8,9]) they do not rely on operator
self-adjointness. Hence, they depict a more robust picture
that complements the one developed in[8,9], facilitating also
new proofs of other, closely related results, applicable to
particular PDOs, due to Kim and Wolf[4] and Friendlander
[15].

II. OUR MAIN RESULTS

We consider a general scalar, vector, or tensor source-field
systemsr ,cd governed by a linear PDE

sLcdsxd = rsxd, s1d

where the vectorx=sx1,x2, ... ,xndPV,Rn denotes the rel-
evant space or space-time coordinates in a given observation
domainV with boundary]V, L is a linear PDO, andcsxd is
the scalar, vector, or tensor field produced by a scalar, vector,
or tensor sourcersxd of supportD,V. For example, for
time-harmonic electromagnetic fields, the relevant source
rsxd and fieldcsxd can be the space-dependent partimvJsr d
and Esr d of the electric source(current density) and field
vectors, respectively, wherev is the angular oscillation fre-
quency andm is the medium’s permeability, while the rel-
evant PDOL is the vector wave equation operators¹3 ¹
3−k2d wherek is the wave number of the field(for more
examples, see[8]).

The generated field is given by

csxd =E
D

dx8rsx8dGsx,x8d, s2d

whereGsx,x8d is the scalar or tensor Green function associ-
ated with the PDOL that obeys suitable boundary conditions
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imposed by the problem description on]V [the Green func-
tion Gsx,x8d is generally a tensor if the sourcersxd and field
csxd are vectors or tensors].

Our first goal in this work is to derive the following result,
applicable to any NR sourcerNRsxd of supportD to a general
linear PDE(1), for which (by definition) the NR field

cNRsxd =E
D

dx8rNRsx8dGsx,x8d = 0 if x ¹ D. s3d

Theorem 1.A necessary and sufficient condition for a
sourcerNRsxd of supportD to a general linear PDE(1) to be
NR is that it obeys the “orthogonality” relation

E
D

dxrNRsxdv*sxd = 0, s4d

where * denotes the complex conjugate, with respect to any
function vsxd that obeys everywhere in the source’s support
D (the boundary]D of D included) the homogeneous PDE

sL̃vdsxd = 0 if x P D, s5d

where L̃ is the adjoint of the PDOL [as defined, e.g., in
Chap. 9 of[12], in Chap. 7 of[16], and in connection with
the generalized Green theorem in Eqs.(3.3), (3.4), and(3.5)
of [17]].

Another interesting result, also to be established in this
work, is the following corollary of Theorem 1, which holds
for all real linear PDOsL, for which sLcd*sxd=sLc*dsxd.
Examples of such real PDOs include the vector wave equa-
tion operator s¹3 ¹ 3−k2d, the Helmholtz operators¹2

+k2d, and the PDO of the diffusion equation. The PDO of the
Schrödinger equation is not real.

Corollary 1. A necessary and sufficient condition for a
sourcerNRsxd of supportD to a PDE (1) with real linear
PDOL to be NR is that it obeys the orthogonality relation(4)
with respect to any functionvsxd that obeys everywhere in
the source’s supportD (the boundary]D of D included) the
homogeneous form of the same governing PDE, in particu-
lar,

sLvdsxd = 0 if x P D. s6d

These two results—Theorem 1, which holds forall linear
PDOs, and Corollary 1, which holds for allreal linear
PDOs—constitute a general description of a localized NR
source to a linear PDE that is based on orthogonality or
noninteractivity [8,9] of a NR source to free fields, corre-
sponding to the adjoint problem(as in Theorem 1) or to the
original problem(as in Corollary 1).

III. CONNECTION TO PREVIOUS RESULTS

The statements in Theorem 1(valid for all linear PDOs)
and Corollary 1(valid for all real linear PDOs) encompass
analogous results on NR sources for particular PDOs en-
countered in the literature. In particular, for the real, self-

adjoint Helmholtz operator, the substitutionL̃=¹2+k2 in Eq.
(5) (due to self-adjointness) or L=¹2+k2 in Eq. (6) (due to

reality) yields, in connection with Theorem 1 or Corollary 1,
respectively, the particular results, applicable to this operator,
derived in [4], where it was shown that any NR source
rNRsr d of support D to the Helmholtz equations¹2

+k2dcsr d=rsr d must be orthogonal[essentially as in Eq.(4),
with x=r ] to all solutionsvsr d of the homogeneous Helm-
holtz equations¹2+k2dvsr d=0 in D. This condition was
shown to be also sufficient for a sourcerNRsr d of supportD
to be NR. Even though the analysis in[4] assumes continu-
ous NR sources, the general results can be shown to hold in
a more general, distributional sense. In fact, in our statement
of Theorem 1 and of Corollary 1 we have made no assump-
tion about the well-behavedness of the sources and fields
since the stated results can be shown to hold in the sense of
distributions. Finally, for the vector wave equation operator
we arrive, by a similar substitution, in particular the substi-

tution L= L̃=s¹3 ¹ 3−k2d in Eqs. (5) and (6), at the par-
ticular version of our results related to Eqs.(4)–(6) corre-
sponding to this operator derived in the appendix of[9].

IV. FORMULATION

In this section, we prove Theorem 1 for any linear PDOL.
We also establish the accompanying Corollary 1 for real lin-
ear PDOsL.

Our starting point is the following result, concerning the
necessary part of Theorem 1.

Lemma 1. If rNRsxd is a NR source of supportD to a
general linear PDOL, then, necessarily, the orthogonality
relation(4) must hold for any functionvsxd obeying the ho-
mogeneous form of the adjoint PDE, in particular Eq.(5),
everywhere in the source’s supportD.

The real PDO version of Lemma 1[where sLcd*sxd
=Lc*sxd] was established in[8,9]. To keep our presentation
self-contained, we establish next the proof of Lemma 1 in the
most general case(not necessarily real PDOs).

It is not hard to deduce from Eq.(1) that the most general
NR sourcerNRsxd of support D whose localized field is
cNRsxd in D [and is, according to Eq.(3), zero elsewhere]
must be of the formrNRsxd=sLcNRdsxd (see also[5]). By
using this representation of a localized NR source and the
generalized Green theorem in its general form applicable to
any linear PDO(regardless of its scalar, dyadic, or other
particular nature) as encountered in treatments of functional
analysis(see, e.g., Chap. 7 of[18]), operator theory[see,
e.g., Eqs.(3.3), (3.4), and (3.5) and related discussion in
[17]], and wave theory(see, e.g.,[16], pp. 870–883), we
obtain

E
D

dxrNRsxdv*sxd =E
D

sLcNRdsxdv*sxd =E
D

cNRsxdsL̃vd*sxd,

s7d

wherevsxd is an arbitrary function ofx and where the(miss-
ing) boundary terms in Eq.(7) vanish due to the vanishing of

the NR fieldcNRsxd for x¹D. If sL̃vdsxd=0 in the source’s
supportD, then the integral in Eq.(7) vanishes, which estab-
lishes Lemma 1 corresponding to the necessary part of Theo-
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rem 1. Let us establish next the sufficient part of the same
theorem.

If G̃sx,x8d is a Green’s function of the adjoint PDOL̃
(obeying arbitrary adjoint boundary conditions on the bound-
ary ]V of the observation domainV), then, clearly,

sL̃G̃dsx8,xd = 0 s8d

if x8PD andx¹D. It follows that forx8PD andx¹D, we

can putvsx8d=G̃sx8 ,xd [which obeys, as read in Eq.(8), the
required Eq.(5)] in the orthogonality condition(4) so that

E
D

dx8rNRsx8dG̃ *sx8,xd = 0 if x ¹ D. s9d

It is not hard to show with appropriate reference to Eq.(7)
(see, e.g.,[16], pp. 882–883) that for any Green’s function

G̃sx,x8d of the adjoint PDOL̃ there is associated a Green’s
functionGsx,x8d of the PDOL such that the reciprocity con-

dition G̃ *sx8 ,xd=Gsx,x8d holds. Then Eq.(9) with the sub-

stitution G̃ *sx8 ,xd=Gsx,x8d is seen to reduce to the nonra-
diation requirement Eq.(3), which establishes sufficiency.
Furthermore, since the adjoint Green function in Eqs.(8) and
(9) is arbitrary, then this nonradiation requirement can be
shown to hold not only for the particular Green function
implicit in Eq. (3), but also for any other Green’s function.
We conclude that nonradiation under a certain boundary con-
dition implies nonradiation under any boundary condition or,
alternatively, that nonradiation to a given Green’s function
implies nonradiation to any Green’s function of the govern-
ing PDE. The latter result provides a general explanation of a
result derived in[15] (see also[1] for other connections) for
the particular context of the scalar wave equation. In particu-
lar, it was shown there that if a source is NR to the usual
retarded Green function, then it must also be NR to the cor-
responding advanced Green function(where the differentiat-
ing boundary conditions areboundary conditions in time).
From our more general standpoint applicable to any linear
PDE, this result can be interpreted as arising from Theorem 1
and, in particular, from the fact that nonradiation to a given
Green’s function of any governing linear PDOL (under spe-
cific boundary conditions) implies, in turn, nonradiation to
any other Green’s function ofL (under other suitable bound-
ary conditions).

Having established Theorem 1, we are now in a position
to address Corollary 1, which applies to the important class
of real linear PDOs. For a real PDOL (having a correspond-

ing real adjoint PDOL̃),

sL̃G̃ *dsx,x8d = 0 s10d

if x8PD andx¹D. Then by lines analogous to those used in
connection with our derivation of Eq.(9), we find that ac-
cording to Eq.(10) and Lemma 1, necessarily,

E
D

dx8rNRsx8dG̃sx,x8d = 0 if x ¹ D. s11d

The adjoint Green functionG̃sx,x8d in Eq. (11) is arbitrary.
The result in Eq.(11) indicates that, from the point of view
of the adjoint problem, the sourcerNRsxd, when perceived as

a source to the adjoint PDOL̃, is a NR sourcealso to the

adjoint Green functionG̃sx,x8d, i.e., its generated adjoint

field as given byeDdx8rNRsx8dG̃sx,x8d vanishes everywhere
outside the source’s supportD. Furthermore, since this ad-

joint Green functionG̃sx,x8d in Eq. (11) is arbitrary, we have
then arrived at the fundamental finding that if a source
rNRsxd to a real PDOL is NR to a Green’s functionGsx,x8d
of the PDOL [as required in Eq.(3)], then, necessarily, this
source must also be NR[as indicated in Eq.(11)] to any

Green’s functionG̃sx,x8d of the adjoint PDOL̃. Furthermore,
it is not hard to show by going, next, backwards in the same
argument, in particular from nonradiation to a Green’s func-

tion of the adjoint PDOL̃ to nonradiation to any Green’s

function of the original PDOL [whereL̃ andL play, respec-
tively, the (reversed) roles of the “governing” and the “ad-
joint” PDOs here], that, in general, if a sourcerNR is NR

with respect to a given Green’s function of eitherL or L̃, then
it must automatically be NR with respect to both any Green’s

function of L and any Green’s function ofL̃. This result
essentially establishes that for real PDOs, nonradiation to a

PDOL implies nonradiation to the associated adjoint PDOL̃
and vice versa.

The necessary part of Corollary 1 can be verified as fol-
lows. First, we have found in Eq.(11) that if a sourcerNRsxd
is NR to a Green’s function of the real linear PDOL, then it
must also be NR to any Green’s function of the adjoint PDO

L̃ (then, it is NR also to the adjoint PDOL̃). Second, we can
employ the following, adjoint version of Lemma 1: IfrNRsxd
is a NR source of supportD to the adjoint PDOL̃, then,
necessarily, the orthogonality relation[4] must hold for any
function vsxd obeying Eq.(6) everywhere in the source’s
supportD. Finally, the above two statements imply that if a
sourcerNRsxd of supportD is NR to a real linear PDOL,
then it must necessarily obey the orthogonality relation(4)
with respect to any functionvsxd that obeys the homoge-
neous form of the governing PDE, Eq.(6), which completes
the proof.

The sufficient part of Corollary 1 follows at once by not-
ing that for real PDOsL,

sLG*dsx,x8d = 0 s12d

if x8PD andx¹D. By puttingvsx8d=G*sx,x8d, which obeys
according to Eq.(12) condition (6), in the orthogonality re-
lation (4), we arrive at the nonradiation condition Eq.(3),
which establishes the proof.

V. CONCLUSIONS

The results presented in this work provide a general
framework for a number of results on NR sources published
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earlier for particular PDEs, the most interesting of which are
summarized in[1,4,9]. Our analysis also generalized both in
scope and in methodology a previous presentation in[8,9],
which did not preserve sufficient generality by assuming
from the start reality and self-adjointness of the relevant
PDOs. Both our proofs and our final results are of a more
general form applicable to rather general linear PDOs that
may help clarify other questions in this intriguing field. Im-
portantly, our characterization may open new applications of
NR sources by enabling treatment, within common prin-
ciples, of field-confining sources in other disciplines(e.g.,
Aharonov-Bohm magnetostatics, controlled diffusion and
other transport phenomena, fluid dynamics in general, non-
propagating soliton excitations, field-confining sources in
quantum field theory[19], among other areas) in addition to
the usual wave disciplines where such NR sources have been
of interest since the early days of electromagnetic theory.
The present characterization of NR sources, i.e., sources in
the null space of the propagators(Green functions) for gen-
eral linear PDEs, is expected to be also of interest to workers
on inverse problems where such NR sources and their corre-
sponding null spaces play a central role(see, e.g.,[2,6,7,9]).
Physically, the general orthogonality relations established in
this work, as defined in connection with Eqs.(4)–(6) and
related discussion, can be shown to be related to noninterac-
tivity of NR sources to(incident) fields or waves of the rel-
evant source-field system: NR sources are noninteractors. In
particular, by applying the integral defining the power or

energy interaction between sources and fields in source-field
systems of interest, e.g., the electromagnetic field[19], one
finds that this integral must vanish for NR sources in light of
the orthogonality relations(4)–(6). Then, NR sources do not
interact, energetically, with free fields, neither in transmis-
sion nor in reception(for more details, see[9]). Finally, we
wish to note that even though we have focused on linear
PDEs, the possibility remains open of generalizing some of
our results to the nonlinear regime by using nonlinear gen-
eralizations of Green’s theorem involving the so-called dual
PDOs that are nonlinear generalizations of the usual adjoint
PDOs of linear theory(see, e.g.,[20]). The corresponding
nonlinear dual operators are expected to play in the more
general nonlinear theory a role analogous to that of the ad-
joint operators of the present linear theory. Work in this di-
rection may be of interest to cosmologists and other theorists
in connection with NR gravitational objects, described by the
nonlinear Einstein equations, and accounting, perhaps, along
the unbounded lines of speculation, for “invisible” NR en-
ergy in the universe.
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