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Local periodic perturbations induce frequency-dependent propagation waves in an excitable spatiotempo-
rally chaotic system. We show how segments of noise-contaminated and chaotic perturbations induce charac-
teristic sequences of excitations in the model system. Using a set of “tuned” excitable systems, it is possible to
characterize signals by their spectral composition of excitation pattern. As an example, we analyze an epileptic
“spike-and-wave” time series.
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For systems of diffusively coupled nonlinear oscillators, it
was found that excitable spatiotemporal chaos may undergo
a generic pattern transition when perturbed locally at an ap-
propriate frequency[1]. The switching from a globally dis-
ordered pattern of low mean amplitude to a globally ordered
pattern of traveling excitation waves can be used for the
“detection” of the perturbation frequency. To do this, one can
simply record the induced excitations, i.e., the suprathreshold
firing of one of the model’s elements.

A related detection principle is exploited in the time series
analysis performed by the ear(see e.g., Ref.[2]). In the
mammalian inner ear, for example, sound-induced mechani-
cal vibrations are converted into sequences of nerve cell fir-
ings that propagate as excitation waves to the auditory cor-
tex. There, the temporal patterns of excitations are
interpreted with high accuracy and noise tolerance, in spite
of the original sound signal’s complexity and nonstationarity.
The common assumption in the modeling of this process is
that the spikes are induced from a resting state that is an
excitable fixed point[3]. However, it was shown recently
that both spontaneous and induced neural excitation patterns
can be modeled with a resting state that is low-dimensional
chaos[4]. Furthermore, it was shown that this might even
improvethe reliability of induced firing.

We have suggested that the pattern transition reported in
Ref. [1] be used as a device to analyze time series that are
noise contaminated and nonstationary[5]. So far, the follow-
ing problems have not been dealt with:(i) How does the
response of such a system depend on perturbation amplitude
and frequency;(ii ) how does the system react in the presence
of noise in the signal;(iii ) what is the temporal resolution,
and (iv) how is the response to experimental signals. Here,
we study these questions using a prototypic model system.

The model is a set of nonlinear excitable oscillators
coupled by(linear) diffusion in one spatial dimension in the
following form:
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for i =2,3, . . . ,N−1, whereN, the number of oscillators, is
chosen to be 30, and the boundary conditions are zero flux.
Parameter« is a velocity constant that is identical for all
variables of the unperturbed differential equation. For a
given external perturbation, the model velocity(and thereby
the model’s internal frequencies) can be adjusted by changes
in «. The additive termP (not affected by changes of«)
denotes the local external perturbation. Its strength is con-
trolled by coupling parameterA. The nonlinear functionsf
and g are adapted from the Goldbeter–Dupont–Berridge
model [6]:

fsX,Yd = a − m2X/s1 + Xd + m3YX2/ssk1 + Ydska + X2dd

+ Y − X,

gsX,Yd = m2X/s1 + Xd − m3YX2/ssk1 + Ydska + X2dd − Y.

In the absence of external perturbation, the chain of oscil-
lators has spatiotemporally hyperchaotic solutions[1]. With
model parameters fixed in the Canard region of the indi-
vidual oscillator,[7] the chaos isexcitable, i.e., a single short
perturbation exceeding some threshold value leads to a spike
of significantly larger amplitude than the spontaneous oscil-
lations(see Ref.[8]). However, in spite of being an excitable
medium, the exponential divergence of the basal chaos pre-
vents any long-range propagation of waves following a
single local suprathreshold perturbation.

If a sinusoidal periodic perturbation is added to the equa-
tion for variableX1 of the first oscillator,P=sinsvtd, with
amplitude 1/A, excitation waves can be induced for some
frequency windows of the perturbation[1]. These large-*Electronic address: baier@servm.fc.uaem.mx
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amplitude waves propagate from the point of perturbation to
the far end of the chain. Figure 1 is a bifurcation diagram
showing maxima of variablesX1 and X30 as a function of
forcing frequencyv. In Fig. 1(a), the two dark regions in the
plot of X1 (1.5,v,2.3, and 3.1,v,4.5) indicate per-
turbed (hyper-)chaotic behavior with a distribution of
maxima that is wider than in the chaotic resting state. In
contrast, the central regions2.3,v,3.1d indicates periodic
or quasiperiodic behavior of medium amplitude. It is in this
window that excitation waves are generated. In Fig. 4(b), the
left dark region and the far right region in the plot ofX30
(1.5,v,2.3 and 4.0,v,4.5, respectively) are due to
chaotic behavior with a distribution of maxima that is equal
to the chaotic resting state. In these bands, the influence of
the perturbation is much weaker than in Fig. 1(a). The region
3.1,v,4.0 is a mixture of basal chaos and irregularly in-
duced excitation waves. The central regions2.3,v,3.1d of
Fig. 1(b) is formed by periodic oscillations of large ampli-
tude. In this window, the induced large-amplitude excitation
waves reach the far end of the chain of oscillators. The pe-
riodic window maintains its size in the frequency domain
throughout the chain. The small region of complex bifurca-
tions within the periodic window in the center of Fig. 1(a) is
lost in the course of propagation. From oscillator 16 onward,
the bifurcation structure remains qualitatively unchanged.
This shows how the spatiotemporal arrangement of excitable
units acts as a kind of sharp-edged band-pass filter.

For A.95, no excitation waves are detected in oscillator
30, i.e., a minimum coupling strength is required to start the
process of propagation. For 80,A,95, the frequency win-
dow of induced excitations widens as coupling strength is
increased. For 40,A,80, the frequency window remains
nearly constant in width. In addition, for stronger couplings,
new windows with more complex excitation waves, like pe-
riods 2 and 3, appear.

The periodic excitation waves do not stabilize an unstable
periodic orbit of the unperturbed system[1]. Therefore, the
induced excitation waves do not follow an orbit of the un-
perturbed system and are not an example of successful chaos
control by external periodic forcing as introduced by Pyragas
[9].

The Fourier spectrum of the unperturbed chaos in Eq.(1)
has a broadband distribution with well-pronounced maxima
at about 3.4 and 3.6 s−1. The frequency range for which in-
duction of excitation waves is found does not coincide with
these maximum power frequencies. If Eq.(1) is scanned with
a coupling of the sine wave for which no periodic excitation
waves are induced at all, the mean amplitude of the response
does not increase in the range 2.3,v,3.1. If Fourier spec-
tra are calculated for this case, we observe a clear maximum
of the power in the frequency range where excitation waves
are induced for stronger couplings. This power maximum is
a consequence of the prolonged fraction of time that the sys-
tem spends near the “ghost” of the periodic solution and thus
indicative of the nearby crisis. The results thus differ from
classical resonant firing as seen, e.g., in the periodically
forced Hodgkin–Huxley equation[10].

Analysis of the bifurcations that lead to excitation waves
shows that at bothv<2.3 andv<3.1, the chaotic attractor
undergoes a crisis. If the perturbation frequency is chosen
within the excitation window and initial conditions are se-
lected on the unperturbed chaotic attractor, chaotic transients
are observed that follow trajectories similar to the unper-
turbed case for some time. Within this frequency region, a
chaotic attractor that closely resembles the attractor seen,
e.g., atv=2.2, can be stabilized if the unperturbed chaotic
signal is used as external driving. The mechanism that lo-
cally suppresses the chaos thus requires that the periodic
forcing destabilizes the chaotic solution in a crisis and turns
it into a chaotic saddle.

Now we study the dependence of the induction of excita-
tion waves in the presence of noise in the perturbation. The
chosen perturbation consists of Gaussian white noise(mean
zero and amplitude variance equal to 1) to which a sequence
of 30 full cycles of the sine wave of amplitude 1 is added.
Figure 2 shows scans of two parameter planes for Eq.(1)
with this perturbation. In order to obtain results that are in-
dependent of the particular choice of initial conditions, the
average of 30 runs with different initial conditions is evalu-
ated for each set of parameters. This way, the effect of ran-
domly induced excitation waves[especially near the high-
frequency end of the periodic window in Fig. 1(b)] is

FIG. 1. Bifurcation diagram of Eq.(1) with additive sinusoidal
forcing of X1 in the formP=sinsvtd. Plotted are maxima of vari-
ables X1 (a) and X30 (b) as a function of forcing frequencyv.
Parameters:a=0.325, m2=20, m3=23, k1=0.8, ka=0.81, «=1.0,
DX=0.5, andA=80.

FIG. 2. Scans in parameter space of Eq.(1) with P=sinsvtd
+h, whereh denotes white noise(zero mean; variance 1). Grey
coding of number of suprathreshold maxima in variableX30 in re-
sponse to 30 sine wave cycles in the perturbation. Average of 30
runs for each point.(a) Parameter plane« /v; A=40. (b) Parameter
planeA/v; «=1.0. Other parameters as in Fig. 1.
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suppressed. Successful induction is characterized by the
number of induced excitation waves exceeding a threshold
value in oscillator 30. The threshold is set as 0.7 of variable
X30 (a value that is not exceeded in the averaged chaotic
basal state).

In thev-«-plane[Fig. 2(a)], a single band is found where
excitation waves are induced whereas the rest shows no ex-
citation at all. The band is displaced linearly and widens
slightly as the frequency is increased. The relationship be-
tween velocity factor and perturbation frequency at maxi-
mum induction is given in linear regression as«=2.6v. The
horizontal width of the band allows an estimation of the
frequency resolution. The resolution is better than in the case
of a pure sine wave(Fig. 1) because the noise tends to im-
pede the induction of excitation waves and this effect is
stronger near the borders of the induction band. Furthermore,
the results in Fig. 2(a) are averages over 30 runs with differ-
ent initial condition. This averaging is essential to improve
the frequency resolution compared to Fig. 1(b). The chaotic
excitations adjacent to the region of regular excitation are
thereby suppressed. Figure 2(b) shows the scan of parameter
planeA-v at fixed«. Here, parameterA controls the ampli-
tude of the combined noise and sine-wave perturbation and
does not affect the relative amplitude of the two contribu-
tions. In Fig. 2(b), the dark tongue centered atv<2.8 Hz
represents a unique induction zone for couplingsA.40. For
stronger couplingssA,40d, the structure gets more complex
as harmonics of the optimal perturbation frequency also suc-
ceed in inducing waves. The first harmonic is visible as a
light gray zone atv<5.6. At even lower values ofA, new
bifurcations lead to more complex types of excitation waves,
e.g., period 2 and period 3 solutions as in the case of pure
sinusoidal perturbation(see Ref.[11]).

The unperturbed system is not a classical excitable me-
dium. Its basal state is spatiotemporally chaotic, i.e., it dis-
plays an irregular temporal evolution in all variables. We
perturbed Eq.(1) with the combined sine-wave-white noise
signal as in Fig. 2 and calculated how long it takes(averaged
over 30 runs) for the first induced excitation wave to reach
oscillator 30 after the onset of the sine wave. Figure 3(a)
shows that the average propagation time depends on forcing
frequency like 1/v. By plotting the result in terms of number
of sine-wave cycles in the perturbation, a constant of 11–12
cycles is found. On the average, this number of perturbation
cycles in oscillator 1 are completed before the first excitation
wave reaches oscillator 30.(The resulting time delayDt is
used to shift the time axes for each frequency in Fig. 4,
accordingly.)

The frequency-resolved response of subthreshold spa-
tiotemporal chaos to transient irregular perturbations has not
been studied previously. Because of the noise tolerance(Fig.
1) and the temporal resolution(Fig. 2), it should be possible
to characterize the main frequencies as well as continuous
changes of the main frequencies in such signals. To study
such a case, we chose an epileptic oscillation as recorded by
a scalp electroencephalogram(EEG). This type of nonhar-
monic oscillation has been analyzed with respect to its com-
plexity and it was concluded that it presents an example of a
low-dimensional chaotic process[12,13]. For the analysis,
the EEG signal was normalized(average zero, variance equal

to 1, using an episode free of artifacts and seizure activity as
a reference). During the epileptic event, there is a sudden
rearrangement of the frequency composition from the broad-
band “normal” electric activity to a comparatively regular
sequence of so-called spike-and-wave complexes[Fig. 4(a)].
The Fourier spectrum of this section shows a dominant fre-
quency on a basal broadband distribution as is typical for this
type of seizures[12].

The coupling is chosen such that the broadband normal
EEG signal does not induce any excitation waves. This way
the normal activity is ignored and only the seizure activity

FIG. 3. Mean response time of variableX30 to the onset of
perturbation in variableX1 as a function ofv; (a) expressed in
seconds; and(b) expressed as number of perturbation cycles. For
each perturbation frequencyv, parameter« is calculated as«
=v /2.6 according to the calibration in Fig. 2. Plotted are averages
of 30 runs at each point. Other parameters as in Fig. 1.

FIG. 4. (a) EEG signal(electrode F4) with epileptic activity. The
seizure lasts from 183–211 s.(b) Excitations of a set of Eq.(1)
with different parameters« perturbed by the EEG signal in(a). Plot
as in Fig. 4.A=120, other parameters as in Fig. 1.
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with its dominant frequencies and large amplitudes is de-
tected. Figure 4(b) is the pattern of induced waves during the
time where the seizure occurs in the signal. The pattern dis-
plays three bands. The two main bands are centered initially
at 3.4 Hz and 5.0 Hz, respectively. The frequency band at
about 3 Hz corresponds to the dominant frequency of the
spike-and-wave complexes. Clearly, the higher-frequency
band is not a harmonic of the lower-frequency band but a
second independent frequency. Both bands undergo a shift in
frequency to final values of 2.6 Hz and 4.4 Hz, respectively.
This reflects the well-documented frequency slowing during
absence seizures[14]. The thin third band at about 1.4 Hz
starts approximately at second 192 and lasts until second
207. It is a subharmonic of the main frequency, which in this
part of the seizure is centered at 2.8 Hz. Thus, while the fine
texture of the two broadbands does not permit to distinguish
between a noisy limit cycle and deterministic chaos, the ap-
pearance of a subharmonic indicates a degree of complexity
typical of a chaotic attractor.

The system Eq.(1) in its “tuned” form exploits the prop-
erties of spatiotemporal excitable chaos to extract informa-
tion from analog signals and represent them as temporally
evolving excitation patterns. Some of its features are:(1) A
minimum number of recurrent excitations are required to be
detectable. This successfully suppresses uncorrelated noise
components in the signal.(2) The sharp-edged filter charac-
teristic (Fig. 2) permits induction of waves only in a certain
frequency band. This allows a separation of contributions
with distinct frequencies in the signal and estimation of their
individual frequencies even in the presence of high levels of
noise.(3) Onset, offset, and continuous shifts in frequency of

the band are features that allow almost instantaneous detec-
tion and characterization oftransientevents(see Fig. 4). (4)
In contrast to Fourier spectra, wavelets, and methods derived
from nonlinear dynamics(e.g., the estimation of the correla-
tion dimension or of the spectrum of Lyapunov characteristic
exponents) no predetermined finite window of data(with as-
sumed stationarity) is required for evaluation. The system
identifies “interesting” episodes in nonstationary recordings.
Its temporal resolution makes the method attractive for the
analysis of time series where nonstationarity is not only un-
avoidable but also crucial for the understanding, e.g., EEG
recordings or, in the context mentioned in the introduction,
the sound-generated vibrations in the inner ear.(5) Finally,
the combination of data normalization with a preset value of
coupling constant allowsautomaticdetection and character-
ization of specific events(e.g., sounds with characteristic
overtones and undertones[2]).

The fact that the unperturbed system is excitable allows
one to not only detect events and changes of events in the
perturbation but also—as soon as they disappear—to auto-
matically destroy the induced coherence and to reset the
basal dynamics. The method thus differs from nonresetting
artificial neural networks and has dynamics closer to those of
sensory neurons which are supposed to give “a sort of run-
ning commentary” [3] to an external signal’s temporal varia-
tions. This recommends the present system for further inves-
tigation with respect to information extraction.
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